1
|
Lange J, Senniksen MB, Wyttenbach N, Page S, Bateman LM, O’Dwyer PJ, Saal W, Kuentz M, Griffin BT. Mechanistic Investigation into the Phase Separation Behavior of Soluplus in the Presence of Biorelevant Media. Mol Pharm 2025; 22:1958-1972. [PMID: 40066684 PMCID: PMC11979885 DOI: 10.1021/acs.molpharmaceut.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 04/08/2025]
Abstract
More than a decade since its introduction, the polymeric excipient Soluplus continues to receive considerable attention for its application in the development of amorphous solid dispersions (ASDs) and its utility as a solubilizer for drugs exhibiting solubility limited absorption. While it is well-recognized that Soluplus forms micelles, the impact of its lower critical solution temperature of approximately 40 °C remains an underexplored aspect. This study investigated the phase behavior of Soluplus in fasted-state simulated intestinal fluid (FaSSIF-V1). It was demonstrated that Soluplus forms a dispersed polymer-rich coacervate phase, which coexists with Soluplus micelles at 37 °C. This behavior was confirmed by cloud point measurements, visually discernible phases after centrifugation, as well as multi-angle dynamic light scattering (MADLS) measurements, and quantitative 1H-nuclear magnetic resonance (NMR) spectroscopy of Soluplus concentrations in the supernatant pre- and post-centrifugation. The practical relevance of these findings was contextualized by solvent shift experiments and dissolution testing of spray-dried ASD. The results demonstrated that the poorly water-soluble drug RO6897779 resided in a polymer-rich coacervate phase and was spun down during centrifugation, which resulted in an amorphous pellet exhibiting the characteristics of a viscous liquid. The entrapment of the drug within the polymer-rich phase was further analyzed by temperature- and time-dependent MADLS experiments. The findings of this study are of particular relevance for a mechanistic understanding, relevant to comprehending in vitro-in vivo relationships of Soluplus-based ASDs. Low sampled drug concentrations in FaSSIF-V1 at 37 °C may originate not only from limited drug release and precipitation but also from the formation of a drug-containing, polymer-rich Soluplus phase. Therefore, a liquid-liquid phase separation occurring from Soluplus-based formulations in a biorelevant medium can be excipient-driven, which is different from the common perception that phase separation in the solution state is triggered primarily by high drug concentrations exceeding their amorphous solubility.
Collapse
Affiliation(s)
- Justus
Johann Lange
- School
of Pharmacy, University College Cork, College Road, Cork County, T12 R229 Cork , Ireland
| | - Malte Bøgh Senniksen
- Pharmaceutical
R&D, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
- Fraunhofer
Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Nicole Wyttenbach
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche
Innovation Center Basel, F. Hoffmann-La
Roche Ltd., Grenzacherstrasse
124, 4070 Basel, Switzerland
| | - Susanne Page
- Pharmaceutical
R&D, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Lorraine M. Bateman
- School
of Pharmacy, University College Cork, College Road, Cork County, T12 R229 Cork , Ireland
- Analytical
& Biological Research Facility, University
College Cork, College
Road, T12 YN60 Cork, Ireland
| | - Patrick J. O’Dwyer
- School
of Pharmacy, University College Cork, College Road, Cork County, T12 R229 Cork , Ireland
| | - Wiebke Saal
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche
Innovation Center Basel, F. Hoffmann-La
Roche Ltd., Grenzacherstrasse
124, 4070 Basel, Switzerland
| | - Martin Kuentz
- Institute
of Pharma Technology, University of Applied
Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Brendan T. Griffin
- School
of Pharmacy, University College Cork, College Road, Cork County, T12 R229 Cork , Ireland
| |
Collapse
|
2
|
Lange JJ, Enzner L, Kuentz M, O'Dwyer PJ, Saal W, Griffin BT, Wyttenbach N. Exploration of solubilisation effects facilitated by the combination of Soluplus® with ionic surfactants. Eur J Pharm Sci 2025; 205:106957. [PMID: 39551447 DOI: 10.1016/j.ejps.2024.106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Preclinical testing of new drug candidates frequently necessitates high-dose solution formulations to support robust testing in rodent models. This study aimed to expand the range of high solubilisation capacity formulations by exploring the solubilisation effects of the polymeric surfactant Soluplus® in combination with ionic surfactants. The interactions between Soluplus® and three ionic surfactants, sodium dodecyl sulphate, dioctyl sodium succinate, and sodium oleate, with a primary focus on solubility enhancement were investigated over a range of ionic surfactant concentrations. The solubilisation profiles for seven model drugs were obtained, and the vehicles were characterised by their visual characteristics, dynamic light scattering, and viscosity measurements. The solubilisation profiles were non-linear, indicating the formation of different colloidal species with individual solubilisation strengths depending on surfactant type and concentration, demonstrating substantial solubility enhancement. For certain drugs more than additive solubilisation, facilitated by synergistic interactions between Soluplus® and the ionic surfactants, was obtained. Overall, the solubility increase provided by the excipient combinations resulted in non-linear and drug specific solubilisation profiles. The non-linearities observed were reflected in visual observations of the vehicles appearance, DLS and viscosity measurements, which collectively indicated a change in polymer aggregation with increasing concentration of anionic surfactant. This investigation highlights that already low quantities of ionic surfactants introduced to Soluplus® may substantially enhance solubility, which offers a promising approach for further exploration in preclinical drug development where more conventional solubilising formulation strategies may fall short.
Collapse
Affiliation(s)
- Justus Johann Lange
- School of Pharmacy, University College Cork, College Road, Cork, T12 R229, Cork County, Ireland
| | - Lukas Enzner
- Roche Pharmaceutical Research & Early Development, preclinical CMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, CH-4070, Basel City, Switzerland
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern, Switzerland, Hofackerstrasse 30, Muttenz, CH-4231, Basel City, Switzerland
| | - Patrick J O'Dwyer
- School of Pharmacy, University College Cork, College Road, Cork, T12 R229, Cork County, Ireland
| | - Wiebke Saal
- Roche Pharmaceutical Research & Early Development, preclinical CMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, CH-4070, Basel City, Switzerland
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, College Road, Cork, T12 R229, Cork County, Ireland.
| | - Nicole Wyttenbach
- Roche Pharmaceutical Research & Early Development, preclinical CMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, CH-4070, Basel City, Switzerland
| |
Collapse
|
3
|
Saha SK, Arya V, Jadhav A, Jhanana Kailash S, Panigrahy BK, Joshi A, Singh R, Dubey K. Solid dispersion of alectinib HCl: preclinical evaluation for improving bioavailability and establishing an IVIVC model. Drug Dev Ind Pharm 2025; 51:50-63. [PMID: 39757594 DOI: 10.1080/03639045.2024.2447276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Alectinib HCl (ALB-HCl) is a BCS class IV molecule with low solubility and low oral bioavailability. Owing to its low bioavailability, a high dose of ALB-HCl is recommended with food to meet clinical efficacy. Thus, there is a need for a delivery system to overcome the bioavailability concerns. METHODS Three solid dispersion (SD) formulations (I, II, and III) were evaluated for in-vitro dissolution and in-vivo pharmacokinetics (PK) study in Wistar rats. An in-vitro and in-vivo correlation (IVIVC) model was developed to establish a relationship between in-vitro dissolution data and in-vivo PK data. The formulations were subjected to stability studies. RESULTS All formulations showed enhanced dissolution in all the media except Formulation I in FaSSIF media. In-vivo PK studies displayed that Formulation I was inferior to API alone. Formulations II and III (amorphous SD [ASD]) exhibited two-fold higher Cmax and AUC0-last than API alone. Level A IVIVC model was established for Cmax and AUC0-last with an acceptable % prediction error (PE). When evaluated for external predictability, the model was found validated for Cmax (% PE <10%), however, it was inconclusive for AUC0-last (%PE -14.03). Stability studies showed ASD formulations were stable during storage. CONCLUSION A stable ASD formulation of ALB-HCl was successfully developed with improved bioavailability. Developing an IVIVC model can act as a surrogate to predict in-vivo performance. The selection of formulation components in ASD shall be rationalized for bioavailability and stability before clinical evaluation.
Collapse
Affiliation(s)
- Sumit Kumar Saha
- Department of Pharmacology, School of Pharmaceutical Education & Research, New Delhi, India
- Formulation Research and Development - Orals, Gurugram, India
| | - Vipin Arya
- CPP, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | - Ajinkya Jadhav
- Formulation Research and Development - Orals, Vadodara, India
| | | | | | | | - Romi Singh
- Formulation Research and Development - Orals, Gurugram, India
| | - Kiran Dubey
- Department of Pharmacology, School of Pharmaceutical Education & Research, New Delhi, India
| |
Collapse
|
4
|
shaikh R, Bhattacharya S, Saoji SD. Development, optimization, and characterization of polymeric micelles to improve dasatinib oral bioavailability: Hep G2 cell cytotoxicity and in vivo pharmacokinetics for targeted liver cancer therapy. Heliyon 2024; 10:e39632. [PMID: 39559212 PMCID: PMC11570312 DOI: 10.1016/j.heliyon.2024.e39632] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
The efficacy of dasatinib (DAS) in treating hepatocellular carcinoma (HCC) is hindered by its poor bioavailability, limiting its clinical potential. In this study, we explored the use of TPGS-Soluplus micelles as an innovative drug delivery platform to enhance DAS solubility, stability, and therapeutic impact. A series of TPGS-Soluplus copolymers were synthesized, varying the D-α-tocopheryl polyethylene glycol succinate (TPGS) forms (1000, 2000, and 3500) and adjusting the TPGS to Soluplus weight ratios (1:1, 1:2, and 1:3). Our goal was to identify the optimal formulation with the highest entrapment efficiency, smallest particle size, and enhanced drug loading. The TPGS1000-Soluplus copolymer, with a DAS-to-polymer ratio of 1:30 and a TPGS ratio of 1:2, demonstrated superior performance, achieving an entrapment efficiency of 64.479 ± 1.45 % and drug loading of 5.05 ± 1.01 %. The DAS-loaded micelles (DAS-PMs) exhibited a notably small particle size of 64.479 ± 1.45 nm and demonstrated controlled release kinetics, with 85.60 ± 5.4 % of the drug released over 72 h. Cellular uptake studies using Hep G2 cells revealed significantly enhanced absorption of DAS-PMs compared to free DAS, reflected in lower IC50 values in MTT assays at 24 and 48 h. Pharmacokinetic analysis further highlighted the benefits of the DAS-PMs, with an AUC0-∞ 2.16 times higher and mean residual time (MRT) 1.3 times longer than free DAS, a statistically significant improvement (p < 0.01). These findings suggest that TPGS-Soluplus micelles offer a promising strategy for improving the bioavailability and efficacy of DAS in HCC treatment, presenting a potential new therapeutic avenue for patients with limited options. This innovative formulation could significantly enhance DAS delivery, potentially leading to improved clinical outcomes in liver cancer therapy.
Collapse
Affiliation(s)
- Rehan shaikh
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Suprit D. Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur, Mahatma Jyotiba Fuley Shaikshanik Parisar, University Campus, Amravati Road, Nagpur, 440033, Maharashtra, India
| |
Collapse
|
5
|
Yang DH, Najafian S, Chaudhuri B, Li N. The Particle Drifting Effect: A Combined Function of Colloidal and Drug Properties. Mol Pharm 2024; 21:5510-5528. [PMID: 39332024 DOI: 10.1021/acs.molpharmaceut.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The particle drifting effect, where nanosized colloidal drug particles overcome the diffusional resistance of the aqueous boundary layer adjacent to the intestinal wall and increase drug absorption rates, is drawing increasing attention in pharmaceutical research. However, mechanistic understanding and accurate prediction of the particle drifting effect remain lacking. In this study, we systematically evaluated the extent of the particle drifting effect affected by drug and colloidal properties, including the size, number, and type of the moving species using biphasic diffusion experiments combined with computational fluid dynamics simulations and mass transport analyses. The results showed that the particle drifting effect is a sequential reaction of particle dissolution/dissociation in the diffusional boundary layer, followed by absorption of the free drug. Therefore, factors affecting the rate-limiting step, which can be either process or both under different circumstances, alter the particle drifting effect. Experimental results also agree with the theory that the particle dissolution rate is dependent on particle size, concentration, and drug solubility. In addition, rapid bile micelle dissociation and bile salt absorption facilitated drug absorption by the particle drifting effect. Our findings explain the highly dynamic nature of the particle drifting effect and will contribute to rational formulation development and better bioavailability prediction for formulations containing colloidal particles.
Collapse
Affiliation(s)
- Da Hye Yang
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| | - Saeed Najafian
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269, United States
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269, United States
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269, United States
| |
Collapse
|
6
|
Kovačević M, Paudel A, Planinšek O, Bertoni S, Passerini N, Zupančič O, Alva C, German Ilić I, Zvonar Pobirk A. The comparison of melt technologies based on mesoporous carriers for improved carvedilol dissolution. Eur J Pharm Sci 2024; 202:106880. [PMID: 39181171 DOI: 10.1016/j.ejps.2024.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
High-shear (HS) melt granulation and hot melt extrusion (HME) were compared as perspective melt-based technologies for preparation of amorphous solid dispersions (ASDs). ASDs were prepared using mesoporous carriers (SyloidⓇ 244FP or NeusilinⓇ US2), which were loaded with carvedilol dispersed in polymeric matrix (polyethylene glycol 6000 or SoluplusⓇ). Formulations with high carvedilol content were obtained either by HME (11 extrudates with polymer:carrier ratio 1:1) or HS granulation (6 granulates with polymer:carrier ratio 3:1). DSC and XRD analysis confirmed the absence of crystalline carvedilol for the majority of prepared ADSs, thus confirming the stabilizing effect of selected polymers and carriers over amorphous carvedilol. HME produced larger particles compared to HS melt granulation, which was in line with better flow time and Carr index of extrudates. Moreover, SEM images revealed smoother surface of ASDs obtained by HME, contributing to less obstructed flow. The rougher and more porous surface of HS granules was correlated to larger granule specific surface area, manifesting in faster carvedilol release from SyloidⓇ 244FP-based granules, as compared to their HME counterparts. Regarding dissolution, the two HS-formulations performed superior to pure crystalline carvedilol, thereby confirming the suitability of HS melt granulation for developing dosage forms with improved carvedilol dissolution.
Collapse
Affiliation(s)
- Mila Kovačević
- University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Amrit Paudel
- Research Centre for Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Odon Planinšek
- University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Serena Bertoni
- University of Bologna, Department of Pharmacy and BioTechnology, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Nadia Passerini
- University of Bologna, Department of Pharmacy and BioTechnology, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Ožbej Zupančič
- Research Centre for Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Carolina Alva
- Research Centre for Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Ilija German Ilić
- University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Alenka Zvonar Pobirk
- University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Aboud HM, El Menshawe SF, Mohammed NH, Tulbah AS, Ali AA. Optimization and Appraisal of Nintedanib-Loaded Mixed Polymeric Micelles as a Potential Nanovector for Non-Invasive Pulmonary Fibrosis Mitigation. Pharmaceuticals (Basel) 2024; 17:1275. [PMID: 39458916 PMCID: PMC11510293 DOI: 10.3390/ph17101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nintedanib (NTD), a triple tyrosine kinase receptor inhibitor, is the recommended first-line tackling option for idiopathic pulmonary fibrosis (IPF). Nevertheless, the adequacy of NTD is curtailed by issues associated with its low solubility, first-pass effect, poor bioavailability, and liver toxicity. The objective of our work was to develop a non-invasive intratracheal (i.t.) nanoparadigm based on NTD-loaded polymeric mixed micelles (NTD-PMMs) that can effectively treat IPF by sustaining the release of NTD, and snowballing its bioavailability, solubility, and efficacy. METHODS Design-Expert® software was used to optimize various NTD-PMMs formulations via Box-Behnken design adopting the thin-film hydration technique. The optimum formulation was chosen and in vivo tested in a rat model to explore its comparative bioavailability and toxicity. RESULTS The formulation composition with 309.217 mg of Soluplus, 150 mg of Tween 80, and 40 mg of sodium deoxycholate was found to fulfill the requisites of an optimum NTD-PMMs formulation. The optimum NTD-PMMs formulation divulged 90.26% entrapment efficiency with a surface charge of -14.72 mV and a nanoscale diameter of 61.36 nm. Also, it substantially sustained the release of NTD by 66.84% after 24 h and manifested a pronounced stability. In vivo histopathology investigations verified the safety of NTD-PMMs delivered intratracheally. Moreover, pharmacokinetic analyses disclosed accentuated relative bioavailability of the optimized NTD-PMMs by 2.4- and 3.82-fold as compared with both the i.t. and oral crude NTD suspensions, respectively. CONCLUSIONS Overall, the current results elicited the potential of PMMs to serve as a promising pulmonary nanovector for the targeted delivery of NTD.
Collapse
Affiliation(s)
- Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (S.F.E.M.); (A.A.A.)
| | - Shahira F. El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (S.F.E.M.); (A.A.A.)
| | - Nada H. Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minia 61768, Egypt
| | - Alaa S. Tulbah
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (S.F.E.M.); (A.A.A.)
| |
Collapse
|
8
|
Koleva IZ, Tzachev CT. Efficient Improvement of Eugenol Water Solubility by Spray Drying Encapsulation in Soluplus ® and Lutrol F 127. Pharmaceuticals (Basel) 2024; 17:1156. [PMID: 39338319 PMCID: PMC11434763 DOI: 10.3390/ph17091156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Herein, we present an elegant and simple method for significant improvement of eugenol water solubility using the polymers Soluplus® and Lutrol F 127 as carriers and spray drying as an encapsulation method. The formulations were optimized by adding myo-inositol-a sweetening agent-and Aerosil® 200 (colloidal, fumed silica)-an anticaking agent. The highest encapsulation efficiency of 97.9-98.2% was found for the samples containing 5% eugenol with respect to the mass of Soluplus®. The encapsulation efficiencies of the spray-dried samples with 15% eugenol are around 90%. Although lowering the yield, the addition of Lutrol F 127 results in a more regular particle shape and enhanced powder flowability. The presence of Aerosil® 200 and myo-inositol also improves the rheological powder properties. The obtained formulations can be used in various dosage forms like powders, granules, capsules, creams, and gels.
Collapse
Affiliation(s)
- Iskra Z Koleva
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Christo T Tzachev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
9
|
Mucha I, Karolewicz B, Górniak A. Stability Studies of Amorphous Ibrutinib Prepared Using the Quench-Cooling Method and Its Dispersions with Soluplus ®. Polymers (Basel) 2024; 16:1961. [PMID: 39065278 PMCID: PMC11280989 DOI: 10.3390/polym16141961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The successful development of an amorphous form of a drug demands the use of process conditions and materials that reduce their thermodynamic instability. For the first time, we have prepared amorphous ibrutinib using the quench-cooling method with very high process efficiency. In the presented study, different formulations of amorphous active pharmaceutical ingredient (API) with Soluplus (SOL) in various weight ratios 1:9, 3:7, and 1:1 were prepared. The obtained samples were stored under long-term (25 ± 2 °C/60%RH ± 5% RH, 12 months) and accelerated (40 ± 2 °C/75%RH ± 5% RH, 6 months) storage conditions. The physical stability of amorphous ibrutinib and ibrutinib-Soluplus formulations was analyzed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction analysis (XRPD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The lack of significant interactions between the ingredients of the formulation was confirmed by FTIR analysis. An increase in moisture content with an increasing SOL weight ratio was observed under accelerated aging and long-term conditions. Additionally, a slight increase in the moisture content of the stored sample compared to that at the initial time was observed. The results revealed the physical strength of the polymeric systems in the presence of high humidity and temperature. The observed high thermal stability allows the use of various technological processes without the risk of thermal degradation.
Collapse
Affiliation(s)
- Igor Mucha
- Department of Basic Chemical Sciences, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Agata Górniak
- Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| |
Collapse
|
10
|
Be Rziņš KR, Czyrski GS, Aljabbari A, Heinz A, Boyd BJ. In Situ Imaging of Subcutaneous Drug Delivery Systems Using Microspatially Offset Low-Frequency Raman Spectroscopy. Anal Chem 2024; 96:6408-6416. [PMID: 38602505 DOI: 10.1021/acs.analchem.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The noninvasive in situ monitoring of the status of drug retention and implant integrity of subcutaneous implants would allow optimization of therapy and avoid periods of subtherapeutic delivery kinetics. A proof-of principle study was conducted to determine the use of microspatially offset low-frequency Raman spectroscopy (micro-SOLFRS) for nonintrusive in situ analysis of subcutaneous drug delivery systems. Caffeine was used as the model drug, and it was embedded in a circular-shape Soluplus matrix via vacuum compression molding. For the exploratory analysis, prototype implants were positioned underneath skin tissue samples, and various caffeine concentrations (1-50% w/w) and micro-SOLFRS displacement settings (Δz = 0-8 mm) were tested from the pseudo three-dimensional (3D)-imaging perspective. This format allowed the optimization of real-time micro-SOLFRS analysis of implants through skin tissue that was embedded in an agarose hydrogel. Notably, this analytical approach allowed the temporal and spatial erosion of the implant and solid-state transformations of caffeine to be distinguished. The spectrometric results correlated with complementary high-performance liquid chromatography (HPLC) determination of changes in drug concentration, illustrating drug dissipation/diffusion characteristics. The discovered capability of micro-SOLFRS for in situ measurements of drugs and implants makes it attractive for biomedical diagnostics that, ultimately, could result in development of a new point-of-care technology.
Collapse
Affiliation(s)
- Ka Rlis Be Rziņš
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Grzegorz S Czyrski
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| |
Collapse
|
11
|
Paganini V, Chetoni P, Di Gangi M, Monti D, Tampucci S, Burgalassi S. Nanomicellar eye drops: a review of recent advances. Expert Opin Drug Deliv 2024; 21:381-397. [PMID: 38396342 DOI: 10.1080/17425247.2024.2323208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Research on nanotechnology in medicine has also involved the ocular field and nanomicelles are among the applications developed. This approach is used to increase both the water solubility of hydrophobic drugs and their penetration/permeation within/through the ocular tissues since nanomicelles are able to encapsulate insoluble drug into their core and their small size allows them to penetrate and/or diffuse through the aqueous pores of ocular tissues. AREAS COVERED The present review reports the most significant and recent literature on the use of nanomicelles, made up of both surfactants and amphiphilic polymers, to overcome limitations imposed by the physiology of the eye in achieving a high bioavailability of drugs intended for the therapeutic areas of greatest commercial interest: dry eye, inflammation, and glaucoma. EXPERT OPINION The results of the numerous studies in this field are encouraging and demonstrate that nanomicelles may be the answer to some of the challenges of ocular therapy. In the future, new molecules self-assembling into micelles will be able to meet the regulatory requirements for marketing authorization for their use in ophthalmic formulations.
Collapse
Affiliation(s)
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | | | - Daniela Monti
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| |
Collapse
|
12
|
Sakurai M, Ishitsuka K, Becker HJ, Yamazaki S. Ex vivo expansion of human hematopoietic stem cells and clinical applications. Cancer Sci 2024; 115:698-705. [PMID: 38221718 PMCID: PMC10921004 DOI: 10.1111/cas.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare population of cells found in the bone marrow that play a critical role in lifelong hematopoiesis and the reconstitution of the hematopoietic system after hematopoietic stem cell transplantation. Hematopoietic stem cell transplantation remains the only curative treatment for patients with refractory hematologic disorders, and umbilical cord blood (CB) serves as an alternative stem cell source due to its several advantageous characteristics, including human leukocyte antigen flexibility and reduced donor burden. However, CB also has the disadvantage of containing a small number of cells, resulting in limited donor selection and a longer time for engraftment. Therefore, the development of techniques to expand HSCs ex vivo, particularly umbilical CB, is a goal in hematology. While various combinations of cytokines were once the mainstream approach, these protocols had limited expansion rates and did not lead to clinical application. However, in recent years, the development of a technique in which small molecules are added to cytokines has enabled the stable, long-term ex vivo expansion of human HSCs. Clinical trials of expanded umbilical CB using these techniques have been undertaken and have confirmed their efficacy and safety. In addition, we have successfully developed a recombinant-cytokine-free and albumin-free culture system for the long-term expansion of human HSCs. This approach could offer the potential for more selective expansion of human HSCs compared to previous protocols. This review discusses ex vivo culture protocols for expanding human HSCs and presents the results of clinical trials using these techniques, along with future perspectives.
Collapse
Affiliation(s)
- Masatoshi Sakurai
- Division of Hematology, Department of MedicineKeio University School of MedicineTokyoJapan
| | - Kantaro Ishitsuka
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Hans Jiro Becker
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Satoshi Yamazaki
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
- Division of Cell Regulation, Center of Experimental Medicine and Systems Biology, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
13
|
Alkathiri FA, Bukhari SI, Imam SS, Alshehri S, Mahdi WA. Formulation of silymarin binary and ternary solid dispersions: Characterization, simulation study and cell viability assessment against lung cancer cell line. Heliyon 2024; 10:e23221. [PMID: 38163135 PMCID: PMC10756988 DOI: 10.1016/j.heliyon.2023.e23221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Silymarin (SL) is a water-insoluble flavonoid used in the treatment of different diseases, but its therapeutic activity is limited due to its low solubility. So, in the present study, SL solid dispersions (SDs) were developed using different carriers like Kollidone VA64 (KL), Soluplus (SP), and Poloxamer 188 (PL) by solvent evaporation (SE), microwave irradiation (MI), and freeze-drying (FD) methods. The phase solubility and saturation solubility studies were assessed to estimate the stability constant as well as the carrier effect. The dissolution studies were performed for prepared SL-SDs (binary and ternary) to select the optimum SL-SDs. The selected SL-SDs (F5, F9) were further characterized for infrared spectroscopy (IR), nuclear magnetic resonance (NMR), differential scanning calorimeter (DSC), scanning electron microscope (SEM), and X-ray diffraction (XRD). Finally, the comparative cell viability assay (lung cancer cell line) was performed to evaluate the change in activity after the formulation of SDs. The phase solubility and solubility study results displayed marked enhancements in solubility. The dissolution study findings showed significant enhancement in drug release from ternary solid dispersions (F7-F9) > ternary physical mixture (PM3) > binary solid dispersions (F1-F6) > binary physical mixture (PM1, PM2) in comparison to free SL. A greater release was observed from ternary SDs due to the addition of PL in the formulation, which had a synergistic effect on increasing the solubility. IR and NMR spectra revealed no chemical interaction between SL, KL, and PL. DSC, XRD, and SEM all confirmed the transformation of crystalline SL into amorphous SL. The cell viability assay demonstrated significantly enhanced results from ternary solid dispersion (F9) compared to free SL. Based on the study results, it can be said that SL-SDs are an alternative way to deliver drugs orally that can improve solubility and have anti-cancer activity.
Collapse
Affiliation(s)
- Fai A. Alkathiri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Abdallah M, Mohamed AS, Tadros MI, El-Nabarawi M, Tawfik MA. Solusomes (novel soluplus ® enriched nano-vesicular carriers) for improving the oral bioavailability of Candesartan cilexetil. Pharm Dev Technol 2024; 29:13-24. [PMID: 38014703 DOI: 10.1080/10837450.2023.2289166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
Candesartan cilexetil (CAN) is administered for treating hypertension and heart failure. CAN suffers poor oral bioavailability, owing to limited aqueous solubility, and first-pass metabolism. Solusomes (novel Soluplus® enriched nano-vesicular carriers) combine the merits of Soluplus®, and the traditional liposomes. They were explored to increase CAN solubility, allow a high drug release rate, and improve the oral drug bioavailability. Solusomes were developed via thin film hydration technique utilizing lipid (phosphatidylcholine; PC) and polymeric solubilizer (Soluplus®; Solu). S6 system comprising PC (0.1% w/v), CAN and Soluplus® (at 1:5 ratio; w/w), following a 5 min sonication period, was the optimum one with respect to drug entrapment efficiency (83.5 ± 2.6%), drug loading (11.9 ± 0.3%), particle size and shape (377.2 ± 12.1 nm, spherical), zeta-potential (-19.6 ± 2.1 mV), saturated drug solubility (32.09 ± 0.71 µg/mL), drug released % after 1 h (68 ± 0.9%), and stability. Significantly higher Cmax (969.12 ± 46.3 ng/mL), shorter median Tmax (1h), and improved relative bioavailability (≈ 6.8 folds) in rabbits could evidence the potential of S6 system in enhancing oral CAN bioavailability. S6 solusomes act as dual platform to improve the oral drug bioavailability and maintain effective drug concentration for a prolonged period.
Collapse
Affiliation(s)
- Mohammed Abdallah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Simões A, Castro RAE, Veiga F, Vitorino C. A quality by design framework for developing nanocrystal bioenabling formulations. Int J Pharm 2023; 646:123393. [PMID: 37717717 DOI: 10.1016/j.ijpharm.2023.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The present study aims to outline a rational framework for the design and development of a 1.0% (w/v) hydrocortisone nanocrystal-based formulation, resorting to a simple, efficient, and scalable nanonization methodology, based on the high-pressure homogenization (HPH) technique. Accordingly, the innovative product was comprehensively optimized following a Quality by Design (QbD) approach. The thorough selection of formulation composition was driven by a dual purpose: improving skin permeation and stability. In the early stage of development, a Failure Mode, Effects and Criticality Analysis (FMECA) diagram was employed to identify the most impactful variables for the critical quality attributes (CQAs). In this sense, a rotatable, three-factor and five-level circumscribed central composite design (CCCD) was applied to investigate how squalene concentration (x1), soluplus concentration (x2) and HPH-time (x3) influence physicochemical properties, performance and physical stability of the formulation. A robust Design Space (DS) was defined, establishing the optimal settings for the critical variables, whose combination meets the requirements set in the quality target product profile (QTPP). Morphological analysis revealed the cuboidal shape of hydrocortisone nanocrystals. In what concerns colloidal properties, the most promising formulation disclosed a small particle size (Dx(50) = 311.8 ± 1.5 nm), along with narrow size distribution (span value = 1.91 ± 0.17). Zeta potential results (-2.19 ± 0.15 mV--12.1 ± 0.4 mV) suggested a steric hindrance stabilization. FTIR spectra showed no chemical interactions between drug and formulation components. XRD diffractograms confirmed loss of crystallinity during the downsizing process. In vitro studies revealed an improvement on drug release rate (316 ± 21-516 ± 35 μg/cm2/√t), compared to the coarse suspension and commercial products, and a straight dependence on the stabilizer concentration and HPH time. The permeation flux across the skin (0.16 ± 0.02-1.2 ± 0.5 μg/cm2/h) appeared to be dependent on the drug physicochemical properties, in particular saturation solubility. Further characterization of the experimental formulations pointed out the role of the stabilizing component to prevent against physical instability phenomena. This organic solvent-free, and therefore "green" nanocrystal production technology offers great potential for pharmaceutical R&D and drug delivery by enabling the development of new forms of conventional drugs with optimal physicochemical properties and performance.
Collapse
Affiliation(s)
- Ana Simões
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ricardo A E Castro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
16
|
Shaw P, Klausen M, Lilienkampf A, Bradley M. Fluorophore-Tagged Poly-Lysine RAFT Agents: Controlled Synthesis of Trackable Cell-Penetrating Peptide-Polymers. ACS Macro Lett 2023; 12:1280-1285. [PMID: 37695265 PMCID: PMC10586461 DOI: 10.1021/acsmacrolett.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
The conjugation of a fluorophore and a variety of cell-penetrating peptides onto a RAFT agent allowed for the synthesis of polymers of defined sizes with quantifiable cell-uptake. Each peptide-RAFT agent was used to polymerize acrylamide, acrylate, and styrene monomers to form high or low molecular weight polymers (here 50 or 7.5 kDa) with the peptide having no influence on the RAFT agent's control. The incorporation of a single fluorophore per polymer chain allowed cellular analysis of the uptake of the size-specific peptide-polymers via flow cytometry and confocal microscopy. The cell-penetrating peptides had a direct effect on the efficiency of polymer uptake for both high and low molecular weight polymers, demonstrating the versatility of the strategy. These "all-in-one", synthetically accessible RAFT agents allow highly controlled preparation of synthetic peptide-polymer conjugates and subsequent quantification of their delivery into cells.
Collapse
Affiliation(s)
- Paige
A. Shaw
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
| | - Maxime Klausen
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
| | - Annamaria Lilienkampf
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
| | - Mark Bradley
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
- Precision
Healthcare University Research Institute, Queen Mary University of London, 65-67 New Road, E1 1HH London, U.K.
| |
Collapse
|
17
|
Rubio-Lara JA, Igarashi KJ, Sood S, Johansson A, Sommerkamp P, Yamashita M, Lin DS. Expanding hematopoietic stem cell ex vivo: recent advances and technical considerations. Exp Hematol 2023; 125-126:6-15. [PMID: 37543237 DOI: 10.1016/j.exphem.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic hierarchy, which are responsible for sustaining the lifelong production of mature blood and immune cells. Due to their superior long-term regenerative capacity, HSC therapies such as stem cell transplantation have been used in a broad range of hematologic disorders. However, the rarity of this population in vivo considerably limits its clinical applications and large-scale analyses such as screening and safety studies. Therefore, ex vivo culture methods that allow long-term expansion and maintenance of functional HSCs are instrumental in overcoming the difficulties in studying HSC biology and improving HSC therapies. In this perspective, we discuss recent advances and technical considerations for three ex vivo HSC expansion methods including 1) polyvinyl alcohol-based HSC expansion, 2) mesenchymal stromal cell-HSC co-culture, and 3) two-/three-dimensional hydrogel HSC culture. This review summarizes the presentations and discussions from the 2022 International Society for Experimental Hematology (ISEH) Annual Meeting New Investigator Technology Session.
Collapse
Affiliation(s)
| | - Kyomi J Igarashi
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Shubhankar Sood
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alban Johansson
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Pia Sommerkamp
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Dawn S Lin
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
18
|
Nunes PD, Pinto JF, Bauer-Brandl A, Brandl M, Henriques J, Paiva AM. In vitro dissolution/permeation tools for amorphous solid dispersions bioavailability forecasting I: Experimental design for PermeaLoop™. Eur J Pharm Sci 2023; 188:106512. [PMID: 37423576 DOI: 10.1016/j.ejps.2023.106512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Along with the increasing demand for candidate-enabling formulations comes the need for appropriate in vitro bioavailability forecasting. Dissolution/permeation (D/P) systems employing cell-free permeation barriers are increasingly gaining interest, due to their low cost and easy application as passive diffusion bio-predictive profiling in drug product development, as this accounts for nearly 75% of new chemical entities (NCEs) absorption mechanism. To this end, this study comprises theoretical considerations on the design and experimental work towards the establishment and optimization of a PermeaLoop™ based dissolution/permeation assay to simultaneously evaluate the drug release and permeation using Itraconazole (ITZ)-based amorphous solid dispersions (ASD) formulations, with different drug loads, based on a solvent-shift approach. Alternative method conditions were tested such as: donor medium, acceptor medium and permeation barrier were screened using both PermeaPad® and PermeaPlain® 96-well plates. A range of solubilizers, namely Sodium Dodecyl Sulfate, Vitamin E-TPGS and hydroxypropyl-β-cyclodextrin, were screened as possible solubilizing additives to the acceptor medium, while donor medium was varied between blank FaSSIF (phosphate buffer) and FaSSIF. The method optimization also included the ITZ dose selection, being the ITZ single dose (100 mg) considered the most adequate to be used in further experiments to allow the comparison with in vivo studies. In the end, a standardized approach that may be applied to predict the bioavailability of weakly basic poorly soluble drug-based formulations is described, contributing to strengthening the analytical portfolio of in vitro pre-clinical drug product development.
Collapse
Affiliation(s)
- Patrícia D Nunes
- R&D Analytical Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal; R&D Oral Drug Product Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal; Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - João F Pinto
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Annette Bauer-Brandl
- Drug Transport and Delivery Group, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK, 5230, Denmark
| | - Martin Brandl
- Drug Transport and Delivery Group, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK, 5230, Denmark.
| | - João Henriques
- R&D Oral Drug Product Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal
| | - Ana Mafalda Paiva
- R&D Analytical Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal
| |
Collapse
|
19
|
Nunes PD, Ferreira AF, Pinto JF, Bauer-Brandl A, Brandl M, Henriques J, Paiva AM. In vitro dissolution/permeation tools for amorphous solid dispersions bioavailability forecasting II: Comparison and mechanistic insights. Eur J Pharm Sci 2023; 188:106513. [PMID: 37423577 DOI: 10.1016/j.ejps.2023.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Along with the increasing demand for complex formulations comes the need for appropriate in vitro methodologies capable of predicting their corresponding in vivo performance and the mechanisms controlling the drug release which can impact on in vivo drug absorption. In vitro dissolution-permeation (D/P) methodologies that can account for the effects of enabling formulations on the permeability of drugs are increasingly being used in performance ranking during early development stages. This work comprised the application of two different cell-free in vitro D/P setups: BioFLUX™ and PermeaLoop™ to evaluate the dissolution-permeation interplay upon drug release from itraconazole (ITZ)- HPMCAS amorphous solid dispersions (ASDs) of different drug loads. A solvent-shift approach was employed, from a simulated gastric environment to a simulated intestinal environment in the donor compartment. PermeaLoop™ was then combined with microdialysis sampling to separate the dissolved (free) drug from other species present in solution, like micelle-bound drug and drug-rich colloids, in real time. This setup was applied to clarify the mechanisms for drug release and permeation from these ASDs. In parallel, a pharmacokinetic study (dog model) was conducted to assess the drug absorption from these ASDs and to compare the in vivo results with the data obtained from each in vitro D/P setup, allowing to infer which would be the most adequate setup for ASD ranking. Even though both D/P systems resulted in the same qualitative ranking, BioFLUX™ overpredicted the difference between the in vivo AUC of two ASDs, whereas PermeaLoop™ permeation flux resulted in a good correlation with the AUC observed in pharmacokinetic studies (dog model) (R2 ≈ 0.98). Also, PermeaLoop™ combined with a microdialysis sampling probe clarified the mechanisms for drug release and permeation from these ASDs. It demonstrated that the free drug was the only driving force for permeation, while the drug-rich colloids kept permeation active for longer periods by acting as drug reservoirs and maintaining constant high levels of free drug in solution, which are then immediately able to permeate. Hence, the data obtained points BioFLUX™ and PermeaLoop™ applications to different momentums in the drug product development pipeline: while BioFLUX™, an automated standardized method, poses as a valuable tool for initial ASD ranking during the early development stages, PermeaLoop™ combined with microdialysis sampling allows to gain mechanistic understanding of the dissolution-permeation interplay, being crucial to fine tune and identify leading ASD candidates prior to in vivo testing.
Collapse
Affiliation(s)
- Patrícia D Nunes
- R&D Analytical Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal; R&D Oral Drug Product Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal; Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ana Filipa Ferreira
- R&D Analytical Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal
| | - João F Pinto
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Annette Bauer-Brandl
- Drug Transport and Delivery Group, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark
| | - Martin Brandl
- Drug Transport and Delivery Group, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark.
| | - João Henriques
- R&D Oral Drug Product Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal
| | - Ana Mafalda Paiva
- R&D Analytical Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal
| |
Collapse
|
20
|
Saha SK, Joshi A, Singh R, Dubey K. Review of industrially recognized polymers and manufacturing processes for amorphous solid dispersion based formulations. Pharm Dev Technol 2023; 28:678-696. [PMID: 37427544 DOI: 10.1080/10837450.2023.2233595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Evolving therapeutic landscape through combinatorial chemistry and high throughput screening have resulted in an increased number of poorly soluble drugs. Drug delivery strategies quickly adapted to convert these drugs into successful therapies. Amorphous solid dispersion (ASD) technology is widely employed as a drug delivery strategy by pharmaceutical industries to overcome the challenges associated with these poorly soluble drugs. The development of ASD formulation requires an understanding of polymers and manufacturing techniques. A review of US FDA-approved ASD-based products revealed that only a limited number of polymers and manufacturing technologies are employed by pharmaceutical industries. This review provides a comprehensive guide for the selection and overview of polymers and manufacturing technologies adopted by pharmaceutical industries for ASD formulation. The various employed polymers with their underlying mechanisms for solution-state and solid-state stability are discussed. ASD manufacturing techniques, primarily implemented by pharmaceutical industries for commercialization, are presented in Quality by Design (QbD) format. An overview of novel excipients and progress in manufacturing technologies are also discussed. This review provides insights to the researchers on the industrially accepted polymers and manufacturing technology for ASD formulation that has translated these challenging drugs into successful therapies.
Collapse
Affiliation(s)
- Sumit Kumar Saha
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
- Formulation Research and Development - Orals, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | | | - Romi Singh
- Formulation Research and Development - Orals, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | - Kiran Dubey
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
21
|
Abid F, Savaliya B, Parikh A, Kim S, Amirmostofian M, Cesari L, Song Y, Page SW, Trott DJ, Garg S. Nanotechnology and narasin: a powerful combination against acne. NANOSCALE 2023; 15:13728-13739. [PMID: 37577823 DOI: 10.1039/d3nr01789c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Acne vulgaris is widely regarded as the most prevalent skin disorder characterized by painful, inflammatory skin lesions that are primarily attributed to the pathogenic actions of Cutibacterium acnes (C. acnes). To improve the clinical management of this disease, there is a pressing clinical demand to develop innovative antibacterial therapies that utilize novel mechanisms. The current research aimed to discover the antibacterial efficacy of narasin (NAR), a polyether ionophore, against drug-resistant acne bacteria. In addition, the study aimed to formulate self-nanomicellizing solid dispersions (SNMSD), utilizing Soluplus® (SOL), as a drug delivery system to incorporate NAR and selectively target the lipophilic C. acnes abundant environments within the skin. Furthermore, the study aimed to investigate the ex vivo deposition and permeation of NAR into the various layers of the skin using full-thickness porcine ear skin as a model skin. By encapsulating NAR within spherical polymeric micelles (dn < 80 nm) aqueous solubility was significantly increased by approximately 100-fold (from <40 μg mL-1 to 4600 μg mL-1). Following optimization, the micelle solution was integrated into a gel formulation (containing 0.2% w/v NAR) and evaluated for stability over 4 weeks at room temperature (drug content >98%). Results from drug deposition and permeation experiments demonstrated that the deposition of NAR from the NAR-micelle solution and its gel formulation into the lipophilic stratum corneum (19 835.60 ± 6237.89 ng cm-2 and 40 601.14 ± 3736.09 ng cm-2) and epidermis (19 347 ± 1912.98 ng cm-2 and 18 763.54 ± 580.77 ng cm-2) was superior to that of NAR in solution, which failed to penetrate any skin layers. In conclusion, the outcomes of this study provide evidence that NAR exhibits promising activity against antimicrobial resistant strains of C. acnes (MIC range ≤0.008-0.062) and that micelle nanocarriers can improve the aqueous solubility of poorly water-soluble drugs. Furthermore, our results highlight the ability of nanomicelles to enable selective and targeted drug delivery to the lipophilic skin layers.
Collapse
Affiliation(s)
- Fatima Abid
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Bhumika Savaliya
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy SA, 5371, Australia
| | - Ankit Parikh
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Sangseo Kim
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Marzieh Amirmostofian
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Laura Cesari
- Faculty of Pharmacy, Aix-Marseille Université, Marseille 13007, France
| | - Yunmei Song
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | | | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy SA, 5371, Australia
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
22
|
Schlauersbach J, Werthmüller D, Harlacher C, Galli B, Hanio S, Lenz B, Endres S, Pöppler AC, Scherf-Clavel O, Meinel L. Harnessing Bile for Drug Absorption through Rational Excipient Selection. Mol Pharm 2023; 20:3864-3875. [PMID: 37406305 DOI: 10.1021/acs.molpharmaceut.2c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bile solubilization and apparent solubility at resorption sites critically affect the bioavailability of orally administered and poorly water-soluble drugs. Therefore, identification of drug-bile interaction may critically determine the overall formulation success. For the case of the drug candidate naporafenib, drug in solution at phase separation onset significantly improved with polyethylene glycol-40 hydrogenated castor oil (RH40) and amino methacrylate copolymer (Eudragit E) but not with hydroxypropyl cellulose (HPC) in both phosphate-buffered saline (PBS) and PBS supplemented with bile components. Naporafenib interacted with bile as determined by 1H and 2D 1H-1H nuclear magnetic resonance spectroscopy and so did Eudragit E and RH40 but not HPC. Flux across artificial membranes was reduced in the presence of Eudragit E. RH40 reduced the naporafenib supersaturation duration. HPC on the other side stabilized naporafenib's supersaturation and did not substantially impact flux. These insights on bile interaction correlated with pharmacokinetics (PK) in beagle dogs. HPC preserved naporafenib bile solubilization in contrast to Eudragit E and RH40, resulting in favorable PK.
Collapse
Affiliation(s)
- Jonas Schlauersbach
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | | | | | - Bruno Galli
- Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland
| | - Simon Hanio
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Bettina Lenz
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Sebastian Endres
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Oliver Scherf-Clavel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
- Helmholtz Institute for RNA-based Infection Biology (HIRI), Josef-Schneider-Strasse 2/D15, DE-97080 Wuerzburg, Germany
| |
Collapse
|
23
|
Becker HJ, Ishida R, Wilkinson AC, Kimura T, Lee MSJ, Coban C, Ota Y, Tanaka Y, Roskamp M, Sano T, Tojo A, Kent DG, Yamazaki S. Controlling genetic heterogeneity in gene-edited hematopoietic stem cells by single-cell expansion. Cell Stem Cell 2023; 30:987-1000.e8. [PMID: 37385251 PMCID: PMC10338855 DOI: 10.1016/j.stem.2023.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
Gene editing using engineered nucleases frequently produces unintended genetic lesions in hematopoietic stem cells (HSCs). Gene-edited HSC cultures thus contain heterogeneous populations, the majority of which either do not carry the desired edit or harbor unwanted mutations. In consequence, transplanting edited HSCs carries the risks of suboptimal efficiency and of unwanted mutations in the graft. Here, we present an approach for expanding gene-edited HSCs at clonal density, allowing for genetic profiling of individual clones before transplantation. We achieved this by developing a defined, polymer-based expansion system and identifying long-term expanding clones within the CD201+CD150+CD48-c-Kit+Sca-1+Lin- population of precultured HSCs. Using the Prkdcscid immunodeficiency model, we demonstrate that we can expand and profile edited HSC clones to check for desired and unintended modifications, including large deletions. Transplantation of Prkdc-corrected HSCs rescued the immunodeficient phenotype. Our ex vivo manipulation platform establishes a paradigm to control genetic heterogeneity in HSC gene editing and therapy.
Collapse
Affiliation(s)
- Hans Jiro Becker
- Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Tsukuba 305-8577, Japan; Division of Stem Cell Biology, Center for Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| | - Reiko Ishida
- Division of Stem Cell Biology, Center for Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Adam C Wilkinson
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Takaharu Kimura
- Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Tsukuba 305-8577, Japan
| | - Michelle Sue Jann Lee
- Division of Malaria Immunology and International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Cevayir Coban
- Division of Malaria Immunology and International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yosuke Tanaka
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City 860-0811, Japan
| | - Meike Roskamp
- Pharma Solutions, Nutrition & Health, BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Tsubasa Sano
- Pharma Solutions, Nutrition & Health, BASF Japan Ltd, Tokyo 103-0022, Japan
| | - Arinobu Tojo
- Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - David G Kent
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Satoshi Yamazaki
- Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Tsukuba 305-8577, Japan; Division of Stem Cell Biology, Center for Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
24
|
Sakurai M, Ishitsuka K, Ito R, Wilkinson AC, Kimura T, Mizutani E, Nishikii H, Sudo K, Becker HJ, Takemoto H, Sano T, Kataoka K, Takahashi S, Nakamura Y, Kent DG, Iwama A, Chiba S, Okamoto S, Nakauchi H, Yamazaki S. Chemically defined cytokine-free expansion of human haematopoietic stem cells. Nature 2023; 615:127-133. [PMID: 36813966 DOI: 10.1038/s41586-023-05739-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 01/18/2023] [Indexed: 02/24/2023]
Abstract
Haematopoietic stem cells (HSCs) are a rare cell type that reconstitute the entire blood and immune systems after transplantation and can be used as a curative cell therapy for a variety of haematological diseases1,2. However, the low number of HSCs in the body makes both biological analyses and clinical application difficult, and the limited extent to which human HSCs can be expanded ex vivo remains a substantial barrier to the wider and safer therapeutic use of HSC transplantation3. Although various reagents have been tested in attempts to stimulate the expansion of human HSCs, cytokines have long been thought to be essential for supporting HSCs ex vivo4. Here we report the establishment of a culture system that allows the long-term ex vivo expansion of human HSCs, achieved through the complete replacement of exogenous cytokines and albumin with chemical agonists and a caprolactam-based polymer. A phosphoinositide 3-kinase activator, in combination with a thrombopoietin-receptor agonist and the pyrimidoindole derivative UM171, were sufficient to stimulate the expansion of umbilical cord blood HSCs that are capable of serial engraftment in xenotransplantation assays. Ex vivo HSC expansion was further supported by split-clone transplantation assays and single-cell RNA-sequencing analysis. Our chemically defined expansion culture system will help to advance clinical HSC therapies.
Collapse
Affiliation(s)
- Masatoshi Sakurai
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kantaro Ishitsuka
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ryoji Ito
- Human Disease Model Laboratory, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Adam C Wilkinson
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Takaharu Kimura
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eiji Mizutani
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hidekazu Nishikii
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiro Sudo
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Hans Jiro Becker
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Takemoto
- Department of Neuroscience, Drug Discovery and Disease Research Laboratory, Shionogi; Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsubasa Sano
- Pharma Solutions, Nutrition and Health, BASF Japan, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - David G Kent
- Department of Biology, York Biomedical Research Institute, University of York, York, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
25
|
Saha SK, Joshi A, Singh R, Jana S, Dubey K. An investigation into solubility and dissolution improvement of alectinib hydrochloride as a third-generation amorphous solid dispersion. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
26
|
Liu MK, Chen HL, Chen LL, Jiang H, Liu R, Pei ZC, Li K, Wei ZP, Xu H. Andrographolide Liquisolid using Porous-Starch as the Adsorbent with Enhanced Oral Bioavailability in Rats. J Pharm Sci 2023; 112:535-543. [PMID: 36058257 DOI: 10.1016/j.xphs.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 01/18/2023]
Abstract
Andrographolide (AGL) is the major component of Andrographispaniculata. The poor water solubility and low dissolution strongly affect its oral absorption. Liquisolid technology has been used to improve its dissolution and oral bioavailability. Liquisolid powders of AGL (AGL-LS-PSG) were obtained by firstly dissolving AGL in the mixture of NMP, PEG 6000 and Soluplus®, and solidified by absorption of the blend in porous starch. Angle of repose, Carr index and Hauser ratio presented good powder fluidity and compressibility characteristics of AGL-LS-PSG. The results of optical microscopic observation, PXRD and DSC analysis indicated that AGL has been completely adsorbed in porous starch granules and existed in an amorphous or molecularly dispersing state. AGL-LS-PSG can obviously increase the drug dissolution rate compared to commercial guttate pills and raw drug. In vivo pharmacokinetic behavior of AGL-LS-PSG was investigated following a single oral administration to rats. The Cmax (0.37 ± 0.06 μg mL-1) and AUC0-2h (13.55 ± 2.67 μg h mL-1) of AGL-LS-PSG were evidently increased compared to commercial guttate pills (Cmax = 0.30 ± 0.21 μg mL-1, AUC0-2h = 9.88 ± 3.57 μg h mL-1). This study indicated great potential of liquisolid technology in effectively improving the dissolution and bioavailability of AGL.
Collapse
Affiliation(s)
- M K Liu
- School of Pharmacy, School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, PR China
| | - H L Chen
- School of Pharmacy, School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, PR China
| | - L L Chen
- School of Pharmacy, School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, PR China
| | - H Jiang
- School of Pharmacy, School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, PR China
| | - R Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, 117004, PR China
| | - Z C Pei
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, 117004, PR China
| | - K Li
- Clinical Pharmacology Laboratory, Henan Province People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China.
| | - Z P Wei
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - H Xu
- School of Pharmacy, School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, PR China.
| |
Collapse
|
27
|
Lin Z, Zheng K, Azad MA, Davé RN. Preparation of Free-Flowing Spray-Dried Amorphous Composites Using Neusilin ®. AAPS PharmSciTech 2023; 24:51. [PMID: 36703032 DOI: 10.1208/s12249-023-02511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
A highly porous additive, Neusilin®, with high adsorption capability is investigated to improve bulk properties, hence processability of spray-dried amorphous solid dispersions (ASDs). Griseofulvin (GF) is applied as a model BCS class 2 drug in ASDs. Two grades of Neusilin®, US2 (coarser) and UFL2 (finer), were used as additives to produce spray-dried amorphous composite (AC) powders, and their performance was compared with the resulting ASDs without added Neusilin®. The resulting AC powders that included Neusilin® had greatly enhanced flowability (flow function coefficient (FFC) > 10) comparable to larger particles (100 μm) yet had finer particle size (< 50 μm), hence retaining the advantage of fast dissolution rate of finer sizes. Dissolution results demonstrated that achieved GF supersaturation for AC powders with Neusilin® was as high as 3 times that of crystalline GF concentration and was achieved within 30 min. In addition, 80% of drug was released within 4 min. The flowability improvement for AC powders with Neusilin® was more significant as compared to spray-dried ASDs without Neusilin®. Thus, the role of Neusilin® in flowability improvement was evident, considering that spray-dried AC with Neusilin® UFL2 has higher FFC than ASDs having a similar size. Lastly, the AC powders retained a fully amorphous state of GF after 3-month ambient storage. The overall results conveyed that the improved flowability and dissolution rate could outweigh the loss of drug loading resulted by addition of Neusilin®.
Collapse
Affiliation(s)
- Zhixing Lin
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kai Zheng
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Mohammad A Azad
- Chemical, Biological and Bioengineering Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
28
|
Characterization and Evaluation of Rapamycin-Loaded Nano-Micelle Ophthalmic Solution. J Funct Biomater 2023; 14:jfb14010049. [PMID: 36662096 PMCID: PMC9862165 DOI: 10.3390/jfb14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Rapamycin-loaded nano-micelle ophthalmic solution (RAPA-NM) offers a promising application for preventing corneal allograft rejection; however, RAPA-NM has not yet been fully characterized. This study aimed to evaluate the physicochemical properties, biocompatibility, and underlying mechanism of RAPA-NM in inhibiting corneal allograft rejection. An optimized RAPA-NM was successfully prepared using a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (PVCL-PVA-PEG) graft copolymer as the excipient at a PVCL-PVA-PEG/RAPA weight ratio of 18:1. This formulation exhibited high encapsulation efficiency (99.25 ± 0.55%), small micelle size (64.42 ± 1.18 nm), uniform size distribution (polydispersity index = 0.076 ± 0.016), and a zeta potential of 1.67 ± 0.93 mV. The storage stability test showed that RAPA-NM could be stored steadily for 12 weeks. RAPA-NM also displayed satisfactory cytocompatibility and high membrane permeability. Moreover, topical administration of RAPA-NM could effectively prevent corneal allograft rejection. Mechanistically, a transcriptomic analysis revealed that several immune- and inflammation-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched in the downregulated genes in the RAPA-NM-treated allografts compared with the rejected allogenic corneal grafts. Taken together, these findings highlight the potential of RAPA-NM in treating corneal allograft rejection and other ocular inflammatory diseases.
Collapse
|
29
|
Kennedy MA, Zhang Y, Bhatia SR. In situsaxs characterization of thermoresponsive behavior of a poly(ethylene glycol)-graft-(poly(vinyl caprolactam)-co-poly(vinyl acetate)) amphiphilic graft copolymer. NANOTECHNOLOGY 2023; 34:125602. [PMID: 36595237 DOI: 10.1088/1361-6528/acab6d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
We report the thermoresponsive assembly and rheology of an amphiphilic thermosensitive graft copolymer, poly(ethylene glycol)-graft-(poly(vinyl caprolactam)-co-poly(vinyl acetate)) (commercial name Soluplus®), which has been investigated for potential biomedical applications. It has received attention due to is ability to solubilize hydrophobic drugs and for its thickening behavior close to body temperature. Through use of the synchrotron at Brookhaven National Lab, and collaboration with the department of energy, the nanoscale structure and properties can be probed in greater detail. Soluplus®undergoes two structural changes as temperature is increased; the first, a concentration independent change where samples become turbid at 32 °C. Increasing the temperature further causes the formation of physically associated hydrogels. This sol-gel transition is concentration dependent and occurs at 32 °C for 40 wt% samples, and increases to 42 °C for 10 wt% samples. From variable temperature SAXS characterization micelles of 20-25 nm in radius can be seen and maintain their size and packing below 32 °C. A gradual increase in the aggregation of micelles corresponding to a thickening of the material is also observed. Close to and above the gelation temperature, micelles collapse and form a physically associated 3D network. A model is proposed to explain these physical effects, where the poly(vinyl caprolactam) group transitions from the hydrophilic corona at room temperature to the hydrophobic core as temperature is increased.
Collapse
Affiliation(s)
- Mitchell A Kennedy
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States of America
| | - Yugang Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States of America
| |
Collapse
|
30
|
Liu Z, Lansley AB, Duong TN, Smart JD, Pannala AS. Increasing Cellular Uptake and Permeation of Curcumin Using a Novel Polymer-Surfactant Formulation. Biomolecules 2022; 12:biom12121739. [PMID: 36551167 PMCID: PMC9775279 DOI: 10.3390/biom12121739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Several therapeutically active molecules are poorly water-soluble, thereby creating a challenge for pharmaceutical scientists to develop an active solution for their oral drug delivery. This study aimed to investigate the potential for novel polymer-surfactant-based formulations (designated A and B) to improve the solubility and permeability of curcumin. A solubility study and characterization studies (FTIR, DSC and XRD) were conducted for the various formulations. The cytotoxicity of formulations and commercial comparators was tested via MTT and LDH assays, and their permeability by in vitro drug transport and cellular drug uptake was established using the Caco-2 cell model. The apparent permeability coefficients (Papp) are considered a good indicator of drug permeation. However, it can be argued that the magnitude of Papp, when used to reflect the permeability of the cells to the drug, can be influenced by the initial drug concentration (C0) in the donor chamber. Therefore, Papp (suspension) and Papp (solution) were calculated based on the different values of C0. It was clear that Papp (solution) can more accurately reflect drug permeation than Papp (suspension). Formulation A, containing Soluplus® and vitamin E TPGs, significantly increased the permeation and cellular uptake of curcumin compared to other samples, which is believed to be related to the increased aqueous solubility of the drug in this formulation.
Collapse
Affiliation(s)
- Zhenqi Liu
- Biomaterials and Drug Delivery Research Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Alison B. Lansley
- Biomaterials and Drug Delivery Research Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Tu Ngoc Duong
- Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - John D. Smart
- Biomaterials and Drug Delivery Research Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Ananth S. Pannala
- Biomaterials and Drug Delivery Research Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
- Correspondence:
| |
Collapse
|
31
|
Liu J, Li Y, Ao W, Xiao Y, Bai M, Li S. Preparation and Characterization of Aprepitant Solid Dispersion with HPMCAS-LF. ACS OMEGA 2022; 7:39907-39912. [PMID: 36385804 PMCID: PMC9647728 DOI: 10.1021/acsomega.2c04021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
This study focused on improving the physicochemical characteristics of aprepitant with poor water solubility by preparing solid dispersion (SD). To prepare the SD with HPMCAS-LF, the solvent evaporation method was applied. Based on dissolution analysis, the dissolution rate of SD increased by five times compared with aprepitant. In addition, scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), and differential scanning calorimetry (DSC) results suggested the presence of amorphous-form aprepitant inside SD. According to Fourier transform infrared (FTIR) spectroscopy, intermolecular hydrogen bonds were detected between polymer and aprepitant. The Caco-2 cell experiment proved that SD did not lower the transepithelial electrical resistance (TEER) values but improved the permeation amount of aprepitant. Additionally, the SD of aprepitant displayed excellent stability.
Collapse
Affiliation(s)
- Jinwen Liu
- College
of Traditional Mongolian Medicine, Inner
Mongolia Minzu University, Tongliao 028000, China
- School
of Pharmacy, Heilongjiang University of
Traditional Chinese Medicine, Harbin 150040, China
| | - Yongji Li
- School
of Pharmacy, Heilongjiang University of
Traditional Chinese Medicine, Harbin 150040, China
| | - Wuliji Ao
- Inner
Mongolia Research Institute of Traditional Mongolian Meweight ratios
ofdicine Engineering, Tongliao 028000, China
| | - Yingge Xiao
- College
of Traditional Mongolian Medicine, Inner
Mongolia Minzu University, Tongliao 028000, China
| | - Meirong Bai
- Key
Laboratory of Monglian Medicine Research and Development Engineering, Ministry of Education, Tongliao 028000, china
| | - Shuyan Li
- College
of Traditional Mongolian Medicine, Inner
Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
32
|
Wang Y, Wang W, Yu E, Zhuang W, Sun X, Wang H, Li Q. Preparation of a camptothecin analog FLQY2 self-micelle solid dispersion with improved solubility and bioavailability. J Nanobiotechnology 2022; 20:402. [PMID: 36064403 PMCID: PMC9446799 DOI: 10.1186/s12951-022-01596-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 7-p-trifluoromethylphenyl-FL118 (FLQY2) is a camptothecin analog with excellent antitumor efficacy against various solid tumors. However, its poor solubility and low bioavailability limited the development of the drug. Polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®), an emerging carrier for preparing solid dispersion (SD), encapsulated FLQY2 to circumvent the above limitations. RESULTS In this project, FLQY2-SD was prepared by solvent evaporation method and self-assembled into micelles in aqueous solutions owing to the amphiphilic nature of Soluplus®. The physicochemical characterizations demonstrated that FLQY2 existed in a homogeneous amorphous form in SD and was rapidly dissolved. The micelles did not affect cytotoxicity or cellular uptake of FLQY2 in vitro, and the oral bioavailability was increased by 12.3-fold compared to the FLQY2 cyclodextrin suspension. The pharmacokinetics of FLQY2-SD showed rapid absorption, accumulation in the intestine, and slow elimination via fecal. Metabolite identification studies showed 14 novel metabolites were identified, including 12 phase I metabolites (M1-M12) and 2 phase II metabolites (M13-M14), of which M2 (oxidation after decarboxylation) and M7 (dioxolane ring cleavage) were the primary metabolites in the positive mode and negative mode, respectively. The tumor growth inhibition rate (TGI, 81.1%) of FLQY2-SD (1.5 mpk, p.o./QW) in tumor-bearing mice after oral administration was higher than that of albumin-bound Paclitaxel (15 mpk, i.v./Q4D) and Irinotecan hydrochloride (100 mpk, i.p./QW). CONCLUSIONS The successful preparation, pharmacokinetics, and pharmacodynamics studies of FLQY2-SD showed that the solubility and bioavailability of FLQY2 were improved, which facilitated the further druggability development of FLQY2.
Collapse
Affiliation(s)
- Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 1 Gongda Road, Hangzhou, 313000, People's Republic of China
| | - Wenchao Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 1 Gongda Road, Hangzhou, 313000, People's Republic of China
| | - Endian Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 1 Gongda Road, Hangzhou, 313000, People's Republic of China
| | - Wenya Zhuang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 1 Gongda Road, Hangzhou, 313000, People's Republic of China
| | - Xuanrong Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 1 Gongda Road, Hangzhou, 313000, People's Republic of China
| | - Hong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 1 Gongda Road, Hangzhou, 313000, People's Republic of China
| | - Qingyong Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 1 Gongda Road, Hangzhou, 313000, People's Republic of China.
| |
Collapse
|
33
|
Gottschalk T, Özbay C, Feuerbach T, Thommes M. Predicting Throughput and Melt Temperature in Pharmaceutical Hot Melt Extrusion. Pharmaceutics 2022; 14:pharmaceutics14091757. [PMID: 36145505 PMCID: PMC9502425 DOI: 10.3390/pharmaceutics14091757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Even though hot melt extrusion (HME) is a commonly applied process in the pharmaceutical area, determination of the optimal process parameters is demanding. The goal of this study was to find a rational approach for predetermining suitable extrusion parameters, with a focus on material temperature and throughput. A two-step optimization procedure, called scale-independent optimization strategy (SIOS), was applied and developed further, including the use of an autogenic extrusion mode. Three different polymers (Plasdone S-630, Soluplus, and Eudragit EPO) were considered, and different optimal process parameters were assessed. The maximum barrel load was dependent on the polymers’ bulk density and the extruder size. The melt temperature was influenced by the screw speed and the rheological behavior of the polymer. The melt viscosity depended mainly on the screw speed and was self-adjusted in the autogenic extrusion. A new approach, called SIOS 2.0, was suggested for calculating the extrusion process parameters (screw speed, melt temperature and throughput) based on the material data and a few extrusion experiments.
Collapse
Affiliation(s)
- Tobias Gottschalk
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 68, 44227 Dortmund, Germany
- INVITE GmbH, Drug Delivery Innovation Center, Chempark Building W32, 51368 Leverkusen, Germany
| | - Cihangir Özbay
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 68, 44227 Dortmund, Germany
| | - Tim Feuerbach
- INVITE GmbH, Drug Delivery Innovation Center, Chempark Building W32, 51368 Leverkusen, Germany
| | - Markus Thommes
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 68, 44227 Dortmund, Germany
- Correspondence: or
| |
Collapse
|
34
|
Enhanced Oral Bioavailability of MT-102, a New Anti-inflammatory Agent, via a Ternary Solid Dispersion Formulation. Pharmaceutics 2022; 14:pharmaceutics14071510. [PMID: 35890405 PMCID: PMC9323944 DOI: 10.3390/pharmaceutics14071510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023] Open
Abstract
This study aimed to develop a solid dispersion (SD) of MT-102, a new anti-inflammatory agent, to improve its oral bioavailability. The ternary SD formulations of MT-102 (a poorly soluble extract of Isatis indigotica and Juglans mandshurica) were prepared using a solvent evaporation method with various drug/excipient ratios. Following that, the effectiveness of various SDs as an oral formulation of MT-102 was investigated using indirubin as a marker component. By forming SDs with hydrophilic polymers, the aqueous solubility of indirubin was significantly increased. SD-F4, containing drug, poloxamer 407 (P407), and povidone K30 (PVP K30) at a 1:2:2 weight ratio, exhibited the optimal dissolution profiles in the acidic to neutral pH range. Compared to pure MT-102 and a physical mixture, SD-F4 increased indirubin’s dissolution from MT-102 by approximately 9.86-fold and 2.21-fold, respectively. Additionally, SD-F4 caused the sticky extract to solidify, resulting in improved flowability and handling. As a result, compared to pure MT-102, the oral administration of SD-F4 significantly improved the systemic exposure of MT-102 in rats. Overall, the ternary SD formulation of MT-102 with a blended mixture of P407 and PVP K30 appeared to be effective at improving the dissolution and oral absorption of MT-102.
Collapse
|
35
|
Preparation of Decoquinate Solid Dispersion by Hot-Melt Extrusion as an Oral Dosage Form Targeting Liver-Stage Plasmodium Infection. Antimicrob Agents Chemother 2022; 66:e0221821. [PMID: 35658489 DOI: 10.1128/aac.02218-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Liver-stage Plasmodium in humans is an early stage of malarial infection. Decoquinate (DQ) has a potent multistage antimalarial activity. However, it is practically water insoluble. In this study, the hot-melt extrusion (HME) approach was employed to prepare solid dispersions of DQ to improve oral bioavailability. The DQ dispersions were homogeneous in an aqueous suspension that contained most DQ (>90%) in the aqueous phase. Soluplus, a solubilizer, was found compatible with DQ in forming nanoparticle formulations during the HME process. Another excipient HPMC AS-126 was also proven to be suitable for making DQ nanoparticles through HME. Particle size and antimalarial activity of HME DQ suspensions remained almost unchanged after storage at 4°C for over a year. HME DQ was highly effective at inhibiting Plasmodium infection in vitro at both the liver stage and blood stage. HME DQ at 3 mg/kg by oral administration effectively prevented Plasmodium infection in mice inoculated with Plasmodium berghei sporozoites. Orally administered HME DQ at 2,000 mg/kg to mice showed no obvious adverse effects. HME DQ at 20 mg/kg orally administered to rats displayed characteristic distributions of DQ in the blood with most DQ in the blood cells, revealing the permeability of HME DQ into the cells in relation to its antimalarial activity. The DQ dispersions may be further developed as an oral formulation targeting Plasmodium infection at the liver stage.
Collapse
|
36
|
Development and Characterization of Eudragit ® EPO-Based Solid Dispersion of Rosuvastatin Calcium to Foresee the Impact on Solubility, Dissolution and Antihyperlipidemic Activity. Pharmaceuticals (Basel) 2022; 15:ph15040492. [PMID: 35455489 PMCID: PMC9025505 DOI: 10.3390/ph15040492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Poor solubility is the major challenge involved in the formulation development of new chemical entities (NCEs), as more than 40% of NCEs are practically insoluble in water. Solid dispersion (SD) is a promising technology for improving dissolution and, thereby, the bioavailability of poorly soluble drugs. This study investigates the influence of a pH-sensitive acrylate polymer, EPO, on the physicochemical properties of rosuvastatin calcium, an antihyperlipidemic drug. In silico docking was conducted with numerous polymers to predict drug polymer miscibility. The screened-out polymer was used to fabricate the binary SD of RoC in variable ratios using the co-grinding and solvent evaporation methods. The prepared formulations were assessed for physiochemical parameters such as saturation solubility, drug content and in vitro drug release. The optimized formulations were further ruled out using solid-state characterization (FTIR, DSC, XRD and SEM) and in vitro cytotoxicity. The results revealed that all SDs profoundly increased solubility as well as drug release. However, the formulation RSE-2, with a remarkable 71.88-fold increase in solubility, presented 92% of drug release in the initial 5 min. The molecular interaction studied using FTIR, XRD, DSC and SEM analysis evidenced the improvement of in vitro dissolution. The enhancement in solubility of RoC may be important for the modulation of the dyslipidemia response. Therefore, pharmacodynamic activity was conducted for optimized formulations. Our findings suggested an ameliorative effect of RSE-2 in dyslipidemia and its associated complications. Moreover, RSE-2 exhibited nonexistence of cytotoxicity against human liver cell lines. Convincingly, this study demonstrates that SD of RoC can be successfully fabricated by EPO, and have all the characteristics that are favourable for superior dissolution and better therapeutic response to the drug.
Collapse
|
37
|
Sofroniou C, Baglioni M, Mamusa M, Resta C, Doutch J, Smets J, Baglioni P. Self-Assembly of Soluplus in Aqueous Solutions: Characterization and Prospectives on Perfume Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14791-14804. [PMID: 35312278 PMCID: PMC8972246 DOI: 10.1021/acsami.2c01087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Soluplus is an amphiphilic graft copolymer intensively studied as a micellar solubilizer for drugs. An extensive characterization of the nanostructure of its colloidal aggregates is still lacking. Here, we provide insights into the polymer's self-assembly in water, and we assess its use as an encapsulating agent for fragrances. The self-assembly properties of Soluplus aqueous solutions were studied over a wide concentration range (1-70% w/w) by means of small-angle neutron scattering (SANS), differential scanning calorimetry, NMR, and rheometry. SANS analyses revealed the presence of polymeric micelles with a fuzzy surface interacting via a 2-Yukawa potential, up to 15% w/w polymer. Increasing the polymer concentration up to 55% w/w led to tightly packed micelles described according to the Teubner-Strey model. The ability of Soluplus to encapsulate seven perfume molecules, 2-phenyl ethanol, l-carvone, linalool, florhydral, β-citronellol, α-pinene, and R-limonene, was then examined. We showed that the fragrance's octanol/water partition coefficient (log Kow), widely used to characterize the solubilization capacity, is not sufficient to characterize such systems and the presence of specific functional groups or molecular conformation needs to be considered. In fact, the combination of SANS, NMR, confocal laser scanning microscopy, and confocal Raman microscopy showed that the perfumes, interacting with different regions of the polymer aggregates, are able to tune the systems' structures resulting in micelles, matrix-type capsules, core-shell capsules, or oil-in-water emulsions.
Collapse
Affiliation(s)
- Constantina Sofroniou
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Michele Baglioni
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Marianna Mamusa
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudio Resta
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - James Doutch
- Science
and Technology Facilities Council, ISIS
Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Johan Smets
- The
Procter & Gamble Company, Temselaan 100, 1853 Strombeek Bever, Belgium
| | - Piero Baglioni
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
38
|
Stabilizing Effect of Soluplus on Erlotinib Metastable Crystal Form in Microparticles and Amorphous Solid Dispersions. Polymers (Basel) 2022; 14:polym14061241. [PMID: 35335571 PMCID: PMC8949943 DOI: 10.3390/polym14061241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Microparticles (MPs) and amorphous solid dispersions (SDs) are effective methods to improve the dissolution of insoluble drugs. However, stability is a concern for these two high-energy systems, resulting from high surface area and amorphous polymorph, respectively. As an amphiphilic polymer, Soluplus (SOL) is usually used as a carrier in SDs. In this study, erlotinib microparticles (ERL MPs) and erlotinib solid dispersions (ERL SDs) were prepared with SOL by bottom-up technology and solvent evaporation. The solid-state properties of ERL MPs and ERL SDs were characterized by Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (PXRD) and Scanning Electron Microscopy (SEM). The ERL MPs existed in a metastable crystal form A while the ERL SDs existed in an amorphous state. Fourier transform infrared spectroscopy (FT-IR) showed that there was a hydrogen bond interaction between the N-H group of ERL and the carbonyl group of SOL in ERL MPs and SDs. The dissolution profiles of ERL SDs and ERL MPs were improved significantly. ERL MPs showed better stability than ERL SDs in accelerated stability test. The discrepant stabilizing effects of polymer SOL in two systems may provide effective ideas for solubilization of insoluble drugs and the stability of drugs after recrystallization.
Collapse
|
39
|
Katona G, Sipos B, Ambrus R, Csóka I, Szabó-Révész P. Characterizing the Drug-Release Enhancement Effect of Surfactants on Megestrol-Acetate-Loaded Granules. Pharmaceuticals (Basel) 2022; 15:ph15020113. [PMID: 35215226 PMCID: PMC8879843 DOI: 10.3390/ph15020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
In this study, the effect of Cremophor® RH 40 (CR 40) classic micelles and Soluplus® (SP) polymeric micelles were investigated on a novel granule-type drug-delivery system containing megestrolacetate (MGA). Using a risk assessment-based approach on the formulation via melt technology resulted in the formation of these granules, presented as the dosage, with proper particle size and flow characteristics. Due to the application of a eutectic carrier base composition, gentle process conditions were reached, retaining the crystalline structure of the carrier system and allowing for the proper distribution of MGA in the granules. The increased water solubility (0.111 mg/mL to 2.154 mg/mL), and the decreased nano particle size (102.27 nm) with uniform distribution (polydispersity index of 0.259) and colloid stability (zeta potential of −12.99 mV) resulted in SP polymeric micelles prevailing over CR 40 micelles in this gastric dissolution study, performed in biorelevant fasted and fed state drug-release media. Mathematical characterization and kinetic model fitting supported the fast drug-release mechanism of polymeric micelles over micelles. The value-added polymeric micelle-containing formulation developed can be successfully administered perorally and the enhanced drug release offers the possibility of greater drug absorption in the gastrointestinal tract.
Collapse
|
40
|
Ali A, Bhadane R, Asl AA, Wilén CE, Salo-Ahen O, Rosenholm JM, Bansal KK. Functional block copolymer micelles based on poly (jasmine lactone) for improving the loading efficiency of weakly basic drugs. RSC Adv 2022; 12:26763-26775. [PMID: 36320859 PMCID: PMC9490767 DOI: 10.1039/d2ra03962a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Functionalization of polymers is an attractive approach to introduce specific molecular forces that can enhance drug–polymer interaction to achieve higher drug loading when used as drug delivery systems. The novel amphiphilic block copolymer of methoxy poly(ethylene glycol) and poly(jasmine lactone) i.e., mPEG-b-PJL, derived from renewable jasmine lactone provides free allyl groups on the backbone thus, allowing flexible and facile post-synthesis functionalization. In this study, mPEG-b-PJL and its carboxyl functionalized polymer mPEG-b-PJL-COOH were utilised to explore the effect of ionic interactions on the drug–polymer behaviour. Various drugs with different pKa values were employed to prepare drug-loaded polymeric micelles (PMs) of mPEG-b-PJL, mPEG-b-PJL-COOH and Soluplus® (polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer) via a nanoprecipitation method. Electrostatic interactions between the COOH pendant on mPEG-b-PJL-COOH and the basic drugs were shown to influence the entrapment efficiency. Additionally, molecular dynamics (MD) simulations were employed to understand the polymer–drug interactions at the molecular level and how polymer functionalization influenced these interactions. The release kinetics of the anti-cancer drug sunitinib from mPEG-b-PJL and mPEG-b-PJL-COOH was assessed, and it demonstrated a sustainable drug release pattern, which depended on both pH and temperature. Furthermore, the cytotoxicity of sunitinib-loaded micelles on cancer cells was evaluated. The drug-loaded micelles exhibited dose-dependent toxicity. Also, haemolysis capacity of these polymers was investigated. In summary, polymer functionalization seems a promising approach to overcome challenges that hinder the application of polymer-based drug delivery systems such as low drug loading degree. Block copolymer micelles with a functional core have been synthesized and evaluated for their drug delivery capability. High drug loading was observed due to strong ionic interactions, while cytotoxicity of polymers was found to be low.![]()
Collapse
Affiliation(s)
- Aliaa Ali
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
| | - Rajendra Bhadane
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland
| | - Afshin Ansari Asl
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| | - Carl-Eric Wilén
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| | - Outi Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
41
|
Fang J, Chen Z, Li J, Li D, Wang W, Ruan BH. Self-Assembled Micellar Glutaminase Allosteric Inhibitor for Effective Therapeutic Intervention. Int J Nanomedicine 2022; 17:213-225. [PMID: 35058693 PMCID: PMC8764296 DOI: 10.2147/ijn.s346596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Jinzhang Fang
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
| | - Zhao Chen
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
| | - Jinxiu Li
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
| | - Di Li
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
| | - Wenxi Wang
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
| | - Benfang Helen Ruan
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
- Correspondence: Benfang Helen Ruan; Wenxi Wang Email ;
| |
Collapse
|
42
|
Mateos H, Gentile L, Murgia S, Colafemmina G, Collu M, Smets J, Palazzo G. Understanding the self-assembly of the polymeric drug solubilizer Soluplus®. J Colloid Interface Sci 2021; 611:224-234. [PMID: 34952275 DOI: 10.1016/j.jcis.2021.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022]
Abstract
HYPOTHESIS Soluplus® is one of the most widely used amphiphilic copolymers in drug delivery and has been reported to strongly enhance the adsorption of model drugs. However, there is still a limited understanding of its micellar behavior as it responds to the different routes of administration, which involve important changes in concentration. EXPERIMENTS The microstructure of Soluplus aqueous solutions has been investigated at a wide range of polymer concentrations (2 × 10-6 - 0.2 g/mL) by a combination of diffusion NMR (dNMR), small angle X-ray scattering (SAXS), static (SLS) dynamic (DLS) light scattering and viscosity measurements. These techniques have been coupled with surface tension measurements to frame the polymer's critical micellar concentration (cmc). FINDINGS We demonstrate the presence at all tested concentrations of two forms of Soluplus, with hydrodynamic radii of 3 and 26 nm, where the fraction of smaller objects accounts for as much as 60-70%. dNMR, SAXS, DLS and SLS indicate that Soluplus spontaneously self-assembles into large spherical particles with a core-shell structure. However, self-assembly takes place three orders of magnitude above the cmc evaluated via surface tension measurements. Instead of the traditional cooperative micellization process, we propose a thermal-activated isodesmic self-assembly of the small aggregates into core-shell micelles.
Collapse
Affiliation(s)
- Helena Mateos
- Dipartimento di Chimica, Università di Bari "Aldo Moro" & CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Via Orabona 4, Bari I-70126, Italy.
| | - Luigi Gentile
- Dipartimento di Chimica, Università di Bari "Aldo Moro" & CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Via Orabona 4, Bari I-70126, Italy.
| | - Sergio Murgia
- Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari & CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via Ospedale 72, Cagliari 09124, Italy.
| | - Giuseppe Colafemmina
- Dipartimento di Chimica, Università di Bari "Aldo Moro" & CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Via Orabona 4, Bari I-70126, Italy.
| | - Mattia Collu
- The Procter & Gamble Company, Temselaan 100, 1853 Strombeek Bever, Belgium.
| | - Johan Smets
- The Procter & Gamble Company, Temselaan 100, 1853 Strombeek Bever, Belgium.
| | - Gerardo Palazzo
- Dipartimento di Chimica, Università di Bari "Aldo Moro" & CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Via Orabona 4, Bari I-70126, Italy.
| |
Collapse
|
43
|
Tableted hydrophilic electrospun nanofibers to promote meloxicam dissolution rate. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Granados PA, Pinho LA, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. Application of hot-melt extrusion in the complexation of naringenin with cyclodextrin using hydrophilic polymers. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.11.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Sutar Y, Fulton SR, Paul S, Altamirano S, Mhatre S, Saeed H, Patel P, Mallick S, Bhat R, Patravale VB, Chauhan H, Nielsen K, Date AA. Docusate-Based Ionic Liquids of Anthelmintic Benzimidazoles Show Improved Pharmaceutical Processability, Lipid Solubility, and in Vitro Activity against Cryptococcus neoformans. ACS Infect Dis 2021; 7:2637-2649. [PMID: 34467755 PMCID: PMC8884109 DOI: 10.1021/acsinfecdis.1c00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the existing therapeutic modalities for the treatment of cryptococcal meningitis (CM) have suboptimal efficacy, repurposing existing drugs for the treatment of CM is of great interest. The FDA-approved anthelmintic benzimidazoles, albendazole, mebendazole, and flubendazole, have demonstrated potent but variable in vitro activity against Cryptococcus neoformans, the predominant fungal species responsible for CM. We performed molecular docking studies to ascertain the interaction of albendazole, mebendazole, and flubendazole with a C. neoformans β-tubulin structure, which revealed differential binding interactions and explained the different in vitro efficacies reported previously and observed in this investigation. Despite their promising in vitro efficacy, the repurposing of anthelmintic benzimidazoles for oral CM therapy is significantly hampered due to their high crystallinity, poor pharmaceutical processability, low and pH-dependent solubility, and drug precipitation upon entering the intestine, all of which result in low and variable oral bioavailability. Here, we demonstrate that the anthelmintic benzimidazoles can be transformed into partially amorphous low-melting ionic liquids (ILs) with a simple metathesis reaction using amphiphilic sodium docusate as a counterion. In vitro efficacy studies on a laboratory reference and a clinical isolate of C. neoformans showed 2- to 4-fold lower IC90 values for docusate-based ILs compared to the pure anthelmintic benzimidazoles. Furthermore, using a C. neoformans strain with green fluorescent protein (GFP)-tagged β-tubulin and albendazole and its docusate IL as model candidates, we showed that the benzimidazoles and their ILs reduce the viability of C. neoformans by interfering with its microtubule assembly. Unlike pure anthelmintic benzimidazoles, the docusate-based ILs showed excellent solubility in organic solvents and >30-fold higher solubility in bioavailability-enhancing lipid vehicles. Finally, the docusate ILs were successfully incorporated into SoluPlus, a self-assembling biodegradable polymer, which upon dilution with water formed polymeric micelles with a size of <100 nm. Thus, the development of docusate-based ILs represents an effective approach to improve the physicochemical properties and potency of anthelmintic benzimidazoles to facilitate their repurposing and preclinical development for CM therapy.
Collapse
Affiliation(s)
- Yogesh Sutar
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sophie R Fulton
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sagarkumar Paul
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Susmit Mhatre
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Hiwa Saeed
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Pratikkumar Patel
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sudipta Mallick
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Roopal Bhat
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Pharmaceutics, Shree Chanakya Education Society's Indira College of Pharmacy, Tathawade, Pune, Maharashtra 411033, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Harsh Chauhan
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abhijit A Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii 96813, United States
| |
Collapse
|
46
|
Chakravarti RK, Kaur S, Samal SK, Kashyap MC, Sangamwar AT. Combination of Phospholipid Complex and Matrix Dispersion. AAPS PharmSciTech 2021; 22:189. [PMID: 34159457 DOI: 10.1208/s12249-021-02067-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022] Open
Abstract
Phospholipid complexation, despite being a successful, versatile, and burgeoning strategy, stickiness of phospholipids leads to suboptimal dissolution rate of drugs. This work was undertaken to fabricate simvastatin-phospholipid complex (SIM-PLC)-loaded matrix dispersion (SIM-PLC-MD) using Soluplus® as carrier material, to augment dispersibility and dissolution of SIM-PLC without altering complexation between simvastatin (SIM) and phospholipid. SIM-PLC and SIM-PLC-MD were prepared using solvent evaporation and discontinuous solvent evaporation techniques, respectively. The successful complexation was substantiated by FTIR method. Besides, PXRD and SEM studies disclosed the absence of crystallinity of SIM in both SIM-PLC and SIM-PLC-MD. The TEM analysis monitored the self-assembly of SIM-PLC and SIM-PLC-MD into colloidal structures, which could be correlated with redispersion in GIT fluids upon oral administration. The considerable increase in hydrophilicity of SIM-PLC-MD and SIM-PLC as evident from partition coefficient experiment can further be correlated with their remarkably improved solubility profiles in the following pattern: SIM-PLC-MD˃SIM-PLC˃SIM. Correspondingly, improved dispersibility of SIM-PLC-MD in comparison to SIM-PLC can be accountable for accelerated dissolution rate by 2.53-fold and 1.5-fold in pH 1.2 and 6.8 conditions, respectively. The oral pharmacokinetic evaluation in Sprague Dawley (SD) rats revealed 3.19-fold enhancement in oral bioavailability of SIM through SIM-PLC-MD when compared with plain SIM, whereas 1.83-fold increment was observed in the case of SIM-PLC. Finally, the efficacy experimentation in SD rats revealed that SIM-PLC-MD significantly reduced triglycerides and cholesterol levels in comparison to SIM and SIM-PLC. These outcomes suggest that a matrix dispersion strategy improves oral bioavailability and hypolipidemic activity of SIM.
Collapse
|
47
|
Hydrophilic nanofibers as a supersaturating delivery system for carvedilol. Int J Pharm 2021; 603:120700. [PMID: 33989751 DOI: 10.1016/j.ijpharm.2021.120700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022]
Abstract
Polymer nanofibers represent a promising delivery system for poorly water-soluble drugs; however, their supersaturating potential has not been explored yet. Here, carvedilol-loaded nanofibers based on poly(ethyleneoxide) and on amphiphilic block copolymer poloxamer 407 were produced by electrospinning. These nanofibers provided high carvedilol loading and improved dissolution of carvedilol. Their dissolution resulted in a supersaturated system that was not stable, and thus to avoid carvedilol precipitation, hydroxypropyl methylcelluloses or polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus) were additionally incorporated into the nanofibers. The morphology of the electrospun product was not affected by incorporation of carvedilol and the polymer precipitation inhibitors, as shown by scanning electron microscopy. The hydroxypropyl methylcelluloses were not effective polymer precipitation inhibitors for carvedilol. Incorporation of Soluplus significantly extended the duration of carvedilol supersaturation (>24 h) compared to the dissolution of nanofibers without Soluplus. Moreover, after 1 h of dissolution, incorporation of Soluplus into the nanofibers provided significantly higher carvedilol concentration (94.4 ± 2.5 μg/mL) compared to the nanofibers without Soluplus (32.7 ± 5.8 μg/mL), the polymer film (24.0 ± 2.2 μg/mL), and the physical mixture (3.3 ± 0.4 μg/mL). Thus, this study shows the great potential for hydrophilic nanofibers as a delivery system for sustained carvedilol supersaturation.
Collapse
|
48
|
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.
Collapse
Affiliation(s)
- Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Bo Dong
- Department of cardiovascular medicine, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
49
|
Carvalho BM, Pellá MCG, Hardt JC, de Souza Rossin AR, Tonet A, Ilipronti T, Caetano J, Dragunski DC. Ecovio®-based nanofibers as a potential fast transdermal releaser of aceclofenac. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Zhang J, Thakkar R, Zhang Y, Maniruzzaman M. Microwave induced dielectric heating for the on-demand development of indomethacin amorphous solid dispersion tablets. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|