1
|
Korkak FA, Alkaç ZK, Arkalı G, Güngör İH, Yüksel BF, İncili CA, Tanyıldızı S, Dağoğlu G. Co-administration of rifampicin and Boswellia serrata mitigates testicular toxicity caused by Aflatoxin B1. Toxicon 2025; 255:108238. [PMID: 39824464 DOI: 10.1016/j.toxicon.2025.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
The current study was aimed to investigate the effect of rifampicin (Rif), a stimulator of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), on limiting the passage of AFB1 (Aflatoxin B1) into testicular tissue. The second objective was to examine the potential protective effects of Boswellia serrata extract (BSE), which exhibits a strong antioxidant capacity, alone or incombination with Rif against testicular damage induced by AFB1. A total of 49 male Sprague-Dawley rats were randomly divided into seven experimental groups as follows: control (placebo), Rif (10 mg/kg), BSE (500 mg/kg), AFB1 (0.75 mg/kg), AFB1+Rif, AFB1+BSE, and AFB1+Rif + BSE. The rats were administered AFB1, Rif, and BSE for seven days. The result of this study indicated that Rif decreased the amount of AFB1 permeating the testicular tissue by stimulating the expression of P-gp and BCRP. The administration of the combination of BSE and Rif resulted in a reduction of oxidative stress, apoptosis, improvement in sperm function parameters, and an increase in serum testosterone levels. These effects contributed to the improvement of impaired testicular structure. The result of this study revealed that the Rif can potentially serve as an efficacious therapeutic agent and the administration of BSE exhibited a reduction in testicular damage induced by AFB1. However, the combination of BSE and Rif provided more effective protection than using alone.
Collapse
Affiliation(s)
- Fatih Ahmet Korkak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.
| | - Zeliha Keskin Alkaç
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Firat University, Elazig, Turkey
| | - Gözde Arkalı
- Department of Physiology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - İbrahim Halil Güngör
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Firat University, Turkey
| | - Burak Fatih Yüksel
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Firat University, Turkey
| | - Canan Akdeniz İncili
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Sadettin Tanyıldızı
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Gürdal Dağoğlu
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
2
|
Gawi Ermi A, Sarkar D. Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance. Cancers (Basel) 2024; 16:3944. [PMID: 39682130 DOI: 10.3390/cancers16233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and the development of effective treatment strategies remains a significant challenge in the management of advanced HCC patients. The emergence of tyrosine kinase inhibitors (TKIs) has been a significant advancement in the treatment of HCC, as these targeted therapies have shown promise in prolonging the survival of patients with advanced disease. Although immunotherapy is currently considered as the first line of treatment for advanced HCC patients, many such patients do not meet the clinical criteria to be eligible for immunotherapy, and in many parts of the world there is still lack of accessibility to immunotherapy. As such, TKIs still serve as the first line of treatment and play a major role in the treatment repertoire for advanced HCC patients. However, the development of resistance to these agents is a major obstacle that must be overcome. In this review, we explore the underlying mechanisms of resistance to TKIs in HCC, the clinical implications of this resistance, and the potential strategies to overcome or prevent the emergence of resistance.
Collapse
Affiliation(s)
- Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
3
|
Kasapoğlu KN, Sus N, Kruger J, Frank J, Özçelik B. Fabrication of phenolic loaded spray-dried nanoliposomes stabilized by chitosan and whey protein: Digestive stability, transepithelial transport and bioactivity retention of phenolics. Int J Biol Macromol 2024; 271:132676. [PMID: 38821805 DOI: 10.1016/j.ijbiomac.2024.132676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Low bioavailability of phenolic compounds (phenolics) results in low in vivo bioactivity, thus their co-encapsulation could enhance potential health benefits. In this study, reconstitutable nanoliposomes loaded with phenolics varying in solubility were fabricated using spray drying after stabilized by chitosan (CH) or whey protein (WP). The physicochemical properties, biocompatibility, digestive fate, and bioactivity retention of phenolics in different forms were investigated. The surface charge of nanoliposomes (NL) shifted from -18.7 mV to positive due to conjugation with cationic CH (53.1 mV) and WP (14 mV) after spray drying while it was -26.6 mV for only spray-dried phenolics (SDP). Encapsulation efficiency of the tested phenolics ranged between 64.7 % and 95.1 %. Simulated gastrointestinal digestion/Caco-2 cell model was used to estimate the digestive fate of the phenolics yielding up to 3-fold higher bioaccessibility for encapsulated phenolics compared to their native form, combined or individually. However, the cellular uptake or transepithelial transport of phenolics did not differ significantly among formulations, except trans-resveratrol in WP-NL. On the contrary, the suppressive effect of phenolics on fatty acid induced hepatocellular lipid accumulation was strongly dependent on the encapsulation method, no activity was retained by SDP. These findings suggested that reconstitutable nanoliposomes can improve the absorption of phenolics by facilitating their bioaccessibility and thermal and/or processing stability during spray drying.
Collapse
Affiliation(s)
- Kadriye Nur Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Nadine Sus
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Johanita Kruger
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Jan Frank
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
4
|
Vázquez-Gómez G, Petráš J, Dvořák Z, Vondráček J. Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis. Biochem Pharmacol 2023; 216:115797. [PMID: 37696457 DOI: 10.1016/j.bcp.2023.115797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/β-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.
Collapse
Affiliation(s)
- Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
5
|
Singh M, Pal P, Dutta RS, Marbaniang D, Ray S, Mazumder B. Nanodiamond Mediated Molecular Targeting in Pancreatic Ductal Adenocarcinoma: Disrupting the Tumor-stromal Cross-talk, Next Hope on the Horizon? Curr Cancer Drug Targets 2023; 23:620-633. [PMID: 36843367 DOI: 10.2174/1568009623666230227120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 02/28/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the foremost causes of cancer-related morbidities worldwide. Novel nanotechnology-backed drug delivery stratagems, including molecular targeting of the chemotherapeutic payload, have been considered. However, no quantum leap in the gross survival rate of patients with PDAC has been realized. One of the predominant causes behind this is tumor desmoplasia, a dense and heterogenous stromal extracellular matrix of the tumor, aptly termed tumor microenvironment (TME). It plays a pivotal role in the tumor pathogenesis of PDAC as it occupies most of the tumor mass, making PDAC one of the most stromal-rich cancers. The complex crosstalk between the tumor and dynamic components of the TME impacts tumor progression and poses a potential barrier to drug delivery. Understanding and deciphering the complex cascade of tumorstromal interactions are the need of the hour so that we can develop neoteric nano-carriers to disrupt the stroma and target the tumor. Nanodiamonds (NDs), due to their unique surface characteristics, have emerged as a promising nano delivery system in various pre-clinical cancer models and have the potential to deliver the chemotherapeutic payload by moving beyond the dynamic tumor-stromal barrier. It can be the next revolution in nanoparticle-mediated pancreatic cancer targeting.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Rajat Subhra Dutta
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Daphisha Marbaniang
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Subhabrata Ray
- Dr. B.C. Roy College of Pharmacy & AHS, Durgapur, WB, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
6
|
Wang X, Hong M. Protein Kinases and Cross-talk between Post-translational Modifications in the Regulation of Drug Transporters. Mol Pharmacol 2023; 103:9-20. [PMID: 36302660 DOI: 10.1124/molpharm.122.000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 02/03/2023] Open
Abstract
Drug transporters are modulators for drug absorption, distribution, and excretion. Key drug transporters including P-glycoprotein and breast cancer resistance protein of the ABC superfamily; organic anion transporting polypeptide 1B1 and 1B3, organic anion transporter 1 and 3, and organic cation transporter 2, as well as multidrug and toxin extrusion 1 and 2 of the SLC superfamily have been recommended by regulatory agencies to be investigated and evaluated in drug-drug interaction (DDI) studies due to their important roles in determining the efficacy, toxicity and DDI of various drugs. Drug transporters are subjected to multiple levels of control and post-translational modifications (PTMs) provide rapid and versatile ways of regulation. Under pathologic and/or pharmacological conditions, PTMs may be altered in the cellular system, leading to functional changes of transporter proteins. Phosphorylation is by far the most actively investigated form of PTMs in the regulation of transporters. Further, studies in recent years also found that protein kinases coordinate with other PTMs for the dynamic control of these membrane proteins. Here we summarized the regulation of major drug transporters by protein kinases and their cross-talking with other PTMs that may generate a complex regulatory network for fine-tuning the function of these important drug processing modulators. SIGNIFICANCE STATEMENT: Kinases regulate drug transporters in versatile manners; Kinase regulation cross-talks with other PTMs, forming a complex network for transporter regulation; Pathological and/or pharmacological conditions may alter PTMs and affect transporter function with different molecular mechanisms.
Collapse
Affiliation(s)
- Xuyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China (X.W. and M.H.), and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China (M.H.)
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China (X.W. and M.H.), and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China (M.H.)
| |
Collapse
|
7
|
Abbott K, Salamat JM, Flannery PC, Chaudhury CS, Chandran A, Vishveshwara S, Mani S, Huang J, Tiwari AK, Pondugula SR. Gefitinib Inhibits Rifampicin-Induced CYP3A4 Gene Expression in Human Hepatocytes. ACS OMEGA 2022; 7:34034-34044. [PMID: 36188260 PMCID: PMC9520547 DOI: 10.1021/acsomega.2c03270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
During multidrug combination chemotherapy, activation of the nuclear receptor and the transcription factor human pregnane xenobiotic receptor (hPXR) has been shown to play a role in the development of chemoresistance. Mechanistically, this could occur due to the cancer drug activation of hPXR and the subsequent upregulation of hPXR target genes such as the drug metabolism enzyme, cytochrome P450 3A4 (CYP3A4). In the context of hPXR-mediated drug resistance, hPXR antagonists would be useful adjuncts to PXR-activating chemotherapy. However, there are currently no clinically approved hPXR antagonists in the market. Gefitinib (GEF), a tyrosine kinase inhibitor used for the treatment of advanced non-small-cell lung cancer and effectively used in combinational chemotherapy treatments, is a promising candidate owing to its hPXR ligand-like features. We, therefore, investigated whether GEF would act as an hPXR antagonist when combined with a known hPXR agonist, rifampicin (RIF). At therapeutically relevant concentrations, GEF successfully inhibited the RIF-induced upregulation of endogenous CYP3A4 gene expression in human primary hepatocytes and human hepatocells. Additionally, GEF inhibited the RIF induction of hPXR-mediated CYP3A4 promoter activity in HepG2 human liver carcinoma cells. The computational modeling of molecular docking predicted that GEF could bind to multiple sites on hPXR including the ligand-binding pocket, allowing for potential as a direct antagonist as well as an allosteric inhibitor. Indeed, GEF bound to the ligand-binding domain of the hPXR in cell-free assays, suggesting that GEF directly interacts with the hPXR. Taken together, our results suggest that GEF, at its clinically relevant therapeutic concentration, can antagonize the hPXR agonist-induced CYP3A4 gene expression in human hepatocytes. Thus, GEF could be a potential candidate for use in combinational chemotherapies to combat hPXR agonist-induced chemoresistance. Further studies are warranted to determine whether GEF has sufficient hPXR inhibitor abilities to overcome the hPXR agonist-induced chemoresistance.
Collapse
Affiliation(s)
- Kodye
L. Abbott
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
- Salk
Institute for Biological Studies, La Jolla, California 92037, United States
| | - Julia M. Salamat
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
| | - Patrick C. Flannery
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
- Salk
Institute for Biological Studies, La Jolla, California 92037, United States
| | - Chloe S. Chaudhury
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
| | - Aneesh Chandran
- Department
of Biotechnology and Microbiology, Kannur
University, Kannur, Kerala 670661, India
| | | | - Sridhar Mani
- Albert Einstein
Cancer Center, Albert Einstein College of
Medicine, New York 10461, United States
| | - Jianfeng Huang
- Salk
Institute for Biological Studies, La Jolla, California 92037, United States
| | - Amit K. Tiwari
- Center
of Medical Bio-Allied Health Sciences Research, Ajman University, Ajman 306, United Arab Emirates
- Department
of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, Ohio 43606, United States
- Department
of Cell and Cancer Biology, University of
Toledo, Toledo, Ohio 43614, United
States
| | - Satyanarayana R. Pondugula
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
8
|
Mustonen EK, Pantsar T, Rashidian A, Reiner J, Schwab M, Laufer S, Burk O. Target Hopping from Protein Kinases to PXR: Identification of Small-Molecule Protein Kinase Inhibitors as Selective Modulators of Pregnane X Receptor from TüKIC Library. Cells 2022; 11:1299. [PMID: 35455978 PMCID: PMC9030254 DOI: 10.3390/cells11081299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023] Open
Abstract
Small-molecule protein kinase inhibitors are used for the treatment of cancer, but off-target effects hinder their clinical use. Especially off-target activation of the pregnane X receptor (PXR) has to be considered, as it not only governs drug metabolism and elimination, but also can promote tumor growth and cancer drug resistance. Consequently, PXR antagonism has been proposed for improving cancer drug therapy. Here we aimed to identify small-molecule kinase inhibitors of the Tübingen Kinase Inhibitor Collection (TüKIC) compound library that would act also as PXR antagonists. By a combination of in silico screen and confirmatory cellular reporter gene assays, we identified four novel PXR antagonists and a structurally related agonist with a common phenylaminobenzosuberone scaffold. Further characterization using biochemical ligand binding and cellular protein interaction assays classified the novel compounds as mixed competitive/noncompetitive, passive antagonists, which bind PXR directly and disrupt its interaction with coregulatory proteins. Expression analysis of prototypical PXR target genes ABCB1 and CYP3A4 in LS174T colorectal cancer cells and HepaRG hepatocytes revealed novel antagonists as selective receptor modulators, which showed gene- and tissue-specific effects. These results demonstrate the possibility of dual PXR and protein kinase inhibitors, which might represent added value in cancer therapy.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
| | - Tatu Pantsar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Azam Rashidian
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Juliander Reiner
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
- Departments of Clinical Pharmacology and Biochemistry and Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
| |
Collapse
|
9
|
Karpale M, Hukkanen J, Hakkola J. Nuclear Receptor PXR in Drug-Induced Hypercholesterolemia. Cells 2022; 11:cells11030313. [PMID: 35159123 PMCID: PMC8833906 DOI: 10.3390/cells11030313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a major global health concern. The central modifiable risk factors and causative agents of the disease are high total and low-density lipoprotein (LDL) cholesterol. To reduce morbidity and mortality, a thorough understanding of the factors that influence an individual’s cholesterol status during the decades when the arteria-narrowing arteriosclerotic plaques are forming is critical. Several drugs are known to increase cholesterol levels; however, the mechanisms are poorly understood. Activation of pregnane X receptor (PXR), the major regulator of drug metabolism and molecular mediator of clinically significant drug–drug interactions, has been shown to induce hypercholesterolemia. As a major sensor of the chemical environment, PXR may in part mediate hypercholesterolemic effects of drug treatment. This review compiles the current knowledge of PXR in cholesterol homeostasis and discusses the role of PXR in drug-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Mikko Karpale
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
| | - Janne Hukkanen
- Research Unit of Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
| | - Jukka Hakkola
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
- Correspondence:
| |
Collapse
|
10
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
11
|
Lv Y, Luo YY, Ren HW, Li CJ, Xiang ZX, Luan ZL. The role of pregnane X receptor (PXR) in substance metabolism. Front Endocrinol (Lausanne) 2022; 13:959902. [PMID: 36111293 PMCID: PMC9469194 DOI: 10.3389/fendo.2022.959902] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
As a member of the nuclear receptor (NR) superfamily, pregnane X receptor (PXR; NR1I2) is a ligand-activated transcription factor that plays a crucial role in the metabolism of xenobiotics and endobiotics in mammals. The tissue distribution of PXR is parallel to its function with high expression in the liver and small intestine and moderate expression in the kidney, stomach, skin, and blood-brain barrier, which are organs and tissues in frequent contact with xenobiotics. PXR was first recognized as an exogenous substance receptor regulating metabolizing enzymes and transporters and functioning in detoxification and drug metabolism in the liver. However, further research revealed that PXR acts as an equally important endogenous substance receptor in the metabolism and homeostasis of endogenous substances. In this review, we summarized the functions of PXR in metabolism of different substances such as glucose, lipid, bile acid, vitamin, minerals, and endocrines, and also included insights of the application of PXR ligands (drugs) in specific diseases.
Collapse
Affiliation(s)
- Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui-Wen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian Medical University, Dalian, China
| | - Cheng-Jie Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhi-Xin Xiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Zhi-Lin Luan,
| |
Collapse
|
12
|
Matheux A, Gassiot M, Fromont G, Leenhardt F, Boulahtouf A, Fabbrizio E, Marchive C, Garcin A, Agherbi H, Combès E, Evrard A, Houédé N, Balaguer P, Gongora C, Mbatchi LC, Pourquier P. PXR Modulates the Prostate Cancer Cell Response to Afatinib by Regulating the Expression of the Monocarboxylate Transporter SLC16A1. Cancers (Basel) 2021; 13:cancers13143635. [PMID: 34298852 PMCID: PMC8305337 DOI: 10.3390/cancers13143635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Many kinase inhibitors have been tested as potential alternatives for the treatment of castration-resistant prostate cancers. However, none of these clinical trials led to drug approval despite interesting responses. Our study reveals that genes involved in drug metabolism and their master regulator PXR (Pregnane X Receptor) could be responsible, at least in part, for these disappointing results as they can modulate tumor cell response to specific kinase inhibitors. We found that stable expression of PXR sensitized prostate cancer cells to erlotinib, dabrafenib, and afatinib, while it rendered cells resistant to dasatinib and had no effect for other inhibitors tested. We also report for the first time that sensitization to afatinib is due to an alteration in drug transport that involves the SLC16A1 monocarboxylate transporter. Together, our results further indicate that PXR might be considered as a biomarker of response to kinase inhibitors in castration-resistant prostate cancers. Abstract Resistance to castration is a crucial issue in the treatment of metastatic prostate cancer. Kinase inhibitors (KIs) have been tested as potential alternatives, but none of them are approved yet. KIs are subject of extensive metabolism at both the hepatic and the tumor level. Here, we studied the role of PXR (Pregnane X Receptor), a master regulator of metabolism, in the resistance to KIs in a prostate cancer setting. We confirmed that PXR is expressed in prostate tumors and is more frequently detected in advanced forms of the disease. We showed that stable expression of PXR in 22Rv1 prostate cancer cells conferred a resistance to dasatinib and a higher sensitivity to erlotinib, dabrafenib, and afatinib. Higher sensitivity to afatinib was due to a ~ 2-fold increase in its intracellular accumulation and involved the SLC16A1 transporter as its pharmacological inhibition by BAY-8002 suppressed sensitization of 22Rv1 cells to afatinib and was accompanied with reduced intracellular concentration of the drug. We found that PXR could bind to the SLC16A1 promoter and induced its transcription in the presence of PXR agonists. Together, our results suggest that PXR could be a biomarker of response to kinase inhibitors in castration-resistant prostate cancers.
Collapse
Affiliation(s)
- Alice Matheux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
| | - Matthieu Gassiot
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Gaëlle Fromont
- Département de Pathologie, CHU de Tours, Université François Rabelais, Inserm UMR 1069, F-37044 Tours, France;
| | - Fanny Leenhardt
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Abdelhay Boulahtouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Eric Fabbrizio
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Candice Marchive
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Aurélie Garcin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Hanane Agherbi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Eve Combès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Alexandre Evrard
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Nadine Houédé
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Département d’Oncologie Médicale, Institut de Cancérologie du Gard—CHU Carémeau, F-30029 Nîmes, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Céline Gongora
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Litaty C. Mbatchi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Philippe Pourquier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Correspondence: ; Tel.: +33-4-66-68-32-31
| |
Collapse
|
13
|
Zhang R, Huang M, Wang H, Wu S, Yao J, Ge Y, Lu Y, Hu Q. Identification of Potential Biomarkers From Hepatocellular Carcinoma With MT1 Deletion. Pathol Oncol Res 2021; 27:597527. [PMID: 34257549 PMCID: PMC8262205 DOI: 10.3389/pore.2021.597527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide. Metallothioneins (MTs) are metal-binding proteins involved in multiple biological processes such as metal homeostasis and detoxification, as well as in oncogenesis. Copy number variation (CNV) plays a vital role in pathogenesis and carcinogenesis. Nevertheless, there is no study on the role of MT1 CNV in HCC. Methods: Array-based Comparative Genomic Hybridization (aCGH) analysis was performed to obtain the CNV data of 79 Guangxi HCC patients. The prognostic effect of MT1-deletion was analyzed by univariate and multivariate Cox regression analysis. The differentially expressed genes (DEGs) were screened based on The Gene Expression Omnibus database (GEO) and the Liver Hepatocellular Carcinoma of The Cancer Genome Atlas (TCGA-LIHC). Then function and pathway enrichment analysis, protein-protein interaction (PPI) and hub gene selection were applied on the DEGs. Lastly, the hub genes were validated by immunohistochemistry, tissue expression and prognostic analysis. Results: The MT1-deletion was demonstrated to affect the prognosis of HCC and can act as an independent prognostic factor. 147 common DEGs were screened. The most significant cluster of DEGs identified by Molecular Complex Detection (MCODE) indicated that the expression of four MT1s were down-regulated. MT1X and other five hub genes (TTK, BUB1, CYP3A4, NR1I2, CYP8B1) were associated with the prognosis of HCC. TTK, could affect the prognosis of HCC with MT1-deletion and non-deletion. NR1I2, CYP8B1, and BUB1 were associated with the prognosis of HCC with MT1-deletion. Conclusions: In the current study, we demonstrated that MT1-deletion can be an independent prognostic factor in HCC. We identified TTK, BUB1, NR1I2, CYP8B1 by processing microarray data, for the first time revealed the underlying function of MT1 deletion in HCC, MT1-deletion may influence the gene expression in HCC, which may be the potential biomarkers for HCC with MT1 deletion.
Collapse
Affiliation(s)
- Ruohao Zhang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Miao Huang
- Radiology Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Hong Wang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Shengming Wu
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jiali Yao
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Yingying Ge
- Department of Histology and Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Yufei Lu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Buechel ER, Pinkett HW. Transcription factors and ABC transporters: from pleiotropic drug resistance to cellular signaling in yeast. FEBS Lett 2020; 594:3943-3964. [PMID: 33089887 DOI: 10.1002/1873-3468.13964] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Budding yeast Saccharomyces cerevisiae survives in microenvironments utilizing networks of regulators and ATP-binding cassette (ABC) transporters to circumvent toxins and a variety of drugs. Our understanding of transcriptional regulation of ABC transporters in yeast is mainly derived from the study of multidrug resistance protein networks. Over the past two decades, this research has not only expanded the role of transcriptional regulators in pleiotropic drug resistance (PDR) but evolved to include the role that regulators play in cellular signaling and environmental adaptation. Inspection of the gene networks of the transcriptional regulators and characterization of the ABC transporters has clarified that they also contribute to environmental adaptation by controlling plasma membrane composition, toxic-metal sequestration, and oxidative stress adaptation. Additionally, ABC transporters and their regulators appear to be involved in cellular signaling for adaptation of S. cerevisiae populations to nutrient availability. In this review, we summarize the current understanding of the S. cerevisiae transcriptional regulatory networks and highlight recent work in other notable fungal organisms, underlining the expansion of the study of these gene networks across the kingdom fungi.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
15
|
Villanueva S, Zhang W, Zecchinati F, Mottino A, Vore M. ABC Transporters in Extrahepatic Tissues: Pharmacological Regulation in Heart and Intestine. Curr Med Chem 2019; 26:1155-1184. [PMID: 29589524 DOI: 10.2174/0929867325666180327092639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/17/2022]
Abstract
ATP binding cassette (ABC) transporters are transmembrane proteins expressed in secretory epithelia like the liver, kidneys and intestine, in the epithelia exhibiting barrier function such as the blood-brain barrier and placenta, and to a much lesser extent, in tissues like reproductive organs, lungs, heart and pancreas, among others. They regulate internal distribution of endogenous metabolites and xenobiotics including drugs of therapeutic use and also participate in their elimination from the body. We here describe the function and regulation of ABC transporters in the heart and small intestine, as examples of extrahepatic tissues, in which ABC proteins play clearly different roles. In the heart, they are involved in tissue pathogenesis as well as in protecting this organ against toxic compounds and druginduced oxidative stress. The small intestine is highly exposed to therapeutic drugs taken orally and, consequently, ABC transporters localized on its surface strongly influence drug absorption and pharmacokinetics. Examples of the ABC proteins currently described are Multidrug Resistance-associated Proteins 1 and 2 (MRP1 and 2) for heart and small intestine, respectively, and P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) for both organs.
Collapse
Affiliation(s)
- Silvina Villanueva
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Wei Zhang
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| | - Felipe Zecchinati
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Aldo Mottino
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Mary Vore
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| |
Collapse
|
16
|
Rigalli JP, Tocchetti GN, Weiss J. Modulation of ABC Transporters by Nuclear Receptors: Physiological, Pathological and Pharmacological Aspects. Curr Med Chem 2019; 26:1079-1112. [DOI: 10.2174/0929867324666170920141707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
ABC transporters are membrane proteins mediating the efflux of endo- and xenobiotics. Transporter expression is not static but instead is subject to a dynamic modulation aiming at responding to changes in the internal environment and thus at maintaining homeostatic conditions. Nuclear receptors are ligand modulated transcription factors that get activated upon changes in the intracellular concentrations of the respective agonists and bind to response elements within the promoter of ABC transporters, thus modulating their expression and, consequently, their activity. This review compiles information about transporter regulation by nuclear receptors classified according to the perpetrator compounds and the biological effects resulting from the regulation. Modulation by hormone receptors is involved in maintaining endocrine homeostasis and may also lead to an altered efflux of other substrates in cases of altered hormonal levels. Xenobiotic receptors play a key role in limiting the accumulation of potentially harmful compounds. In addition, their frequent activation by therapeutic agents makes them common molecular elements mediating drug-drug interactions and cancer multidrug resistance. Finally, lipid and retinoid receptors are usually activated by endogenous molecules, thus sensing metabolic changes and inducing ABC transporters to counteract potential alterations. Furthermore, the axis nuclear receptor-ABC transporter constitutes a promising therapeutic target for the treatment of several disease states like cancer, atherosclerosis and dyslipidemia. In the current work, we summarize the information available on the pharmacological potential of nuclear receptor modulators and discuss their applicability in the clinical practice.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Guillermo Nicolás Tocchetti
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Clairet AL, Boiteux-Jurain M, Curtit E, Jeannin M, Gérard B, Nerich V, Limat S. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Med Oncol 2019; 36:45. [PMID: 30993543 DOI: 10.1007/s12032-019-1267-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
Abstract
Cancer is becoming more prevalent in elderly patient. Due to polypharmacy, older adults with cancer are predisposed to drug-drug interactions. There is also an increasing interest in the use of complementary and alternative medicine (CAM). Thirty to seventy percent of patients with cancer have used CAM. Through pharmaceutical counseling sessions, we can provide advices on herb-drug interactions (HDI). All the patients seen in pharmaceutical counseling sessions were prospectively included. Information was collected during these sessions: prescribed medication (oral anticancer agents (OAA) and other drugs), CAM (phytotherapy especially), and use of over-the-counter (OTC) drugs. If pharmacist considered an interaction or an intervention clinically relevant, the oncologist was notified. Then, a literature review was realized to identify the potential HDI (no interactions, precautions for use, contraindication). Among 201 pharmacist counseling sessions, it resulted in 104 interventions related to 46 HDI, 28 drug-drug interactions and 30 others (wrong dosage, omission…). To determine HDI, we review 73 medicinal plants which are used by our patients with cancer and 31 OAA. A total of 1829 recommendations were formulated about 59 (75%) medical plants and their interaction with an OAA. Herb-drug interactions should not be ignored by healthcare providers in their management of cancer patients in daily practice.
Collapse
Affiliation(s)
- Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| | - Marie Boiteux-Jurain
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Elsa Curtit
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France
| | - Marie Jeannin
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Blandine Gérard
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France.
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France.
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| |
Collapse
|
18
|
Pollet M, Krutmann J, Haarmann-Stemmann T. Commentary: Usage of Mitogen-Activated Protein Kinase Small Molecule Inhibitors: More Than Just Inhibition! Front Pharmacol 2018; 9:935. [PMID: 30177882 PMCID: PMC6110190 DOI: 10.3389/fphar.2018.00935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 01/26/2023] Open
Affiliation(s)
- Marius Pollet
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | |
Collapse
|
19
|
Warrier A, Gunosewoyo H, Crowe A. Efflux transporters and tight junction expression changes in human gastrointestinal cell lines cultured in defined medium vs serum supplemented medium. Life Sci 2018; 207:138-144. [PMID: 29857072 DOI: 10.1016/j.lfs.2018.05.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/25/2022]
Abstract
AIMS Many gastrointestinal cell lines including Caco-2, LS174T and RKO require foetal calf serum (FCS) in culture medium. However, when isolating secreted product from conditioned medium (CM), after cell exposure to a trigger, it is better to remove FCS in the culture medium for identification of secreted products of interest. However, it is unknown whether defined medium adversely affects active efflux protein expression and tight junction formation. MATERIALS AND METHODS Using different gastrointestinal cell lines chosen with different levels of efflux transporter expression, fully defined components, such as using transferrin, insulin, selenium and ethanolamine without FCS or with a reduced percentage of FCS (2%) were tested as an optimal choice for cell growth. In addition to morphological characteristics, the expression of the ABC efflux transporters, ABCB1 (P-glycoprotein [P-gp]), ABCC2 (multidrug resistance associated protein 2), ABCG2 (breast cancer resistance protein) and occludin was determined. KEY FINDINGS The cells required a minimum of 2% FCS for expression of transporters. Fully defined medium with no serum adversely affected the expression of transporters, especially P-gp. An important characteristic of Caco-2 cells is its ability to form tight junctions. Caco-2 did not form adequate tight junctions without 10% FCS added in the medium, as evidenced by low TEER values and reduced occluding immunohistochemistry. SIGNIFICANCE FCS is required for efflux protein expression and tight junction generation. Nevertheless, it is possible to use 5 fold less FCS which assists with low molecular weight secretion isolation. Passage number also contributes significantly to the presence of these transporters.
Collapse
Affiliation(s)
- Aparna Warrier
- School of Pharmacy and biomedical sciences, Curtin University, Perth, Western Australia, 6102, Australia; Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy and biomedical sciences, Curtin University, Perth, Western Australia, 6102, Australia
| | - Andrew Crowe
- School of Pharmacy and biomedical sciences, Curtin University, Perth, Western Australia, 6102, Australia; Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, 6102, Australia.
| |
Collapse
|
20
|
Wang C, Chen F, Liu Y, Xu Q, Guo L, Zhang X, Ruan Y, Shi Y, Shen L, Li M, Du H, Sun X, Ma J, He L, Qin S. Genetic Association of Drug Response to Erlotinib in Chinese Advanced Non-small Cell Lung Cancer Patients. Front Pharmacol 2018; 9:360. [PMID: 29695969 PMCID: PMC5904969 DOI: 10.3389/fphar.2018.00360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/27/2018] [Indexed: 01/17/2023] Open
Abstract
The efficacy of erlotinib treatment for advanced non-small cell lung cancer (NSCLC) is due to its action as an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Patients treated with erlotinib experience different drug responses. The effect of germline mutations on therapeutic responses and adverse drug responses (ADRs) to erlotinib in Chinese patients requires elucidation. Sixty Han Chinese advanced non-small cell lung cancer patients received erlotinib monotherapy and, for each participant, 76 candidate genes (related to EGFR signaling, drug metabolism and drug transport pathways) were sequenced and analyzed. The single-nucleotide polymorphisms (SNPs) rs1042640 in UGT1A10, rs1060463, and rs1064796 in CYP4F11, and rs2074900 in CYP4F2 were significantly associated with therapeutic responses to erlotinib. Rs1064796 in CYP4F11 and rs10045685 in UGT3A1 were significantly associated with adverse drug reaction. Moreover, analysis of a validation cohort confirmed the significant association between rs10045685 in UGT3A1 and erlotinib adverse drug response(unadjusted p = 0.015). This study provides comprehensive, systematic analyses of genetic variants associated with responses to erlotinib in Chinese advanced non-small cell lung cancer patients. Newly-identified SNPs may serve as promising markers to predict responses and safety in erlotinib-treated advanced non-small cell lung cancer patients after chemotherapy doublet.
Collapse
Affiliation(s)
- Cong Wang
- Life Science College, Anhui Medical University, Hefei, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Fang Chen
- Life Science College, Anhui Medical University, Hefei, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yichen Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Liang Guo
- The Fourth Hospital of Jinan City, Taishan Medical College, Jinan, China
| | - Xiaoqing Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ye Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofang Sun
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingsong Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Shanghai Center for Women and Children's Health, Shanghai, China
| |
Collapse
|
21
|
Pregnane X receptor mediates sorafenib resistance in advanced hepatocellular carcinoma. Biochim Biophys Acta Gen Subj 2018; 1862:1017-1030. [PMID: 29369785 DOI: 10.1016/j.bbagen.2018.01.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Kinase inhibitor sorafenib is the most widely used drug for advanced HCC clinical treatment nowadays. However, sorafenib administration is only effective for a small portion of HCC patients, and the majority develop sorafenib-resistance during treatment. Thus, it is urgent to discover the endogenous mechanism and identify new pharmaceutical targets of sorafenib-resistance. METHODS Pregnane X receptor (PXR) was detected by immunohistochemistry and quantitative PCR. GST-pull down and LC-MS/MS was used to detect the interaction of PXR and Sorafenib. To test the properties of HCC tumor growth and metastasis, in vivo tumor explant model, FACS, trans-well assay, cell-survival inhibitory assay and Western blot were performed. In terms of mechanistic study, additional assays such as ChIP and luciferase reporter gene assay were applied. RESULTS In the present work, we found high PXR level in clinical specimens is related to the poor prognosis of Sorafenib treated patients. By the mechanistic studies, we show that sorafenib binds to PXR and activates PXR pathway, and by which HCC cells develop sorafenib-resistance via activating. Moreover, PXR overexpression helps HCC cells to persist to sorafenib treatment. CONCLUSION This study reports the endogenous sorafenib-resistance mechanism in HCC cells, which offers an opportunity to design new therapeutic approaches for HCC treatment. GENERAL SIGNIFICANCE PXR mediates sorafenib-resistance in HCC cells and targeting PXR can be a useful approach to facilitate HCC treatment.
Collapse
|
22
|
Li T, Kong ANT, Ma Z, Liu H, Liu P, Xiao Y, Jiang X, Wang L. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant. Oncotarget 2018; 7:20236-48. [PMID: 26934120 PMCID: PMC4991450 DOI: 10.18632/oncotarget.7752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 02/02/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. EXPERIMENTAL DESIGN Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. RESULTS AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. CONCLUSIONS PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with chemotherapy drugs may be a new strategy for overcoming tumor MDR.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China.,People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan 666100, China
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics & Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Zhiqiang Ma
- People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan 666100, China
| | - Haiyan Liu
- People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan 666100, China
| | - Pinghua Liu
- People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan 666100, China
| | - Yu Xiao
- State Drug Clinical Trial Agency, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Chengdu, Sichuan 610065, China
| | - Xuehua Jiang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ling Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
23
|
Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat 2017; 32:23-46. [DOI: 10.1016/j.drup.2017.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
|
24
|
Chen Y, Huang W, Chen F, Hu G, Li F, Li J, Xuan A. Pregnane X receptors regulate CYP2C8 and P-glycoprotein to impact on the resistance of NSCLC cells to Taxol. Cancer Med 2016; 5:3564-3571. [PMID: 27878971 PMCID: PMC5224856 DOI: 10.1002/cam4.960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 08/24/2016] [Accepted: 09/04/2016] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 2C8 (CYP2C8) is one of the enzymes that primarily participate in producing metabolisms of medications and P‐glycoprotein (P‐gp) has been regarded as one of the important molecules in chemotherapeutically induced multidrug resistance (MDR). In addition, the pregnane X receptor (PXR) is involved in regulating both CYP2C8 and P‐gp. We aim to research the effect of PXR on Taxol‐resistant non–small‐cell lung cancer (NSCLC cells) via regulating CYP2C8 and P‐gp. NSCLC cells were treated with SR12813, LY335979, or PXR siRNA. Cell counting kit (CCK‐8) assay was used to detect cell vitality. Colony formation assay was used to observe cell proliferation. Western blotting, real‐time polymerase chain reaction (RT‐PCR), and immunofluorescence staining were conducted to analyze the expressions of PXR, CYP2C8, and P‐gp. Taxol and its metabolic products were detected by high‐performance liquid chromatography (HPLC). The expression of PXR in A549 cell line was higher than that in other cell lines. The accumulation of PXR was observed in the nucleus after cells were treated with SR12813. Besides, SR12813 induced higher expressions of CYP2C8 and P‐gp proteins. We also discovered that pretreatment with SR12813 reversed the inhibition of cell viability and proliferation after the Taxol treatment in comparison to the SR12813 untreated group. Furthermore, the hydroxylation products of Taxol analyzed by HPLC were increased in comparison to the SR12813 untreated group, indicating that high expressions of CYP2C8 and P‐gp enhanced the resistance of A549 cells to Taxol. For cells treated with PXR siRNA, cell viability, cell proliferation, and Taxol metabolites were significantly reduced after the Taxol treatment in comparison to the siRNA‐negative group. The cell viability, cell proliferation, and Taxol metabolites were regulated by the expressions of PXR, P‐gp, and CYP2C8. That is, PXR expression has an important effect on the resistance of NSCLC cells to Taxol via upregulating P‐gp and CYP2C8.
Collapse
Affiliation(s)
- Yan Chen
- Department of Respiratory, Liwan Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Wandan Huang
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Feiyu Chen
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Guoping Hu
- Department of Respiratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Fenglei Li
- Department of Respiratory, Liwan Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Jianhua Li
- Department of Physiology, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Aiguo Xuan
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, Guangdong, 510260, China
| |
Collapse
|
25
|
De Mattia E, Cecchin E, Roncato R, Toffoli G. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine. Pharmacogenomics 2016; 17:1547-71. [DOI: 10.2217/pgs-2016-0095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Great research effort has been focused on elucidating the contribution of host genetic variability on pharmacological outcomes in cancer. Nuclear receptors have emerged as mediators between environmental stimuli and drug pharmacokinetics and pharmacodynamics. The pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors have been reported to regulate transcription of genes that encode drug metabolizing enzymes and transporters. Altered nuclear receptor expression has been shown to affect the metabolism and pharmacological profile of traditional chemotherapeutics and targeted agents. Accordingly, polymorphic variants in these genes have been studied as pharmacogenetic markers of outcome variability. This review summarizes the state of knowledge about the roles played by pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factor expression and genetics as predictive markers of anticancer drug toxicity and efficacy, which can improve cancer precision medicine.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Erika Cecchin
- Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Rossana Roncato
- Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| |
Collapse
|
26
|
Frączek N, Bronisz I, Pietryka M, Kępińska D, Strzała P, Mielnicka K, Korga A, Dudka J. An outline of main factors of drug resistance influencing cancer therapy. J Chemother 2016; 28:457-464. [DOI: 10.1080/1120009x.2016.1218158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Pondugula SR, Pavek P, Mani S. Pregnane X Receptor and Cancer: Context-Specificity is Key. NUCLEAR RECEPTOR RESEARCH 2016; 3. [PMID: 27617265 DOI: 10.11131/2016/101198] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pregnane X receptor (PXR) is an adopted orphan nuclear receptor that is activated by a wide-range of endobiotics and xenobiotics, including chemotherapy drugs. PXR plays a major role in the metabolism and clearance of xenobiotics and endobiotics in liver and intestine via induction of drug-metabolizing enzymes and drug-transporting proteins. However, PXR is expressed in several cancer tissues and the accumulating evidence strongly points to the differential role of PXR in cancer growth and progression as well as in chemotherapy outcome. In cancer cells, besides regulating the gene expression of enzymes and proteins involved in drug metabolism and transport, PXR also regulates other genes involved in proliferation, metastasis, apoptosis, anti-apoptosis, inflammation, and oxidative stress. In this review, we focus on the differential role of PXR in a variety of cancers, including prostate, breast, ovarian, endometrial, and colon. We also discuss the future directions to further understand the differential role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators to target PXR in PXR-expressing cancers.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Petr Pavek
- Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, Hradec Králové 500 05, Czech Republic, European Union
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
28
|
Kong Q, Han Z, Zuo X, Wei H, Huang W. Co-expression of pregnane X receptor and ATP-binding cassette sub-family B member 1 in peripheral blood: A prospective indicator for drug resistance prediction in non-small cell lung cancer. Oncol Lett 2016; 11:3033-3039. [PMID: 27123059 PMCID: PMC4840610 DOI: 10.3892/ol.2016.4369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the protein expression profiling of pregnane X receptor (PXR) and ATP-binding cassette sub-family B member 1 (ABCB1; also known as MDR1 or P-gp), present in the peripheral blood mononuclear cells (PBMCs) and cancerous tissues of cases of non-small cell lung cancer (NSCLC). Furthermore, the study aimed to assess the feasibility of predicting drug resistance through the medium of PBMCs. Of the subjects included in the study, 37 were histopathologically diagnosed with NSCLC and 17 were control patients without cancer. ThinPrep liquid-based smears with cytosine were applied in the examination of the PBMCs and proved quite effective in preserving the morphology and surface antigens of the lymphocytes. Measurements of expression levels in the PBMCs and cancerous tissues were obtained by immunohistochemical means. The results showed that, with the exception of the selective PXR expression in the normal lung tissues, the two types of proteins existed extensively throughout the PBMCs, normal tissues and tumors. Among the cancer patients, prior to chemotherapy, a significant rise in ABCB1 expression could be observed in the PBMCs, together with a similar rise in ABCB1 and PXR expression in the tumor specimens. Marked upregulation of the two proteins was detected in the PBMCs following 1 cycle of first-line chemotherapy. ABCB1 expression, correlated with PXR, persisted mostly in the PBMCs and tissue samples. When bound to and activated by ligands, PXR translocates from the cytoplasm to the nucleus of the cells. PXR subsequently binds to its DNA response elements as a heterodimer with the retinoid X receptor. A PXR translocation of moderate or low differentiation was identified in 3 cases of adenocarcinoma, which were co-expressing the two genes in the PBMCs prior to chemotherapy. During follow-up visits, tumor recurrence was observed within 3 months in 5 cases, which were characterized by PXR translocation. These findings indicate that the combined expression of PXR and ABCB1 in PBMCs may be used as a prospective indicator in diagnosis prior to histopathological diagnosis, and therefore may function as a novel biomarker for the prediction of drug resistance.
Collapse
Affiliation(s)
- Qingnuan Kong
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zenglei Han
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiaoli Zuo
- Department of Pathology, Qingdao Hiser Hospital, Qingdao, Shandong 266011, P.R. China
| | - Hongjun Wei
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Weiqing Huang
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
29
|
Zhao J, Bai Z, Feng F, Song E, Du F, Zhao J, Shen G, Ji F, Li G, Ma X, Hang X, Xu B. Cross-talk between EPAS-1/HIF-2α and PXR signaling pathway regulates multi-drug resistance of stomach cancer cell. Int J Biochem Cell Biol 2016; 72:73-88. [DOI: 10.1016/j.biocel.2016.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 12/27/2015] [Accepted: 01/15/2016] [Indexed: 01/14/2023]
|
30
|
Cecchin E, De Mattia E, Toffoli G. Nuclear receptors and drug metabolism for the personalization of cancer therapy. Expert Opin Drug Metab Toxicol 2016; 12:291-306. [DOI: 10.1517/17425255.2016.1141196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| |
Collapse
|
31
|
Abstract
As a new antitumor drug, simotinib hydrochloride is prescribed for prolonged periods, often to patients with comorbidities. Therefore, the risk for developing drug resistance and drug-drug interactions between simotinib and other agents has to be taken into consideration. As P-glycoprotein (P-gp) is an efflux transporter, which plays a significant role in drug resistance and influences the pharmacological properties and toxicities of the drugs it interacts with, the interactions between simotinib and P-gp were investigated. Cytotoxicity was measured using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Intracellular drug concentrations were detected by high-performance liquid chromatography, fluorescence-activated cell sorting and using a fluorescence reader. P-gp ATPase activity was measured using the Pgp-Glo assay, and intracellular pH was assessed using the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl. The expression and transcription of P-gp were detected by western blotting and the luciferase assay. Simotinib has no cross-resistance to P-gp substrates, and its efflux rate was independent of either the P-gp expression or the coadministered P-gp substrate. Simotinib reversed chemotherapeutic agent resistance in a short time by increasing the intracellular concentration of the chemotherapeutic agent and blocked rhodamine 123 efflux. Further studies demonstrated that simotinib inhibited P-gp activity by modulating its ATPase activity and the intracellular pH. Although simotinib induced P-gp expression after extended treatment, the induced expression of P-gp had little impact on drug resistance. Simotinib is not a substrate of P-gp. As a modulator, it functions mainly as an inhibitor of P-gp by modulating the intracellular pH and ATPase activity, although it also induces P-gp expression after extended treatment.
Collapse
|
32
|
Keller R, Klein M, Thomas M, Dräger A, Metzger U, Templin MF, Joos TO, Thasler WE, Zell A, Zanger UM. Coordinating Role of RXRα in Downregulating Hepatic Detoxification during Inflammation Revealed by Fuzzy-Logic Modeling. PLoS Comput Biol 2016; 12:e1004431. [PMID: 26727233 PMCID: PMC4699813 DOI: 10.1371/journal.pcbi.1004431] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/05/2015] [Indexed: 12/31/2022] Open
Abstract
During various inflammatory processes circulating cytokines including IL-6, IL-1β, and TNFα elicit a broad and clinically relevant impairment of hepatic detoxification that is based on the simultaneous downregulation of many drug metabolizing enzymes and transporter genes. To address the question whether a common mechanism is involved we treated human primary hepatocytes with IL-6, the major mediator of the acute phase response in liver, and characterized acute phase and detoxification responses in quantitative gene expression and (phospho-)proteomics data sets. Selective inhibitors were used to disentangle the roles of JAK/STAT, MAPK, and PI3K signaling pathways. A prior knowledge-based fuzzy logic model comprising signal transduction and gene regulation was established and trained with perturbation-derived gene expression data from five hepatocyte donors. Our model suggests a greater role of MAPK/PI3K compared to JAK/STAT with the orphan nuclear receptor RXRα playing a central role in mediating transcriptional downregulation. Validation experiments revealed a striking similarity of RXRα gene silencing versus IL-6 induced negative gene regulation (rs = 0.79; P<0.0001). These results concur with RXRα functioning as obligatory heterodimerization partner for several nuclear receptors that regulate drug and lipid metabolism. During inflammation, circulating proinflammatory cytokines such as TNFα, IL-1ß, and IL-6, which are produced by, e.g., Kupffer cells, macrophages, or tumor cells, play important roles in hepatocellular signaling pathways and in the regulation of cellular homeostasis. In particular, these cytokines are responsible for the acute phase response (APR) but also for a dramatic reduction of drug detoxification capacity due to impaired expression of numerous genes coding for drug metabolic enzymes and transporters. Here we used high-throughput (phospho-)proteomic and gene expression data to investigate the impact of canonical signaling pathways in mediating IL-6-induced downregulation of drug metabolism related genes. We performed chemical inhibition perturbations to show that most of the IL-6 effects on gene expression are mediated through the MAPK and PI3K/AKT pathways. We constructed a prior knowledge network as basis for a fuzzy logic model that was trained with extensive gene expression data to identify critical regulatory nodes. Our results suggest that the nuclear receptor RXRα plays a central role, which was convincingly validated by RXRα gene silencing experiments. This work shows how computational modeling can support identifying decisive regulatory events from large-scale experimental data.
Collapse
Affiliation(s)
- Roland Keller
- Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tuebingen, Germany
| | - Marcus Klein
- Dr. Margarete Fischer Bosch-Institute of Clinical Pharmacology, Stuttgart
- University of Tuebingen, Tuebingen, Germany
| | - Maria Thomas
- Dr. Margarete Fischer Bosch-Institute of Clinical Pharmacology, Stuttgart
- University of Tuebingen, Tuebingen, Germany
| | - Andreas Dräger
- Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tuebingen, Germany
- Systems Biology Research Group, University of California, San Diego, La Jolla, California, United States of America
| | - Ute Metzger
- NMI Institute of Natural and Medical Sciences, Reutlingen, Germany
| | | | - Thomas O. Joos
- NMI Institute of Natural and Medical Sciences, Reutlingen, Germany
| | - Wolfgang E. Thasler
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich, Munich, Germany
| | - Andreas Zell
- Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tuebingen, Germany
| | - Ulrich M. Zanger
- Dr. Margarete Fischer Bosch-Institute of Clinical Pharmacology, Stuttgart
- University of Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
33
|
Wang X, Owzar K, Gupta P, Larson RA, Mulkey F, Miller AA, Lewis LD, Hurd D, Vij R, Ratain MJ, Murry DJ. Vatalanib population pharmacokinetics in patients with myelodysplastic syndrome: CALGB 10105 (Alliance). Br J Clin Pharmacol 2015; 78:1005-13. [PMID: 24838014 DOI: 10.1111/bcp.12427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 05/12/2014] [Indexed: 12/14/2022] Open
Abstract
AIMS Vatalanib is an oral anti-angiogenesis agent that inhibits vascular endothelial growth factor receptor tyrosine kinases, which in patients showed auto induction of metabolism and variability in pharmacokinetic (PK) disposition. The objective was to characterize the population PK and time-dependent change in vatalanib clearance and assess exposure-toxicity relationship in patients with myelodysplastic syndrome (MDS). METHODS This was an open-label phase II study of vatalanib in MDS patients receiving 750-1250 mg once daily in 28-day cycles. Serial blood samples were obtained and plasma vatalanib concentrations measured by HPLC. Population PK analysis was performed using nonmem 7.2 with FO estimation since FOCE failed. The final model was evaluated using goodness-of-fit plots, bootstrap analysis, and visual predictive check. RESULTS Pharmacokinetic data were complete for 137 patients (86 M, 51 F), of median age 70 years (range 20-91). A one-compartment model with lagged first-order absorption and time-dependent change in oral clearance was fitted to the vatalanib plasma concentration versus time data. The population means for pre-induction and post-induction oral clearance were 24.1 l h(-1) (range: 9.6-45.5) and 54.9 l h(-1) (range: 39.8-75.6), respectively. The apparent oral clearance increased 2.3-fold, (range: 1.7-4.1-fold) from first dose to steady state. Our data did not identify a significant relationship of the predefined covariates with vatalanib pharmacokinetics, although power to detect such a relationship was limited. CONCLUSIONS Vatalanib pharmacokinetics were highly variable and the extent of auto induction was not determined to correlate with any of the pre-defined covariates.
Collapse
|
34
|
Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes Bastos M, Remião F. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 2015; 149:1-123. [PMID: 25435018 DOI: 10.1016/j.pharmthera.2014.11.013] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2023]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene in humans, known to mediate multidrug resistance of neoplastic cells to cancer therapy. For several decades, P-gp inhibition has drawn many significant research efforts in an attempt to overcome this phenomenon. However, P-gp is also constitutively expressed in normal human epithelial tissues and, due to its broad substrate specificity, to its cellular polarized expression in many excretory and barrier tissues, and to its great efflux capacity, it can play a crucial role in limiting the absorption and distribution of harmful xenobiotics, by decreasing their intracellular accumulation. Such a defense mechanism can be of particular relevance at the intestinal level, by significantly reducing the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the target organs. In this review, the current knowledge on this important efflux pump is summarized, and a new focus is brought on the therapeutic interest of inducing and/or activating P-gp for limiting the toxicity caused by its substrates. Several in vivo and in vitro studies validating the use of such a therapeutic strategy are discussed. An extensive literature search for reported P-gp inducers/activators and for the experimental models used in their characterization was conducted. Those studies demonstrate that effective antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious xenobiotics, resulting in a significant reduction in their intracellular levels and, consequently, in a significant reduction of their toxicity.
Collapse
Affiliation(s)
- Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences - North (ISCS-N), CESPU, CRL, Gandra, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
35
|
Schulman S, Goldhaber SZ, Kearon C, Kakkar AK, Schellong S, Eriksson H, Hantel S, Feuring M, Kreuzer J. Treatment with dabigatran or warfarin in patients with venous thromboembolism and cancer. Thromb Haemost 2015; 114:150-7. [PMID: 25739680 DOI: 10.1160/th14-11-0977] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/13/2015] [Indexed: 12/16/2022]
Abstract
The efficacy and safety of dabigatran for treatment of venous thromboembolism (VTE) were demonstrated in two trials. It is unclear if the results pertain to patients with cancer and VTE. Data from two randomised trials comparing dabigatran and warfarin for acute VTE were pooled. Primary efficacy outcome was symptomatic recurrent VTE and related death from randomisation to the end of the treatment period. Safety outcomes were major, major and clinically relevant non-major, and any bleeding during the oral-only treatment period. Patients with active cancer (=within 5 years) at baseline or diagnosed during the study were analysed. Compared with 4,772 patients without cancer, recurrent VTE occurred more frequently in 335 patients with cancer at any time (hazard ratio [HR] 3.3; 95 % confidence interval [CI], 2.1-5.3) and more often in 114 with cancer diagnosed during the study compared to 221 with cancer at baseline (HR 2.6; 95 % CI, 1.1-6.2). There was no significant difference in efficacy between dabigatran and warfarin for cancer at baseline (HR 0.75; 95 % CI, 0.20-2.8) or diagnosed during the study (HR 0.63; 95 % CI, 0.20-2.0). Major bleeding (HR 4.1; 95 % CI, 2.2-7.5) and any bleeding (HR 1.5; 95 % CI, 1.2-2.0) were more frequent in patients with cancer than without, but with similar incidence in cancer with dabigatran or warfarin. In conclusion, in cancer patients, dabigatran provided similar clinical benefit as warfarin. VTE recurrence or bleeding were similar in patients on dabigatran or warfarin. The efficacy of dabigatran has not been assessed in comparison with low-molecular-weight heparin.
Collapse
Affiliation(s)
- Sam Schulman
- Dr. Schulman, Thrombosis Service, HHS-General Hospital, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada, Tel.: +1 905 5270271, ext 44479, Fax: +1 905 52115511, E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pondugula SR, Flannery PC, Abbott KL, Coleman ES, Mani S, Samuel T, Xie W. Diindolylmethane, a naturally occurring compound, induces CYP3A4 and MDR1 gene expression by activating human PXR. Toxicol Lett 2014; 232:580-9. [PMID: 25542144 DOI: 10.1016/j.toxlet.2014.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 12/20/2014] [Indexed: 11/24/2022]
Abstract
Activation of human pregnane X receptor (hPXR)-regulated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1) plays an important role in mediating adverse drug interactions. Given the common use of natural products as part of adjunct human health behavior, there is a growing concern about natural products for their potential to induce undesired drug interactions through the activation of hPXR-regulated CYP3A4 and MDR1. Here, we studied whether 3,3'-diindolylmethane (DIM), a natural health supplement, could induce hPXR-mediated regulation of CYP3A4 and MDR1 in human hepatocytes and intestinal cells. DIM, at its physiologically relevant concentrations, not only induced hPXR transactivation of CYP3A4 promoter activity but also induced gene expression of CYP3A4 and MDR1. DIM decreased intracellular accumulation of MDR1 substrate rhodamine 123, suggesting that DIM induces the functional expression of MDR1. Pharmacologic inhibition or genetic knockdown of hPXR resulted in attenuation of DIM induced CYP3A4 and MDR1 gene expression, suggesting that DIM induces CYP3A4 and MDR1 in an hPXR-dependent manner. Together, these results support our conclusion that DIM induces hPXR-regulated CYP3A4 and MDR1 gene expression. The inductive effects of DIM on CYP3A4 and MDR1 expression caution the use of DIM in conjunction with other medications metabolized and transported via CYP3A4 and MDR1, respectively.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States.
| | - Patrick C Flannery
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States
| | - Elaine S Coleman
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, United States
| | - Temesgen Samuel
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, AL, United States
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Weiss J, Theile D, Dvorak Z, Haefeli WE. Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics 2014; 6:632-650. [PMID: 25521244 PMCID: PMC4279137 DOI: 10.3390/pharmaceutics6040632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/10/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022] Open
Abstract
Dovitinib (TKI-258) is under development for the treatment of diverse cancer entities. No published information on its pharmacokinetic drug interaction potential is available. Thus, we assessed its interaction with important drug metabolising enzymes and drug transporters and its efficacy in multidrug resistant cells in vitro. P-glycoprotein (P-gp, MDR1, ABCB1) inhibition was evaluated by calcein assay, inhibition of breast cancer resistance protein (BCRP, ABCG2) by pheophorbide A efflux, and inhibition of organic anion transporting polypeptides (OATPs) by 8-fluorescein-cAMP uptake. Inhibition of cytochrome P450 3A4, 2C19, and 2D6 was assessed by using commercial kits. Induction of transporters and enzymes was quantified by real-time RT-PCR. Possible aryl hydrocarbon receptor (AhR) activating properties were assessed by a reporter gene assay. Substrate characteristics were evaluated by growth inhibition assays in cells over-expressing P-gp or BCRP. Dovitinib weakly inhibited CYP2C19, CYP3A4, P-gp and OATPs. The strongest inhibition was observed for BCRP (IC50 = 10.3 ± 4.5 μM). Among the genes investigated, dovitinib only induced mRNA expression of CYP1A1, CYP1A2, ABCC3 (coding for multidrug resistance-associated protein 3), and ABCG2 and suppressed mRNA expression of some transporters and drug metabolising enzymes. AhR reporter gene assay demonstrated that dovitinib is an activator of this nuclear receptor. Dovitinib retained its efficacy in cell lines over-expressing P-gp or BCRP. Our analysis indicates that dovitinib will most likely retain its efficacy in tumours over-expressing P-gp or BCRP and gives first evidence that dovitinib might act as a perpetrator drug in pharmacokinetic drug-drug interactions.
Collapse
Affiliation(s)
- Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechitelu 11, 78371 Olmouc, Czech Republic.
| | - Walter Emil Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
38
|
Relationship Among Gefitinib Exposure, Polymorphisms of Its Metabolizing Enzymes and Transporters, and Side Effects in Japanese Patients With Non-Small-Cell Lung Cancer. Clin Lung Cancer 2014; 16:274-81. [PMID: 25554506 DOI: 10.1016/j.cllc.2014.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The present study investigated the effects of patients' genetic variations in the pharmacokinetics of gefitinib at steady-state. We analyzed 31 Japanese patients with non-small-cell lung cancer (NSCLC) who had been treated with gefitinib. We focused on common polymorphisms within important gefitinib exposure genes, including cytochromes P450 (CYPs) CYP3A4*1G, CYP3A5 (*3), and CYP2D6 (*5 and *10) and ATP-binding cassette (ABC) ABCG2 (421C>A) and ABCB1 (1236C>T, 2677G>T/A, and 3435C>T). MATERIALS AND METHODS Fourteen days after beginning 250 mg of gefitinib therapy, when the patients were in steady-state, blood samples were collected just before and 1, 2, 4, 6, 8, 12, and 24 hours after oral gefitinib administration. The plasma concentrations of gefitinib were measured using high-performance liquid chromatography. RESULTS The median area under the concentration-time curve from 0 to 24 hours (AUC0-24) and trough plasma concentration (C0) of gefitinib was 10,086 ng · h/mL (range, 3247-24,726 ng · h/mL) and 334 ng/mL (range, 77.9-813 ng/mL), respectively. No significant differences were found in the AUC0-24 or C0 for gefitinib or in the frequency of diarrhea, skin rash or hepatotoxicity among the CYP3A4, CYP3A5, CYP2D6, ABCG2 (421C>A), and ABCB1 (1236C>T, 2677G>T/A, and 3435C>T) genotype groups. However, the AUC0-24 and C0 levels of gefitinib in the patients with diarrhea or hepatotoxicity were significantly greater than in those without (diarrhea: AUC0-24, 14,246 vs. 8918 ng · h/mL, P = .006; C0: 421 vs. 261 ng/mL, P = .002; hepatotoxicity: AUC0-24, 12,967 vs. 8473 ng · h/mL, P = .024; C0: 420 vs. 248 ng/mL, P = .002). CONCLUSION The side effects from gefitinib were related to exposure but not genetic polymorphism. Therefore, therapeutic drug monitoring after beginning gefitinib therapy rather than the analysis of polymorphism before initiating therapy might be beneficial.
Collapse
|
39
|
[11C-carbonyl]CEP-32496: Radiosynthesis, biodistribution and PET study of brain uptake in P-gp/BCRP knockout mice. Bioorg Med Chem Lett 2014; 24:3574-7. [DOI: 10.1016/j.bmcl.2014.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/02/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022]
|
40
|
Menthol reduces the anticoagulant effect of warfarin by inducing cytochrome P450 2C expression. Eur J Pharm Sci 2014; 56:92-101. [DOI: 10.1016/j.ejps.2014.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/21/2014] [Accepted: 02/17/2014] [Indexed: 12/24/2022]
|
41
|
Abstract
Lung cancer is the most commonly diagnosed cancer in the world. “Driver” and “passenger” mutations identified in lung cancer indicate that genetics play a major role in the development of the disease, progression, metastasis and response to therapy. Survival rates for lung cancer treatment have remained stagnant at ~15% over the past 40 years in patients with disseminated disease despite advances in surgical techniques, radiotherapy and chemotherapy. Resistance to therapy; either intrinsic or acquired has been a major hindrance to treatment leading to great interest in studies seeking to understand and overcome resistance. Genetic information gained from molecular analyses has been critical in identifying druggable targets and tumor profiles that may be predictors of therapeutic response and mediators of resistance. Mutated or overexpressed epidermal growth factor receptor (EGFR) and translocations in the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) genes (EML4-ALK) are examples of genetic aberrations resulting in targeted therapies for both localized and metastatic disease. Positive clinical responses have been noted in patients harboring these genetic mutations when treated with targeted therapies compared to patients lacking these mutations. Resistance is nonetheless a major factor contributing to the failure of targeted agents and standard cytotoxic agents. In this review, we examine molecular mechanisms that are potential drivers of resistance in non-small cell lung carcinoma, the most frequently diagnosed form of lung cancer. The mechanisms addressed include resistance to molecular targeted therapies as well as conventional chemotherapeutics through the activity of multidrug resistance proteins.
Collapse
Affiliation(s)
- Janet Wangari-Talbot
- Fox Chase Cancer Center, Developmental Therapeutics Program, 333 Cottman Ave, Philadelphia, PA, USA
| | - Elizabeth Hopper-Borge
- Fox Chase Cancer Center, Developmental Therapeutics Program, 333 Cottman Ave, Philadelphia, PA, USA
| |
Collapse
|