1
|
Kundnani NR, Lolescu B, Dinu AR, Berceanu-Vaduva DM, Dumitrescu P, Tamaș TP, Sharma A, Popa MD. Biotechnology Revolution Shaping the Future of Diabetes Management. Biomolecules 2024; 14:1563. [PMID: 39766270 PMCID: PMC11674738 DOI: 10.3390/biom14121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) has a millennia-long history, with early references dating back to ancient Egypt and India. However, it was not until the 20th century that the connection between diabetes and insulin was fully understood. The sequencing of insulin in the 1950s initiated the convergence of biotechnology and diabetes management, leading to the development of recombinant human insulin in 1982. This marked the start of peptide-based therapies in DM. Recombinant peptides for DM treatment: Numerous recombinant peptides have been developed since, starting with modified insulin molecules, with the aim of bettering DM management through fine-tuning the glycemic response to insulin. Peptide-based therapies in DM have expanded substantially beyond insulin to include agonists of Glucagon-like peptide-1 receptor and Glucose-dependent insulinotropic polypeptide receptor, glucagon receptor antagonists, and even peptides exerting multiple receptor agonist effects, for better metabolic control. Insulin pumps, continuous glucose monitoring, and automated insulin delivery systems: The development of modern delivery systems combined with real-time glucose monitoring has significantly advanced diabetes care. Insulin pumps evolved from early large devices to modern sensor-augmented pumps with automated shutoff features and hybrid closed-loop systems, requiring minimal user input. The second-generation systems have demonstrated superior outcomes, proving highly effective in diabetes management. Islet cell transplantation, organoids, and biological pancreas augmentation represent innovative approaches to diabetes management. Islet cell transplantation aims to restore insulin production by transplanting donor beta cells, though challenges persist regarding graft survival and the need for immunosuppression. Organoids are a promising platform for generating insulin-producing cells, although far from clinical use. Biological pancreas augmentation relies on therapies that promote beta-cell (re)generation, reduce stress, and induce immune tolerance. Further biotechnology-driven perspectives in DM will include metabolic control via biotechnology-enabled tools such as custom-designed insulin hybrid molecules, machine-learning algorithms to control peptide release, and engineering cells for optimal peptide production and secretion.
Collapse
Affiliation(s)
- Nilima Rajpal Kundnani
- Department of Cardiology—Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (N.R.K.)
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babeșs” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Lolescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Anca-Raluca Dinu
- Department XVI, Medical Recovery, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Assessment of Human Motion and Functionality and Disability, “Victor Babeșs” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- “Pius Brinzeu” Emergency Clinical County Hospital, Bld Liviu Rebreanu, No. 156, 300723 Timisoara, Romania
| | - Delia Mira Berceanu-Vaduva
- Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (D.M.B.-V.)
| | - Patrick Dumitrescu
- Faculty of Medicine, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Tudor-Paul Tamaș
- Discipline of Physiology, Department III—Functional Sciences, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Abhinav Sharma
- Department of Cardiology—Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (N.R.K.)
| | - Mihaela-Diana Popa
- Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (D.M.B.-V.)
| |
Collapse
|
2
|
Bendtsen KM, Harder MWH, Glendorf T, Kjeldsen TB, Kristensen NR, Refsgaard HHF. Predicting human half-life for insulin analogs: An inter-drug approach. Eur J Pharm Biopharm 2024; 201:114375. [PMID: 38897553 DOI: 10.1016/j.ejpb.2024.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
An inter-drug approach, applying pharmacokinetic information for insulin analogs in different animal species, rat, dog and pig, performed better compared to allometric scaling for human translation of intra-venous half-life and only required data from a single animal species for reliable predictions. Average fold error (AFE) between 1.2-1.7 were determined for all species and for multispecies allometric scaling AFE was 1.9. A slightly larger prediction error for human half-life was determined from in vitro human insulin receptor affinity data (AFE on 2.3-2.6). The requirements for the inter-drug approach were shown to be a span of at least 2 orders of magnitude in half-life for the included drugs and a shared clearance mechanism. The insulin analogs in this study were the five fatty acid protracted analogs: Insulin degludec, insulin icodec, insulin 320, insulin 338 and insulin 362, as well as the non-acylated analog insulin aspart.
Collapse
Affiliation(s)
- Kristian M Bendtsen
- Digital Sciences & Innovation, Research & Early Development, Novo Nordisk, DK-2760 Måløv, Denmark
| | - Magnus W H Harder
- Global Drug Discovery, Research & Early Development, Novo Nordisk, DK-2760 Måløv, Denmark
| | - Tine Glendorf
- Global Research Technologies, Research & Early Development, Novo Nordisk, DK-2760 Måløv, Denmark
| | - Thomas B Kjeldsen
- Global Research Technologies, Research & Early Development, Novo Nordisk, DK-2760 Måløv, Denmark
| | | | - Hanne H F Refsgaard
- Global Drug Discovery, Research & Early Development, Novo Nordisk, DK-2760 Måløv, Denmark.
| |
Collapse
|
3
|
Karkhaneh L, Hosseinkhani S, Azami H, Karamlou Y, Sheidaei A, Nasli-Esfahani E, Razi F, Ebrahim-Habibi A. Comprehensive investigation of insulin-induced amyloidosis lesions in patients with diabetes at clinical and histological levels: A systematic review. Diabetes Metab Syndr 2024; 18:103083. [PMID: 39079306 DOI: 10.1016/j.dsx.2024.103083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Insulin-derived amyloidosis (AIns), a skin complication in patients with diabetes, causes impaired insulin absorption. This systematic review aims to get a better understanding of this overlooked condition. METHODS Comprehensive literature searches were performed in Scopus, PubMed, EMBASE, and Web of Science databases until June 17, 2023. From 19,343 publications, duplicate and irrelevant records were eliminated by title, and the full texts of the remaining studies were examined for validity. Clinical, pathological, and therapeutic findings were extracted from 44 papers. RESULTS Forty-four articles were studied that covered 127 insulin-treated patients with diabetes. From the 62 patients with reported age and sex, males had a mean age of 58 years, and females 68.5 years. While AIns were twice as likely to develop in men (66.13 %) as in women (33.87 %), the administered insulin dose was significantly higher in males (p = 0.017). The most common insulin injection site was the abdominal wall (77.63 %). Histological findings showed the presence of amorphous material with the occasional presence of lymphocytes, plasma cells, macrophages, adipocytes, histocytes, and giant cells. The mean HbA1c level was 8.8 % and the need for receiving insulin was increased in AIns. Changing the site of insulin injections and/or surgically removing the nodules were the most common treatments to obtain better insulin uptake and controlled serum glucose levels. CONCLUSION This study highlights the importance of AIns, proper rotation of insulin injection site, and post-treatment patient follow-up to recognize and prevent the development of amyloid nodules.
Collapse
Affiliation(s)
- Leyla Karkhaneh
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Hosseinkhani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Azami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Pediatric Cell and Gene Therapy Research Center, Gene and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Sheidaei
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Rama B, Ribeiro AJ. Role of nanotechnology in the prolonged release of drugs by the subcutaneous route. Expert Opin Drug Deliv 2023; 20:559-577. [PMID: 37305971 DOI: 10.1080/17425247.2023.2214362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Subcutaneous physiology is distinct from other parenteral routes that benefit the administration of prolonged-release formulations. A prolonged-release effect is particularly convenient for treating chronic diseases because it is associated with complex and often prolonged posologies. Therefore, drug-delivery systems focused on nanotechnology are proposed as alternatives that can overcome the limitations of current therapeutic regimens and improve therapeutic efficacy. AREAS COVERED This review presents an updated systematization of nanosystems, focusing on their applications in highly prevalent chronic diseases. Subcutaneous-delivered nanosystem-based therapies comprehensively summarize nanosystems, drugs, and diseases and their advantages, limitations, and strategies to increase their translation into clinical applications. An outline of the potential contribution of quality-by-design (QbD) and artificial intelligence (AI) to the pharmaceutical development of nanosystems is presented. EXPERT OPINION Although recent academic research and development (R&D) advances in the subcutaneous delivery of nanosystems have exhibited promising results, pharmaceutical industries and regulatory agencies need to catch up. The lack of standardized methodologies for analyzing in vitro data from nanosystems for subcutaneous administration and subsequent in vivo correlation limits their access to clinical trials. There is an urgent need for regulatory agencies to develop methods that faithfully mimic subcutaneous administration and specific guidelines for evaluating nanosystems.
Collapse
Affiliation(s)
- B Rama
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - A J Ribeiro
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
- Genetics of Cognitive Disfunction, i3S, IBMC, Porto, Portugal
| |
Collapse
|
5
|
Shao H, Tao Y, Tang C. Factors influencing bioequivalence evaluation of insulin biosimilars based on a structural equation model. Front Pharmacol 2023; 14:1143928. [PMID: 37077814 PMCID: PMC10106704 DOI: 10.3389/fphar.2023.1143928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Objective: This study aimed to explore the factors affecting the bioequivalence of test and reference insulin preparations so as to provide a scientific basis for the consistency evaluation of the quality and efficacy of insulin biosimilars.Methods: A randomized, open, two-sequence, single-dose, crossover design was used in this study. Subjects were randomly divided into TR or RT groups in equal proportion. The glucose infusion rate and blood glucose were measured by a 24-h glucose clamp test to evaluate the pharmacodynamic parameters of the preparation. The plasma insulin concentration was determined by liquid chromatography–mass spectrometry (LC-MS/MS) to evaluate pharmacokinetic parameters. WinNonlin 8.1 and SPSS 23.0 were applied for PK/PD parameter calculation and statistical analysis. The structural equation model (SEM) was constructed to analyze the influencing factors of bioequivalence by using Amos 24.0.Results: A total of 177 healthy male subjects aged 18–45 years were analyzed. Subjects were assigned to the equivalent group (N = 55) and the non-equivalent group (N = 122) by bioequivalence results, according to the EMA guideline. Univariate analysis showed statistical differences in albumin, creatinine, Tmax, bioactive substance content, and adverse events between the two groups. In the structural equation model, adverse events (β = 0.342; p < 0.001) and bioactive substance content (β = −0.189; p = 0.007) had significant impacts on the bioequivalence of two preparations, and the bioactive substance content significantly affected adverse events (β = 0.200; p = 0.007).Conclusion: A multivariate statistical model was used to explore the influencing factors for the bioequivalence of two preparations. According to the result of the structural equation model, we proposed that adverse events and bioactive substance content should be optimized for consistency evaluation of the quality and efficacy of insulin biosimilars. Furthermore, bioequivalence trials of insulin biosimilars should strictly obey inclusion and exclusion criteria to ensure the consistency of subjects and avoid confounding factors affecting the equivalence evaluation.
Collapse
Affiliation(s)
- Huarui Shao
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yi Tao
- Phase I Clinical Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yi Tao, ; Chengyong Tang,
| | - Chengyong Tang
- Phase I Clinical Research Center, Bishan Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yi Tao, ; Chengyong Tang,
| |
Collapse
|
6
|
Hirai K, Imamura S, Hirai A, Umemoto N, Oshiro H, Kametani F, Katoh N, Yazaki M, Ookawara S, Morishita Y. A case of asymmetric insulin-derived localised amyloid deposition associated with long-acting insulin analog administration. Amyloid 2022; 29:205-207. [PMID: 35254180 DOI: 10.1080/13506129.2022.2047019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shigeki Imamura
- Department of Internal Medicine, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
| | - Aizan Hirai
- Department of Internal Medicine, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
| | - Naoka Umemoto
- Department of Dermatology, Jichi Medical University, Saitama Medical Center, Saitama, Japan
| | - Hisashi Oshiro
- Department of Diagnostic Pathology, Jichi Medical University, Saitama Medical Center, Saitama, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Nagaaki Katoh
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Masahide Yazaki
- Department of Biomedical Laboratory Sciences, Shinshu University School of Health Sciences, Matsumoto, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
7
|
Bender C, Eichling S, Franzen L, Herzog V, Ickenstein LM, Jere D, Nonis L, Schwach G, Stoll P, Venczel M, Zenk S. Evaluation of in vitro tools to predict the in vivo absorption of biopharmaceuticals following subcutaneous administration. J Pharm Sci 2022; 111:2514-2524. [DOI: 10.1016/j.xphs.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
|
8
|
Pedersen KM, Gradel AKJ, Ludvigsen TP, Christoffersen BØ, Fuglsang-Damgaard CA, Bendtsen KM, Madsen SH, Manfé V, Refsgaard HHF. Optimization of pig models for translation of subcutaneous pharmacokinetics of therapeutic proteins: Liraglutide, insulin aspart and insulin detemir. Transl Res 2022; 239:71-84. [PMID: 34428585 DOI: 10.1016/j.trsl.2021.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022]
Abstract
Prediction of human pharmacokinetics (PK) from data obtained in animal studies is essential in drug development. Here, we present a thorough examination of how to achieve good pharmacokinetic data from the pig model for translational purposes by using single-species allometric scaling for selected therapeutic proteins: liraglutide, insulin aspart and insulin detemir. The predictions were based on non-compartmental analysis of intravenous and subcutaneous PK data obtained from two injection regions (neck, thigh) in two pig breeds, domestic pig and Göttingen Minipig, that were compared with PK parameters reported in humans. The effects of pig breed, injection site and injection depth (insulin aspart only) on the PK of these proteins were also assessed. Results show that the prediction error for human PK was within two-fold for most PK parameters in both pig breeds. Furthermore, pig breed significantly influenced the plasma half-life and mean absorption time (MAT), both being longer in Göttingen Minipigs compared to domestic pigs (P <0.01). In both breeds, thigh vs neck dosing was associated with a higher dose-normalized maximum plasma concentration and area under the curve as well as shorter MAT and plasma half-life (P <0.01). Finally, more superficial injections resulted in faster absorption, higher Cmax/dose and bioavailability of insulin aspart (P <0.05, 3.0 vs 5.0 mm injection depth). In conclusion, pig breed and injection region affected the PK of liraglutide, insulin aspart and insulin detemir and reliable predictions of human PK were demonstrated when applying single-species allometric scaling with the pig as a pre-clinical animal model.
Collapse
Affiliation(s)
| | - Anna Katrina Jógvansdóttir Gradel
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv; Department of Veterinary and Animal Sciences, Section for Experimental Animal Models, University of Copenhagen.
| | | | | | | | | | - Suzi Høgh Madsen
- Translational Medicine, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv
| | - Valentina Manfé
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv
| | | |
Collapse
|
9
|
Li T, Liu H, Yu H, Qiao J, Sun L, Yu Y. Interindividual Variability in the Pharmacodynamic and Pharmacokinetic Characteristics of Recombinant Human Insulin and Insulin Aspart. Clin Ther 2021; 43:594-601.e1. [PMID: 33558076 DOI: 10.1016/j.clinthera.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE The present study compared the interindividual variability in the pharmacodynamic (PD) and pharmacokinetic (PK) properties of a short-acting recombinant human insulin to those of insulin aspart through manual euglycemic glucose clamp tests. METHODS Sixty healthy Chinese male volunteers were randomly assigned to receive human insulin or insulin aspart, administered via SC injection (0.2 U/kg). For the evaluation of interindividual variability in PD and PK properties (glucose infusion rate [GIR], insulin concentration [INS]) through euglycemic clamp studies, %CVs were calculated, and PK/PD interindividual variability was compared between the 2 groups. FINDINGS The differences between the human insulin and insulin aspart groups in interindividual variabilities in total AUCs of the GIR (19% vs 21%) and INS (14% vs 17%) were not significant. The interindividual variabilities in AUCgir0-120min, early Tmax50%, and AUCins0-120min were lower in the insulin aspart group than in the human insulin group (22% vs 44%, 21% vs 35%, and 22% vs 28%, respectively; all, P ˂ 0.05), while the interindividual variabilities in the AUCs of GIR120-600min and INS120-600min were higher with insulin aspart than with human insulin (29% vs 20%, 51% vs 30%; both, P ˂ 0.05). IMPLICATIONS The overall interindividual variability with insulin aspart was similar to that with recombinant human insulin. Yet insulin concentration and metabolic effect during the declining period were more variable with insulin aspart compared to human insulin in these healthy male subjects.
Collapse
Affiliation(s)
- Ting Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Liu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Hongling Yu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Jingtao Qiao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Lisi Sun
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yerong Yu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Novel application of synchrotron x-ray computed tomography for ex-vivo imaging of subcutaneously injected polymeric microsphere suspension formulations. Pharm Res 2020; 37:97. [PMID: 32409985 PMCID: PMC7225200 DOI: 10.1007/s11095-020-02825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 11/13/2022]
Abstract
Purpose Subcutaneously or intramuscularly administered biodegradable microsphere formulations have been successfully exploited in the management of chronic conditions for over two decades, yet mechanistic understanding of the impact of formulation attributes on in vivo absorption rate from such systems is still in its infancy. Methods Suspension formulation physicochemical attributes may impact particulate deposition in subcutaneous (s.c.) tissue. Hence, the utility of synchrotron X-ray micro-computed tomography (μCT) for assessment of spatial distribution of suspension formulation components (PLG microspheres and vehicle) was evaluated in a porcine s.c. tissue model. Optical imaging of dyed vehicle and subsequent microscopic assessment of microsphere deposition was performed in parallel to compare the two approaches. Results Our findings demonstrate that synchrotron μCT can be applied to the assessment of microsphere and vehicle distribution in s.c. tissue, and that microspheres can also be visualised in the absence of contrast agent using this approach. The technique was deemed superior to optical imaging of macrotomy for the characterisation of microsphere deposition owing to its non-invasive nature and relatively rapid data acquisition time. Conclusions The method outlined in this study provides a proof of concept feasibility for μCT application to determining the vehicle and suspended PLG microspheres fate following s.c. injection. A potential application for our findings is understanding the impact of injection, device and formulation variables on initial and temporal depot geometry in pre-clinical or ex-vivo models that can inform product design. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11095-020-02825-9) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Tao F, Sayo K, Sugimoto K, Aoki S, Kojima N. Development of a tunable method to generate various three-dimensional microstructures by replenishing macromolecules such as extracellular matrix components and polysaccharides. Sci Rep 2020; 10:6567. [PMID: 32300241 PMCID: PMC7162899 DOI: 10.1038/s41598-020-63621-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
Multicellular spheroids (spheroids) are expected to be a promising approach to mimic in vivo organ functions and cell microenvironments. However, conventional spheroids do not fully consider the existence of extracellular matrices (ECMs). In this study, we developed a tunable method for replenishing macromolecules, including ECM components and polysaccharides, into spheroids without compromising cell viability by injecting a microvolume cell suspension into a high density of methylcellulose dissolved in the culture medium. Adjusting the ECM concentration in the cell suspension enabled the generation of different three-dimensional microstructures, such as "ECM gel capsules", which contained individually separated cells, and "ECM-loaded spheroids", which had thin ECM layers between cells. ECM-loaded spheroids with a 30-fold dilution of Matrigel (0.3 mg/ml) showed significantly higher albumin secretion than control spheroids composed of Hep G2 or HuH-7 cells. Additionally, the expression levels of major CYP genes were decreased in ECM gel capsules with undiluted Matrigel (9 mg/ml) compared to those in control spheroids. However, 0.3 mg/ml Matrigel did not disrupt gene expression. Furthermore, cell polarity associated with tight junction proteins (ZO-1 and Claudin-1) and the transporter protein MRP2 was markedly induced by using 0.3 mg/ml Matrigel. Thus, high-performance three-dimensional tissues fabricated by this method are applicable to increasing the efficiency of drug screening and to regenerative medicine.
Collapse
Affiliation(s)
- Fumiya Tao
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Kanae Sayo
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Kazuyuki Sugimoto
- Solution Division, Quality Assurance and Customer Support Center, Life Innovation Business Headquarters, Yokogawa Electric Corporation, Kanazawa, Japan
| | - Shigehisa Aoki
- Department of Pathology & Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Nobuhiko Kojima
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
12
|
Nagel N, Graewert MA, Gao M, Heyse W, Jeffries CM, Svergun D, Berchtold H. The quaternary structure of insulin glargine and glulisine under formulation conditions. Biophys Chem 2019; 253:106226. [PMID: 31376619 DOI: 10.1016/j.bpc.2019.106226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
Abstract
The quaternary structures of insulin glargine and glulisine under formulation conditions and upon dilution using placebo or water were investigated using synchrotron small-angle X-ray scattering. Our results revealed that insulin glulisine in Apidra® is predominantly hexameric in solution with significant fractions of dodecamers and monomers. Upon dilution with placebo, this equilibrium shifts towards monomers. Insulin glargine in Lantus® and Toujeo® is present in a stable hexamer/dimer equilibrium, which is hardly affected by dilution with water down to 1 mg/ml insulin concentration. The results provide exclusive insight into the quaternary structure and thus the association/dissociation properties of the two insulin analogues in marketed formulations.
Collapse
Affiliation(s)
- Norbert Nagel
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany.
| | - Melissa A Graewert
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestraße 85, 22603 Hamburg, Germany; BioSAXS GmbH c/o DESY, Notkestraße 85, 22603 Hamburg, Germany
| | - Mimi Gao
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Winfried Heyse
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestraße 85, 22603 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestraße 85, 22603 Hamburg, Germany.
| | - Harald Berchtold
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| |
Collapse
|
13
|
Gradel AKJ, Porsgaard T, Brockhoff PB, Seested T, Lykkesfeldt J, Refsgaard HHF. Delayed insulin absorption correlates with alterations in subcutaneous depot kinetics in rats with diet-induced obesity. Obes Sci Pract 2019; 5:281-288. [PMID: 31275602 PMCID: PMC6587326 DOI: 10.1002/osp4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Obesity is associated with delayed insulin absorption upon subcutaneous (s.c.) dosing in humans. The aim of this study was to investigate whether alterations in depot structure and kinetics of the s.c. injection depot contribute to this delay. METHODS Rats fed a high-fat diet (HFD) and low-fat diet (LFD) were included in a series of insulin pharmacokinetic and imaging studies. Injection depots were visualized with micro X-ray computed tomography imaging upon s.c. administration of insulin aspart mixed with the contrast agent iomeprol, and insulin aspart exposure was measured by means of luminescent oxygen channelling immunoassay. RESULTS Body weight and fat mass were increased in rats fed an HFD vs. LFD (p < 0.05), whereas the lean mass was not. The HFD group exhibited delayed insulin absorption from the s.c. tissue (p < 0.001). This delay was associated with smaller injection depots upon s.c. dosing (p < 0.05) and correlated with a slower depot disappearance from the s.c. tissue (p < 0.05) compared with the LFD group. Depot disappearance from the s.c. tissue was inversely correlated with body fat mass (p < 0.05). CONCLUSIONS Alterations in s.c. injection depot structure and kinetics may play a role in the obesity-associated delay in insulin absorption.
Collapse
Affiliation(s)
- A. K. J. Gradel
- Department of Veterinary and Animal Sciences, Section of Experimental Animal Models, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - T. Porsgaard
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - P. B. Brockhoff
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKgs. LyngbyDenmark
| | - T. Seested
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - J. Lykkesfeldt
- Department of Veterinary and Animal Sciences, Section of Experimental Animal Models, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | |
Collapse
|
14
|
Gradel AKJ, Porsgaard T, Lykkesfeldt J, Seested T, Gram-Nielsen S, Kristensen NR, Refsgaard HHF. Factors Affecting the Absorption of Subcutaneously Administered Insulin: Effect on Variability. J Diabetes Res 2018; 2018:1205121. [PMID: 30116732 PMCID: PMC6079517 DOI: 10.1155/2018/1205121] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/05/2018] [Accepted: 05/30/2018] [Indexed: 01/16/2023] Open
Abstract
Variability in the effect of subcutaneously administered insulin represents a major challenge in insulin therapy where precise dosing is required in order to achieve targeted glucose levels. Since this variability is largely influenced by the absorption of insulin, a deeper understanding of the factors affecting the absorption of insulin from the subcutaneous tissue is necessary in order to improve glycaemic control and the long-term prognosis in people with diabetes. These factors can be related to either the insulin preparation, the injection site/patient, or the injection technique. This review highlights the factors affecting insulin absorption with special attention on the physiological factors at the injection site. In addition, it also provides a detailed description of the insulin absorption process and the various modifications to this process that have been utilized by the different insulin preparations available.
Collapse
Affiliation(s)
- A. K. J. Gradel
- Department of Veterinary and Animal Sciences, Section of Experimental Animal Models, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Insulin Research, Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - T. Porsgaard
- Insulin Research, Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - J. Lykkesfeldt
- Department of Veterinary and Animal Sciences, Section of Experimental Animal Models, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T. Seested
- Department of Histology and Imaging, Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - S. Gram-Nielsen
- Insulin Research, Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - N. R. Kristensen
- Quantitative Clinical Pharmacology, Novo Nordisk A/S, Vandtårnsvej 108, 2860 Søborg, Denmark
| | - H. H. F. Refsgaard
- Insulin Research, Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| |
Collapse
|
15
|
Schiavon M, Dalla Man C, Cobelli C. Modeling Subcutaneous Absorption of Fast-Acting Insulin in Type 1 Diabetes. IEEE Trans Biomed Eng 2017; 65:2079-2086. [PMID: 29989928 DOI: 10.1109/tbme.2017.2784101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Subcutaneous (sc) administration of fast-acting insulin analogues is the key in conventional therapy of type 1 diabetes (T1D). A model of sc insulin absorption would be helpful for optimizing insulin therapy and test new open- and closed-loop treatment strategies in in silico platforms. Some models have been published in the literature, but none was assessed on a frequently-sampled large dataset of T1D subjects. The aim here is to propose a model of sc absorption of fast-acting insulin, which is able to describe the data and precisely estimate model parameters with a clear physiological interpretation. METHODS Three candidate models were identified on 116 T1D subjects, who underwent a single sc injection of fast-acting insulin and were compared on the basis of their ability to describe the data and their numerical identifiability. RESULTS A linear two-compartment model including a subject-specific delay in sc insulin absorption is proposed. On average, a delay of 7.6 min in insulin appearance in the first compartment is detected, then the insulin is slowly absorbed into plasma (in 23% of the subjects) with a rate of 0.0034 min-1, while the remaining diffuses into the second compartment, with a rate constant of 0.028 min-1, and then finally absorbed into plasma with a rate constant of 0.014 min-1. CONCLUSION Among the three tested models, the one proposed here is the only one able to both accurately describe plasma insulin data after a single sc injection and precisely estimate physiologically plausible parameters. The model needs to be further tested in case of variable sc insulin delivery and/or multiple insulin doses. SIGNIFICANCE Results are expected to help the development of new open- and closed-loop insulin treatment strategies.
Collapse
|
16
|
Evaluation of pharmacokinetic model designs for subcutaneous infusion of insulin aspart. J Pharmacokinet Pharmacodyn 2017; 44:477-489. [DOI: 10.1007/s10928-017-9535-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
|
17
|
Rapid-Acting and Human Insulins: Hexamer Dissociation Kinetics upon Dilution of the Pharmaceutical Formulation. Pharm Res 2017; 34:2270-2286. [PMID: 28762200 PMCID: PMC5643355 DOI: 10.1007/s11095-017-2233-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/18/2017] [Indexed: 11/22/2022]
Abstract
Purpose Comparison of the dissociation kinetics of rapid-acting insulins lispro, aspart, glulisine and human insulin under physiologically relevant conditions. Methods Dissociation kinetics after dilution were monitored directly in terms of the average molecular mass using combined static and dynamic light scattering. Changes in tertiary structure were detected by near-UV circular dichroism. Results Glulisine forms compact hexamers in formulation even in the absence of Zn2+. Upon severe dilution, these rapidly dissociate into monomers in less than 10 s. In contrast, in formulations of lispro and aspart, the presence of Zn2+ and phenolic compounds is essential for formation of compact R6 hexamers. These slowly dissociate in times ranging from seconds to one hour depending on the concentration of phenolic additives. The disadvantage of the long dissociation times of lispro and aspart can be diminished by a rapid depletion of the concentration of phenolic additives independent of the insulin dilution. This is especially important in conditions similar to those after subcutaneous injection, where only minor dilution of the insulins occurs. Conclusion Knowledge of the diverging dissociation mechanisms of lispro and aspart compared to glulisine will be helpful for optimizing formulation conditions of rapid-acting insulins. Electronic supplementary material The online version of this article (doi:10.1007/s11095-017-2233-0) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Hermansen K, Bohl M, Schioldan AG. Insulin Aspart in the Management of Diabetes Mellitus: 15 Years of Clinical Experience. Drugs 2016; 76:41-74. [PMID: 26607485 PMCID: PMC4700065 DOI: 10.1007/s40265-015-0500-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Limiting excessive postprandial glucose excursions is an important component of good overall glycemic control in diabetes mellitus. Pharmacokinetic studies have shown that insulin aspart, which is structurally identical to regular human insulin except for the replacement of a single proline amino acid with an aspartic acid residue, has a more physiologic time-action profile (i.e., reaches a higher peak and reaches that peak sooner) than regular human insulin. As expected with this improved pharmacokinetic profile, insulin aspart demonstrates a greater glucose-lowering effect compared with regular human insulin. Numerous randomized controlled trials and a meta-analysis have also demonstrated improved postprandial control with insulin aspart compared with regular human insulin in patients with type 1 or type 2 diabetes, as well as efficacy and safety in children, pregnant patients, hospitalized patients, and patients using continuous subcutaneous insulin infusion. Studies have demonstrated that step-wise addition of insulin aspart is a viable intensification option for patients with type 2 diabetes failing on basal insulin. Insulin aspart has shown a good safety profile, with no evidence of increased receptor binding, mitogenicity, stimulation of anti-insulin antibodies, or hypoglycemia compared with regular human insulin. In one meta-analysis, there was evidence of a lower rate of nocturnal hypoglycemia compared with regular human insulin and, in a trial that specifically included patients with a history of recurrent hypoglycemia, a significantly lower rate of severe hypoglycemic episodes. The next generation of insulin aspart (faster-acting insulin aspart) is being developed with a view to further improving on these pharmacokinetic/pharmacodynamic properties.
Collapse
Affiliation(s)
- Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000, Aarhus C, Denmark.
| | - Mette Bohl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000, Aarhus C, Denmark
| | - Anne Grethe Schioldan
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000, Aarhus C, Denmark
| |
Collapse
|
19
|
Incorporating bolus and infusion pharmacokinetics into the ICING insulin model. Math Biosci 2016; 281:1-8. [PMID: 27580690 DOI: 10.1016/j.mbs.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 08/04/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
Abstract
The ICING model has been successfully used to guide clinical decisions on insulin administration in critical illness. However, insulin pharmacokinetics in the ICING model can be improved to better describe both intravenous (IV) bolus and infusion insulin administration. Patient data from 217 Dynamic Insulin Sensitivity and Secretion Tests (DISST) and 36 Intravenous Glucose Tolerance Tests (IVGTT) from independent dietary intervention studies was used to fit model parameters to a model structure that conforms to known behaviour. The DISST tests measured both endogenous and exogenous IV insulin bolus responses, while the IVGTT measured exogenous IV insulin infusion dynamics. Unidentifiable parameters were given physiologically justified values, with knowledge on relative insulin clearance rates used to constrain parameter values. The resulting whole-cohort description was able to simultaneously describe both IV bolus and infusion dynamics, and improves ICING model descriptive capability. Improved infusion dynamics will allow better description of subcutaneous insulin, the insulin administration route favoured in outpatient care of diabetes.
Collapse
|
20
|
Thomsen M, Rasmussen CH, Refsgaard HHF, Pedersen KM, Kirk RK, Poulsen M, Feidenhans'l R. Spatial distribution of soluble insulin in pig subcutaneous tissue: Effect of needle length, injection speed and injected volume. Eur J Pharm Sci 2015; 79:96-101. [PMID: 26341408 DOI: 10.1016/j.ejps.2015.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/07/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
The spatial distribution of a soluble insulin formulation was visualized and quantified in 3-dimensions using X-ray computed tomography. The drug distribution was visualized for ex vivo injections in pig subcutaneous tissue. Pig subcutaneous tissue has very distinct layers, which could be separated in the tomographic reconstructions and the amount of drug in each tissue class was quantified. With a scan time of about 45min per sample, and a robust segmentation it was possible to analyze differences in the spatial drug distribution between several similar injections. It was studied how the drug distribution was effected by needle length, injection speed and injected volume. For an injected volume of 0.1ml and injection depth of 8mm about 50% of the injections were partly intramuscular. Using a 5mm needle resulted in purely subcutaneous injections with minor differences in the spatial drug distribution between injections. Increasing the injected volume from 0.1ml to 1ml did not increase the intramuscular volume fraction, but gave a significantly higher volume fraction placed in the fascia separating the deep and superficial subcutaneous fat layers. Varying the injection speed from 25l/s up to 300l/s gave no changes in the drug concentration distribution. The method presented gives novel insight into subcutaneous injections of soluble insulin drugs and can be used to optimize the injection technique for subcutaneous drug administration in preclinical studies of rodents.
Collapse
Affiliation(s)
- Maria Thomsen
- Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark; Niels Bohr Institute, University of Copenhagen, Blegdamsvej, DK-2100 Copenhagen, Denmark.
| | | | | | | | - Rikke K Kirk
- Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Mette Poulsen
- Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Robert Feidenhans'l
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej, DK-2100 Copenhagen, Denmark
| |
Collapse
|