1
|
Abdullah M, Alabduljalil T. NOVEL RETINAL FINDINGS IN A PATIENT WITH AUTOSOMAL RECESSIVE CUTIS LAXA TYPE 2A. Retin Cases Brief Rep 2024; 18:400-403. [PMID: 36728588 DOI: 10.1097/icb.0000000000001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To report a case of autosomal recessive cutis laxa type 2A with novel retinal findings. METHODS Case report. RESULTS A 22-year-old female patient presented with a long-standing history of reduced visual acuity in her right eye. She has generalized redundant skin, downslanting of palpebral fissures, and long philtrum. Ophthalmic examination showed ptosis in her right eye and visual acuity of 20/2000 in the right eye and 20/30p in the left eye. Funduscopic examination showed a round macular scar lesion in the right eye macula and a chorioretinal scar superonasally in the left eye. Multimodal imaging showed macular atrophy in the right eye with speckled hypoautofluorescence of the described lesions. Genetic testing showed a homozygous splice acceptor variant of the ATP6V0A2 gene. CONCLUSION The natural history of the presented pigmentary lesions is not known, and further follow-up is needed to assess any progressive nature. Our case adds to the variability of ophthalmic manifestations reported in autosomal recessive cutis laxa type 2A and, therefore, to the importance of regular ophthalmic surveillance in patients with cutis laxa.
Collapse
Affiliation(s)
- Mohammad Abdullah
- Albahar Eye Center, Ibn Sina Hospital, Sabah Health Region, Kuwait; and
| | - Talal Alabduljalil
- Surgery Department, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
2
|
Zhu S, Xu R, Engel AL, Wang Y, McNeel R, Hurley JB, Chao JR, Du J. Proline provides a nitrogen source in the retinal pigment epithelium to synthesize and export amino acids for the neural retina. J Biol Chem 2023; 299:105275. [PMID: 37741457 PMCID: PMC10616405 DOI: 10.1016/j.jbc.2023.105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
It is known that metabolic defects in the retinal pigment epithelium (RPE) can cause degeneration of its neighboring photoreceptors in the retina, leading to retinal degenerative diseases such as age-related macular degeneration. However, how RPE metabolism supports the health of the neural retina remains unclear. The retina requires exogenous nitrogen sources for protein synthesis, neurotransmission, and energy metabolism. Using 15N tracing coupled with mass spectrometry, we found human RPE can utilize the nitrogen in proline to produce and export 13 amino acids, including glutamate, aspartate, glutamine, alanine, and serine. Similarly, we found this proline nitrogen utilization in the mouse RPE/choroid but not in the neural retina of explant cultures. Coculture of human RPE with the retina showed that the retina can take up the amino acids, especially glutamate, aspartate, and glutamine, generated from proline nitrogen in the RPE. Intravenous delivery of 15N proline in vivo demonstrated 15N-derived amino acids appear earlier in the RPE before the retina. We also found proline dehydrogenase, the key enzyme in proline catabolism is highly enriched in the RPE but not the retina. The deletion of proline dehydrogenase blocks proline nitrogen utilization in RPE and the import of proline nitrogen-derived amino acids in the retina. Our findings highlight the importance of RPE metabolism in supporting nitrogen sources for the retina, providing insight into understanding the mechanisms of the retinal metabolic ecosystem and RPE-initiated retinal degenerative diseases.
Collapse
Affiliation(s)
- Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA; Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Rachel McNeel
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - James B Hurley
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA; Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
3
|
Malta MD, Cerqueira MT, Marques AP. Extracellular matrix in skin diseases: The road to new therapies. J Adv Res 2023; 51:149-160. [PMID: 36481476 PMCID: PMC10491993 DOI: 10.1016/j.jare.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a vital structure with a dynamic and complex organization that plays an essential role in tissue homeostasis. In the skin, the ECM is arranged into two types of compartments: interstitial dermal matrix and basement membrane (BM). All evidence in the literature supports the notion that direct dysregulation of the composition, abundance or structure of one of these types of ECM, or indirect modifications in proteins that interact with them is linked to a wide range of human skin pathologies, including hereditary, autoimmune, and neoplastic diseases. Even though the ECM's key role in these pathologies has been widely documented, its potential as a therapeutic target has been overlooked. AIM OF REVIEW This review discusses the molecular mechanisms involved in three groups of skin ECM-related diseases - genetic, autoimmune, and neoplastic - and the recent therapeutic progress and opportunities targeting ECM. KEY SCIENTIFIC CONCEPTS OF REVIEW This article describes the implications of alterations in ECM components and in BM-associated molecules that are determinant for guaranteeing its function in different skin disorders. Also, ongoing clinical trials on ECM-targeted therapies are discussed together with future opportunities that may open new avenues for treating ECM-associated skin diseases.
Collapse
Affiliation(s)
- M D Malta
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - M T Cerqueira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - A P Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal.
| |
Collapse
|
4
|
Lugli L, Cavalleri F, Bertucci E, Fischer-Zirnsak B, Cinelli G, Trevisani V, Rossi C, Riva M, Iughetti L, Berardi A. Autosomal recessive cutis laxa type IIIA: Report of a patient with severe phenotype and review of the literature. Eur J Med Genet 2022; 65:104568. [PMID: 35842092 DOI: 10.1016/j.ejmg.2022.104568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/24/2022] [Accepted: 07/10/2022] [Indexed: 11/03/2022]
Abstract
Autosomal recessive cutis laxa type IIIA is a very rare genetic condition, caused by pathogenic variants in ALDH18A1, encoding delta-1-pyrroline-5-carboxylate synthase (P5CS). This enzyme catalyzes the reduction of glutamic acid to delta1-pyrroline-5-carboxylate, playing a key role in the de novo biosynthesis of proline, ornithine, and arginine. Autosomal recessive cutis laxa type IIIA is characterized by abundant and wrinkled skin, skeletal anomalies, cataract or corneal clouding and neuro-developmental disorders of variable degree. We report on a patient with autosomal recessive cutis laxa type IIIA, due to a homozygous missense c.1273C > T; p. (Arg425Cys) pathogenic variant in ALDH18A1. The patient presented a severe phenotype with serious urological involvement, peculiar cerebro-vascular abnormalities and neurodevelopmental compromise. This description contributes to better characterize the phenotypic spectrum associated with ALDH18A1 pathogenic variants, confirming the systemic involvement as a typical feature of autosomal recessive cutis laxa type IIIA.
Collapse
Affiliation(s)
- Licia Lugli
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | | | - Emma Bertucci
- Obstetric-Gynecology Unit, Mother-Child Department, University Hospital of Modena, Italy
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Giulia Cinelli
- Postgraduate School of Pediatrics, Department of Medical and Surgical Sciences for Mother, Children and Adults, University of Modena and Reggio Emilia, Italy
| | - Viola Trevisani
- Postgraduate School of Pediatrics, Department of Medical and Surgical Sciences for Mother, Children and Adults, University of Modena and Reggio Emilia, Italy
| | - Cecilia Rossi
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy
| | - Marika Riva
- Pediatric Unit, Mother-Child Department, University Hospital of Modena, Italy
| | - Lorenzo Iughetti
- Postgraduate School of Pediatrics, Department of Medical and Surgical Sciences for Mother, Children and Adults, University of Modena and Reggio Emilia, Italy; Pediatric Unit, Mother-Child Department, University Hospital of Modena, Italy
| | - Alberto Berardi
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy
| |
Collapse
|
5
|
Pickwick C, Callewaert B, van Dijk F, Harris J, Wakeling E, Hay E, Yeo M, Chakrapani A, Baptista J, Moore S, Yoong M, Chatterjee F, Ghali N. Expanding the phenotypic spectrum of ALDH18A1-related autosomal recessive cutis laxa with a description of novel neuroradiological findings. Clin Dysmorphol 2022; 31:66-70. [PMID: 34954732 DOI: 10.1097/mcd.0000000000000404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Bert Callewaert
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Fleur van Dijk
- Ehlers-Danlos Syndrome National Diagnostic Service, North West London Hospitals NHS Trust, Harrow, Middlesex
| | - Juliette Harris
- Ehlers-Danlos Syndrome National Diagnostic Service, North West London Hospitals NHS Trust, Harrow, Middlesex
| | | | | | - Mildrid Yeo
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital, Great Ormond Street, London
| | - Anupam Chakrapani
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital, Great Ormond Street, London
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Departments of
| | - Sandra Moore
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust
| | | | - Fiona Chatterjee
- Paediatric Neuroradiology, Barts Health NHS Trust, The Royal Hospital, Whitechapel Road, London, UK
| | - Neeti Ghali
- Ehlers-Danlos Syndrome National Diagnostic Service, North West London Hospitals NHS Trust, Harrow, Middlesex
| |
Collapse
|
6
|
Gao J, Hao Y, Piao X, Gu X. Aldehyde Dehydrogenase 2 as a Therapeutic Target in Oxidative Stress-Related Diseases: Post-Translational Modifications Deserve More Attention. Int J Mol Sci 2022; 23:ijms23052682. [PMID: 35269824 PMCID: PMC8910853 DOI: 10.3390/ijms23052682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) has both dehydrogenase and esterase activity; its dehydrogenase activity is closely related to the metabolism of aldehydes produced under oxidative stress (OS). In this review, we recapitulate the enzyme activity of ALDH2 in combination with its protein structure, summarize and show the main mechanisms of ALDH2 participating in metabolism of aldehydes in vivo as comprehensively as possible; we also integrate the key regulatory mechanisms of ALDH2 participating in a variety of physiological and pathological processes related to OS, including tissue and organ fibrosis, apoptosis, aging, and nerve injury-related diseases. On this basis, the regulatory effects and application prospects of activators, inhibitors, and protein post-translational modifications (PTMs, such as phosphorylation, acetylation, S-nitrosylation, nitration, ubiquitination, and glycosylation) on ALDH2 are discussed and prospected. Herein, we aimed to lay a foundation for further research into the mechanism of ALDH2 in oxidative stress-related disease and provide a basis for better use of the ALDH2 function in research and the clinic.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
- Correspondence:
| |
Collapse
|
7
|
Michelini S, Herbst KL, Precone V, Manara E, Marceddu G, Dautaj A, Maltese PE, Paolacci S, Ceccarini MR, Beccari T, Sorrentino E, Aquilanti B, Velluti V, Matera G, Gagliardi L, Miggiano GAD, Bertelli M. A Multi-Gene Panel to Identify Lipedema-Predisposing Genetic Variants by a Next-Generation Sequencing Strategy. J Pers Med 2022; 12:268. [PMID: 35207755 PMCID: PMC8877075 DOI: 10.3390/jpm12020268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/25/2022] Open
Abstract
Lipedema is a disabling disease characterized by symmetric enlargement of the lower and/or upper limbs due to deposits of subcutaneous fat, that is easily misdiagnosed. Lipedema can be primary or syndromic, and can be the main feature of phenotypically overlapping disorders. The aim of this study was to design a next-generation sequencing (NGS) panel to help in the diagnosis of lipedema by identifying genes specific for lipedema but also genes for overlapping diseases, and targets for tailored treatments. We developed an NGS gene panel consisting of 305 genes potentially associated with lipedema and putative overlapping diseases relevant to lipedema. The genomes of 162 Italian and American patients with lipedema were sequenced. Twenty-one deleterious variants, according to 3 out of 5 predictors, were detected in PLIN1, LIPE, ALDH18A1, PPARG, GHR, INSR, RYR1, NPC1, POMC, NR0B2, GCKR, PPARA in 17 patients. This extended NGS-based approach has identified a number of gene variants that may be important in the diagnosis of lipedema, that may affect the phenotypic presentation of lipedema or that may cause disorders that could be confused with lipedema. This tool may be important for the diagnosis and treatment of people with pathologic subcutaneous fat tissue accumulation.
Collapse
Affiliation(s)
- Sandro Michelini
- Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, 00047 Marino, Italy;
| | - Karen L. Herbst
- Department of Endocrinology and Research, Total Lipedema Care, Los Angeles, CA 90211, USA;
| | - Vincenza Precone
- MAGI EUREGIO, 39100 Bolzano, Italy; (V.P.); (G.M.); (E.S.); (M.B.)
| | - Elena Manara
- MAGI’S LAB, 38068 Rovereto, Italy; (E.M.); (A.D.); (P.E.M.)
| | | | - Astrit Dautaj
- MAGI’S LAB, 38068 Rovereto, Italy; (E.M.); (A.D.); (P.E.M.)
| | | | | | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (T.B.)
- C.I.B., Consorzio Interuniversitario per le Biotecnologie, 34148 Trieste, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (T.B.)
- C.I.B., Consorzio Interuniversitario per le Biotecnologie, 34148 Trieste, Italy
| | - Elisa Sorrentino
- MAGI EUREGIO, 39100 Bolzano, Italy; (V.P.); (G.M.); (E.S.); (M.B.)
| | - Barbara Aquilanti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (B.A.); (V.V.); (G.M.); (L.G.); (G.A.D.M.)
| | - Valeria Velluti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (B.A.); (V.V.); (G.M.); (L.G.); (G.A.D.M.)
| | - Giuseppina Matera
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (B.A.); (V.V.); (G.M.); (L.G.); (G.A.D.M.)
| | - Lucilla Gagliardi
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (B.A.); (V.V.); (G.M.); (L.G.); (G.A.D.M.)
| | - Giacinto Abele Donato Miggiano
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (B.A.); (V.V.); (G.M.); (L.G.); (G.A.D.M.)
| | - Matteo Bertelli
- MAGI EUREGIO, 39100 Bolzano, Italy; (V.P.); (G.M.); (E.S.); (M.B.)
- MAGI’S LAB, 38068 Rovereto, Italy; (E.M.); (A.D.); (P.E.M.)
| |
Collapse
|
8
|
Abstract
Adipose tissue, once thought to be an inert receptacle for energy storage, is now recognized as a complex tissue with multiple resident cell populations that actively collaborate in response to diverse local and systemic metabolic, thermal, and inflammatory signals. A key participant in adipose tissue homeostasis that has only recently captured broad scientific attention is the lymphatic vasculature. The lymphatic system's role in lipid trafficking and mediating inflammation makes it a natural partner in regulating adipose tissue, and evidence supporting a bidirectional relationship between lymphatics and adipose tissue has accumulated in recent years. Obesity is now understood to impair lymphatic function, whereas altered lymphatic function results in aberrant adipose tissue deposition, though the molecular mechanisms governing these phenomena have yet to be fully elucidated. We will review our current understanding of the relationship between adipose tissue and the lymphatic system here, focusing on known mechanisms of lymphatic-adipose crosstalk.
Collapse
Affiliation(s)
- Gregory P Westcott
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Joslin Diabetes Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
- Correspondence: Evan D. Rosen, MD, PhD, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Beyens A, Pottie L, Sips P, Callewaert B. Clinical and Molecular Delineation of Cutis Laxa Syndromes: Paradigms for Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:273-309. [PMID: 34807425 DOI: 10.1007/978-3-030-80614-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cutis laxa (CL) syndromes are a large and heterogeneous group of rare connective tissue disorders that share loose redundant skin as a hallmark clinical feature, which reflects dermal elastic fiber fragmentation. Both acquired and congenital-Mendelian- forms exist. Acquired forms are progressive and often preceded by inflammatory triggers in the skin, but may show systemic elastolysis. Mendelian forms are often pleiotropic in nature and classified upon systemic manifestations and mode of inheritance. Though impaired elastogenesis is a common denominator in all Mendelian forms of CL, the underlying gene defects are diverse and affect structural components of the elastic fiber or impair metabolic pathways interfering with cellular trafficking, proline synthesis, or mitochondrial functioning. In this chapter we provide a detailed overview of the clinical and molecular characteristics of the different cutis laxa types and review the latest insights on elastic fiber assembly and homeostasis from both human and animal studies.
Collapse
Affiliation(s)
- Aude Beyens
- Center for Medical Genetics Ghent, Department of Dermatology, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium.
| |
Collapse
|
10
|
Du J, Zhu S, Lim RR, Chao JR. Proline metabolism and transport in retinal health and disease. Amino Acids 2021; 53:1789-1806. [PMID: 33871679 PMCID: PMC8054134 DOI: 10.1007/s00726-021-02981-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
The retina is one of the most energy-demanding tissues in the human body. Photoreceptors in the outer retina rely on nutrient support from the neighboring retinal pigment epithelium (RPE), a monolayer of epithelial cells that separate the retina and choroidal blood supply. RPE dysfunction or cell death can result in photoreceptor degeneration, leading to blindness in retinal degenerative diseases including some inherited retinal degenerations and age-related macular degeneration (AMD). In addition to having ready access to rich nutrients from blood, the RPE is also supplied with lactate from adjacent photoreceptors. Moreover, RPE can phagocytose lipid-rich outer segments for degradation and recycling on a daily basis. Recent studies show RPE cells prefer proline as a major metabolic substrate, and they are highly enriched for the proline transporter, SLC6A20. In contrast, dysfunctional or poorly differentiated RPE fails to utilize proline. RPE uses proline to fuel mitochondrial metabolism, synthesize amino acids, build the extracellular matrix, fight against oxidative stress, and sustain differentiation. Remarkably, the neural retina rarely imports proline directly, but it uptakes and utilizes intermediates and amino acids derived from proline catabolism in the RPE. Mutations of genes in proline metabolism are associated with retinal degenerative diseases, and proline supplementation is reported to improve RPE-initiated vision loss. This review will cover proline metabolism in RPE and highlight the importance of proline transport and utilization in maintaining retinal metabolism and health.
Collapse
Affiliation(s)
- Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,One Medical Center Dr, WVU Eye Institute, PO Box 9193, Morgantown, WV, 26505, USA.
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
11
|
Kalmár T, Maróti Z, Zimmermann A, Sztriha L. Tremor as an early sign of hereditary spastic paraplegia due to mutations in ALDH18A1. Brain Dev 2021; 43:144-151. [PMID: 32798076 DOI: 10.1016/j.braindev.2020.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The ALDH18A1 gene is located at 10q24.1 and encodes delta-1-pyrroline-5-carboxylate synthetase (P5CS), a mitochondrial bifunctional enzyme that catalyzes the first two steps in de novo biosynthesis of proline, ornithine, citrulline, and arginine. ALDH18A1-related disorders have been classified into four groups, such as autosomal dominant and recessive hereditary spastic paraplegia (SPG9A and SPG9B, respectively), as well as autosomal dominant and recessive cutis laxa (ADCL3 and ARCL3A, respectively). Neurodegeneration is a characteristic feature of all groups. CASE REPORT Here, we report a girl with compound heterozygous disease-causing variants (c.-28-2A>G and c.383G>A, p.Arg128His) in the ALDH18A1 gene, revealed by whole exome sequencing. The c.-28-2A>G variant in intron 1, inherited from the mother, is a novel mutation, while the c.383G>A variant in exon 4, inherited from the father, has already been reported. The patient presented with vigorous infantile tremor preceding progressive spastic paraplegia. Dysmorphic features included elongated face, deep-set ears, upturned nose, long philtrum and pointed chin. Intrauterine and postnatal growth retardation, microcephaly, global developmental delay and profound intellectual disability were also noticed. Blood fasting ammonia level, plasma proline, ornithine and arginine levels were normal, while citrulline level was slightly decreased. Brain MRI revealed moderate hypoplasia of the corpus callosum and reduction of white matter volume. CONCLUSIONS The patient represents SPG9B, a rare form of autosomal recessive hereditary spastic paraplegias. The early onset tremor, preceding lower limb spasticity appears to be a unique early manifestation of neurodegeneration in this case.
Collapse
Affiliation(s)
- Tibor Kalmár
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Zoltán Maróti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Alíz Zimmermann
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - László Sztriha
- Department of Pediatrics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
12
|
Yang Z, Zhao X, Shang W, Liu Y, Ji JF, Liu JP, Tong C. Pyrroline-5-carboxylate synthase senses cellular stress and modulates metabolism by regulating mitochondrial respiration. Cell Death Differ 2020; 28:303-319. [PMID: 32770108 DOI: 10.1038/s41418-020-0601-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 11/09/2022] Open
Abstract
Pyrroline-5-carboxylate synthase (P5CS) catalyzes the synthesis of pyrroline-5-carboxylate (P5C), a key precursor for the synthesis of proline and ornithine. P5CS malfunction leads to multiple human diseases; however, the molecular mechanism underlying these diseases is unknown. We found that P5CS localizes in mitochondria in rod- and ring-like patterns but diffuses inside the mitochondria upon cellular starvation or exposure to oxidizing agents. Some of the human disease-related mutant forms of P5CS also exhibit diffused distribution. Multimerization (but not the catalytic activity) of P5CS regulates its localization. P5CS mutant cells have a reduced proliferation rate and are sensitive to cellular stresses. Flies lacking P5CS have reduced eclosion rates. Lipid droplets accumulate in the eyes of the newly eclosed P5CS mutant flies, which degenerate with aging. The loss of P5CS in cells leads to abnormal purine metabolism and lipid-droplet accumulation. The reduced lipid-droplet consumption is likely due to decreased expression of the fatty acid transporter, CPT1, and few β-oxidation-related genes following P5CS knockdown. Surprisingly, we found that P5CS is required for mitochondrial respiratory complex organization and that the respiration defects in P5CS knockout cells likely contribute to the metabolic defects in purine synthesis and lipid consumption. This study links amino acid synthesis with mitochondrial respiration and other key metabolic processes, whose imbalance might contribute to P5CS-related disease conditions.
Collapse
Affiliation(s)
- Zhaoying Yang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaocui Zhao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Weina Shang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yang Liu
- Centre of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jun-Feng Ji
- Centre of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University College of Medicine, Hangzhou, 311121, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Institute of Ageing Research, Hangzhou Normal University College of Medicine, Hangzhou, 311121, China. .,The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
13
|
Marco-Marín C, Escamilla-Honrubia JM, Llácer JL, Seri M, Panza E, Rubio V. Δ 1 -Pyrroline-5-carboxylate synthetase deficiency: An emergent multifaceted urea cycle-related disorder. J Inherit Metab Dis 2020; 43:657-670. [PMID: 32017139 DOI: 10.1002/jimd.12220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
The bifunctional homooligomeric enzyme Δ1 -pyrroline-5-carboxylate synthetase (P5CS) and its encoding gene ALDH18A1 were associated with disease in 1998. Two siblings who presented paradoxical hyperammonemia (alleviated by protein), mental disability, short stature, cataracts, cutis laxa, and joint laxity, were found to carry biallelic ALDH18A1 mutations. They showed biochemical indications of decreased ornithine/proline synthesis, agreeing with the role of P5CS in the biosynthesis of these amino acids. Of 32 patients reported with this neurocutaneous syndrome, 21 familial ones hosted homozygous or compound heterozygous ALDH18A1 mutations, while 11 sporadic ones carried de novo heterozygous ALDH18A1 mutations. In 2015 to 2016, an upper motor neuron syndrome (spastic paraparesis/paraplegia SPG9) complicated with some traits of the neurocutaneous syndrome, although without report of cutis laxa, joint laxity, or herniae, was associated with monoallelic or biallelic ALDH18A1 mutations with, respectively, dominant and recessive inheritance. Of 50 SPG9 patients reported, 14 and 36 (34/2 familial/sporadic) carried, respectively, biallelic and monoallelic mutations. Thus, two neurocutaneous syndromes (recessive and dominant cutis laxa 3, abbreviated ARCL3A and ADCL3, respectively) and two SPG9 syndromes (recessive SPG9B and dominant SPG9A) are caused by essentially different spectra of ALDH18A1 mutations. On the bases of the clinical data (including our own prior patients' reports), the ALDH18A1 mutations spectra, and our knowledge on the P5CS protein, we conclude that the four syndromes share the same pathogenic mechanisms based on decreased P5CS function. Thus, these syndromes represent a continuum of increasing severity (SPG9A < SPG9B < ADCL3 ≤ ARCL3A) of the same disease, P5CS deficiency, in which the dominant mutations cause loss-of-function by dominant-negative mechanisms.
Collapse
Affiliation(s)
- Clara Marco-Marín
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Juan M Escamilla-Honrubia
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - José L Llácer
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Marco Seri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Genetics Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Emanuele Panza
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| |
Collapse
|
14
|
Yam M, Engel AL, Wang Y, Zhu S, Hauer A, Zhang R, Lohner D, Huang J, Dinterman M, Zhao C, Chao JR, Du J. Proline mediates metabolic communication between retinal pigment epithelial cells and the retina. J Biol Chem 2019; 294:10278-10289. [PMID: 31110046 PMCID: PMC6664195 DOI: 10.1074/jbc.ra119.007983] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/16/2019] [Indexed: 01/16/2023] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of pigmented cells between the choroid and the retina. RPE dysfunction underlies many retinal degenerative diseases, including age-related macular degeneration, the leading cause of age-related blindness. To perform its various functions in nutrient transport, phagocytosis of the outer segment, and cytokine secretion, the RPE relies on an active energy metabolism. We previously reported that human RPE cells prefer proline as a nutrient and transport proline-derived metabolites to the apical, or retinal, side. In this study, we investigated how RPE utilizes proline in vivo and why proline is a preferred substrate. By using [13C]proline labeling both ex vivo and in vivo, we found that the retina rarely uses proline directly, whereas the RPE utilizes it at a high rate, exporting proline-derived mitochondrial intermediates for use by the retina. We observed that in primary human RPE cell culture, proline is the only amino acid whose uptake increases with cellular maturity. In human RPE, proline was sufficient to stimulate de novo serine synthesis, increase reductive carboxylation, and protect against oxidative damage. Blocking proline catabolism in RPE impaired glucose metabolism and GSH production. Notably, in an acute model of RPE-induced retinal degeneration, dietary proline improved visual function. In conclusion, proline is an important nutrient that supports RPE metabolism and the metabolic demand of the retina.
Collapse
Affiliation(s)
- Michelle Yam
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Abbi L Engel
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Yekai Wang
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Siyan Zhu
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Allison Hauer
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Rui Zhang
- From the Departments of Ophthalmology and
- the Save Sight Institute, University of Sydney, 8 Macquarie Street, Sydney, New South Wales 2000, Australia
| | - Daniel Lohner
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Jiancheng Huang
- From the Departments of Ophthalmology and
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
- the Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Marlee Dinterman
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Chen Zhao
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
| | - Jennifer R Chao
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109,
| | - Jianhai Du
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
15
|
Chen X, Yang Y, Chang T, Xu B, Wei H. Comparative Transcriptome Analysis of Unusual Localized Skin Laxity in Sika Deer ( Cervus nippon). DNA Cell Biol 2019; 38:670-677. [PMID: 31188027 DOI: 10.1089/dna.2019.4730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cutis laxa represents a heterogeneous group of rare, inherited, or acquired connective tissue disorders with the common feature of loose and redundant skin with decreased elasticity. The skin of affected deer showed abnormal collagen fiber morphology. To identify the differentially expressed genes of the unusual localized skin laxity in sika deer, we performed transcriptome analysis in the affected and control sika deer. The transcriptome analysis showed 700 genes with significant differential expression in the affected skin as compared with normal skin. Pathway analysis revealed an enrichment of genes involved in tumor necrosis factor signaling, the extracellular matrix-receptor interaction, platelet activation, and Huntington's disease. A gene network was constructed, and the hub nodes such as PTGS2, THBS1, COL1A1, FOS, and NOS3 were found through PPI network analysis, which may contributed to the unusual localized skin laxity in sika deer. Abnormal expression patterns of genes during the development of the affected sika deer were successfully uncovered in the present study, which provides a reference for revealing the related mechanism underlying cutis laxa in sika deer and human beings.
Collapse
Affiliation(s)
- Xiumin Chen
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yifeng Yang
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,2 Key Laboratory of Molecular Biology in Special Economic Animals, Changchun, China
| | - Tong Chang
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Baozeng Xu
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,2 Key Laboratory of Molecular Biology in Special Economic Animals, Changchun, China
| | - Haijun Wei
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,2 Key Laboratory of Molecular Biology in Special Economic Animals, Changchun, China
| |
Collapse
|
16
|
Lefebvre M, Beaufrere AM, Francannet C, Laurichesse H, Poe C, Jouan T, Troude B, Dechelotte P, Vabres P, Briard M, Mosca-Boidron AL, Duffourd Y, Faivre L, Thevenon J, Thauvin-Robinet C. Extending the ALDH18A1 clinical spectrum to severe autosomal recessive fetal cutis laxa with corpus callosum agenesis. Am J Med Genet A 2018; 176:2509-2512. [PMID: 30244529 DOI: 10.1002/ajmg.a.40515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Mathilde Lefebvre
- Inserm UMR1231 GAD « Génétique des Anomalies du Développement » (GAD), Université de Bourgogne, Dijon, France
| | | | | | | | - Charlotte Poe
- Inserm UMR1231 GAD « Génétique des Anomalies du Développement » (GAD), Université de Bourgogne, Dijon, France
| | - Thibaud Jouan
- Inserm UMR1231 GAD « Génétique des Anomalies du Développement » (GAD), Université de Bourgogne, Dijon, France
| | - Baptiste Troude
- Centre de Génétique, Hôpital d'Estaing, Clermont-Ferrand, France
| | - Pierre Dechelotte
- Service d'Anatomie et Cytologie Pathologique, Clermont-Ferrand, France
| | | | - Marie Briard
- Service de radiologie pédiatrique, Hôpital d'Estaing, Clermont-Ferrand, France
| | | | - Yannis Duffourd
- Inserm UMR1231 GAD « Génétique des Anomalies du Développement » (GAD), Université de Bourgogne, Dijon, France
| | - Laurence Faivre
- Inserm UMR1231 GAD « Génétique des Anomalies du Développement » (GAD), Université de Bourgogne, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Julien Thevenon
- Inserm UMR1231 GAD « Génétique des Anomalies du Développement » (GAD), Université de Bourgogne, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Christel Thauvin-Robinet
- Inserm UMR1231 GAD « Génétique des Anomalies du Développement » (GAD), Université de Bourgogne, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| |
Collapse
|
17
|
Koh K, Ishiura H, Beppu M, Shimazaki H, Ichinose Y, Mitsui J, Kuwabara S, Tsuji S, Takiyama Y. Novel mutations in the ALDH18A1 gene in complicated hereditary spastic paraplegia with cerebellar ataxia and cognitive impairment. J Hum Genet 2018; 63:1009-1013. [DOI: 10.1038/s10038-018-0477-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
|
18
|
Bi-allelic Mutations in the Mitochondrial Ribosomal Protein MRPS2 Cause Sensorineural Hearing Loss, Hypoglycemia, and Multiple OXPHOS Complex Deficiencies. Am J Hum Genet 2018; 102:685-695. [PMID: 29576219 DOI: 10.1016/j.ajhg.2018.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
Biogenesis of the mitochondrial oxidative phosphorylation system, which produces the bulk of ATP for almost all eukaryotic cells, depends on the translation of 13 mtDNA-encoded polypeptides by mitochondria-specific ribosomes in the mitochondrial matrix. These mitoribosomes are dual-origin ribonucleoprotein complexes, which contain mtDNA-encoded rRNAs and tRNAs and ∼80 nucleus-encoded proteins. An increasing number of gene mutations that impair mitoribosomal function and result in multiple OXPHOS deficiencies are being linked to human mitochondrial diseases. Using exome sequencing in two unrelated subjects presenting with sensorineural hearing impairment, mild developmental delay, hypoglycemia, and a combined OXPHOS deficiency, we identified mutations in the gene encoding the mitochondrial ribosomal protein S2, which has not previously been implicated in disease. Characterization of subjects' fibroblasts revealed a decrease in the steady-state amounts of mutant MRPS2, and this decrease was shown by complexome profiling to prevent the assembly of the small mitoribosomal subunit. In turn, mitochondrial translation was inhibited, resulting in a combined OXPHOS deficiency detectable in subjects' muscle and liver biopsies as well as in cultured skin fibroblasts. Reintroduction of wild-type MRPS2 restored mitochondrial translation and OXPHOS assembly. The combination of lactic acidemia, hypoglycemia, and sensorineural hearing loss, especially in the presence of a combined OXPHOS deficiency, should raise suspicion for a ribosomal-subunit-related mitochondrial defect, and clinical recognition could allow for a targeted diagnostic approach. The identification of MRPS2 as an additional gene related to mitochondrial disease further expands the genetic and phenotypic spectra of OXPHOS deficiencies caused by impaired mitochondrial translation.
Collapse
|
19
|
Witters P, Breckpot J, Foulquier F, Preston G, Jaeken J, Morava E. Expanding the phenotype of metabolic cutis laxa with an additional disorder of N-linked protein glycosylation. Eur J Hum Genet 2017; 26:618-621. [PMID: 29192153 DOI: 10.1038/s41431-017-0044-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/01/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Peter Witters
- Metabolic Center, Department of Pediatrics, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium. .,Department of Development and Regeneration, Organ systems cluster, Faculty of Medicine, KU Leuven, Leuven, B-3000, Belgium.
| | - Jeroen Breckpot
- Center for Human Genetics, Catholic University Leuven, Leuven, B-3000, Belgium
| | - François Foulquier
- Université Lille, Centre National de la Recherche Française, UMR 8576-Unité de Glycobiologie Structurale et Fonctionnelle-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, F-59000, France
| | - Graem Preston
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Jaak Jaeken
- Metabolic Center, Department of Pediatrics, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Eva Morava
- Metabolic Center, Department of Pediatrics, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium.,Department of Development and Regeneration, Organ systems cluster, Faculty of Medicine, KU Leuven, Leuven, B-3000, Belgium.,Hayward Genetics Center, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| |
Collapse
|
20
|
Imaging in cutis laxa syndrome caused by a dominant negative ALDH18A1 mutation, with hypotheses for intracranial vascular tortuosity and wide perivascular spaces. Eur J Paediatr Neurol 2017; 21:912-920. [PMID: 28757335 DOI: 10.1016/j.ejpn.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 01/09/2023]
Abstract
The autosomal dominant progeroid form of cutis laxa is a recently identified multiple congenital anomaly disorder characterized by thin, wrinkled skin, a progeroid appearance, intra-uterine growth retardation, postnatal growth restriction, psychomotor developmental delay, microcephaly, cataract, hypotonia and contractures. De novo heterozygous mutations in ALDH18A1 have been described in this condition. We present neuroimaging abnormalities in three patients. One patient had intracranial arterial and venous tortuosity, widened ventricular and extra-axial cerebrospinal fluid (CSF) spaces, wide perivascular spaces and increased T2 signal intensity in the cerebral white matter over time. The second patient had vascular tortuosity. The third patient had prominent ventricular and extra-axial cerebrospinal fluid (CSF) spaces on CT. We propose an embryological mechanism for the development of intracranial vascular tortuosity and discuss the anatomical basis of wide perivascular spaces in relation to this syndrome. Although we do not know the clinical implications of these cerebral vascular anomalies, we suggest inclusion of neuroimaging in the baseline evaluation of these patients.
Collapse
|
21
|
Abstract
In recent years the number of disorders known to affect amino acid synthesis has grown rapidly. Nor is it just the number of disorders that has increased: the associated clinical phenotypes have also expanded spectacularly, primarily due to the advances of next generation sequencing diagnostics. In contrast to the "classical" inborn errors of metabolism in catabolic pathways, in which elevated levels of metabolites are easily detected in body fluids, synthesis defects present with low values of metabolites or, confusingly, even completely normal levels of amino acids. This makes the biochemical diagnosis of this relatively new group of metabolic diseases challenging. Defects in the synthesis pathways of serine metabolism, glutamine, proline and, recently, asparagine have all been reported. Although these amino acid synthesis defects are in unrelated metabolic pathways, they do share many clinical features. In children the central nervous system is primarily affected, giving rise to (congenital) microcephaly, early onset seizures and varying degrees of mental disability. The brain abnormalities are accompanied by skin disorders such as cutis laxa in defects of proline synthesis, collodion-like skin and ichthyosis in serine deficiency, and necrolytic erythema in glutamine deficiency. Hypomyelination with accompanying loss of brain volume and gyration defects can be observed on brain MRI in all synthesis disorders. In adults with defects in serine or proline synthesis, spastic paraplegia and several forms of polyneuropathy with or without intellectual disability appear to be the major symptoms in these late-presenting forms of amino acid disorders. This review provides a comprehensive overview of the disorders in amino acid synthesis.
Collapse
Affiliation(s)
- T J de Koning
- Paediatrician for Inborn Errors of Metabolism, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands.
- Department of Genetics and Paediatrics, HPC CB50, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
22
|
Nair P, Hamzeh AR, Malik EM, Oberoi D, Al-Ali MT, Bastaki F. Novel PDE6A mutation in an Emirati patient with retinitis pigmentosa. Oman J Ophthalmol 2017; 10:228-231. [PMID: 29118501 PMCID: PMC5657168 DOI: 10.4103/ojo.ojo_213_2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations in the PDE6A gene are known to cause a form of retinitis pigmentosa (RP43), characterized by progressive retinal degeneration. We describe an Emirati patient with RP caused by a novel mutation in PDE6A. Clinical diagnosis of RP was made based on clinical evaluation and electroretinograms. The molecular analysis involved performing whole-exome sequencing, which enabled the identification of a homozygous 2-bp deletion (c.1358_1359delAT) in PDE6A, which was predicted to result in a frameshift and premature termination (p.Ile452Serfs*7). The mutation completely removed the catalytic PDEase domain in the protein. The parents were found to be heterozygous carriers of the variant. We thus report the first known case of a pathological variant in the PDE6A gene from the Arabian Peninsula.
Collapse
Affiliation(s)
| | | | - Ethar Mustafa Malik
- Department of Pediatric, Latifa Hospital, Dubai Health Authority, Dubai, UAE
| | | | | | - Fatma Bastaki
- Department of Pediatric, Latifa Hospital, Dubai Health Authority, Dubai, UAE
| |
Collapse
|
23
|
Meng L, Donti T, Xia F, Niu Z, Al Shamsi A, Hertecant J, Al-Jasmi F, Gibson JB, Nagakura H, Zhang J, He W, Eng C, Yang Y, Elsea SH. Homozygous variants in pyrroline-5-carboxylate reductase 2 (PYCR2) in patients with progressive microcephaly and hypomyelinating leukodystrophy. Am J Med Genet A 2016; 173:460-470. [PMID: 27860360 DOI: 10.1002/ajmg.a.38049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
Pyrroline-5-carboxylate reductase 2, encoded by PYCR2, is one of the three homologous enzymes that catalyze the last step of proline synthesis. Homozygous variants in PYCR2 have been reported in patients from multiple consanguineous families with hypomyelinating leukodystrophy 10 (HLD10) (MIM: 616420). Here, we report five additional patients from three families with homozygous nonsense or missense variants in PYCR2, identified through clinical exome sequencing. All patients presented with postnatally acquired microcephaly, moderate to profound global developmental delay, and failure to thrive. Brain MRI in these patients showed thin corpus callosum, delayed myelination, and generalized white-matter volume loss. Additional phenotypes that were less consistent among patients included seizures or seizure-like movements, spasticity and ataxic gait, recurrent vomiting, cortical blindness, dysmorphic features, joint contractures, and irritability. Exome sequencing identified homozygous variants in PYCR2 in the proband from each family: c.28C>T (p.(Glu10Ter)), c.796C>T (p.(Arg266Ter)), and c.577G>A (p.(Val193Met)). Subsequent targeted analyses demonstrated co-segregation of the disease with the variant in the family. Despite the metabolic role of PYCR2, routine serum metabolic test in these patients were normal. To further understand the disease etiology and functions of PYCR2, small molecule metabolomics profiling was performed in plasma from three severely affected patients. No significant changes were identified in proline biosynthesis pathway or related metabolites. Studying the clinical features and the metabolic profiles of the PYCR2-deficient patients provides a more comprehensive picture for this newly identified disorder and facilitates further research on the gene function and disease etiology. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics, Houston, Texas
| | - Taraka Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics, Houston, Texas
| | - Zhiyv Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Jozef Hertecant
- Tawam Hospital, Al Ain, United Arab Emirates.,Department of Pediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Tawam Hospital, Al Ain, United Arab Emirates.,Department of Pediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | | | | - Christine Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics, Houston, Texas
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics, Houston, Texas
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics, Houston, Texas
| |
Collapse
|
24
|
Cohen R, Halevy A, Aharoni S, Kraus D, Konen O, Basel-Vanagaite L, Goldberg-Stern H, Straussberg R. Polymicrogyria and myoclonic epilepsy in autosomal recessive cutis laxa type 2A. Neurogenetics 2016; 17:251-257. [PMID: 27631729 DOI: 10.1007/s10048-016-0491-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022]
Abstract
Cutis laxa syndromes are rare inherited disorders of skin and connective tissue metabolism associated with variable systemic involvement. The main clinical manifestation is loose, wrinkled, redundant, inelastic skin, hypotonia, typical facies including short nose and down-slanting palpebral fissures, and varying degrees of developmental delay. The aim of this report is to describe two siblings diagnosed with a moderate form of ATP6V0A2-related cutis laxa with polymicrogyria (cobblestone-like brain dysgenesis). One of the patients has myoclonic epilepsy which may have contributed to his more severe clinical presentation. The literature on cutis laxa syndromes is reviewed.
Collapse
Affiliation(s)
- Rony Cohen
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ayelet Halevy
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Aharoni
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror Kraus
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Konen
- Department of Radiology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lina Basel-Vanagaite
- Pediatric Genetic Service, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Raphael Recanati Genetics Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Hadassa Goldberg-Stern
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Straussberg
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Pediatric Genetic Service, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Nozaki F, Kusunoki T, Okamoto N, Yamamoto Y, Miya F, Tsunoda T, Kosaki K, Kumada T, Shibata M, Fujii T. ALDH18A1-related cutis laxa syndrome with cyclic vomiting. Brain Dev 2016; 38:678-84. [PMID: 26829900 DOI: 10.1016/j.braindev.2016.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/25/2015] [Accepted: 01/11/2016] [Indexed: 12/30/2022]
Abstract
Cutis laxa (CL) syndromes are connective tissue disorders characterized by redundant, sagging, inelastic and wrinkled skin, with organ involvement. Here, we describe a patient with ALDH18A1-related CL who developed cyclic vomiting. The patient was a 12-year-old boy who presented with poor postnatal growth, hypotonia, short stature, joint hyperlaxity, microcephaly, strabismus, bilateral cataracts, facial dysmorphism and severe mental retardation. Bone radiographs showed osteopenia and osteoporosis, and magnetic resonance angiography showed marked kinking and tortuosity of the brain vessels. These findings were clinically compatible with ALDH18A1-related CL. Molecular analysis revealed a de novo heterozygous mutation (p.R138Q) in ALDH18A1. No mutations were found in PYCR1 gene. The patient developed cyclic vomiting with decreased blood levels of ornithine, citrulline, arginine and proline without hyperammonemia and other hypoaminoacidemias were also found. ALDH18A1 encodes Δ(1)-pyrroline-5-carboxylate synthase, which is related to the biosynthesis of ornithine, citrulline, arginine, and proline. Cyclic vomiting has never been reported in other ALDH18A1-related CL patients. This is the first case report of ALDH18A1-related CL with cyclic vomiting associated with amino acid abnormalities.
Collapse
Affiliation(s)
- Fumihito Nozaki
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan.
| | - Takashi Kusunoki
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yuto Yamamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Fuyuki Miya
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Kumada
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan
| | - Minoru Shibata
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan
| | - Tatsuya Fujii
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan
| |
Collapse
|
26
|
Genome-Wide Association Study of Staphylococcus aureus Carriage in a Community-Based Sample of Mexican-Americans in Starr County, Texas. PLoS One 2015; 10:e0142130. [PMID: 26569114 PMCID: PMC4646511 DOI: 10.1371/journal.pone.0142130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/16/2015] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is the number one cause of hospital-acquired infections. Understanding host pathogen interactions is paramount to the development of more effective treatment and prevention strategies. Therefore, whole exome sequence and chip-based genotype data were used to conduct rare variant and genome-wide association analyses in a Mexican-American cohort from Starr County, Texas to identify genes and variants associated with S. aureus nasal carriage. Unlike most studies of S. aureus that are based on hospitalized populations, this study used a representative community sample. Two nasal swabs were collected from participants (n = 858) 11–17 days apart between October 2009 and December 2013, screened for the presence of S. aureus, and then classified as either persistent, intermittent, or non-carriers. The chip-based and exome sequence-based single variant association analyses identified 1 genome-wide significant region (KAT2B) for intermittent and 11 regions suggestively associated with persistent or intermittent S. aureus carriage. We also report top findings from gene-based burden analyses of rare functional variation. Notably, we observed marked differences between signals associated with persistent and intermittent carriage. In single variant analyses of persistent carriage, 7 of 9 genes in suggestively associated regions and all 5 top gene-based findings are associated with cell growth or tight junction integrity or are structural constituents of the cytoskeleton, suggesting that variation in genes associated with persistent carriage impact cellular integrity and morphology.
Collapse
|
27
|
Fischer-Zirnsak B, Escande-Beillard N, Ganesh J, Tan Y, Al Bughaili M, Lin A, Sahai I, Bahena P, Reichert S, Loh A, Wright G, Liu J, Rahikkala E, Pivnick E, Choudhri A, Krüger U, Zemojtel T, van Ravenswaaij-Arts C, Mostafavi R, Stolte-Dijkstra I, Symoens S, Pajunen L, Al-Gazali L, Meierhofer D, Robinson P, Mundlos S, Villarroel C, Byers P, Masri A, Robertson S, Schwarze U, Callewaert B, Reversade B, Kornak U. Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa. Am J Hum Genet 2015; 97:483-92. [PMID: 26320891 DOI: 10.1016/j.ajhg.2015.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/03/2015] [Indexed: 11/24/2022] Open
Abstract
Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling.
Collapse
|
28
|
Panza E, Escamilla-Honrubia JM, Marco-Marín C, Gougeard N, De Michele G, Morra VB, Liguori R, Salviati L, Donati MA, Cusano R, Pippucci T, Ravazzolo R, Németh AH, Smithson S, Davies S, Hurst JA, Bordo D, Rubio V, Seri M. ALDH18A1gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain 2015; 139:e3. [DOI: 10.1093/brain/awv247] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Coutelier M, Goizet C, Durr A, Habarou F, Morais S, Dionne-Laporte A, Tao F, Konop J, Stoll M, Charles P, Jacoupy M, Matusiak R, Alonso I, Tallaksen C, Mairey M, Kennerson M, Gaussen M, Schule R, Janin M, Morice-Picard F, Durand CM, Depienne C, Calvas P, Coutinho P, Saudubray JM, Rouleau G, Brice A, Nicholson G, Darios F, Loureiro JL, Zuchner S, Ottolenghi C, Mochel F, Stevanin G. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain 2015; 138:2191-205. [PMID: 26026163 DOI: 10.1093/brain/awv143] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/04/2015] [Indexed: 12/30/2022] Open
Abstract
Hereditary spastic paraplegias are heterogeneous neurological disorders characterized by a pyramidal syndrome with symptoms predominantly affecting the lower limbs. Some limited pyramidal involvement also occurs in patients with an autosomal recessive neurocutaneous syndrome due to ALDH18A1 mutations. ALDH18A1 encodes delta-1-pyrroline-5-carboxylate synthase (P5CS), an enzyme that catalyses the first and common step of proline and ornithine biosynthesis from glutamate. Through exome sequencing and candidate gene screening, we report two families with autosomal recessive transmission of ALDH18A1 mutations, and predominant complex hereditary spastic paraplegia with marked cognitive impairment, without any cutaneous abnormality. More interestingly, we also identified monoallelic ALDH18A1 mutations segregating in three independent families with autosomal dominant pure or complex hereditary spastic paraplegia, as well as in two sporadic patients. Low levels of plasma ornithine, citrulline, arginine and proline in four individuals from two families suggested P5CS deficiency. Glutamine loading tests in two fibroblast cultures from two related affected subjects confirmed a metabolic block at the level of P5CS in vivo. Besides expanding the clinical spectrum of ALDH18A1-related pathology, we describe mutations segregating in an autosomal dominant pattern. The latter are associated with a potential trait biomarker; we therefore suggest including amino acid chromatography in the clinico-genetic work-up of hereditary spastic paraplegia, particularly in dominant cases, as the associated phenotype is not distinct from other causative genes.
Collapse
Affiliation(s)
- Marie Coutelier
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 5 Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, B-1200, Brussels, Belgium 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Cyril Goizet
- 7 Univ. Bordeaux, Laboratoire Maladies Rares: Génétique et Métabolisme, EA4576, F-33000, Bordeaux, France 8 CHU Pellegrin, Service de Génétique Médicale, F-33000, Bordeaux, France
| | - Alexandra Durr
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Florence Habarou
- 10 Metabolic Biochemistry Lab, Necker-Enfants Malades Hospital, APHP, F-75015; and University Paris Descartes, F-75006, Paris, France
| | - Sara Morais
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 12 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, P-4150, Porto, Portugal 13 Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, P-4150, Porto, Portugal
| | - Alexandre Dionne-Laporte
- 14 Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Feifei Tao
- 15 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juliette Konop
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Marion Stoll
- 16 Northcott Neuroscience Laboratory, ANZAC Research Institute; Molecular Medicine Laboratory, Concord Hospital; Sydney Medical School University of Sydney, NSW 2138, Sydney, Australia
| | - Perrine Charles
- 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Maxime Jacoupy
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Raphaël Matusiak
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Isabel Alonso
- 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 12 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, P-4150, Porto, Portugal 13 Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, P-4150, Porto, Portugal
| | - Chantal Tallaksen
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Mathilde Mairey
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Marina Kennerson
- 16 Northcott Neuroscience Laboratory, ANZAC Research Institute; Molecular Medicine Laboratory, Concord Hospital; Sydney Medical School University of Sydney, NSW 2138, Sydney, Australia
| | - Marion Gaussen
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Rebecca Schule
- 15 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA 17 Centre for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, G-72074, Tübingen, Germany 18 German Centre of Neurodegenerative Diseases (DZNE), Eberhard-Karls-University, G-72074, Tübingen, Germany
| | - Maxime Janin
- 10 Metabolic Biochemistry Lab, Necker-Enfants Malades Hospital, APHP, F-75015; and University Paris Descartes, F-75006, Paris, France
| | - Fanny Morice-Picard
- 7 Univ. Bordeaux, Laboratoire Maladies Rares: Génétique et Métabolisme, EA4576, F-33000, Bordeaux, France 8 CHU Pellegrin, Service de Génétique Médicale, F-33000, Bordeaux, France
| | - Christelle M Durand
- 7 Univ. Bordeaux, Laboratoire Maladies Rares: Génétique et Métabolisme, EA4576, F-33000, Bordeaux, France
| | - Christel Depienne
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Patrick Calvas
- 19 Fédération de Neurologie et Service de Génétique Médicale, CHU de Toulouse, Hôpital Purpan, F-31059, Toulouse, France
| | - Paula Coutinho
- 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 12 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, P-4150, Porto, Portugal 20 Serviço de Neurologia, Centro Hospitalar de Entre o Douro e Vouga, P-4520-211, Santa Maria da Feira, Portugal
| | - Jean-Marie Saudubray
- 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Guy Rouleau
- 14 Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada 21 Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexis Brice
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Garth Nicholson
- 16 Northcott Neuroscience Laboratory, ANZAC Research Institute; Molecular Medicine Laboratory, Concord Hospital; Sydney Medical School University of Sydney, NSW 2138, Sydney, Australia
| | - Frédéric Darios
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - José L Loureiro
- 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 20 Serviço de Neurologia, Centro Hospitalar de Entre o Douro e Vouga, P-4520-211, Santa Maria da Feira, Portugal
| | - Stephan Zuchner
- 15 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chris Ottolenghi
- 10 Metabolic Biochemistry Lab, Necker-Enfants Malades Hospital, APHP, F-75015; and University Paris Descartes, F-75006, Paris, France
| | - Fanny Mochel
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Giovanni Stevanin
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| |
Collapse
|
30
|
Fischer B, Callewaert B, Schröter P, Coucke PJ, Schlack C, Ott CE, Morroni M, Homann W, Mundlos S, Morava E, Ficcadenti A, Kornak U. Severe congenital cutis laxa with cardiovascular manifestations due to homozygous deletions in ALDH18A1. Mol Genet Metab 2014; 112:310-6. [PMID: 24913064 DOI: 10.1016/j.ymgme.2014.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/09/2014] [Accepted: 05/10/2014] [Indexed: 01/16/2023]
Abstract
Autosomal recessive cutis laxa (ARCL) type 2 constitutes a heterogeneous group of diseases mainly characterized by lax and wrinkled skin, skeletal anomalies, and a variable degree of intellectual disability. ALDH18A1-related ARCL is the most severe form within this disease spectrum. Here we report on the clinical and molecular findings of two affected individuals from two unrelated families. The patients presented with typical features of de Barsy syndrome and an overall progeroid appearance. However, the phenotype was highly variable including cardiovascular involvement in the more severe case. Investigation of a skin biopsy of one patient revealed not only the typical alterations of elastic fibers, but also an altered structure of mitochondria in cutaneous fibroblasts. Using conventional sequencing and copy number analysis we identified a frameshift deletion of one nucleotide and a microdeletion affecting the ALDH18A1 gene, respectively, in a homozygous state in both patients. Expression analysis in dermal fibroblasts from the patient carrying the microdeletion showed an almost complete absence of the ALDH18A1 mRNA resulting in an absence of the ALDH18A1 protein. So far, only 13 affected individuals from seven unrelated families suffering from ALDH18A1-related cutis laxa have been described in literature. Our findings provide new insights into the clinical spectrum and show that beside point mutations microdeletions are a possible cause of ALDH18A1-ARCL.
Collapse
Affiliation(s)
- Björn Fischer
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Max-Planck-Institut fuer Molekulare Genetik, FG Development & Disease, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Phillipe Schröter
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Paul J Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Claire Schlack
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Claus-Eric Ott
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Max-Planck-Institut fuer Molekulare Genetik, FG Development & Disease, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Manrico Morroni
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche and Electron Microscopy Unit, United Hospitals, Ancona, Italy
| | - Wolfgang Homann
- Neonatologie, Christliches Kinderhospital Osnabrück, Osnabrück, Germany
| | - Stefan Mundlos
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Max-Planck-Institut fuer Molekulare Genetik, FG Development & Disease, Ihnestr. 63-73, 14195 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitaetsmedizin Berlin, Germany
| | - Eva Morava
- Tulane University Medical Center, Hayward Genetics Center, New Orleans, LA, USA
| | - Anna Ficcadenti
- Rare diseases Regional Centre, Pediatric Institute of Maternal-Infantile Sciences Department, Polytechnic University of Marche, Salesi Hospital of United Hospitals of Ancona, Italy
| | - Uwe Kornak
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Max-Planck-Institut fuer Molekulare Genetik, FG Development & Disease, Ihnestr. 63-73, 14195 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitaetsmedizin Berlin, Germany.
| |
Collapse
|