1
|
Bertling E, Blaesse P, Seja P, Kremneva E, Gateva G, Virtanen MA, Summanen M, Spoljaric I, Uvarov P, Blaesse M, Paavilainen VO, Vutskits L, Kaila K, Hotulainen P, Ruusuvuori E. Carbonic anhydrase seven bundles filamentous actin and regulates dendritic spine morphology and density. EMBO Rep 2021; 22:e50145. [PMID: 33719157 PMCID: PMC8025036 DOI: 10.15252/embr.202050145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
Intracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO2 , intracellular carbonic anhydrase (CAi ) isoforms CA2 and CA7 contribute to neuronal pH buffering and dynamics. The presence of two highly active isoforms in neurons suggests that they may serve isozyme-specific functions unrelated to CO2 -(de)hydration. Here, we show that CA7, unlike CA2, binds to filamentous actin, and its overexpression induces formation of thick actin bundles and membrane protrusions in fibroblasts. In CA7-overexpressing neurons, CA7 is enriched in dendritic spines, which leads to aberrant spine morphology. We identified amino acids unique to CA7 that are required for direct actin interactions, promoting actin filament bundling and spine targeting. Disruption of CA7 expression in neocortical neurons leads to higher spine density due to increased proportion of small spines. Thus, our work demonstrates highly distinct subcellular expression patterns of CA7 and CA2, and a novel, structural role of CA7.
Collapse
Affiliation(s)
- Enni Bertling
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Minerva Institute for Medical ResearchBiomedicum Helsinki 2UHelsinkiFinland
| | - Peter Blaesse
- Institute of Physiology IWestfälische Wilhelms‐Universität MünsterMünsterGermany
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Patricia Seja
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | | | | | - Mari A Virtanen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
- Department of Anesthesiology, PharmacologyIntensive Care and Emergency MedicineUniversity Hospitals of GenevaGenevaSwitzerland
| | - Milla Summanen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Inkeri Spoljaric
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Pavel Uvarov
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | | | | | - Laszlo Vutskits
- Department of Anesthesiology, PharmacologyIntensive Care and Emergency MedicineUniversity Hospitals of GenevaGenevaSwitzerland
| | - Kai Kaila
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Pirta Hotulainen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Minerva Institute for Medical ResearchBiomedicum Helsinki 2UHelsinkiFinland
| | - Eva Ruusuvuori
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Mir MA, Mehraj U, Sheikh BA, Hamdani SS. Nanobodies: The "Magic Bullets" in therapeutics, drug delivery and diagnostics. Hum Antibodies 2020; 28:29-51. [PMID: 31322555 DOI: 10.3233/hab-190390] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibodies represent a well-established class of clinical diagnostics for medical applications as well as essential research and biotechnological tools. Although both polyclonal and monoclonal antibodies are indispensable reagents in basic research and diagnostics but both of them have their limitations. Hence, there is urgent need to develop strategies aimed at production of alternative scaffolds and recombinant antibodies of smaller dimensions that could be easily produced, selected and manipulated. Unlike conventional antibodies, members of Camelidae and sharks produce antibodies composed only of heavy chains with small size, high solubility, thermal stability, refolding capacity and good tissue penetration in vivo. The discovery of these naturally occurring antibodies having only heavy-chain in Camelidae family and their further development into small recombinant nanobodies represents an attractive alternative in drug delivery, diagnostics and imaging. Nanobody derivatives are soluble, stable, versatile, have unique refolding capacities, reduced aggregation tendencies and high-target binding capabilities. They can be genetically customized to target enzymes, transmembrane proteins or molecular interactions. Their ability to recognize recessed antigenic sites has been attributed to their smaller size and the ability of the extended CDR3 loop to quickly penetrate into such epitopes. With the advent of molecular engineering and phage display technology, they can be of potential use in molecular imaging, drug delivery and therapeutics for several major diseases. In this review we present the recent advances in nanobodies for modulating immune functions, for targeting cancers, viruses, toxins and microbes as well as their utility as diagnostic and biosensor tools.
Collapse
|
3
|
Ali A, Baby B, Vijayan R. From Desert to Medicine: A Review of Camel Genomics and Therapeutic Products. Front Genet 2019; 10:17. [PMID: 30838017 PMCID: PMC6389616 DOI: 10.3389/fgene.2019.00017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Camels have an important role in the lives of human beings, especially in arid regions, due to their multipurpose role and unique ability to adapt to harsh conditions. In spite of its enormous economic, cultural, and biological importance, the camel genome has not been widely studied. The size of camel genome is roughly 2.38 GB, containing over 20,000 genes. The unusual genetic makeup of the camel is the main reason behind its ability to survive under extreme environmental conditions. The camel genome harbors several unique variations which are being investigated for the treatment of several disorders. Various natural products from camels have also been tested and prescribed as adjunct therapy to control the progression of ailments. Interestingly, the camel employs unique immunological and molecular mechanisms against pathogenic agents and pathological conditions. Here, we broadly review camel classification, distribution and breed as well as recent progress in the determination of the camel genome, its size, genetic distribution, response to various physiological conditions, immunogenetics and the medicinal potential of camel gene products.
Collapse
Affiliation(s)
| | | | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Khodabakhsh F, Behdani M, Rami A, Kazemi-Lomedasht F. Single-Domain Antibodies or Nanobodies: A Class of Next-Generation Antibodies. Int Rev Immunol 2019; 37:316-322. [DOI: 10.1080/08830185.2018.1526932] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mahdi Behdani
- Venom & Biotherapeutics Molecules Lab., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Rami
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom & Biotherapeutics Molecules Lab., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Zhong L, Huang X, Rodrigues ED, Leijten JCH, Verrips T, El Khattabi M, Karperien M, Post JN. Endogenous DKK1 and FRZB Regulate Chondrogenesis and Hypertrophy in Three-Dimensional Cultures of Human Chondrocytes and Human Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1808-1817. [PMID: 27733096 PMCID: PMC5124737 DOI: 10.1089/scd.2016.0222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic differentiation occurs during in vitro chondrogenesis of mesenchymal stem cells (MSCs), decreasing the quality of the cartilage construct. Previously we identified WNT pathway antagonists Dickkopf 1 homolog (DKK1) and frizzled-related protein (FRZB) as key factors in blocking hypertrophic differentiation of human MSCs (hMSCs). In this study, we investigated the role of endogenously expressed DKK1 and FRZB in chondrogenesis of hMSC and chondrocyte redifferentiation and in preventing cell hypertrophy using three relevant human cell based systems, isolated hMSCs, isolated primary human chondrocytes (hChs), and cocultures of hMSCs with hChs for which we specifically designed neutralizing nano-antibodies. We selected and tested variable domain of single chain heavy chain only antibodies (VHH) for their ability to neutralize the function of DKK1 or FRZB. In the presence of DKK1 and FRZB neutralizing VHH, glycosaminoglycan and collagen type II staining were significantly reduced in monocultured hMSCs and monocultured chondrocytes. Furthermore, in cocultures, cells in pellets showed hypertrophic differentiation. In conclusion, endogenous expression of the WNT antagonists DKK1 and FRZB is necessary for multiple steps during chondrogenesis: first DKK1 and FRZB are indispensable for the initial steps of chondrogenic differentiation of hMSCs, second they are necessary for chondrocyte redifferentiation, and finally in preventing hypertrophic differentiation of articular chondrocytes.
Collapse
Affiliation(s)
- Leilei Zhong
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Xiaobin Huang
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Emilie Dooms Rodrigues
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Jeroen C H Leijten
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | | | | | - Marcel Karperien
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Janine N Post
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| |
Collapse
|
6
|
Schmidt FI, Lu A, Chen JW, Ruan J, Tang C, Wu H, Ploegh HL. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J Exp Med 2016; 213:771-90. [PMID: 27069117 PMCID: PMC4854733 DOI: 10.1084/jem.20151790] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/01/2016] [Indexed: 01/09/2023] Open
Abstract
Ploegh et al. raised an alpaca single-domain antibody (VHH) against the inflammasome adaptor ASC. VHHASC blocks inflammasome activation in vitro and in living cells, and demonstrates a role of the ASC CARD domain in cross-linking ASC Pyrin domain filaments. Myeloid cells assemble inflammasomes in response to infection or cell damage; cytosolic sensors activate pro–caspase-1, indirectly for the most part, via the adaptors ASC and NLRC4. This leads to secretion of proinflammatory cytokines and pyroptosis. To explore complex formation under physiological conditions, we generated an alpaca single domain antibody, VHHASC, which specifically recognizes the CARD of human ASC via its type II interface. VHHASC not only impairs ASCCARD interactions in vitro, but also inhibits inflammasome activation in response to NLRP3, AIM2, and NAIP triggers when expressed in living cells, highlighting a role of ASC in all three types of inflammasomes. VHHASC leaves the Pyrin domain of ASC functional and stabilizes a filamentous intermediate of inflammasome activation. Incorporation of VHHASC-EGFP into these structures allowed the visualization of endogenous ASCPYD filaments for the first time. These data revealed that cross-linking of ASCPYD filaments via ASCCARD mediates the assembly of ASC foci.
Collapse
Affiliation(s)
| | - Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Jeff W Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Jianbin Ruan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Catherine Tang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
7
|
Jain K, Basu A. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression. Cancers (Basel) 2014; 6:860-78. [PMID: 24727247 PMCID: PMC4074807 DOI: 10.3390/cancers6020860] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022] Open
Abstract
The protein kinase C (PKC) family proteins are important signal transducers and have long been the focus of cancer research. PKCɛ, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCɛ. While earlier research established the survival functions of PKCɛ, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCɛ has also been implicated in epithelial to mesenchymal transition (EMT), which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCɛ affects cell-extracellular matrix (ECM) interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCɛ signaling to cancer stem cell functioning. This review focuses on the role of PKCɛ in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCɛ as a target for cancer therapy.
Collapse
Affiliation(s)
- Kirti Jain
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Institute for Cancer Research, and Focused on Resources for her Health Education and Research, Fort Worth, TX 76107, USA.
| | - Alakananda Basu
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Institute for Cancer Research, and Focused on Resources for her Health Education and Research, Fort Worth, TX 76107, USA.
| |
Collapse
|
8
|
Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A, Ruf A, Muyldermans S, Hol WGJ, Kobilka BK, Steyaert J. A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 2014; 9:674-93. [PMID: 24577359 PMCID: PMC4297639 DOI: 10.1038/nprot.2014.039] [Citation(s) in RCA: 564] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is growing interest in using antibodies as auxiliary tools to crystallize proteins. Here we describe a general protocol for the generation of Nanobodies to be used as crystallization chaperones for the structural investigation of diverse conformational states of flexible (membrane) proteins and complexes thereof. Our technology has a competitive advantage over other recombinant crystallization chaperones in that we fully exploit the natural humoral response against native antigens. Accordingly, we provide detailed protocols for the immunization with native proteins and for the selection by phage display of in vivo-matured Nanobodies that bind conformational epitopes of functional proteins. Three representative examples illustrate that the outlined procedures are robust, making it possible to solve by Nanobody-assisted X-ray crystallography in a time span of 6-12 months.
Collapse
Affiliation(s)
- Els Pardon
- 1] Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium. [2] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Toon Laeremans
- 1] Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium. [2] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Sarah Triest
- 1] Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium. [2] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Søren G F Rasmussen
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alexandre Wohlkönig
- 1] Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium. [2] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Armin Ruf
- Pharma Research and Early Development (pRED), Small Molecule Research, Discovery Technologies, F. Hoffmann-La Roche, Basel, Switzerland
| | - Serge Muyldermans
- 1] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium. [2] Cellular and Molecular Immunology, VUB, Brussels, Belgium
| | - Wim G J Hol
- Department of Biochemistry, Biomolecular Structure Center, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Jan Steyaert
- 1] Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium. [2] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| |
Collapse
|
9
|
|
10
|
Summanen M, Granqvist N, Tuominen RK, Yliperttula M, Verrips CT, Boonstra J, Blanchetot C, Ekokoski E. Kinetics of PKCε activating and inhibiting llama single chain antibodies and their effect on PKCε translocation in HeLa cells. PLoS One 2012; 7:e35630. [PMID: 22536418 PMCID: PMC3334965 DOI: 10.1371/journal.pone.0035630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/19/2012] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of PKCε is involved in several serious diseases such as cancer, type II diabetes and Alzheimer's disease. Therefore, specific activators and inhibitors of PKCε hold promise as future therapeutics, in addition to being useful in research into PKCε regulated pathways. We have previously described llama single chain antibodies (VHHs) that specifically activate (A10, C1 and D1) or inhibit (E6 and G8) human recombinant PKCε. Here we report a thorough kinetic analysis of these VHHs. The inhibiting VHHs act as non-competitive inhibitors of PKCε activity, whereas the activating VHHs have several different modes of action, either increasing Vmax and/or decreasing Km values. We also show that the binding of the VHHs to PKCε is conformation-dependent, rendering the determination of affinities difficult. Apparent affinities are in the micromolar range based on surface plasmon resonance studies. Furthermore, the VHHs have no effect on the activity of rat PKCε nor can they bind the rat form of the protein in immunoprecipitation studies despite the 98% identity between the human and rat PKCε proteins. Finally, we show for the first time that the VHHs can influence PKCε function also in cells, since an activating VHH increases the rate of PKCε translocation in response to PMA in HeLa cells, whereas an inhibiting VHH slows down the translocation. These results give insight into the mechanisms of PKCε activity modulation and highlight the importance of protein conformation on VHH binding.
Collapse
Affiliation(s)
- Milla Summanen
- Cell Biology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Niko Granqvist
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Raimo K. Tuominen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - C. Theo Verrips
- Cell Biology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| | - Johannes Boonstra
- Cell Biology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Christophe Blanchetot
- Cell Biology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| | - Elina Ekokoski
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
de Marco A. Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Fact 2011; 10:44. [PMID: 21658216 PMCID: PMC3123181 DOI: 10.1186/1475-2859-10-44] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/09/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Single-domain antibody fragments possess structural features, such as a small dimension, an elevated stability, and the singularity of recognizing epitopes non-accessible for conventional antibodies that make them interesting for several research and biotechnological applications. RESULTS The discovery of the single-domain antibody's potentials has stimulated their use in an increasing variety of fields. The rapid accumulation of articles describing new applications and further developments of established approaches has made it, therefore, necessary to update the previous reviews with a new and more complete summary of the topic. CONCLUSIONS Beside the necessary task of updating, this work analyses in detail some applicative aspects of the single-domain antibodies that have been overseen in the past, such as their efficacy in affinity chromatography, as co-crystallization chaperones, protein aggregation controllers, enzyme activity tuners, and the specificities of the unconventional single-domain fragments.
Collapse
Affiliation(s)
- Ario de Marco
- University of Nova Gorica (UNG), Vipavska 13, PO Box 301-SI-5000, Rožna Dolina (Nova Gorica), Slovenia.
| |
Collapse
|