1
|
Zhou S, Dai L, Pan L, Shen G, Qian Z. Phenylboronic acid-modified nanoparticles for cancer treatment. Chem Commun (Camb) 2025; 61:4595-4605. [PMID: 40036055 DOI: 10.1039/d4cc06730d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Phenylboronic acid (PBA) has emerged as a promising component in the design of functional nanomaterials for cancer treatment. PBA possesses unique characteristics such as pH/reactive oxygen species (ROS)-responsiveness, low cytotoxicity, stability, and the ability to target sialic acid residues overexpressed on cancer cell surfaces. PBA-modified nanomaterials can be utilized in various strategies, including chemotherapy, gene therapy, and phototherapy, to enhance drug delivery, cancer cell targeting, and therapeutic efficacy. This review examines the application of PBA-modified nanomaterials in cancer treatment, focusing on their roles in stimuli-responsive drug release and cancer cell targeting. The incorporation of PBA into nanoparticles, dendrimers, and other nanostructures has shown significant potential for improving the selectivity and efficacy of cancer therapeutics while minimizing adverse side effects. With ongoing research and development, PBA-based technologies have promising potential for further innovations in medical science, particularly in oncology.
Collapse
Affiliation(s)
- Siming Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Liqun Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Guohua Shen
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Abu Elella MH, Kolawole OM. Recent advances in modified chitosan-based drug delivery systems for transmucosal applications: A comprehensive review. Int J Biol Macromol 2024; 277:134531. [PMID: 39116977 DOI: 10.1016/j.ijbiomac.2024.134531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Recently, transmucosal drug delivery systems (TDDSs) have been extensively studied because they protect therapeutic agents from degradation; improve drug residence time at the mucosal membranes; and facilitate sustained drug release for a prolonged period. Chitosan is a well-researched polymeric excipient due to its biocompatibility, non-toxicity, biodegradability, mucoadhesive, antimicrobial, and low immunogenicity. Its limited mucoadhesiveness in the physiological environment necessitated its chemical modification. This review highlights the recent advances in the chemical modification of chitosan with various chemical groups to generate various functionalized chitosan derivatives, such as thiolated, acrylated, methacrylated, boronated, catechol, and maleimide-functionalized chitosans with superior mucoadhesive capabilities compared to the parent chitosan. Moreover, it presents the different prepared dosage forms, such as tablets, hydrogels, films, micro/nanoparticles, and liposomes/niosomes for drug administration within various mucosal routes including oral, buccal, nasal, ocular, colonic, intravesical, and vaginal routes. The reported data from preclinical studies of these pharmaceutical formulations have revealed the controlled and target-specific delivery of therapeutics because of their formation of covalent bonds with thiol groups on the mucosal surface. All functionalized chitosan derivatives exhibited long drug residence time on mucosal surfaces and sustainable drug release with excellent cellular permeability, drug efficacy, and biocompatibility. These promising data could be translated from the research laboratories to the clinics with consistent and intensive research effort.
Collapse
Affiliation(s)
- Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6AD, United Kingdom; Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | | |
Collapse
|
3
|
Wong CYJ, Baldelli A, Hoyos CM, Tietz O, Ong HX, Traini D. Insulin Delivery to the Brain via the Nasal Route: Unraveling the Potential for Alzheimer's Disease Therapy. Drug Deliv Transl Res 2024; 14:1776-1793. [PMID: 38441832 PMCID: PMC11153287 DOI: 10.1007/s13346-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 06/06/2024]
Abstract
This comprehensive review delves into the potential of intranasal insulin delivery for managing Alzheimer's Disease (AD) while exploring the connection between AD and diabetes mellitus (DM). Both conditions share features of insulin signalling dysregulation and oxidative stress that accelerate inflammatory response. Given the physiological barriers to brain drug delivery, including the blood-brain barrier, intranasal administration emerges as a non-invasive alternative. Notably, intranasal insulin has shown neuroprotective effects, impacting Aβ clearance, tau phosphorylation, and synaptic plasticity. In preclinical studies and clinical trials, intranasally administered insulin achieved rapid and extensive distribution throughout the brain, with optimal formulations exhibiting minimal systemic circulation. The detailed mechanism of insulin transport through the nose-to-brain pathway is elucidated in the review, emphasizing the role of olfactory and trigeminal nerves. Despite promising prospects, challenges in delivering protein drugs from the nasal cavity to the brain remain, including enzymes, tight junctions, mucociliary clearance, and precise drug deposition, which hinder its translation to clinical settings. The review encompasses a discussion of the strategies to enhance the intranasal delivery of therapeutic proteins, such as tight junction modulators, cell-penetrating peptides, and nano-drug carrier systems. Moreover, successful translation of nose-to-brain drug delivery necessitates a holistic understanding of drug transport mechanisms, brain anatomy, and nasal formulation optimization. To date, no intranasal insulin formulation has received regulatory approval for AD treatment. Future research should address challenges related to drug absorption, nasal deposition, and the long-term effects of intranasal insulin. In this context, the evaluation of administration devices for nose-to-brain drug delivery becomes crucial in ensuring precise drug deposition patterns and enhancing bioavailability.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Alberto Baldelli
- Faculty of Land and Food Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Camilla M Hoyos
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
| | - Ole Tietz
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
4
|
Chafran L, Carfagno A. Synthesis of multi-responsive poly(NIPA- co-DMAEMA)-PBA hydrogel nanoparticles in aqueous solution for application as glucose-sensitive insulin-releasing nanoparticles. J Diabetes Metab Disord 2024; 23:1259-1270. [PMID: 38932860 PMCID: PMC11196523 DOI: 10.1007/s40200-024-01421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/07/2024] [Indexed: 06/28/2024]
Abstract
Objectives This study aimed to present an innovative method for synthesizing pH-thermo-glucose responsive poly(NIPA-co-DMAEMA)-PBA hydrogel nanoparticles via single-step aqueous free radical polymerization. Methods The synthesis process involved free radical polymerization in an aqueous solution, and the resulting nanoparticles were characterized for their physical and chemical properties by 1H NMR, Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM). Insulin-loaded poly(NIPA-co-DMAEMA)-PBA hydrogel nanoparticles were prepared and evaluated for their insulin capture and release properties at different pH and temperature, in addition to different glucose concentrations, with the release profile of insulin quantitatively evaluated using the Bradford method. Results 1H NMR results confirmed successful PBA incorporation, and DLS outcomes consistently indicated a transition to a more hydrophobic state above the Lower Critical Solution Temperature (LCST) of NIPA and DMAEMA. While pH responsiveness exhibited variation, insulin release generally increased with rising pH from acidic to neutral conditions, aligning with the anticipated augmentation of anionic PBA moieties and increased hydrogel hydrophilicity. Increased insulin release in the presence of glucose, particularly for formulations with the lowest mol % PBA, along with a slight increase for the highest mol % PBA formulation when increasing glucose from 1 to 4 mg/mL, supported the potential of this approach for nanoparticle synthesis tailored for glucose-responsive insulin release. Conclusions This work successfully demonstrates a novel method for synthesizing responsive hydrogel nanoparticles and underscores their potential for controlled insulin release in response to glucose concentrations. The observed pH-dependent insulin release patterns and the influence of PBA content on responsiveness highlight the versatility and promise of this nanoparticle synthesis approach for applications in glucose-responsive drug delivery systems. Graphical abstract Poly(NIPA) nanoparticles containing PBA moieties are normally synthesized in two or more steps in the presence of organic solvents. Here we propose a new method for the synthesis of multiresponsive hydrogel poly(NIPA-co-DMAEMA)-PBA nanoparticles in aqueous medium in a single reaction to provide a fast and effective strategy for the production of glucose-responsive multi-systems in aqueous media from free radical polymerization.
Collapse
Affiliation(s)
- Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 USA
| | - Amy Carfagno
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 USA
| |
Collapse
|
5
|
Wong CYJ, Baldelli A, Tietz O, van der Hoven J, Suman J, Ong HX, Traini D. An overview of in vitro and in vivo techniques for characterization of intranasal protein and peptide formulations for brain targeting. Int J Pharm 2024; 654:123922. [PMID: 38401871 DOI: 10.1016/j.ijpharm.2024.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The surge in neurological disorders necessitates innovative strategies for delivering active pharmaceutical ingredients to the brain. The non-invasive intranasal route has emerged as a promising approach to optimize drug delivery to the central nervous system by circumventing the blood-brain barrier. While the intranasal approach offers numerous advantages, the lack of a standardized protocol for drug testing poses challenges to both in vitro and in vivo studies, limiting the accurate interpretation of nasal drug delivery and pharmacokinetic data. This review explores the in vitro experimental assays employed by the pharmaceutical industry to test intranasal formulation. The focus lies on understanding the diverse techniques used to characterize the intranasal delivery of drugs targeting the brain. Parameters such as drug release, droplet size measurement, plume geometry, deposition in the nasal cavity, aerodynamic performance and mucoadhesiveness are scrutinized for their role in evaluating the performance of nasal drug products. The review further discusses the methodology for in vivo characterization in detail, which is essential in evaluating and refining drug efficacy through the nose-to-brain pathway. Animal models are indispensable for pre-clinical drug testing, offering valuable insights into absorption efficacy and potential variables affecting formulation safety. The insights presented aim to guide future research in intranasal drug delivery for neurological disorders, ensuring more accurate predictions of therapeutic efficacy in clinical contexts.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Alberto Baldelli
- Faculty of Food and Land Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ole Tietz
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julie Suman
- Next Breath, an Aptar Pharma Company, Baltimore, MD 21227, USA
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
6
|
Luo D, Ni X, Yang H, Feng L, Chen Z, Bai L. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin. Eur J Pharm Sci 2024; 192:106630. [PMID: 37949195 DOI: 10.1016/j.ejps.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Peptide drugs through nasal mucous membrane, such as insulin and calcitonin have been widely used in the medical field. There are always two sides to a coin. One side, intranasal drug delivery can imitate the secretion pattern in human body, having advantages of physiological structure and convenient use. Another side, the low permeability of nasal mucosa, protease environment and clearance effect of nasal cilia hinder the intranasal absorption of peptide drugs. Researchers have taken multiple means to achieve faster therapeutic concentration, lower management dose, and fewer side effects for better nasal preparations. To improve the peptide drugs absorption, various strategies had been explored via the nasal mucosa route. In this paper, we reviewed the achievements of 18 peptide drugs in the past decade about the perspectives of the efficacy, mechanism of enhancing intranasal absorption and safety. The most studies were insulin and calcitonin. As a result, absorption enhancers, nanoparticles (NPs) and bio-adhesive system are the most widely used. Among them, chitosan (CS), cell penetrating peptides (CPPs), tight junction modulators (TJMs), soft NPs and gel/hydrogel are the most promising strategies. Moreover, two or three strategies can be combined to prepare drug vectors. In addition, spray freeze dried (SFD), self-emulsifying nano-system (SEN), and intelligent glucose reaction drug delivery system are new research directions in the future.
Collapse
Affiliation(s)
- Dan Luo
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China
| | - Xiaoqing Ni
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, Sichuan, China
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Zhaoqun Chen
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China.
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Trosan P, Tang JSJ, Rosencrantz RR, Daehne L, Smaczniak AD, Staehlke S, Chea S, Fuchsluger TA. The Biocompatibility Analysis of Artificial Mucin-Like Glycopolymers. Int J Mol Sci 2023; 24:14150. [PMID: 37762451 PMCID: PMC10532372 DOI: 10.3390/ijms241814150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The ocular surface is covered by a tear film consisting of an aqueous/mucin phase and a superficial lipid layer. Mucins, highly O-glycosylated proteins, are responsible for lubrication and ocular surface protection. Due to contact lens wear or eye disorders, lubrication of the ocular surface can be affected. Artificial glycopolymers which mimic natural mucins could be efficient in ophthalmic therapy. Various neutral, positively, and negatively charged mucin-mimicking glycopolymers were synthesized (n = 11), cultured in different concentrations (1%, 0.1%, and 0.01% w/v) with human corneal epithelial cells (HCE), and analyzed by various cytotoxicity/viability, morphology, and immunohistochemistry (IHC) assays. Six of the eleven glycopolymers were selected for further analysis after cytotoxicity/viability assays. We showed that the six selected glycopolymers had no cytotoxic effect on HCE cells in the 0.01% w/v concentration. They did not negatively affect cell viability and displayed both morphology and characteristic markers as untreated control cells. These polymers could be used in the future as mucin-mimicking semi-synthetic materials for lubrication and protection of the ocular surface.
Collapse
Affiliation(s)
- P. Trosan
- Department of Ophthalmology, University Medical Center Rostock, 18057 Rostock, Germany
| | - J. S. J. Tang
- Biofunctionalized Materials and (Glyco) Biotechnology, Fraunhofer Institute for Applied Polymer Research IAP, 14476 Potsdam, Germany
| | - R. R. Rosencrantz
- Biofunctionalized Materials and (Glyco) Biotechnology, Fraunhofer Institute for Applied Polymer Research IAP, 14476 Potsdam, Germany
- Institute of Materials Chemistry, Chair of Biofunctional Polymer Materials, Brandenburg University of Technology BTU, 01968 Senftenberg, Germany
| | - L. Daehne
- Surflay Nanotec GmbH, 12489 Berlin, Germany
| | | | - S. Staehlke
- Department of Ophthalmology, University Medical Center Rostock, 18057 Rostock, Germany
| | - S. Chea
- Biofunctionalized Materials and (Glyco) Biotechnology, Fraunhofer Institute for Applied Polymer Research IAP, 14476 Potsdam, Germany
| | - T. A. Fuchsluger
- Department of Ophthalmology, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
8
|
Das A, Vartak R, Islam MA, Kumar S, Shao J, Patel K. Arginine-Coated Nanoglobules for the Nasal Delivery of Insulin. Pharmaceutics 2023; 15:pharmaceutics15020353. [PMID: 36839674 PMCID: PMC9965127 DOI: 10.3390/pharmaceutics15020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Multiple daily injections via subcutaneous route are the primary modes of insulin delivery for patients with Diabetes Mellitus. While this process is invasive, painful and may cause patients to develop lipohypertrophy at injection site, the perception of fear surrounding this process causes patients to delay in initiation and remain persistent with insulin therapy over time. Moreover, poor glycemic control may often lead to acute complications, such as severe hypoglycemia and nocturnal hypoglycemia, especially in older patients with diabetes. To address the imperative need for a patient-convenient non-invasive insulin therapy, an insulin-loaded arginine-coated self-emulsifying nanoglobule system (INS-LANano) was developed for nasal delivery of insulin with a biodegradable cationic surfactant-Lauroyl Ethyl Arginate (LAE). Incorporation of LAE resulted in formation of positively charged nanoglobules with L-arginine oriented on the surface. LANano enabled binding of insulin molecules on the surface of nanoglobules via an electrostatic interaction between negatively charged α-helix and LAE molecules at physiological pH. INS-LANano showed a hydrodynamic diameter of 23.38 nm with a surface charge of +0.118 mV. The binding efficiency of insulin on LANano globules was confirmed by zeta potential, circular dichroism (CD) spectroscopy and centrifugal ultrafiltration studies. The attachment of insulin with permeation-enhancing nanoglobules demonstrated significantly higher in vitro permeability of insulin of 15.2% compared to insulin solution across human airway epithelial cell (Calu-3) monolayer. Upon intranasal administration of INS-LANano to diabetic rats at 2 IU/kg insulin dose, a rapid absorption of insulin with significantly higher Cmax of 14.3 mU/L and relative bioavailability (BA) of 23.3% was observed. Therefore, the INS-LANano formulation significant translational potential for intranasal delivery of insulin.
Collapse
|
9
|
Affiliation(s)
- Martina H. Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Zuglianello C, Lemos-Senna E. The nanotechnological approach for nasal delivery of peptide drugs: a comprehensive review. J Microencapsul 2022; 39:156-175. [PMID: 35262455 DOI: 10.1080/02652048.2022.2051626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review gathers recent studies, patents, and clinical trials involving the nasal administration of peptide drugs to supply a panorama of developing nanomedicine advances in this field. Peptide drugs have been featured in the pharmaceutical market, due to their high efficacy, biological activity, and low immunogenicity. Pharmaceutical industries need technology to circumvent issues relating to peptide stability and bioavailability. The oral route offers very harsh and unfavourable conditions for peptide administration, while the parenteral route is inconvenient and risky for patients. Nasal administration is an attractive alternative, mainly when associated with nanotechnological approaches. Nanomedicines may improve the nasal administration of peptide drugs by providing protection for the macromolecules from enzymes while also increasing their time of retention and permeability in the nasal mucosa. Nanomedicines for nasal administration containing peptide drugs have been acclaimed for both prevention, and treatment, of infections, including the pandemic COVID-19, cancers, metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Carine Zuglianello
- Pharmaceutical Nanotechnology Post-Graduation Program, University of Santa Catarina, Florianópolis, Brazil
| | - Elenara Lemos-Senna
- Pharmaceutical Nanotechnology Post-Graduation Program, University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
11
|
Ma Q, Bian L, Zhao X, Tian X, Yin H, Wang Y, Shi A, Wu J. Novel glucose-responsive nanoparticles based on p-hydroxyphenethyl anisate and 3-acrylamidophenylboronic acid reduce blood glucose and ameliorate diabetic nephropathy. Mater Today Bio 2021; 13:100181. [PMID: 34927045 PMCID: PMC8649392 DOI: 10.1016/j.mtbio.2021.100181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
An insulin delivery system that self-regulates blood sugar levels, mimicking the human pancreas, can improve hyperglycaemia. At present, a glucose-responsive insulin delivery system combining AAPBA with long-acting slow release biomaterials has been developed. However, the safety of sustained-release materials and the challenges of preventing diabetic complications remain. In this study, we developed a novel polymer slow release material using a plant extract—p-hydroxyphenylethyl anisate (HPA). After block copolymerisation with AAPBA, the prepared nanoparticles had good pH sensitivity, glucose sensitivity, insulin loading rate and stability under physiological conditions and had high biocompatibility. The analysis of streptozotocin-induced diabetic nephropathy (DN) mouse model showed that the insulin-loaded injection of nanoparticles stably regulated the blood glucose levels of DN mice within 48 h. Importantly, with the degradation of the slow release material HPA in vivo, the renal function improved, the inflammatory response reduced, and antioxidation levels in DN mice improved. This new type of nanoparticles provides a new idea for hypoglycaemic nano-drug delivery system and may have potential in the prevention and treatment of diabetic complications. We established a new glucose-responsive intelligent system with HPA. p(AAPBA-b-HPA) shows good pH and glucose sensitivity. p(AAPBA-b-HPA) nanoparticles can slowly release HPA and insulin. This system can be used to regulate blood glucose. p(AAPBA-b-HPA) nanoparticles can aid in diabetic nephropathy prevention and treatment.
Collapse
Affiliation(s)
- Qiong Ma
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Ligong Bian
- Department of Medical Biology, College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Xi Zhao
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Xuexia Tian
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Hang Yin
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Yutian Wang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Anhua Shi
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
12
|
Dholakia J, Prabhakar B, Shende P. Strategies for the delivery of antidiabetic drugs via intranasal route. Int J Pharm 2021; 608:121068. [PMID: 34481011 DOI: 10.1016/j.ijpharm.2021.121068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is a metabolic disorder defined by higher blood glucose levels in the body generally controlled by antidiabetic agents (oral) and insulin (subcutaneous). To avoid the limitations of the conventional routes such as lower bioavailability and pain at the site of injection in case of parenteral route modified delivery systems are proposed like transdermal, pulmonary and inhalation delivery and among the other delivery systems nasal drug delivery system that shows the advantages such as reduced frequency of dose, higher patient compliance, safety, ease of administration, prolonged residence time, improved absorption of drug in the body, higher bioavailability and stability. This review article discusses the strategies adopted for the delivery of antidiabetic drugs by the intranasal delivery system. The insulin and glucagon-like peptides on experimentation show results of improved therapeutic levels and patient compliance. The drugs are transported by the paracellular route and absorbed through the epithelial tight junctions successfully by utilising different strategies. The limitations of the nasal delivery such as irritation or burning on administration, degradation by the enzymes, mucociliary clearance, lesser volume of the nasal cavity and permeation through the nasal mucosa. To overcome the challenges different strategies for the nasal administration are studied such as polymers, particulate delivery systems, complexation with peptides and smart delivery using glucose-responsive systems. A vast scope of intranasal preparations exists for antidiabetic drugs in the future for the management of diabetes and more clinical studies are the requirement for the societal impact to battle against diabetes.
Collapse
Affiliation(s)
- Jheel Dholakia
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
13
|
A new Glucose-Responsive delivery system based on Sulfonamide-phenylboronic acid for subcutaneous insulin injection. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Zhao X, Shi A, Ma Q, Yan X, Bian L, Zhang P, Wu J. Nanoparticles prepared from pterostilbene reduce blood glucose and improve diabetes complications. J Nanobiotechnology 2021; 19:191. [PMID: 34176494 PMCID: PMC8237509 DOI: 10.1186/s12951-021-00928-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/05/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Diabetes complications are the leading cause of mortality in diabetic patients. The common complications are decline in antioxidant capacity and the onset of micro-inflammation syndrome. At present, glucose-responsive nanoparticles are widely used, as they can release insulin-loaded ultrafine particles intelligently and effectively reduce blood sugar. However, the toxicology of this method has not been fully elucidated. The plant extracts of pterostilbene (PTE) have a wide range of biological applications, such as antioxidation and inflammatory response improvement. Therefore, we have proposed new ideas for the cross application of plant extracts and biomaterials, especially as part of a hypoglycaemic nano-drug delivery system. RESULTS Based on the PTE, we successfully synthesised poly(3-acrylamidophenyl boric acid-b-pterostilbene) (p[AAPBA-b-PTE]) nanoparticles (NPs). The NPs were round in shape and ranged between 150 and 250 nm in size. The NPs possessed good pH and glucose sensitivity. The entrapment efficiency (EE) of insulin-loaded NPs was approximately 56%, and the drug loading (LC) capacity was approximately 13%. The highest release of insulin was 70%, and the highest release of PTE was 85%. Meanwhile, the insulin could undergo self-regulation according to changes in the glucose concentration, thus achieving an effective, sustained release. Both in vivo and in vitro experiments showed that the NPs were safe and nontoxic. Under normal physiological conditions, NPs were completely degraded within 40 days. Fourteen days after mice were injected with p(AAPBA-b-PTE) NPs, there were no obvious abnormalities in the heart, liver, spleen, lung, or kidney. Moreover, NPs effectively reduced blood glucose, improved antioxidant capacity and reversed micro-inflammation in mice. CONCLUSIONS p(AAPBA-b-PTE) NPs were successfully prepared using PTE as raw material and effectively reduced blood glucose, improved antioxidant capacity and reduced the inflammatory response. This novel preparation can enable new combinations of plant extracts and biomaterials to adiministered through NPs or other dosage forms in order to regulate and treat diseases.
Collapse
Affiliation(s)
- Xi Zhao
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500 P.R. China
| | - Anhua Shi
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500 P.R. China
| | - Qiong Ma
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500 P.R. China
| | - Xueyan Yan
- College of Clinical Medical, Kunming Medical University, Kunming, Yunnan 650500 PR China
| | - Ligong Bian
- College of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500 PR China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Tuina for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, 650500 China
| | - Junzi Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500 P.R. China
| |
Collapse
|
15
|
Qin Q, Lang S, Huang X. Synthetic linear glycopolymers and their biological applications. J Carbohydr Chem 2021; 40:1-44. [PMID: 35308080 PMCID: PMC8932951 DOI: 10.1080/07328303.2021.1928156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
As typical affinities of carbohydrates with their receptors are modest, polymers of carbohydrates (glycopolymers) are exciting tools to probe the multifaceted biological activities of glycans. In this review, the linear glycopolymers and the multivalency effects are first introduced. This is followed by discussions of methods to synthesize these polymers. Subsequently, the interactions of glycopolymers with plant lectins and viral/bacterial carbohydrate binding proteins are discussed. In addition, applications of the glycopolymers in facilitating glycan microarray studies, mimicking cell surface glycans, modulation of the immune system, cryoprotection of protein, and electron-beam lithography are presented to stimulate further development of this fascinating technology.
Collapse
Affiliation(s)
- Qian Qin
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Mazumdar S, Chitkara D, Mittal A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta Pharm Sin B 2021; 11:903-924. [PMID: 33996406 PMCID: PMC8105776 DOI: 10.1016/j.apsb.2021.02.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/20/2020] [Accepted: 01/18/2021] [Indexed: 01/01/2023] Open
Abstract
The beneficial or deleterious effects of nanomedicines emerge from their complex interactions with intracellular pathways and their subcellular fate. Moreover, the dynamic nature of plasma membrane accounts for the movement of these nanocarriers within the cell towards different organelles thereby not only influencing their pharmacokinetic and pharmacodynamic properties but also bioavailability, therapeutic efficacy and toxicity. Therefore, an in-depth understanding of underlying parameters controlling nanocarrier endocytosis and intracellular fate is essential. In order to direct nanoparticles towards specific sub-cellular organelles the physicochemical attributes of nanocarriers can be manipulated. These include particle size, shape and surface charge/chemistry. Restricting the particle size of nanocarriers below 200 nm contributes to internalization via clathrin and caveolae mediated pathways. Similarly, a moderate negative surface potential confers endolysosomal escape and targeting towards mitochondria, endoplasmic reticulum (ER) and Golgi. This review aims to provide an insight into these physicochemical attributes of nanocarriers fabricated using amphiphilic graft copolymers affecting cellular internalization. Fundamental principles understood from experimental studies have been extrapolated to draw a general conclusion for the designing of optimized nanoparticulate drug delivery systems and enhanced intracellular uptake via specific endocytic pathway.
Collapse
Key Words
- AR, aspect ratio
- Amphiphilic
- CCP, clathrin coated pits
- Cav-1, caveolin-1
- Copolymer
- Cy, cyanine
- DOX, doxorubicin
- ER, endoplasmic reticulum
- FITC, fluorescein isothiocyanate
- HER-2, human epidermal growth factor receptor 2
- IL-2, interleukin
- Internalization
- Intracellular fate
- Nanoparticles
- RBITC, rhodamine B isothiocyanate
- RES, reticuloendothelial system
- Rmax, minimum size threshold value
- Rmin, maximum size threshold value
- SEM, scanning electron microscopy
- SR & LR, short rod and long rod
- TEM, transmission electron microscopy
- mPEG, methoxy poly(ethylene glycol)
Collapse
Affiliation(s)
- Samrat Mazumdar
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| |
Collapse
|
17
|
Ma Q, Zhao X, Shi A, Wu J. Bioresponsive Functional Phenylboronic Acid-Based Delivery System as an Emerging Platform for Diabetic Therapy. Int J Nanomedicine 2021; 16:297-314. [PMID: 33488074 PMCID: PMC7816047 DOI: 10.2147/ijn.s284357] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
The glucose-sensitive self-adjusting drug delivery system simulates the physiological model of the human pancreas-secreting insulin and then precisely regulates the release of hypoglycemic drugs and controls the blood sugar. Thus, it has good application prospects in the treatment of diabetes. Presently, there are three glucose-sensitive drug systems: phenylboronic acid (PBA) and its derivatives, concanavalin A (Con A), and glucose oxidase (GOD). Among these, the glucose-sensitive polymer carrier based on PBA has the advantages of better stability, long-term storage, and reversible glucose response, and the loading of insulin in it can achieve the controlled release of drugs in the human environment. Therefore, it has become a research hotspot in recent years and has been developed very rapidly. In order to further carry out a follow-up study, we focused on the development process, performance, and application of PBA and its derivatives-based glucose-sensitive polymer drug carriers, and the prospects for the development of this field.
Collapse
Affiliation(s)
- Qiong Ma
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Xi Zhao
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Anhua Shi
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
- Department of Medical Biology, College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| |
Collapse
|
18
|
Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations. Pharm Res 2020; 37:117. [PMID: 32488611 PMCID: PMC7266419 DOI: 10.1007/s11095-020-02844-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023]
Abstract
The success of protein, peptide and antibody based therapies is evident - the biopharmaceuticals market is predicted to reach $388 billion by 2024 [1], and more than half of the current top 20 blockbuster drugs are biopharmaceuticals. However, the intrinsic properties of biopharmaceuticals has restricted the routes available for successful drug delivery. While providing 100% bioavailability, the intravenous route is often associated with pain and needle phobia from a patient perspective, which may translate as a reluctance to receive necessary treatment. Several non-invasive strategies have since emerged to overcome these limitations. One such strategy involves the use of microneedles (MNs), which are able to painlessly penetrate the stratum corneum barrier to dramatically increase transdermal drug delivery of numerous drugs. This review reports the wealth of studies that aim to enhance transdermal delivery of biopharmaceutics using MNs. The true potential of MNs as a drug delivery device for biopharmaceuticals will not only rely on acceptance from prescribers, patients and the regulatory authorities, but the ability to upscale MN manufacture in a cost-effective manner and the long term safety of MN application. Thus, the current barriers to clinical translation of MNs, and how these barriers may be overcome are also discussed.
Collapse
|
19
|
Zhang Y, Yu Y, Li G, Meng H, Zhang X, Dong L, Wu Z, Lin L. A Bioadhesive Nanoplatform Enhances the Permeation of Drugs Used to Treat Diabetic Macular Edema. ACS APPLIED BIO MATERIALS 2020; 3:2314-2324. [DOI: 10.1021/acsabm.0c00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yanlong Zhang
- State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detection Techniques & Instruments Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300070, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detection Techniques & Instruments Tianjin University, Tianjin 300072, China
| | - Huipeng Meng
- State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300070, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detection Techniques & Instruments Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Inoue D, Furubayashi T, Tanaka A, Sakane T, Sugano K. Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. Eur J Pharm Biopharm 2020; 149:145-153. [DOI: 10.1016/j.ejpb.2020.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/25/2019] [Accepted: 02/08/2020] [Indexed: 12/15/2022]
|
21
|
Li C, Liu X, Zhang Y, Lv J, Huang F, Wu G, Liu Y, Ma R, An Y, Shi L. Nanochaperones Mediated Delivery of Insulin. NANO LETTERS 2020; 20:1755-1765. [PMID: 32069419 DOI: 10.1021/acs.nanolett.9b04966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Insulin would undergo unfolding and fibrillation under stressed conditions, which may cause serious biotechnological and medical problems. Herein, by mimicking the structure and functions of natural chaperones HSP70s, self-assembled polymeric micelles are used as nanochaperones for the delivery of insulin. The confined hydrophobic domains on the surface of nanochaperones adsorb partially unfolded insulin, inhibiting the aggregation and fibrillation and enhancing the stability of insulin. The bioactivity of insulin is well-reserved after incubation with the nanochaperones at 37 °C for 7 d or heating at 70 °C for 1 h. The stealthy poly(ethylene glycol) chains around the confined domains protect the adsorbed insulin from enzymatic degradation and prolong the circulation time. More importantly, the excellent glucose sensitivity of the hydrophobic domains enables the nanochaperones to release and refold insulin in native form in response to hyperglycemia. This kind of nanochaperone may offer a hopeful strategy for the protection and delivery of insulin.
Collapse
Affiliation(s)
| | | | | | | | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | | | | | | | | | | |
Collapse
|
22
|
Ryu JH, Lee GJ, Shih YRV, Kim TI, Varghese S. Phenylboronic Acid-polymers for Biomedical Applications. Curr Med Chem 2019; 26:6797-6816. [DOI: 10.2174/0929867325666181008144436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Background:
Phenylboronic acid-polymers (PBA-polymers) have attracted tremendous
attention as potential stimuli-responsive materials with applications in drug-delivery
depots, scaffolds for tissue engineering, HIV barriers, and biomolecule-detecting/sensing platforms.
The unique aspect of PBA-polymers is their interactions with diols, which result in reversible,
covalent bond formation. This very nature of reversible bonding between boronic
acids and diols has been fundamental to their applications in the biomedical area.
Methods:
We have searched peer-reviewed articles including reviews from Scopus, PubMed,
and Google Scholar with a focus on the 1) chemistry of PBA, 2) synthesis of PBA-polymers,
and 3) their biomedical applications.
Results:
We have summarized approximately 179 papers in this review. Most of the applications
described in this review are focused on the unique ability of PBA molecules to interact
with diol molecules and the dynamic nature of the resulting boronate esters. The strong sensitivity
of boronate ester groups towards the surrounding pH also makes these molecules
stimuli-responsive. In addition, we also discuss how the re-arrangement of the dynamic boronate
ester bonds renders PBA-based materials with other unique features such as self-healing
and shear thinning.
Conclusion:
The presence of PBA in the polymer chain can render it with diverse functions/
relativities without changing their intrinsic properties. In this review, we discuss the development
of PBA polymers with diverse functions and their biomedical applications with a
specific focus on the dynamic nature of boronate ester groups.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yu-Ru V. Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| |
Collapse
|
23
|
Phenylboronic acid-tethered chondroitin sulfate-based mucoadhesive nanostructured lipid carriers for the treatment of dry eye syndrome. Acta Biomater 2019; 99:350-362. [PMID: 31449929 DOI: 10.1016/j.actbio.2019.08.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
Dry eye syndrome is a common eye disease that affects many people worldwide. It is usually treated with eye drops, which has low bioavailability owing to rapid clearance from the ocular surface and leads to poor patient compliance and side effects. For the purpose of improving the therapeutic efficacy, nanostructured lipid carrier (NLC)-loaded dexamethasone (DEX) was prepared and functionalized with (3-aminomethylphenyl)boronic acid-conjugated chondroitin sulfate (APBA-ChS). As APBA has a boronic acid group, it can form a high-affinity complex with sialic acids present in the ocular mucin, which contributes to extension of corneal retention time and improvement of drug delivery. Compared with eye drops, Rhodamine B (RhB)-labeled APBA-ChS-NLC could significantly prolong the residence time on the corneal surface. Moreover, the DEX-APBA-ChS-NLC showed no irritation to the rabbit eye as indicated in irritation studies and histological images. The pharmacodynamics study indicated that DEX-APBA-ChS-NLC could relieve symptoms of dry eye disease in rabbits. These results demonstrated that the developed mucoadhesive drug carrier could improve the delivery of drugs and have promising potential to treat anterior eye diseases. STATEMENT OF SIGNIFICANCE: In this research, (3-aminomethylphenyl)boronic acid-conjugated chondroitin sulfate (APBA-ChS)-based nanostructured lipid carriers (NLCs) including dexamethasone (DEX) were designed and constructed. APBA-ChS, which is present on the surface of DEX-NLC and contains the boronic acid group, can form complex with sialic acids in the ocular mucin, hence leading to prolonged precorneal retention. This affinity between boronic acid and sialic acids was used to develop a mucoadhesive drug delivery system. The developed mucoadhesive drug carrier demonstrated prolonged retention time and alleviation of dry eye syndrome. APBA-ChS-based NLC may be considered a promising ocular drug delivery system for treating anterior eye diseases.
Collapse
|
24
|
Kolawole OM, Lau WM, Khutoryanskiy VV. Synthesis and Evaluation of Boronated Chitosan as a Mucoadhesive Polymer for Intravesical Drug Delivery. J Pharm Sci 2019; 108:3046-3053. [DOI: 10.1016/j.xphs.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
|
25
|
Wang J, Xia Y, Liu H, Xia J, Qian M, Zhang L, Chen L, Chen Q. Poly(lactobionamidoethyl methacrylate)-based amphiphiles with ultrasound-labile components in manufacture of drug delivery nanoparticulates for augmented cytotoxic efficacy to hepatocellular carcinoma. J Colloid Interface Sci 2019; 551:1-9. [DOI: 10.1016/j.jcis.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
|
26
|
Gatti THH, Eloy JO, Ferreira LMB, Silva ICD, Pavan FR, Gremião MPD, Chorilli M. Insulin-loaded polymeric mucoadhesive nanoparticles: development, characterization and cytotoxicity evaluation. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000117314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
27
|
Feng Y, He H, Li F, Lu Y, Qi J, Wu W. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today 2018; 23:1079-1088. [PMID: 29330120 DOI: 10.1016/j.drudis.2018.01.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/16/2017] [Accepted: 01/04/2018] [Indexed: 12/28/2022]
Abstract
A quantitative analysis has cast doubt over the limited advantages provided by particles for nose-to-brain (NTB) drug delivery. Thus, it is imperative to identify the role of nanovehicles in NTB drug delivery. If nanocarriers are used merely as an option to improve various properties of the drugs or the formulations, it is difficult for them to outperform conventional formulations, such as solutions or gels. However, nanovehicles bring about special features, such as maintenance of the solubilized state of drugs, sustained or delayed release, and enhanced penetration because of surface modifications, all of which lead to enhanced NTB delivery efficiency.
Collapse
Affiliation(s)
- Yunhai Feng
- Department of Otorhinolaryngology Head & Neck Surgery, Dahua Hospital, Shanghai, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Fengqian Li
- Department of Otorhinolaryngology Head & Neck Surgery, Dahua Hospital, Shanghai, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Wu JZ, Williams GR, Li HY, Wang D, Wu H, Li SD, Zhu LM. Glucose- and temperature-sensitive nanoparticles for insulin delivery. Int J Nanomedicine 2017; 12:4037-4057. [PMID: 28603417 PMCID: PMC5457184 DOI: 10.2147/ijn.s132984] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glucose- and temperature-sensitive polymers of a phenylboronic acid derivative and diethylene glycol dimethacrylate (poly(3-acrylamidophenyl boronic acid-b-diethylene glycol methyl ether methacrylate); p(AAPBA-b-DEGMA)) were prepared by reversible addition–fragmentation chain transfer polymerization. Successful polymerization was evidenced by 1H nuclear magnetic resonance and infrared spectroscopy, and the polymers were further explored in terms of their glass transition temperatures and by gel permeation chromatography (GPC). The materials were found to be temperature sensitive, with lower critical solution temperatures in the region of 12°C–47°C depending on the monomer ratio used for reaction. The polymers could be self-assembled into nanoparticles (NPs), and the zeta potential and size of these particles were determined as a function of temperature and glucose concentration. Subsequently, the optimum NP formulation was loaded with insulin, and the drug release was studied. We found that insulin was easily encapsulated into the p(AAPBA-b-DEGMA) NPs, with a loading capacity of ~15% and encapsulation efficiency of ~70%. Insulin release could be regulated by changes in temperature and glucose concentration. Furthermore, the NPs were non-toxic both in vitro and in vivo. Finally, the efficacy of the formulations at managing blood glucose levels in a murine hyperglycemic diabetes model was studied. The insulin-loaded NPs could reduce blood glucose levels over an extended period of 48 h. Since they are both temperature and glucose sensitive and offer a sustained-release profile, these systems may comprise potent new formulations for insulin delivery.
Collapse
Affiliation(s)
- Jun-Zi Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | | | - He-Yu Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Dongxiu Wang
- Central Laboratory, Environmental Monitoring Center of Kunming
| | - Huanling Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Shu-De Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, People's Republic of China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
30
|
Cai B, Luo Y, Guo Q, Zhang X, Wu Z. A glucose-sensitive block glycopolymer hydrogel based on dynamic boronic ester bonds for insulin delivery. Carbohydr Res 2017; 445:32-39. [PMID: 28395252 DOI: 10.1016/j.carres.2017.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/18/2017] [Accepted: 04/05/2017] [Indexed: 12/01/2022]
Abstract
Hydrogels are good candidates to satisfy many needs for functional and tunable biomaterials. How to precisely control the gel structure and functions is crucial for the construction of sophisticated soft biomaterials comprising the hydrogels, which facilitates the impact of the surrounding environment on a unique biological function occurring. Here, glucose-responsive hydrogels comprised of 3-acrylamidophenyl boronic acid copolymerized with 2-lactobionamidoethyl methacrylate (p(APBA-b-LAMA)) were synthesized, and further evaluated as carriers for insulin delivery. The formation of (p(APBA-b-LAMA)) hydrogel was based on dynamic covalent bond using the association of boronic acid with diols. P(APBA-b-LAMA) hydrogel with the typical porous structure showed a rapid increase in equilibrium of swelling, which was up to 1856% after incubation with aqueous solution. Using insulin as a model protein therapeutic, p(APBA-b-LAMA) hydrogel exhibited high drug loading capability up to 15.6%, and also displayed glucose-dependent insulin release under physiological conditions. Additionally, the viability of NIH3T3 cells was more than 90% after treated with p(APBA-b-LAMA) hydrogel, indicating that the hydrogel had no cytotoxicity. Consequently, the novel p(APBA-b-LAMA) hydrogel has a practical application for diabetes treatment.
Collapse
Affiliation(s)
- Baoqi Cai
- The Xiyu Village Street Community Health Service Center in Hongqiao District, Tianjin, 300130, China
| | - Yanping Luo
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
31
|
Zhao L, Huang Q, Liu Y, Wang Q, Wang L, Xiao S, Bi F, Ding J. Boronic Acid as Glucose-Sensitive Agent Regulates Drug Delivery for Diabetes Treatment. MATERIALS (BASEL, SWITZERLAND) 2017; 10:170. [PMID: 28772528 PMCID: PMC5459139 DOI: 10.3390/ma10020170] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 12/30/2022]
Abstract
In recent years, glucose-sensitive drug delivery systems have attracted considerable attention in the treatment of diabetes. These systems can regulate payload release by the changes of blood glucose levels continuously and automatically with potential application in self-regulated drug delivery. Boronic acid (BA), especially phenylboronic acid (PBA), as glucose-sensitive agent has been the focus of research in the design of glucose-sensitive platforms. This article reviews the previous attempts at the developments of PBA-based glucose-sensitive drug delivery systems regarding the PBA-functionalized materials and glucose-triggered drug delivery. The obstacles and potential developments of glucose-sensitive drug delivery systems based on PBA for diabetes treatment in the future are also described. The PBA-functionalized platforms that regulate drug delivery induced by glucose are expected to contribute significantly to the design and development of advanced intelligent self-regulated drug delivery systems for treatment of diabetes.
Collapse
Affiliation(s)
- Li Zhao
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Qiongwei Huang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Yangyang Liu
- Department of Endocrine, the First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Liyan Wang
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Shanshan Xiao
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Fei Bi
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
32
|
Guo H, Yang D, Yang M, Gao Y, Liu Y, Li H. Dual responsive Pickering emulsions stabilized by constructed core crosslinked polymer nanoparticles via reversible covalent bonds. SOFT MATTER 2016; 12:9683-9691. [PMID: 27858037 DOI: 10.1039/c6sm02336c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, pH- and glucose-responsive Pickering emulsions stabilized by core crosslinked polymer nanoparticles, which were constructed via reversible covalent bonds, were presented for the first time. Firstly, well-defined PDMA-b-PAPBA (poly(N,N-dimethylacrylamide)-b-poly(3-acrylamidophenylboronic acid)) diblock copolymers were synthesized via sequential reversible addition-fragmentation chain transfer (RAFT) polymerization reactions. By means of complexation of PBA units of PDMA-b-PAPBA with PVA in basic water, core crosslinked polymer nanoparticles (CCPNs) with a core-shell structure were formed. The PAPBA/PVA crosslinked network and PDMA acted as the core and shell, respectively. Because of the reversible B-O chemical bonds in the core, the as-produced CCPNs showed structural transitions in response to the external stimuli involving pH and glucose. Investigation of the interfacial activities revealed that CCPNs exhibited high emulsifying performances, and oil in water (o/w) Pickering emulsions could be formed at a low particle content. The formed Pickering emulsions showed high stability at room temperature without any disturbances, whereas de-emulsification was observed upon improving the pH or adding glucose at a given pH. This is the first report on a responsive Pickering emulsion whose stability can be manipulated by glucose, and this type of fabricated manipulative Pickering emulsions are expected to provide useful guidance in the fields of oil recovery, interfacial reactions, etc.
Collapse
Affiliation(s)
- Huazhang Guo
- College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China.
| | - Duanguang Yang
- College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China.
| | - Mei Yang
- College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China.
| | - Yong Gao
- College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China. and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan, Hunan Province 411105, China
| | - Yijiang Liu
- College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China.
| | - Huaming Li
- College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, China. and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan, Hunan Province 411105, China
| |
Collapse
|
33
|
Shi D, Ran M, Zhang L, Huang H, Li X, Chen M, Akashi M. Fabrication of Biobased Polyelectrolyte Capsules and Their Application for Glucose-Triggered Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13688-13697. [PMID: 27210795 DOI: 10.1021/acsami.6b02121] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To enhance the glucose sensitivity and self-regulated release of insulin, biobased capsules with glucose-responsive and competitive properties were fabricated based on poly(γ-glutamic acid) (γ-PGA) and chitosan oligosaccharide (CS) polyelectrolytes. First, poly(γ-glutamic acid)-g-3-aminophenylboronic acid) (γ-PGA-g-APBA) and galactosylated chitosan oligosaccharide (GC) were synthesized by grafting APBA and lactobionic acid (LA) to γ-PGA and CS, respectively. The (γ-PGA-g-APBA/GC)5 capsules were then prepared by layer-by-layer (LBL) assembly of γ-PGA-g-APBA and GC via electrostatic interaction. The size and morphology of the particles and capsules were investigated by DLS, SEM, and TEM. The size of the (γ-PGA-g-APBA/GC)5 capsules increased with increasing glucose concentration due to the swelling of the capsules. The capsules could be dissociated at high glucose concentration due to the breaking of the cross-linking bonds between APBA and LA by the competitive reaction of APBA with glucose. The encapsulated insulin was able to undergo self-regulated release from the capsules depending on the glucose level and APBA composition. The amount of insulin release increased with incubation in higher glucose concentration and decreased with higher APBA composition. Moreover, the on-off regulation of insulin release from the (γ-PGA-g-APBA/GC)5 capsules could be triggered with a synchronizing and variation of the external glucose concentration, whereas the capsules without the LA functional groups did not show the on-off regulated release. Furthermore, the (γ-PGA-g-APBA/GC)5 capsules are biocompatible. These (γ-PGA-g-APBA/GC)5 with good stability, glucose response, and controlled insulin delivery are expected to be used for future applications to glucose-triggered insulin delivery.
Collapse
Affiliation(s)
- Dongjian Shi
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | - Maoshuang Ran
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | - Li Zhang
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | - He Huang
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | - Xiaojie Li
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | - Mingqing Chen
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , 2-1 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
34
|
Wang M, Shan F, Zou Y, Sun X, Zhang ZR, Fu Y, Gong T. Pharmacokinetic and pharmacodynamic study of a phospholipid-based phase separation gel for once a month administration of octreotide. J Control Release 2016; 230:45-56. [DOI: 10.1016/j.jconrel.2016.03.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 01/28/2023]
|
35
|
Zhang H, Yu M, Zhang H, Bai L, Wu Y, Wang S, Ba X. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues. Biosci Biotechnol Biochem 2016; 80:1451-8. [PMID: 27098211 DOI: 10.1080/09168451.2016.1171696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.
Collapse
Affiliation(s)
- Haisong Zhang
- a College of Chemistry and Environmental Science, Hebei University , Baoding , P.R. China.,b Department of Nephrology , Affiliated Hospital of Hebei University , Baoding , P.R. China
| | - Meng Yu
- b Department of Nephrology , Affiliated Hospital of Hebei University , Baoding , P.R. China
| | - Hailei Zhang
- a College of Chemistry and Environmental Science, Hebei University , Baoding , P.R. China
| | - Libin Bai
- a College of Chemistry and Environmental Science, Hebei University , Baoding , P.R. China
| | - Yonggang Wu
- a College of Chemistry and Environmental Science, Hebei University , Baoding , P.R. China
| | - Sujuan Wang
- a College of Chemistry and Environmental Science, Hebei University , Baoding , P.R. China
| | - Xinwu Ba
- a College of Chemistry and Environmental Science, Hebei University , Baoding , P.R. China
| |
Collapse
|
36
|
Guo H, Li H, Gao J, Zhao G, Ling L, Wang B, Guo Q, Gu Y, Li C. Phenylboronic acid-based amphiphilic glycopolymeric nanocarriers for in vivo insulin delivery. Polym Chem 2016. [DOI: 10.1039/c6py00131a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes mellitus, a disorder of glucose regulation, is a global burden affecting millions of people across the world.
Collapse
Affiliation(s)
- Honglei Guo
- Division of Nephrology
- The Fifth People's Hospital of Shanghai
- Fudan University
- Shanghai
- China
| | - Hongmei Li
- Division of Nephrology
- The Fifth People's Hospital of Shanghai
- Fudan University
- Shanghai
- China
| | - Juntao Gao
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P.R. China
| | - Guangxi Zhao
- Division of Gastroenterology
- Zhongshan Hospital
- Fudan University
- Shanghai
- China
| | - Lilu Ling
- Division of Nephrology
- The Fifth People's Hospital of Shanghai
- Fudan University
- Shanghai
- China
| | - Bin Wang
- Division of Nephrology
- Huashan Hospital and Institute of Nephrology
- Fudan University
- Shanghai
- China
| | - Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yong Gu
- Division of Nephrology
- The Fifth People's Hospital of Shanghai
- Fudan University
- Shanghai
- China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
37
|
Guo Q, Zhang T, An J, Wu Z, Zhao Y, Dai X, Zhang X, Li C. Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles. Biomacromolecules 2015; 16:3345-56. [PMID: 26397308 DOI: 10.1021/acs.biomac.5b01020] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To explore the effect of polymer structure on their self-assembled aggregates and their unique characteristics, this study was devoted to developing a series of amphiphilic block and random phenylboronic acid-based glycopolymers by RAFT polymerization. The amphiphilic glycopolymers were successfully self-assembled into spherically shaped nanoparticles with narrow size distribution in aqueous solution. For block and random copolymers with similar monomer compositions, block copolymer nanoparticles exhibited a more regular transmittance change with the increasing glucose level, while a more evident variation of size and quicker decreasing tendency in I/I0 behavior in different glucose media were observed for random copolymer nanoparticles. Cell viability of all the polymer nanoparticles investigated by MTT assay was higher than 80%, indicating that both block and random copolymers had good cytocompatibility. Insulin could be encapsulated into both nanoparticles, and insulin release rate for random glycopolymer was slightly quicker than that for the block ones. We speculate that different chain conformations between block and random glycopolymers play an important role in self-assembled nanoaggregates and underlying glucose-sensitive behavior.
Collapse
Affiliation(s)
- Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Tianqi Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Jinxia An
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Zhongming Wu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital, Tianjin Medical University , Tianjin 300070, China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| |
Collapse
|
38
|
A facile approach to prepare hybrid nanoparticles with morphology controlled by the thickness of glyco-shell. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Zheng X, Shao X, Zhang C, Tan Y, Liu Q, Wan X, Zhang Q, Xu S, Jiang X. Intranasal H102 Peptide-Loaded Liposomes for Brain Delivery to Treat Alzheimer's Disease. Pharm Res 2015; 32:3837-49. [PMID: 26113236 DOI: 10.1007/s11095-015-1744-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/17/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE H102, a novel β-sheet breaker peptide, was encapsulated into liposomes to reduce its degradation and increase its brain penetration through intranasal administration for the treatment of Alzheimer's disease (AD). METHODS The H102 liposomes were prepared using a modified thin film hydration method, and their transport characteristics were tested on Calu-3 cell monolayers. The pharmacokinetics in rats' blood and brains were also investigated. Behavioral experiments were performed to evaluate the improvements on AD rats' spatial memory impairment. The neuroprotective effects were tested by detecting acetylcholinesterase (AchE), choline acetyltransferase (ChAT) and insulin degrading enzyme (IDE) activity and conducting histological assays. The safety was evaluated on rats' nasal mucosa and cilia. RESULTS The liposomes prepared could penetrate Calu-3 cell monolayers consistently. After intranasal administration, H102 could be effectively delivered to the brain, and the AUC of H102 liposomes in the hippocampus was 2.92-fold larger than that of solution group. H102 liposomes could excellently ameliorate spatial memory impairment of AD model rats, increase the activities of ChAT and IDE and inhibit plaque deposition, even in a lower dosage compared with H102 intranasal solution. H102 nasal formulations showed no toxicity on nasal mucosa. CONCLUSIONS The H102-loaded liposome prepared in this study for nasal administration is stable, effective and safe, which has great potential for AD treatment.
Collapse
Affiliation(s)
- Xiaoyao Zheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| | - Xiayan Shao
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| | - Chi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| | - Yuanzhen Tan
- Department of Physiology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Qingfeng Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| | - Xu Wan
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China. .,Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Rd., Shanghai, 201203, People's Republic of China.
| | - Shumei Xu
- Department of Physiology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xinguo Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, People's Republic of China
| |
Collapse
|
40
|
|
41
|
KANDOLIYA U, VAKHARIA D. Ascorbic acid and ascorbate peroxidase based defence system induced by Pseudomonas fluorescens against wilt pathogen in chickpea. ACTA ACUST UNITED AC 2015. [DOI: 10.15740/has/ijpp/8.1/86-92] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
George I, Naudin G, Boland S, Mornet S, Contremoulins V, Beugnon K, Martinon L, Lambert O, Baeza-Squiban A. Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier. NANOSCALE 2015; 7:4529-4544. [PMID: 25685900 DOI: 10.1039/c4nr07079h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inhalation is the most frequent route of unintentional exposure to nanoparticles (NPs). Our aim was to quantify the translocation of different metallic NPs across human bronchial epithelial cells and to determine the factors influencing this translocation. Calu-3 cells forming a tight epithelial barrier when grown on a porous membrane in a two compartment chamber were exposed to fluorescently labelled NPs to quantify the NP translocation. NP translocation and uptake by cells were also studied by confocal and transmission electron microscopy. Translocation was characterized according to NP size (16, 50, or 100 nm), surface charge (negative or positive SiO2), composition (SiO2 or TiO2), presence of proteins or phospholipids and in an inflammatory context. Our results showed that NPs can translocate through the Calu-3 monolayer whatever their composition (SiO2 or TiO2), but this translocation was increased for the smallest and negatively charged NPs. Translocation was not associated with an alteration of the integrity of the epithelial monolayer, suggesting a transcytosis of the internalized NPs. By modifying the NP corona, the ability of NPs to cross the epithelial barrier differed depending on their intrinsic properties, making positively charged NPs more prone to translocate. NP translocation can be amplified by using agents known to open tight junctions and to allow paracellular passage. NP translocation was also modulated when mimicking an inflammatory context frequently found in the lungs, altering the epithelial integrity and inducing transient tight junction opening. This in vitro evaluation of NP translocation could be extended to other inhaled NPs to predict their biodistribution.
Collapse
Affiliation(s)
- Isabelle George
- Univ Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) (BFA) UMR 8251 CNRS, F-75205, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Petrova KT, Dey SS, Barros MT. Formation of spherical and core-shell polymeric microparticles from glycopolymers. Carbohydr Polym 2015; 125:281-7. [PMID: 25857985 DOI: 10.1016/j.carbpol.2015.02.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 01/17/2023]
Abstract
6-O-methacryloyl-α-d-glucoside 2 and 4-bromophenyl-6-O-methacryloyl-d-glucothioside 7, obtained by enzyme-catalyzed synthesis, have been homo-polymerized and copolymerized with styrene by a free radical process, yielding polymer materials with sugar moieties, attached to the polymer backbone via ester linkages. The results demonstrated that modifying the structural features of the monomers greatly affected the thermal and rheological properties of the polymers. The polymer materials obtained have been characterized by NMR, MALDI-MS, DSC, AFM, and EWC (equilibrium water content). The AFM images indicated the formation of spherical and core-shell polymeric microparticles.
Collapse
Affiliation(s)
- Krasimira T Petrova
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Suvendu S Dey
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - M Teresa Barros
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
44
|
Witting M, Obst K, Friess W, Hedtrich S. Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers. Biotechnol Adv 2015; 33:1355-69. [PMID: 25687276 DOI: 10.1016/j.biotechadv.2015.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/19/2022]
Abstract
Proteins and peptides are increasingly important therapeutics for the treatment of severe and complex diseases like cancer or autoimmune diseases due to their high specificity and potency. Their unique structure and labile physicochemical properties, however, require special attention in the production and formulation process as well as during administration. Aside from conventional systemic injections, the topical application of proteins and peptides is an appealing alternative due to its non-invasive nature and thus high acceptance by patients. For this approach, soft matter nanocarriers are interesting delivery systems which offer beneficial properties such as high biocompatibility, easiness of modifications, as well as targeted drug delivery and release. This review aims to highlight and discuss technological developments in the field of soft matter nanocarriers for the delivery of proteins and peptides via the skin, the eye, the nose, and the lung, and to provide insights in advantages, limitations, and practicability of recent advances.
Collapse
Affiliation(s)
- Madeleine Witting
- Department of Pharmaceutical Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katja Obst
- Institute for Pharmaceutical Sciences, Freie Universität Berlin, Germany
| | - Wolfgang Friess
- Department of Pharmaceutical Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sarah Hedtrich
- Institute for Pharmaceutical Sciences, Freie Universität Berlin, Germany.
| |
Collapse
|
45
|
George I, Vranic S, Boland S, Courtois A, Baeza-Squiban A. Development of an in vitro model of human bronchial epithelial barrier to study nanoparticle translocation. Toxicol In Vitro 2015; 29:51-8. [DOI: 10.1016/j.tiv.2014.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/26/2014] [Accepted: 08/10/2014] [Indexed: 11/29/2022]
|
46
|
Abstract
This review focuses on the different approaches to synthesizing glycopolymer-based nanoparticles and their various applications.
Collapse
Affiliation(s)
- Xiao Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| |
Collapse
|
47
|
Li C, Liu Z, Yan X, Lu W, Liu Y. Mucin-controlled drug release from mucoadhesive phenylboronic acid-rich nanoparticles. Int J Pharm 2014; 479:261-4. [PMID: 25528296 DOI: 10.1016/j.ijpharm.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/13/2014] [Accepted: 12/07/2014] [Indexed: 11/19/2022]
Abstract
Phenylboronic acid-rich nanoparticles (PBNPs) were designed as a novel mucoadhesive vaginal drug delivery system. PBNPs effectively adsorbed mucin in vitro and could be easily loaded with the model drug interferon (IFN). Drug release from PBNPs was controlled by the presence of mucin. Neither obvious cytotoxicity nor vaginal histological changes in mice caused by PBNPs or IFN-loaded PBNPs were observed.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China; School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zheshuo Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China; School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xueying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
48
|
Peng ZH, Kopeček J. HPMA Copolymer CXCR4 Antagonist Conjugates Substantially Inhibited the Migration of Prostate Cancer Cells. ACS Macro Lett 2014; 3:1240-1243. [PMID: 25621190 PMCID: PMC4299399 DOI: 10.1021/mz5006537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/14/2014] [Indexed: 01/19/2023]
Abstract
![]()
A N-(2-hydroxypropyl)methacrylamide
(HPMA) copolymer–CXCR4
antagonist (BKT140) conjugate (P-BKT140) was developed and its biological
activities were tested. Both free BKT140 and monomer MA-GGPLGLAG-BKT140
(MA is methacryloyl) were prepared by solid phase synthesis. P-BKT140
was prepared by reversible addition–fragmentation chain transfer
(RAFT) copolymerization of monomers HPMA and MA-GGPLGLAG-BKT140. The
in vitro results show that the free BKT140 and P-BKT140 have similar
cytotoxicity against human prostate carcinoma PC-3 cells, indicating
that conjugation of BKT140 to HPMA did not significantly impact the
cytotoxicity of BKT140. Both BKT140 and P-BKT140 inhibited the CXCL12-induced
migration of PC-3 prostate cancer cells, but the P-BKT140 conjugate
possessed a substantially higher inhibition activity than free BKT140.
Collapse
Affiliation(s)
- Zheng-Hong Peng
- Departments of †Pharmaceutics and Pharmaceutical Chemistry/CCCD and ‡Bioengineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Jindřich Kopeček
- Departments of †Pharmaceutics and Pharmaceutical Chemistry/CCCD and ‡Bioengineering, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
49
|
Perdih P, Cebašek S, Možir A, Zagar E. Post-polymerization modification of poly(L-glutamic acid) with D-(+)-glucosamine. Molecules 2014; 19:19751-68. [PMID: 25438084 PMCID: PMC6270794 DOI: 10.3390/molecules191219751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022] Open
Abstract
Carboxyl functional groups of poly(L-glutamic acid) (PGlu) were modified with a D-(+)-glucosamine (GlcN) by amidation using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling reagent. The coupling reaction was performed in aqueous medium without protection of hydroxyl functional groups of D-(+)-glucosamine. Poly(L-glutamic acid) and GlcN functionalized polyglutamates (P(Glu-GlcN)) were thoroughly characterized by 1D and 2D NMR spectroscopy and SEC-MALS to gain detailed information on their structure, composition and molar mass characteristics. The results reveal successful functionalization with GlcN through the amide bond and also to a minor extent through ester bond formation in position 1 of GlcN. In addition, a ratio between the α- and β-form of glucosamine substituent coupled to polyglutamate repeating units as well as the content of residual dimethoxy triazinyl active ester moiety in the samples were evaluated.
Collapse
Affiliation(s)
- Peter Perdih
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Sašo Cebašek
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Alenka Možir
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Ema Zagar
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
50
|
Ibraheem D, Elaissari A, Fessi H. Administration strategies for proteins and peptides. Int J Pharm 2014; 477:578-89. [PMID: 25445533 DOI: 10.1016/j.ijpharm.2014.10.059] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 02/01/2023]
Abstract
Proteins are a vital constituent of the body as they perform many of its major physiological and biological processes. Recently, proteins and peptides have attracted much attention as potential treatments for various dangerous and traditionally incurable diseases such as cancer, AIDS, dwarfism and autoimmune disorders. Furthermore, proteins could be used for diagnostics. At present, most therapeutic proteins are administered via parenteral routes that have many drawbacks, for example, they are painful, expensive and may cause toxicity. Finding more effective, easier and safer alternative routes for administering proteins and peptides is the key to therapeutic and commercial success. In this context, much research has been focused on non-invasive routes such as nasal, pulmonary, oral, ocular, and rectal for administering proteins and peptides. Unfortunately, the widespread use of proteins and peptides as drugs is still faced by many obstacles such as low bioavailability, short half-life in the blood stream, in vivo instability and numerous other problems. In order to overcome these hurdled and improve protein/peptide drug efficacy, various strategies have been developed such as permeability enhancement, enzyme inhibition, protein structure modification and protection by encapsulation. This review provides a detailed description of all the previous points in order to highlight the importance and potential of proteins and peptides as drugs.
Collapse
Affiliation(s)
- D Ibraheem
- University of Lyon, F-69622, Lyon, France, University Lyon-1, Villeurbanne, CNRS, UMR-5007, LAGEP- CPE, 43 bd 11 Novembre 1918, F-69622 Villeurbanne, France
| | - A Elaissari
- University of Lyon, F-69622, Lyon, France, University Lyon-1, Villeurbanne, CNRS, UMR-5007, LAGEP- CPE, 43 bd 11 Novembre 1918, F-69622 Villeurbanne, France
| | - H Fessi
- University of Lyon, F-69622, Lyon, France, University Lyon-1, Villeurbanne, CNRS, UMR-5007, LAGEP- CPE, 43 bd 11 Novembre 1918, F-69622 Villeurbanne, France.
| |
Collapse
|