1
|
To D, Steinbring C, Weber LI, Ricci F, Polidori I, Postina A, Hartl M, Bernkop-Schnürch A. Design of lipid-based formulations for oral delivery of a BASP1 peptide targeting MYC-dependent gastrointestinal cancer cells. J Control Release 2025; 382:113677. [PMID: 40185335 DOI: 10.1016/j.jconrel.2025.113677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
HYPOTHESIS Oral delivery of the proliferation-inhibiting brain acid-soluble protein 1 effector domain peptide (Myr-NT) towards MYC-dependent gastrointestinal tumors can be achieved by forming hydrophobic ion pairs (HIPs) and incorporating them into lipid-based formulations. EXPERIMENTS Hydrophobic ion pairing of fluorescently-labelled Myr-NT (Myr-NT-TAMRA) was performed, increase in lipophilicity was assessed, and the most promising HIP was subsequently incorporated into a nanoemulsion. Stability of the peptide towards degradation by trypsin was evaluated. Anti-proliferative and anti-invasive measurements were performed upon application of the loaded nanoemulsion on various MYC-dependent human cancer cell lines. Cellular uptake and molecular effect were complementary investigated by confocal laser scanning microscopy (CLSM) and by immunoblot analyses, respectively. FINDINGS HIPs of Myr-NT-TAMRA exhibited up to 10,000-fold increase in lipophilicity, thereby enabling incorporation into a nanoemulsion. The formulation significantly boosted stability of incorporated peptide towards enzymatic degradation by trypsin. Furthermore, anti-proliferative measurements on human cancer cell lines revealed superior biological activity of the loaded nanoemulsion compared to the native peptide particularly in lymphoma cells, but also in colorectal cancer cells. Thereby, a correlation with proliferation inhibition as well as differences in MYC protein expression were observed. Finally, CLSM imaging revealed up to 15-fold increased cellular uptake of Myr-NT-TAMRA from the nanoemulsion confirming efficient intracellular delivery of the peptide. CONCLUSION Myr-NT can be efficiently delivered into intestinal tumor cells using orally administered lipid-based formulations.
Collapse
Affiliation(s)
- Dennis To
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christian Steinbring
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Leonie I Weber
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Fabrizio Ricci
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Ilaria Polidori
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Annika Postina
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Eltabeeb MA, Hamed RR, El-Nabarawi MA, Teaima MH, Hamed MIA, Darwish KM, Hassan M, Abdellatif MM. Nanocomposite alginate hydrogel loaded with propranolol hydrochloride kolliphor ® based cerosomes as a repurposed platform for Methicillin-Resistant Staphylococcus aureus-(MRSA)-induced skin infection; in-vitro, ex-vivo, in-silico, and in-vivo evaluation. Drug Deliv Transl Res 2025; 15:556-576. [PMID: 38762697 PMCID: PMC11683024 DOI: 10.1007/s13346-024-01611-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
Nanocomposite alginate hydrogel containing Propranolol hydrochloride (PNL) cerosomes (CERs) was prepared as a repurposed remedy for topical skin Methicillin-Resistant Staphylococcus aureus (MRSA) infection. CERs were formed via an ethanol injection technique using different ceramides, Kolliphores® as a surfactant, and Didodecyldimethylammonium bromide (DDAB) as a positive charge inducer. CERs were optimized utilizing 13. 22 mixed-factorial design employing Design-Expert® software, the assessed responses were entrapment efficiency (EE%), particle size (PS), and zeta potential (ZP). The optimum CER, composed of 5 mg DDAB, ceramide VI, and Kolliphor® RH40 showed tubular vesicles with EE% of 92.91 ± 0.98%, PS of 388.75 ± 18.99 nm, PDI of 0.363 ± 0.01, and ZP of 30.36 ± 0.69 mV. Also, it remained stable for 90 days and manifested great mucoadhesive aspects. The optimum CER was incorporated into calcium alginate to prepare nanocomposite hydrogel. The ex-vivo evaluation illustrated that PNL was permeated in a more prolonged pattern from PNL-loaded CERs nanocomposite related to PNL-composite, optimum CER, and PNL solution. Confocal laser scanning microscopy revealed a perfect accumulation of fluorescein-labeled CERs in the skin. The in-silico investigation illustrated that the PNL was stable when mixed with other ingredients in the CERs and confirmed that PNL is a promising candidate for curing MRSA. Moreover, the PNL-loaded CERs nanocomposite revealed superiority over the PNL solution in inhibiting biofilm formation and eradication. The PNL-loaded CERs nanocomposite showed superiority over the PNL-composite for treating MRSA infection in the in-vivo mice model. Histopathological studies revealed the safety of the tested formulations. In conclusion, PNL-loaded CERs nanocomposite provided a promising, safe cure for MRSA bacterial skin infection.
Collapse
Affiliation(s)
- Moaz A Eltabeeb
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed I A Hamed
- Organic and Medicinal Chemistry Department, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
3
|
Zupančič O, Matić J, Doğan A, Gaggero A, Khinast J, Paudel A. Comparing Low-Dose Carvedilol Continuous Manufacturing by Solid and Liquid Feeding in Self-Emulsifying Delivery Systems via Hot Melt EXtrusion (SEDEX). Pharmaceuticals (Basel) 2024; 17:1290. [PMID: 39458931 PMCID: PMC11510172 DOI: 10.3390/ph17101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: This study compared two pilot scale continuous manufacturing methods of solid self-emulsifying drug delivery systems (SEDDSs) via hot melt extrusion (HME). Methods: A model poorly water-soluble drug carvedilol in low dose (0.5-1.0% w/w) was processed in HME either in a conventional powder form or pre-dissolved in the liquid SEDDS. Results: HME yielded a processable final product with up to 20% w/w SEDDS. Addition of carvedilol powder resulted in a non-homogeneous drug distribution in the extrudates, whereas a homogeneous drug distribution was observed in pre-dissolved carvedilol. SEDDSs were shown to have a plasticizing effect, reducing the HME process torque up to 50%. Compatibility between excipients and carvedilol in the studied ratios after HME was confirmed via DSC and WAXS, demonstrating their amorphous form. Solid SEDDSs with Kollidon® VA64 self-emulsified in aqueous medium within 15 min with mean droplet sizes 150-200 nm and were independent of the medium temperature, whereas reconstitution of Soluplus® took over 60 min and mean droplet size increased 2-fold from 70 nm to 150 nm after temperature increased from 25 °C to 37 °C, indicating emulsion phase inversion at cloud point. Conclusions: In conclusion, using Kollidon® VA64 and pre-dissolved carvedilol in SEDDS has shown to yield a stabile HME process with a homogenous carvedilol content in the extrudate.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
| | - Josip Matić
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
| | - Aygün Doğan
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
| | - Alessio Gaggero
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria
| |
Collapse
|
4
|
Polidori I, To D, Kali G, Bernkop-Schnürch A. Histidine-based ionizable cationic surfactants: novel biodegradable agents for hydrophilic macromolecular drug delivery. Drug Deliv Transl Res 2024; 14:2370-2385. [PMID: 38289467 PMCID: PMC11291603 DOI: 10.1007/s13346-023-01511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 08/03/2024]
Abstract
The aim of this study was to design surfactants based on histidine (His) for hydrophobic ion-pairing and evaluate their safety and efficacy. Lauryl, palmitoyl and oleyl alcohol, as well as 2-hexyl-1-decanol were converted into surfactants with histidine as head-group via esterification. The synthesized His-surfactants were characterized regarding pKa, critical micellar concentration (CMC), biodegradability, toxicity on Caco-2 cells, and ability to provide endosomal escape. Furthermore, the suitability of these agents to be employed as counterions in hydrophobic ion pairing was evaluated. Chemical structures were confirmed by 1H-NMR, FT-IR, and MS. The synthesized surfactants showed pKa values ranging from 4.9 to 6.0 and CMC values in the range of 0.3 to 7.0 mM. Their biodegradability was proven by enzymatic cleavage within 24 h. Below the CMC, His-surfactants did not show cytotoxic effects on Caco-2 cells (cell viability > 80%). All His-surfactants showed the ability to provide endosomal escape in a pH-dependent manner in the range of 5.2 to 6.8. Complexes formed between His-surfactants and heparin or plasmid DNA (pDNA) via hydrophobic ion pairing showed at least 100-fold higher lipophilicity than the correspondent model drugs. According to these results, His-surfactants might be a promising safe tool for delivering hydrophilic macromolecular drugs and nucleic acids.
Collapse
Affiliation(s)
- Ilaria Polidori
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria.
| |
Collapse
|
5
|
Zupančič O, Kushwah V, Paudel A. Pancreatic lipase digestion: The forgotten barrier in oral administration of lipid-based delivery systems? J Control Release 2023; 362:381-395. [PMID: 37579977 DOI: 10.1016/j.jconrel.2023.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
This review highlights the importance of controlling the digestion process of orally administered lipid-based delivery systems (LBDS) and their performance. Oral LBDS are prone to digestion via pancreatic lipase in the small intestine. Rapid or uncontrolled digestion may cause the loss of delivery system integrity, its structural changes, reduced solubilization capacity and physical stability issues. All these events can lead to uncontrolled drug release from the digested LBDS into the gastrointestinal environment, exposing the incorporated drug to precipitation or degradation by luminal proteases. To prevent this, the digestion rate of orally administered LBDS can be estimated by appropriate choice of the formulation type, excipient combinations and their ratios. In addition, in vitro digestion models like pH-stat are useful tools to evaluate the formulation digestion rate. Controlling digestion can be achieved by conventional lipase inhibitors like orlistat, sterically hindering of lipase adsorption on the delivery system surface with polyethylene glycol (PEG) chains, lipase desorption or saturation of the interface with surfactants as well as formulating LBDS with ester-free excipients. Recent in vivo studies demonstrated that digestion inhibition lead to altered pharmacokinetic profiles, where Cmax and Tmax were reduced in spite of same AUC compared to control or even improved oral bioavailability.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Varun Kushwah
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Inffeldgasse 13/3, 8010 Graz, Austria.
| |
Collapse
|
6
|
Anionic polysaccharides for stabilization and sustained release of antimicrobial peptides. Int J Pharm 2023; 636:122798. [PMID: 36889417 DOI: 10.1016/j.ijpharm.2023.122798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Chemical and enzymatic in vivo degradation of antimicrobial peptides represents a major challenge for their therapeutic use to treat bacterial infections. In this work, anionic polysaccharides were investigated for their ability to increase the chemical stability and achieve sustained release of such peptides. The investigated formulations comprised a combination of antimicrobial peptides (vancomycin (VAN) and daptomycin (DAP)) and anionic polysaccharides (xanthan gum (XA), hyaluronic acid (HA), propylene glycol alginate (PGA) and alginic acid (ALG)). VAN dissolved in buffer of pH 7.4 and incubated at 37 °C showed first order degradation kinetics with a reaction rate constant kobs of 5.5 × 10-2 day-1 corresponding with a half-life of 13.9 days. However, once VAN was present in a XA, HA or PGA-based hydrogel, kobs decreased to (2.1-2.3) × 10-2 day-1 while kobs was not affected in an alginate hydrogel and a dextran solution (5.4 × 10-2 and 4.4 × 10-2 day-1). Under the same conditions, XA and PGA also effectively decreased kobs for DAP (5.6 × 10-2 day-1), whereas ALG had no effect and HA even increased the degradation rate. These results demonstrate that the investigated polysaccharides (except ALG for both peptides and HA for DAP) slowed down the degradation of VAN and DAP. DSC analysis was used to investigate on polysaccharide ability to bind water molecules. Rheological analysis highlighted that the polysaccharides containing VAN displayed an increase in G' of their formulations, pointing that the peptides interaction act as crosslinker of the polymer chains. The obtained results suggest that the mechanism of stabilization of VAN and DAP against hydrolytic degradation is conferred by electrostatic interactions between the ionizable amine groups of the drugs and the anionic carboxylate groups of the polysaccharides. This, in turn, results in a close proximity of the drugs to the polysaccharide chain, where the water molecules have a lower mobility and, therefore, a lower thermodynamic activity.
Collapse
|
7
|
Zhao F, Su Y, Wang J, Romanova S, DiMaio DJ, Xie J, Zhao S. A Highly Efficacious Electrical Biofilm Treatment System for Combating Chronic Wound Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208069. [PMID: 36385439 PMCID: PMC9918715 DOI: 10.1002/adma.202208069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/24/2022] [Indexed: 05/26/2023]
Abstract
Biofilm infection has a high prevalence in chronic wounds and can delay wound healing. Current treatment using debridement and antibiotic administration imposes a significant burden on patients and healthcare systems. To address their limitations, a highly efficacious electrical antibiofilm treatment system is described in this paper. This system uses high-intensity current (75 mA cm-2 ) to completely debride biofilm above the wound surface and enhance antibiotic delivery into biofilm-infected wounds simultaneously. Combining these two effects, this system uses short treatments (≤2 h) to reduce bacterial count of methicillin-resistant S. aureus (MRSA) biofilm-infected ex vivo skin wounds from 1010 to 105.2 colony-forming units (CFU) g-1 . Taking advantage of the hydrogel ionic circuit design, this system enhances the in vivo safety of high-intensity current application compared to conventional devices. The in vivo antibiofilm efficacy of the system is tested using a diabetic mouse-based wound infection model. MRSA biofilm bacterial count decreases from 109.0 to 104.6 CFU g-1 at 1 day post-treatment and to 103.3 CFU g-1 at 7 days post-treatment, both of which are below the clinical threshold for infection. Overall, this novel technology provides a quick, safe, yet highly efficacious treatment to chronic wound biofilm infections.
Collapse
Affiliation(s)
- Fan Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yajuan Su
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Junying Wang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jingwei Xie
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siwei Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
8
|
Xin J, Qin M, Ye G, Gong H, Li M, Sui X, Liu B, Fu Q, He Z. Hydrophobic ion pairing-based self-emulsifying drug delivery systems: a new strategy for improving the therapeutic efficacy of water-soluble drugs. Expert Opin Drug Deliv 2023; 20:1-11. [PMID: 36408589 DOI: 10.1080/17425247.2023.2150758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are formulations consisting of oil phase, emulsifiers, and co-emulsifiers, which can be spontaneously emulsified in the body to form O/W microemulsion. Traditionally, SEDDS are used commercially for the improvement of oral absorption and in vivo performances for poorly water-soluble drugs. However, SEDDS formulations were rarely reported for the delivery of water-soluble drugs. Recent studies have found that SEDDS have the potential for water-soluble macromolecular drugs by the application of the hydrophobic ion pairing (HIP) technology. AREAS COVERED This review summarized the characteristics of HIP complexes in SEDDS and introduced their advantages and discussed the future prospects of HIP-based SEDDS in drug delivery. EXPERT OPINION Hydrophobic ion pairing (HIP) is a technology that combines lipophilic structures on polar counterions to increase the lipophilicity through electrostatic interaction. Recent studies showed that HIP-based SEDDS offer an effective way to increase the mucosal permeability and improve the chemical stability for antibiotics, proteases, DNA-based drugs, and other water-soluble macromolecular drugs. It is believed that HIP-based SEDDS offer a potential and attractive method capable of delivering hydrophilic macromolecules with ionizable groups for oral administration.
Collapse
Affiliation(s)
- Jinghan Xin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mengdi Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Genyang Ye
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haonan Gong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
9
|
Matteo Jörgensen A, Knoll P, Haddadzadegan S, Fabian H, Hupfauf A, Gust R, Georg Jörgensen R, Bernkop-Schnürch A. Biodegradable arginine based steroid-surfactants: Cationic green agents for hydrophobic ion-pairing. Int J Pharm 2022; 630:122438. [PMID: 36464112 DOI: 10.1016/j.ijpharm.2022.122438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
The aim of this study was to evaluate the safety and efficacy for hydrophobic ion-pairing of surfactants based on arginine (Arg). The prepared Arg-cholesteryl ester (ACE) and Arg-diosgenyl ester (ADE) were characterized regarding solubility, pKa, critical micellar concentration (CMC), biodegradability as well as membrane- and aquatic toxicity using DOTAP as reference. The ability for hydrophobic ion-pairing was evaluated and the lipophilicity of formed complexes was determined. NMR, FT-IR and MS confirmed successful synthesis of Arg-surfactants. The slightly soluble single-charged Arg-surfactants (pH < pKa3 (ACE = 10.42 ± 0.52; ADE = 10.38 ± 0.27)) showed CMCs of 27.17 µM for ACE and 35.67 µM for ADE. CMCs of the sparingly soluble double-charged species (pH < pKa2 (ACE = 5.30 ± 0.20; ADE = 5.55 ± 0.06)) were determined at concentrations of ≥ 250 µM for ACE and ≥ 850 µM for ADE. The enzymatic- and environmental biodegradability was proven by an entire cleavage of Arg-surfactants within 24 h, whereas DOTAP remained stable. Arg-surfactants exhibited lower membrane- (> 2-fold) and aquatic toxicity (> 15-fold) than DOTAP. The complexes formed with Arg-surfactants and insulin showed higher lipophilicity than the DOTAP-complex. According to these results, Arg-surfactants might be a promising safe tool for the delivery of peptide drugs.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Soheil Haddadzadegan
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hannah Fabian
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andrea Hupfauf
- Department of Pharmaceutical Chemistry, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Rainer Georg Jörgensen
- Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37023 Witzenhausen, Germany
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
10
|
SEDEX-Self-Emulsifying Delivery Via Hot Melt Extrusion: A Continuous Pilot-Scale Feasibility Study. Pharmaceutics 2022; 14:pharmaceutics14122617. [PMID: 36559111 PMCID: PMC9783592 DOI: 10.3390/pharmaceutics14122617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to develop a continuous pilot-scale solidification and characterization of self-emulsifying drug delivery systems (SEDDSs) via hot melt extrusion (HME) using Soluplus® and Kollidon® VA-64. First, an oil-binding capacity study was performed to estimate the maximal amount of SEDDSs that the polymers could bind. Then, HME was conducted using a Coperion 18 mm ZSK18 pilot plant-scale extruder with split-feeding of polymer and SEDDS in 10, 20, and 30% w/w SEDDSs was conducted. The prepared extrudates were characterized depending on appearance, differential scanning calorimetry, wide-angle X-ray scattering, emulsification time, droplet size, polydispersity index, and cloud point. The oil-binding studies showed that the polymers were able to bind up to 50% w/w of liquid SEDDSs. The polymers were processed via HME in a temperature range between 110 and 160 °C, where a plasticizing effect of the SEDDSs was observed. The extrudates were found to be stable in the amorphous state and self-emulsified in demineralized water at 37 °C with mean droplet sizes between 50 and 300 nm. A cloud point and phase inversion were evident in the Soluplus® samples. In conclusion, processing SEDDSs with HME could be considered a promising alternative to the established solidification techniques as well as classic amorphous solid dispersions for drug delivery.
Collapse
|
11
|
A Solid Self-Emulsifying Formulation for the Enhanced Solubility, Release and Digestion of Apigenin. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Asghar AA, Akhlaq M, Jalil A, Azad AK, Asghar J, Adeel M, Albadrani GM, Al-Doaiss AA, Kamel M, Altyar AE, Abdel-Daim MM. Formulation of ciprofloxacin-loaded oral self-emulsifying drug delivery system to improve the pharmacokinetics and antibacterial activity. Front Pharmacol 2022; 13:967106. [PMID: 36267282 PMCID: PMC9577179 DOI: 10.3389/fphar.2022.967106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to increase the aqueous solubility of ciprofloxacin (CPN) to improve oral bioavailability. This was carried out by formulating a stable formulation of the Self-Emulsifying Drug Delivery System (SEDDS) using various ratios of lipid/oil, surfactant, and co-surfactant. A pseudo-ternary phase diagram was designed to find an area of emulsification. Eight formulations (F1-CPN-F8-CPN) containing oleic acid oil, silicone oil, olive oil, castor oil, sunflower oil, myglol oil, polysorbate-80, polysorbate-20, PEO-200, PEO-400, PEO-600, and PG were formulated. The resultant SEDDS were subjected to thermodynamic study, size, and surface charge studies to improve preparation. Improved composition of SEDDS F5-CPN containing 40% oil, 60% polysorbate-80, and propylene glycol (Smix ratio 6: 1) were thermodynamically stable emulsions having droplet size 202.6 nm, charge surface -13.9 mV, and 0.226 polydispersity index (PDI). Fourier transform infra-red (FT-IR) studies revealed that the optimized formulation and drug showed no interactions. Scanning electron microscope tests showed the droplets have an even surface and spherical shape. It was observed that within 5 h, the concentration of released CPN from optimized formulations F5-CPN was 93%. F5-CPN also showed a higher antibacterial action against S. aurous than free CPN. It shows that F5-CPN is a better formulation with a good release and high antibacterial activity.
Collapse
Affiliation(s)
| | - Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Aamir Jalil
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakaria University, Multan, Punjab, Pakistan
| | | | - Junaid Asghar
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amin A. Al-Doaiss
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
13
|
Development and In Vitro Characterization of Transferrin-Decorated Nanoemulsion Utilizing Hydrophobic Ion Pairing for Targeted Cellular Uptake. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09549-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Purpose
The aim of this study was to develop transferrin-conjugated nanoemulsions utilizing hydrophobic ion pairing for a targeted cellular uptake.
Methods
In the lipophilic phase of nanoemulsion composed of 60% oleic acid, 30% Capmul MCM EP and 10% Span 85, 1% cetyltrimethylammonium bromide (CTAB) and 3% phosphatidic acid (PA) were incorporated. After emulsification, the resulting droplets were decorated with human protein transferrin via hydrophobic ion pairing with PA and characterized regarding droplet size and zeta potential. Subsequently, cellular uptake of transferrin-conjugated nanoemulsion was investigated on Caco-2 and HeLa cell lines and determined by flow cytometry, cell lysis method and live cell imaging using confocal laser scanning microscopy.
Results
The nanoemulsion showed a droplet size of 123.03 ± 2.1 nm and zeta potential of − 54.5 mV that changed because of the surface decoration with transferrin to 182.7 ± 0.2 and + 30.2 mV, respectively. Within the uptake studies utilizing flow cytometry, transferrin-conjugated nanoemulsion showed a 5.2-fold higher uptake in Caco-2 cells and twofold improvement in case of HeLa cells compared with unmodified formulation. The outcome was confirmed visually via live cell imaging.
Conclusion
According to the results, transferrin-conjugated nanoemulsion might be considered as a promising drug delivery system for a selective receptor-mediated drug delivery.
Collapse
|
14
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
15
|
Qu B, Wang XL, Zheng DC, Mai CT, Liu ZQ, Zhou H, Xie Y. Novel treatment for refractory rheumatoid arthritis with total glucosides of paeony and nobiletin codelivered in a self-nanoemulsifying drug delivery system. Acta Pharmacol Sin 2022; 43:2094-2108. [PMID: 34873316 PMCID: PMC9343439 DOI: 10.1038/s41401-021-00801-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022]
Abstract
Patients with refractory rheumatoid arthritis (RA) remain a substantial clinical problem, while the overexpression of P-glycoprotein (P-gp) on their lymphocytes may contribute to resistance to anti-rheumatic drugs. This study aims to develop a novel treatment for refractory RA consisting of the combination of total glucosides of paeony (TGPs) and the P-gp inhibitor nobiletin (N), which are codelivered in a self-nanoemulsifying drug delivery system (SNEDDS). Based on the solubility, compatibility, and pseudoternary phase diagram tests, a nano-SNEDDS formulation composed of capryol 90-cremophor EL35-tcranscutol HP (CET) to codeliver TGP and N was developed, and this formulation increased the bioavailability of TGP by 435.04% (indicated with paeoniflorin). A modified adjuvant-induced arthritis (AIA) rat model was verified for the overexpression of P-gp in lymphocytes and resistance to methotrexate (MTX) treatment at the reported anti-inflammatory dosage. CET formulation not only increased the solubility and permeability of TGP but also inhibited the function and expression of P-gp, leading to enhanced bioavailability and intracellular concentration in the lymphocytes of AIA rats and consequently boosting the anti-arthritic effects of TGP. Moreover, TGP and N coloaded CET reduced the expression of P-gp in AIA rats partly by inhibiting the phosphorylated AKT and HIF-1α pathways. In summary, TGP-N coloaded SNEDDS is a novel and effective treatment for refractory RA.
Collapse
Affiliation(s)
- Biao Qu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China ,grid.259384.10000 0000 8945 4455Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China
| | - Xiao-lin Wang
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China ,grid.259384.10000 0000 8945 4455School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR China
| | - De-chong Zheng
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China ,grid.259384.10000 0000 8945 4455Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China
| | - Chu-tian Mai
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China ,grid.259384.10000 0000 8945 4455Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China
| | - Zhong-qiu Liu
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, School of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR, China. .,Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR, China.
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR, China. .,School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China.
| |
Collapse
|
16
|
Sharma S, Kanugo A, Kaur T, Chaudhary D. Formulation and Characterization of Self-Microemulsifying Drug Delivery System (SMEDDS) of Sertraline Hydrochloride. RECENT PATENTS ON NANOTECHNOLOGY 2022; 18:NANOTEC-EPUB-124754. [PMID: 35747954 DOI: 10.2174/1872210516666220623152440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sertraline hydrochloride is the most widely used selective serotonin reuptake inhibitor (SSRI) for the treatment of several depressive disorders. Its applicability is limited due to extensive metabolism and poor oral bioavailability of 44 %. OBJECTIVE The current research focused on improving the solubility and oral bioavailability of Sertraline by using microemulsions developed by a self-micro emulsifying drug delivery system (SMEDDS) for significant antidepressant action. METHOD SMEDDS were developed by selecting appropriate proportions of oil, surfactant, and co-solvents and out of them isopropyl myristate, tween 80 and propylene glycol were identified as best. The emulsification zone was demonstrated by a ternary phase diagram, and compatibility was confirmed with Fourier-transformed infrared spectroscopy (FT-IR). The formulated SMEDDS were characterized for robustness to dilution, globule size (GS), polydispersity index (PDI), viscosity, in-vitro dissolution and diffusion study, and drug release kinetics study. RESULTS All the batches (A1-A9) passes the test and A3 was selected as an optimized batch that doesn't show phase separation, precipitation with globule size (101 nm), PDI (0.319), drug content (99.14±0.35 %), viscosity (10.71±0.02 mPa), self-emulsification time (46 sec), in-vitro drug release (98.25±0.22 %) within 8 h, release kinetics (Higuchi) and effective antidepressant in in-vitro diffusion studies. CONCLUSION An optimized batch A3 observed circular in shape estimated by Transmission electron microscopy (TEM) and passes all the thermodynamic stability testing with loss of 0.271 mg of the drug after 90 days and showed marked antidepressant action with higher stability.
Collapse
Affiliation(s)
- Sanjay Sharma
- SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, India-425405
| | - Abhishek Kanugo
- SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, India-425405
| | - Tejvir Kaur
- Department of Pharmacy, Government Medical College, Patiala, Punjab-147001
| | - Deepak Chaudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan
| |
Collapse
|
17
|
Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022; 182:114097. [PMID: 34999121 DOI: 10.1016/j.addr.2021.114097] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.
Collapse
|
18
|
Deshayes C, Arafath MN, Apaire-Marchais V, Roger E. Drug Delivery Systems for the Oral Administration of Antimicrobial Peptides: Promising Tools to Treat Infectious Diseases. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:778645. [PMID: 35146486 PMCID: PMC8821882 DOI: 10.3389/fmedt.2021.778645] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) have a great potential to face the global expansion of antimicrobial resistance (AMR) associated to the development of multidrug-resistant (MDR) pathogens. AMPs are usually composed of 10–50 amino acids with a broad structural diversity and present a range of antimicrobial activities. Unfortunately, even if the oral route is the most convenient one, currently approved therapeutic AMPs are mostly administrated by the intravenous route. Thus, the development of novel drug delivery systems (DDSs) represents a promising opportunity to protect AMPs from chemical and enzymatic degradation through the gastrointestinal tract and to increase intestinal permeability leading to high bioavailability. In this review, the classification and properties as well as mechanisms of the AMPs used in infectiology are first described. Then, the different pharmaceutical forms existing in the market for oral administration are presented. Finally, the formulation technologies, including microparticle- and nanoparticle-based DDSs, used to improve the oral bioavailability of AMPs are reviewed.
Collapse
Affiliation(s)
| | | | | | - Emilie Roger
- University of Angers, INSERM, CNRS, MINT, SFR ICAT, Angers, France
- *Correspondence: Emilie Roger
| |
Collapse
|
19
|
Advanced materials for drug delivery across mucosal barriers. Acta Biomater 2021; 119:13-29. [PMID: 33141051 DOI: 10.1016/j.actbio.2020.10.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Mucus is a viscoelastic gel that traps pathogens and other foreign particles to limit their penetration into the underlying epithelium. Dosage forms containing particle-based drug delivery systems are trapped in mucosal layers and will be removed by mucus turnover. Mucoadhesion avoids premature wash-off and prolongs the residence time of drugs on mucus. Moreover, mucus penetration is essential for molecules to access the underlying epithelial tissues. Various strategies have been investigated to achieve mucoadhesion and mucus penetration of drug carriers. Innovations in materials used for the construction of drug-carrier systems allowed the development of different mucoadhesion and mucus penetration delivery systems. Over the last decade, advances in the field of materials chemistry, with a focus on biocompatibility, have led to the expansion of the pool of materials available for drug delivery applications. The choice of materials in mucosal delivery is generally dependent on the intended therapeutic target and nature of the mucosa at the site of absorption. This review presents an up-to-date account of materials including synthesis, physical and chemical modifications of mucoadhesive materials, nanocarriers, viral mimics used for the construction of mucosal drug delivery systems.
Collapse
|
20
|
Mishra V, Nayak P, Yadav N, Singh M, Tambuwala MM, Aljabali AAA. Orally administered self-emulsifying drug delivery system in disease management: advancement and patents. Expert Opin Drug Deliv 2020; 18:315-332. [PMID: 33232184 DOI: 10.1080/17425247.2021.1856073] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Oral administration of a drug is the most common, ideal and preferred route of administration. The main problem of oral drug formulations is their low bioavailability arises from poor aqueous solubility of drug. Aqueous solubility of lipophilic drugs can be improved by various techniques like salt formation, complexation, addition of co-solvent etc. but self-emulsifying drug-delivery system (SEDDS) is getting more attention for increasing the solubility of such drugs. The SEDDS is an isotropic mixture of drug, lipids, and emulsifiers, usually with one or more hydrophilic co-solvents/co-emulsifiers. This system is having ability to generate oil-in-water (o/w) emulsions or microemulsions upon gentle agitation followed by dilution with aqueous phase. The SEDDSs are relatively newer, lipid-based technological innovations possessing unparalleled potential in improving oral bioavailability of poorly water-soluble drugs.Areas covered: This review provides updated information regarding the types of SEDDS, their preparation techniques, drug delivery and related recent patents along with marketed formulations.Expert opinion: The SEDDS has been explored for improving bioavailability, rising intra-subject heterogeneity, and increasing solubility. SEDDS offers the benefit of a protective effect against the hostile environment in the gut. The unique fabrication techniques provide specific strategy to overcome the low bioavailability and poor solubility problems.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nishika Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Manvendra Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| |
Collapse
|
21
|
Gregoire N, Chauzy A, Buyck J, Rammaert B, Couet W, Marchand S. Clinical Pharmacokinetics of Daptomycin. Clin Pharmacokinet 2020; 60:271-281. [PMID: 33313994 DOI: 10.1007/s40262-020-00968-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Due to the low level of resistance observed with daptomycin, this antibiotic has an important place in the treatment of severe Gram-positive infections. It is the first-in-class of the group of calcium-dependent, membrane-binding lipopeptides, and is a cyclic peptide constituted of 13 amino acids and an n-decanoyl fatty acid chain. The antibacterial action of daptomycin requires its complexation with calcium. Daptomycin is not absorbed from the gastrointestinal tract and needs to be administered parenterally. The distribution of daptomycin is limited (volume of distribution of 0.1 L/kg in healthy volunteers) due to its negative charge at physiological pH and its high binding to plasma proteins (about 90%). Its elimination is mainly renal, with about 50% of the dose excreted unchanged in the urine, justifying dosage adjustment for patients with renal insufficiency. The pharmacokinetics of daptomycin are altered under certain pathophysiological conditions, resulting in high interindividual variability. As a result, therapeutic drug monitoring of daptomycin may be of interest for certain patients, such as intensive care unit patients, patients with renal or hepatic insufficiency, dialysis patients, obese patients, or children. A target for the ratio of the area under the curve to the minimum inhibitory concentration > 666 is usually recommended for clinical efficacy, whereas in order to limit the risk of undesirable muscular effects the residual concentration should not exceed 24.3 mg/L.
Collapse
Affiliation(s)
- Nicolas Gregoire
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
- Laboratoire de Toxicologie-Pharmacocinétique, CHU of Poitiers, 2 rue de la Miletrie, 86000, Poitiers, France
| | - Alexia Chauzy
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Julien Buyck
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Blandine Rammaert
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
- Service de maladies infectieuses et tropicales, CHU of Poitiers, 2 rue de la Miletrie, 86000, Poitiers, France
| | - William Couet
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
- Laboratoire de Toxicologie-Pharmacocinétique, CHU of Poitiers, 2 rue de la Miletrie, 86000, Poitiers, France.
| | - Sandrine Marchand
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
- Laboratoire de Toxicologie-Pharmacocinétique, CHU of Poitiers, 2 rue de la Miletrie, 86000, Poitiers, France
| |
Collapse
|
22
|
Wu ZL, Zhao J, Xu R. Recent Advances in Oral Nano-Antibiotics for Bacterial Infection Therapy. Int J Nanomedicine 2020; 15:9587-9610. [PMID: 33293809 PMCID: PMC7719120 DOI: 10.2147/ijn.s279652] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial infections are the main infectious diseases and cause of death worldwide. Antibiotics are used to treat various infections ranging from minor to life-threatening ones. The dominant route to administer antibiotics is through oral delivery and subsequent gastrointestinal tract (GIT) absorption. However, the delivery efficiency is limited by many factors such as low drug solubility and/or permeability, gastrointestinal instability, and low antibacterial activity. Nanotechnology has emerged as a novel and efficient tool for targeting drug delivery, and a number of promising nanotherapeutic strategies have been widely explored to overcome these obstacles. In this review, we explore published studies to provide a comprehensive understanding of the recent progress in the area of orally deliverable nano-antibiotic formulations. The first part of this article discusses the functions and underlying mechanisms by which nanomedicines increase the oral absorption of antibiotics. The second part focuses on the classification of oral nano-antibiotics and summarizes the advantages, disadvantages and applications of nanoformulations including lipid, polymer, nanosuspension, carbon nanotubes and mesoporous silica nanoparticles in oral delivery of antibiotics. Lastly, the challenges and future perspective of oral nano-antibiotics for infection disease therapy are discussed. Overall, nanomedicines designed for oral drug delivery system have demonstrated the potential for the improvement and optimization of currently available antibiotic therapies.
Collapse
Affiliation(s)
- Ze-Liang Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jun Zhao
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, People's Republic of China
| |
Collapse
|
23
|
Mucolytic self-emulsifying drug delivery systems (SEDDS) containing a hydrophobic ion-pair of proteinase. Eur J Pharm Sci 2020; 162:105658. [PMID: 33271277 DOI: 10.1016/j.ejps.2020.105658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 11/25/2020] [Indexed: 01/25/2023]
Abstract
AIM The aim of this study was to form hydrophobic ion-pairs of proteinase with cationic surfactants and to incorporate them into self-emulsifying drug delivery systems (SEDDS) to improve their mucus permeating properties. METHODS Proteinase was ion-paired with benzalkonium chloride (BAK), hexadecylpyridinium chloride (HDP), alkyltrimethylammonium bromide (ATA) and hexadecyltrimethylammonium bromide (HDT) at pH 8.5-9.0, and subsequently incorporated into SEDDS consisting of Cremophor EL, propylene glycol, and Capmul 808-G (40/20/40). Mucus permeation of SEDDS containing proteinase complexes was evaluated via rotating tube technique and cell-free Transwell® insert system. Additionally, enzymatic activity of proteinase complexes as well as their potential cytotoxicity was evaluated. RESULTS Among all tested hydrophobic ion-pairs, proteinase/BAK showed highest potential. Mucus diffusion of SEDDS containing proteinase/BAK complex yielded in 2.3-fold and 2.5-fold higher mucus permeability with respect to blank SEDDS at Transwell® insert system and rotating tube technique, respectively. Furthermore, proteinase/BAK complex maintained the highest enzymatic activity of 50.5 ± 5.6% compared to free proteinase. At a SEDDS concentration as low as 0.006% cell viability was just 80%. The addition of proteinase complexes to SEDDS increased cytotoxicity on Caco-2 cells in a concentration-dependent manner. CONCLUSION SEDDS loaded with proteinase/BAK complexes are promising nanocarriers because of enhanced mucus permeating properties.
Collapse
|
24
|
Phan TNQ, Ismail R, Le-Vinh B, Zaichik S, Laffleur F, Bernkop-Schnürch A. The Effect of Counterions in Hydrophobic Ion Pairs on Oral Bioavailability of Exenatide. ACS Biomater Sci Eng 2020; 6:5032-5039. [DOI: 10.1021/acsbiomaterials.0c00637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thi Nhu Quynh Phan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 530000 Hue, Thua Thien Hue, Viet Nam
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Institute of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Bao Le-Vinh
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000 Ho Chi Minh City, Viet Nam
| | - Sergey Zaichik
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Jörgensen AM, Friedl JD, Wibel R, Chamieh J, Cottet H, Bernkop-Schnürch A. Cosolvents in Self-Emulsifying Drug Delivery Systems (SEDDS): Do They Really Solve Our Solubility Problems? Mol Pharm 2020; 17:3236-3245. [PMID: 32658482 PMCID: PMC7482394 DOI: 10.1021/acs.molpharmaceut.0c00343] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The
aim of this study was to investigate the fate and the impact
of cosolvents in self-emulsifying drug delivery systems (SEDDS). Three
different SEDDS comprising the cosolvents DMSO (FD), ethanol
(FE), and benzyl alcohol (FBA) as well as the
corresponding formulations without these cosolvents (FD0, FE0, and FBA0) were developed. Mean droplet
size, polydispersity index (PDI), ζ potential, stability, and
emulsification time were determined. Cosolvent release studies were
performed via the dialysis membrane method and Taylor dispersion analysis
(TDA). Furthermore, the impact of cosolvent utilization on payloads
in SEDDS was examined using quinine as a model drug. SEDDS with and
without a cosolvent showed no significant differences in droplet size,
PDI, and ζ potential. The emulsification time was 3-fold (FD0), 80-fold (FE0), and 7-fold (FBA0)
longer due to the absence of the cosolvents. Release studies in demineralized
water provided evidence for an immediate and complete release of DMSO,
ethanol, and benzyl alcohol. TDA confirmed this result. Moreover,
a 1.4-fold (FD), 2.91-fold (FE), and 2.17-fold
(FBA) improved payload of the model drug quinine in the
selected SEDDS preconcentrates was observed that dropped after emulsification
within 1–5 h due to drug precipitation. In parallel, the quinine
concentrations decreased until reaching the same levels of the corresponding
SEDDS without cosolvents. Due to the addition of hydrophilic cosolvents,
the emulsifying properties of SEDDS are strongly improved. As hydrophilic
cosolvents are immediately released from SEDDS during the emulsification
process, however, their drug solubilizing properties in the resulting
oily droplets are very limited.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Institute of Pharmacy, 6020 Innsbruck, Austria
| | - Julian David Friedl
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Institute of Pharmacy, 6020 Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Institute of Pharmacy, 6020 Innsbruck, Austria
| | - Joseph Chamieh
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Institute of Pharmacy, 6020 Innsbruck, Austria
| |
Collapse
|
26
|
The application of biomacromolecules to improve oral absorption by enhanced intestinal permeability: A mini-review. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Marques Borges GS, Oliveira Ferencs MD, Mello Gomide Loures CD, Abdel-Salam MAL, Gontijo Evangelista FC, Sales CC, Reis da Silva PH, de Oliveira RB, Malachias Â, Yoshida MI, de Souza-Fagundes EM, Paula Sabino AD, Fernandes C, Miranda Ferreira LA. Novel self-nanoemulsifying drug-delivery system enhances antileukemic properties of all-trans retinoic acid. Nanomedicine (Lond) 2020; 15:1471-1486. [DOI: 10.2217/nnm-2020-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: All- trans retinoic acid (ATRA) shows erratic oral bioavailability when administered orally against leukemia, which can be solved through its incorporation in self-nanoemulsifying drug-delivery systems (SEDDS). The SEDDS developed contained a hydrophobic ion pair between benzathine (BZT) and ATRA and was enriched with tocotrienols by the input of a palm oil tocotrienol rich fraction (TRF) in its composition. Results: SEDDS-TRF-ATRA-BZT allowed the formation of emulsions with nanometric size that retained ATRA within their core after dispersion. Pharmacokinetic parameters after oral administration of SEDDS-TRF-ATRA-BZT in mice were improved compared with what was seen for an ATRA solution. Moreover, SEDDS-TRF-ATRA-BZT had improved activity against HL-60 cells compared with SEDDS without TRF. Conclusion: SEDDS-TRF-ATRA-BZT is a promising therapeutic choice over ATRA conventional medicine.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Micael de Oliveira Ferencs
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristina de Mello Gomide Loures
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mostafa AL Abdel-Salam
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Camila Campos Sales
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro Henrique Reis da Silva
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ângelo Malachias
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Irene Yoshida
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Maria de Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christian Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Antônio Miranda Ferreira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
28
|
Rahamathulla M, H.V G, Veerapu G, Hani U, Alhamhoom Y, Alqahtani A, Moin A. Characterization, Optimization, In Vitro and In Vivo Evaluation of Simvastatin Proliposomes, as a Drug Delivery. AAPS PharmSciTech 2020; 21:129. [PMID: 32405982 DOI: 10.1208/s12249-020-01666-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/21/2020] [Indexed: 11/30/2022] Open
Abstract
Simvastatin a cholesterol-lowering agent used to treat hypercholesterolemia, coronary heart disease, and dyslipidemia. However, simvastatin (SV) has shown low oral bioavailability in GIT. The main purpose of the work was to develop proliposomal formulations to increase the oral bioavailability of SV. Film deposition on the carrier method has been used to prepare the proliposomes. The proliposomes were assessed for morphology, particulate size, entrapment efficacy, drug-polymer compatibility, in vitro and in vivo studies. FTIR and DSC results revealed no drug-polymer interaction. SEM and XRD analysis conform; proliposomes are spherical, amorphous in nature, so that it enhances the solubility of SV between 15.01 ± 0.026 and 57.80 ± 0.015 μg/mL in pH 7.4 phosphate buffer. The optimised formulation (PL6) shows drug release up to 12 h (99.78 ± 0.067%). The pharmacokinetics of pure SV and SV proliposomes (SVP) in rats were Tmax 2 ± 0.5 and 4 ± 0.7 h, Cmax 10.4 ± 2.921 and 21.18 ± 12.321 μg/mL, AUC0-∞ 67.124 ± 0.23 and 179.75 ± 1.541 μg/mL h, respectively. Optimised SVP shows a significant improvement in the rate and absorption of SV. The optimised formulation showed enhanced oral bioavailability of SV in Albino Wister rats and offers a new technique to improve the poor water-soluble drug absorption in the gastrointestinal system.
Collapse
|
29
|
Zeta potential changing nanoemulsions: Impact of PEG-corona on phosphate cleavage. Int J Pharm 2020; 581:119299. [DOI: 10.1016/j.ijpharm.2020.119299] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/22/2022]
|
30
|
Zaichik S, Steinbring C, Jelkmann M, Bernkop-Schnürch A. WITHDRAWN: Zeta potential changing nanoemulsions: Impact of PEG-corona on phosphate cleavage. Int J Pharm X 2020. [DOI: 10.1016/j.ijpx.2020.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
31
|
Innovative technological systems to optimize the delivery and therapeutic activity of antimicrobial drugs. ADVANCES AND AVENUES IN THE DEVELOPMENT OF NOVEL CARRIERS FOR BIOACTIVES AND BIOLOGICAL AGENTS 2020. [DOI: 10.1016/b978-0-12-819666-3.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Liao H, Gao Y, Lian C, Zhang Y, Wang B, Yang Y, Ye J, Feng Y, Liu Y. Oral absorption and lymphatic transport of baicalein following drug-phospholipid complex incorporation in self-microemulsifying drug delivery systems. Int J Nanomedicine 2019; 14:7291-7306. [PMID: 31564878 PMCID: PMC6735633 DOI: 10.2147/ijn.s214883] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/04/2019] [Indexed: 01/14/2023] Open
Abstract
PURPOSE The aims of this study were to prepare a baicalein self-microemulsion with baicalein-phospholipid complex as the intermediate (BAPC-SMEDDS) and to compare its effects with those of conventional baicalein self-microemulsion (CBA-SMEDDS) on baicalein oral absorption and lymphatic transport. METHODS Two SMEDDS were characterized by emulsifying efficiency, droplet size, zeta potential, cloud point, dilution stability, physical stability, and in vitro release and lipolysis. Different formulations of 40 mg/kg baicalein were orally administered to Sprague-Dawley rats to investigate their respective bioavailabilities. The chylomicron flow blocking rat model was used to evaluate their lymphatic transport. RESULTS The droplet sizes of BAPC-SMEDDS and CBA-SMEDDS after 100x dilution were 9.6±0.2 nm and 11.3±0.4 nm, respectively. In vivo experiments indicated that the relative bioavailability of CBA-SMEDDS and BAPC-SMEDDS was 342.5% and 448.7% compared to that of free baicalein (BA). The AUC0-t and Cmax of BAPC-SMEDDS were 1.31 and 1.87 times higher than those of CBA-SMEDDS, respectively. The lymphatic transport study revealed that 81.2% of orally absorbed BA entered the circulation directly through the portal vein, whereas approximately 18.8% was transported into the blood via lymphatic transport. CBA-SMEDDS and BAPC-SMEDDS increased the lymphatic transport ratio of BA from 18.8% to 56.2% and 70.2%, respectively. Therefore, self-microemulsion not only significantly improves oral bioavailability of baicalein, but also increases the proportion lymphatically transported. This is beneficial to the direct interaction of baicalein with relevant immune cells in the lymphatic system and for proper display of its effects. CONCLUSION This study demonstrates the oral absorption and lymphatic transport characteristics of free baicalein and baicalein SMEDDS with different compositions. This is of great significance to studies on lymphatic targeted delivery of natural immunomodulatory compounds.
Collapse
Affiliation(s)
- Hengfeng Liao
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Yue Gao
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Chunfang Lian
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Yun Zhang
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Bangyuan Wang
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Yanfang Yang
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Jun Ye
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Yu Feng
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Yuling Liu
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| |
Collapse
|
33
|
Phan TNQ, Le-Vinh B, Efiana NA, Bernkop-Schnürch A. Oral self-emulsifying delivery systems for systemic administration of therapeutic proteins: science fiction? J Drug Target 2019; 27:1017-1024. [DOI: 10.1080/1061186x.2019.1584200] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Thi Nhu Quynh Phan
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens University Innsbruck, Innsbruck, Austria
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, Vietnam
| | - Bao Le-Vinh
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens University Innsbruck, Innsbruck, Austria
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Nuri Ari Efiana
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens University Innsbruck, Innsbruck, Austria
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof.Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta, Indonesia
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens University Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Hydrophobic ion-pairs and lipid-based nanocarrier systems: The perfect match for delivery of BCS class 3 drugs. J Control Release 2019; 304:146-155. [DOI: 10.1016/j.jconrel.2019.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
|
35
|
Shahzadi I, Asim MH, Dizdarević A, Wolf JD, Kurpiers M, Matuszczak B, Bernkop-Schnürch A. Arginine-based cationic surfactants: Biodegradable auxiliary agents for the formation of hydrophobic ion pairs with hydrophilic macromolecular drugs. J Colloid Interface Sci 2019; 552:287-294. [PMID: 31132631 DOI: 10.1016/j.jcis.2019.05.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 01/27/2023]
Abstract
WORKING HYPOTHESIS It was the hypothesis of this study that esters of arginine (Arg) with medium and long chain aliphatic alcohols are biodegradable and less cytotoxic than well-established cationic surfactants being used for hydrophobic ion pairing (HIP) with hydrophilic macromolecular drugs. EXPERIMENTS Arg was linked to nonan-1-ol and hexadecan-1-ol (C9 and C16) via an ester linkage. The newly formed Arg-nonyl ester (ANE) and Arg-hexadecanoyl ester (AHE) surfactants were evaluated regarding critical micelle concentration (CMC) using pyrene fluorescent method, cytotoxicity on human colorectal adenocarcinoma-derived cells (Caco-2) and biodegradability at the concentrations of 2.5 and 5 mg/mL using 2500 Nα-benzoyl-l-arginine ethyl ester hydrochloride (BAEE) units/mL of trypsin. Furthermore, in order to evaluate their potential for HIP, heparin and daptomycin were used as model polysaccharide and peptide drugs, respectively. FINDINGS Chemical structures of ANE and AHE surfactants were confirmed by FTIR, 1H NMR, and LC-MS. CMC of ANE was 7.5 mM and CMC of AHE was 2 mM. Arg-surfactants were not cytotoxic below their CMC. At CMC and above CMC, ANE was significantly (P < 0.05) more cytotoxic than AHE. ANE in both concentrations was degraded ˃98% within 48 h. The degradation of AHE at lower concentration was ˃97% and about 50% at higher concentration. Arg-surfactants were able to efficiently precipitate heparin and daptomycin from corresponding aqueous solutions. CONCLUSION Arg-surfactants being biodegradable and less toxic seems to be a promising alternative to well-established cationic surfactants for the formation of hydrophobic ion pairs (HIPs) with hydrophilic macromolecular drugs.
Collapse
Affiliation(s)
- Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; College of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Aida Dizdarević
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julian Dominik Wolf
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
36
|
Cardona MI, Nguyen Le NM, Zaichik S, Aragón DM, Bernkop-Schnürch A. Development and in vitro characterization of an oral self-emulsifying delivery system (SEDDS) for rutin fatty ester with high mucus permeating properties. Int J Pharm 2019; 562:180-186. [DOI: 10.1016/j.ijpharm.2019.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 01/18/2023]
|
37
|
Khan M, Nadhman A, Shah W, Khan I, Yasinzai M. Formulation and characterisation of a self‐nanoemulsifying drug delivery system of amphotericin B for the treatment of leishmaniasis. IET Nanobiotechnol 2019; 13:477-483. [PMCID: PMC8676240 DOI: 10.1049/iet-nbt.2018.5281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 12/16/2018] [Indexed: 12/13/2022] Open
Abstract
This study was aimed to develop a self‐nanoemulsifying drug delivery system (SNEDDS) for amphotericin B (AmB) potential use in leishmaniasis through topical and oral routes. Two formulations, formulation A and formulation B (FA and FB) of AmB loaded SNEDDS were developed by mixing their excipients through vortex and sonication. The SNEDDS formulation FA and FB displayed a mean droplet size of 27.70 ± 0.5 and 30.17 ± 0.7 nm and zeta potential −11.4 ± 3.25 and −13.6 ± 2.75 mV, respectively. The mucus permeation study showed that formulation FA and FB diffused 1.45 and 1.37%, respectively in up to 8 mm of mucus. The cell permeation across Caco‐2 cells monolayer was 10 and 11%, respectively. Viability of Caco‐2 cells was 89% for FA and 86.9% for FB. The anti‐leishmanial activities of FA in terms of IC50 were 0.017 µg/ml against promastigotes and 0.025 µg/ml against amastigotes, while IC50 values of FB were 0.031 and 0.056 µg/ml, respectively. FA and FB killed macrophage harboured Leishmania parasites in a dose‐dependent manner and a concentration of 0.1 µg/ml killed 100% of the parasites. These formulations have the potential to provide a promising tool for AmB use through oral and topical routes in leishmaniasis therapy.
Collapse
Affiliation(s)
- Momin Khan
- Department of BiotechnologyQuaid‐I‐Azam UniversityIslamabadPakistan
- Department of Pharmaceutical TechnologyInstitute of PharmacyCentre for Chemistry and Biomedicine (CCB) University of InnsbruckInnsbruckAustria
- Institute of Basic Medical Sciences, Khyber Medical UniversityPeshawarPakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University of Science and Information TechnologyPeshawarPakistan
| | - Walayat Shah
- Institute of Basic Medical Sciences, Khyber Medical UniversityPeshawarPakistan
| | - Imran Khan
- Department of BiotechnologyQuaid‐I‐Azam UniversityIslamabadPakistan
- Division of Cancer Epidemiology and ManagementNational Cancer Center‐809 Madu‐dongIlsan‐gu, Goyang‐siGyeonggi‐do0‐769Republic of Korea
| | - Masoom Yasinzai
- Department of BiotechnologyQuaid‐I‐Azam UniversityIslamabadPakistan
- Centre for Interdisciplinary Research in Basic Sciences, International Islamic University IslamabadIslamabadPakistan
| |
Collapse
|
38
|
Mahmood A, Bernkop-Schnürch A. SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv Drug Deliv Rev 2019; 142:91-101. [PMID: 29981355 DOI: 10.1016/j.addr.2018.07.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Since the development of self-emulsifying drug delivery systems (SEDDS) in 1980's, they attract the attention of researchers in order to confront the challenge of poor water-solubility of orally given drugs. Within recent years, SEDDS were also discovered for oral administration of hydrophilic macromolecular drugs such as peptides, proteins, polysaccharides and pDNA. Due to hydrophobic ion pairing (HIP) with oppositely charged lipophilic auxiliary agents the resulting complexes can be incorporated in the lipophilic phase of SEDDS. Depending on the solubility of the complex in the SEDDS pre-concentrate and in the release medium drug release can be adjusted on purpose by choosing more or less lipophilic auxiliary agents in appropriate quantities for HIP. Within the oily droplets formed in the GI-tract drugs are protected towards degradation by proteases and nucleases and thiol-disulfide exchange reactions with dietary proteins. The oily droplets can be made mucoadhesive or highly mucus permeating depending on their target site. Furthermore, even their cellular uptake properties can be tuned by adjusting their zeta potential or decorating them with cell penetrating peptides. The potential of SEDDS for oral administration of hydrophilic macromolecular drugs could meanwhile be demonstrated via various in vivo studies showing a bioavailability at least in the single digit percentage range. Owing to these properties advanced SEDDS turned out to be a game changing approach for the oral administration of hydrophilic macromolecular drugs.
Collapse
Affiliation(s)
- Arshad Mahmood
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Abbottabad 22060, Pakistan
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
39
|
Abdulkarim M, Sharma PK, Gumbleton M. Self-emulsifying drug delivery system: Mucus permeation and innovative quantification technologies. Adv Drug Deliv Rev 2019; 142:62-74. [PMID: 30974131 DOI: 10.1016/j.addr.2019.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022]
Abstract
Mucus is a dynamic barrier which covers and protects the underlying mucosal epithelial membrane against bacteria and foreign particles. This protection mechanism extends to include therapeutic macromolecules and nanoparticles (NPs) through trapping of these particles. Mucus is not only a physical barrier that limiting particles movements based on their sizes but it selectively binds with particles through both hydrophilic and lipophilic interactions. Therefore, nano-carriers for mucosal delivery should be designed to eliminate entrapment by the mucus barrier. For this reason, different strategies have been approached for both solid nano-carriers and liquid core nano-carriers to synthesise muco-diffusive nano-carrier. Among these nano-strategies, Self-Emulsifying Drug Delivery System (SEDDS) was recognised as very promising nano-carrier for mucus delivery. The system was introduced to enhance the dissolution and bioavailability of orally administered insoluble drugs. SEDDS has shown high stability against intestinal enzymatic activity and more importantly, relatively rapid permeation characteristics across mucus barrier. The high diffusivity of SEDDS has been tested using various in vitro measurement techniques including both bulk and individual measurement of droplets diffusion within mucus. The selection and processing of an optimum in vitro technique is of great importance to avoid misinterpretation of the diffusivity of SEDDS through mucus barrier. In conclusion, SEDDS is a system with high capacity to diffuse through intestinal mucus even though this system has not been studied to the same extent as solid nano-carriers.
Collapse
Affiliation(s)
- Muthanna Abdulkarim
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Peeyush Kumar Sharma
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK; Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
40
|
Akram M, Ansari F. Biophysical investigation of the interaction between cationic biodegradable C m-E2O-C m gemini surfactants and porcine serum albumin (PSA). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:520-528. [PMID: 30176428 DOI: 10.1016/j.saa.2018.08.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The interaction of porcine serum albumin (PSA) with biodegradable, less cytotoxic Cm-E2O-Cm gemini surfactants was monitored using state-of-the-art techniques. The temperature variation fluorescence experiments were used to derive the thermodynamic parameters of non-covalent interaction in PSA-Cm-E2O-Cm gemini systems, which indicate an exothermic and a hydrogen bonding/Van der Waals force predominated binding process. Synchronous fluorescence spectra indicate that tryptophan fluorescence gets more quenched than the tyrosine fluorescence. The pyrene micropolarity assay signifies that pyrene is subjected to mild micropolarity changes. UV absorption spectra verify the ground state complexation between PSA and Cm-E2O-Cm geminis. Far-UV CD spectra reveal negligible changes in secondary structure with respect to PSA in its native state. These results indicate that the cationic Cm-E2O-Cm geminis, at lower concentrations, substantially bind to PSA but do not disrupt its secondary structure. These observations are favorable for the potential utilization of the concerned geminis in the field of drug delivery, especially in self-emulsifying drug delivery systems.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Farah Ansari
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
41
|
Zaichik S, Steinbring C, Caliskan C, Bernkop-Schnürch A. Development and in vitro evaluation of a self-emulsifying drug delivery system (SEDDS) for oral vancomycin administration. Int J Pharm 2019; 554:125-133. [DOI: 10.1016/j.ijpharm.2018.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/09/2018] [Accepted: 11/03/2018] [Indexed: 01/06/2023]
|
42
|
Trypsin decorated self-emulsifying drug delivery systems (SEDDS): Key to enhanced mucus permeation. J Colloid Interface Sci 2018; 531:253-260. [DOI: 10.1016/j.jcis.2018.07.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 12/18/2022]
|
43
|
Rohrer J, Lupo N, Bernkop-Schnürch A. Advanced formulations for intranasal delivery of biologics. Int J Pharm 2018; 553:8-20. [PMID: 30316796 DOI: 10.1016/j.ijpharm.2018.10.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The global biologics market has been ever increasing over the last decades and is predicted to top Euro 350 by 2020. Facing this scenario, the parenteral route of biologics administration as hitherto standard route is inconvenient for the future. Among the alternatives, the intranasal delivery of therapeutic biologicals seems to be most promising but researchers are still facing challenges as indicated by the scarce number of successfully marketed peptide drugs. AREAS COVERED This review article is a compilation of current research focusing on achievements in the field of auxiliary agents for biologics delivery. First, the key benefits of the nose as most promising alternative route of drug administration are highlighted. Then, the potential of the different auxiliary agents in preclinical research is in detail discussed. Moreover, the most used permeation enhancing agents, mucolytic agents, mucoadhesive agents, in situ gelling agents and enzyme inhibiting agents in the formulation of nasal drug delivery systems are described. Thus, the overall purpose of this review is to highlight recent achievements in nasal delivery of biologics and to encourage researchers to work in the direction of needle-free nasal administration of biologics. EXPERT OPINION The nasal epithelium is a promising route for biologics administration, which is reflected in a number of well-established products on the market treating chronic diseases as well as a large number of clinical trials currently in progress. The nasal route of drug administration might be a chance to improve therapy of biologics however break-through advances, especially for very complex molecules, such as antibodies, are still needed.
Collapse
Affiliation(s)
- Julia Rohrer
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Noemi Lupo
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria.
| |
Collapse
|
44
|
Lam HT, Le-Vinh B, Phan TNQ, Bernkop-Schnürch A. Self-emulsifying drug delivery systems and cationic surfactants: do they potentiate each other in cytotoxicity? J Pharm Pharmacol 2018; 71:156-166. [PMID: 30251762 DOI: 10.1111/jphp.13021] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/02/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the cytotoxicity of self-emulsifying drug delivery systems (SEDDS) containing five different cationic surfactants. METHODS Cationic surfactants were added in a concentration of 1% and 5% (m/m) to SEDDS comprising 30% Capmul MCM, 30% Captex 355, 30% Cremophor EL and 10% propylene glycol. The resulting formulations were characterized in terms of size, zeta potential, in-vitro haemolytic activity and toxicity on Caco-2 via MTT assay and lactate dehydrogenase release assay. KEY FINDINGS The evaluated surfactants had in both concentrations a minor impact on the size of SEDDS ranging from 30.2 ± 0.6 to 55.4 ± 1.1 nm, whereas zeta potential changed significantly from -9.0 ± 0.3 to +28.8 ± 1.6 mV. The overall cytotoxicity of cationic surfactants followed the rank order: hexadecylpyridinium chloride > benzalkonium chloride > alkyltrimethylammonium bromide > octylamine > 1-decyl-3-methylimidazolium. The haemolytic activity of the combination of cationic surfactants and SEDDS on human red blood cells was synergistic. Furthermore, cationic SEDDS exhibited higher cytotoxicity of Caco-2 cells compared to SEDDS without cationic surfactants. CONCLUSIONS According to these results, SEDDS and cationic surfactants seem to bear an additive up to synergistic toxic risk.
Collapse
Affiliation(s)
- Hung Thanh Lam
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, Leopold-Franzens-University Innsbruck, Innsbruck, Austria.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho City, Vietnam
| | - Bao Le-Vinh
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, Leopold-Franzens-University Innsbruck, Innsbruck, Austria.,Department of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thi Nhu Quynh Phan
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, Leopold-Franzens-University Innsbruck, Innsbruck, Austria.,Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, Hue city, Vietnam
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Zaichik S, Steinbring C, Menzel C, Knabl L, Orth-Höller D, Ellemunter H, Niedermayr K, Bernkop-Schnürch A. Development of self-emulsifying drug delivery systems (SEDDS) for ciprofloxacin with improved mucus permeating properties. Int J Pharm 2018; 547:282-290. [DOI: 10.1016/j.ijpharm.2018.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
|
46
|
AboulFotouh K, Allam AA, El-Badry M, El-Sayed AM. Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability. Colloids Surf B Biointerfaces 2018; 167:82-92. [DOI: 10.1016/j.colsurfb.2018.03.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/20/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
|
47
|
Arregui JR, Kovvasu SP, Betageri GV. Daptomycin Proliposomes for Oral Delivery: Formulation, Characterization, and In Vivo Pharmacokinetics. AAPS PharmSciTech 2018; 19:1802-1809. [PMID: 29616488 DOI: 10.1208/s12249-018-0989-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/08/2018] [Indexed: 01/23/2023] Open
Abstract
The aim of this study was to develop a proliposomal formulation of lipopeptide antibiotic drug daptomycin (DAP) for oral delivery. Thin film hydration was the selected method for preparation of proliposomes. Different phospholipids including soy-phosphatidylcholine (SPC), hydrogenated egg-phosphatidylcholine (HEPC), and distearoyl-phosphatidylcholine (DSPC) were evaluated in combination with cholesterol. The inclusion of surface charge modifiers in the formulation such as dicetyl phosphate (DCP) and stearylamine (SA) to enhance drug encapsulation was also evaluated. Particle size, surface charge, and encapsulation efficiency were performed on daptomycin-hydrated proliposomes as part of physical characterization. USP type II dissolution apparatus with phosphate buffer (pH 6.8) was used for in vitro drug release studies. Optimized formulation was evaluated for in vivo pharmacokinetics after oral administration to Sprague-Dawley rats. Proliposomes composed of SPC exhibited higher entrapment efficiency than those containing HEPC or DSPC. The highest entrapment efficiency was achieved by positively charged SPC-SA proliposomes, showing an encapsulation efficiency of 92% and a zeta potential of + 28 mV. In vitro drug release of optimized formulation demonstrated efficient drug retention totaling for less than 20% drug release within the first 60 min and only 42% drug release after 2 h. Pharmacokinetic parameters after single oral administration of optimized proliposomal formulation indicated a significant increase in oral bioavailability of DAP administered as SPC-SA proliposomes when compared to drug solution. Based on these results, incorporation of charge modifiers into proliposomes may increase drug loading and proliposomes an attractive carrier for oral delivery of daptomycin.
Collapse
|
48
|
Herbrink M, Groenland SL, Huitema ADR, Schellens JHM, Beijnen JH, Steeghs N, Nuijen B. Solubility and bioavailability improvement of pazopanib hydrochloride. Int J Pharm 2018; 544:181-190. [PMID: 29680279 DOI: 10.1016/j.ijpharm.2018.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/26/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
The anti-cancer drug pazopanib hydrochloride (PZH) has a very low aqueous solubility and a variable oral bioavailability. A new pharmaceutical formulation with an improved solubility may enhance the bioavailability and reduce the variability. A broad selection of polymer excipients was tested for their compatibility and solubilizing properties by conventional microscopic, thermal and spectrometric techniques. A wet milling and mixing technique was used to produce homogenous powder mixtures. The dissolution properties of the formulation were tested by a pH-switch dissolution model. The final formulation was tested in vivo in cancer patient following a dose escalation design. Of the tested mixture formulations, the one containing the co-block polymer Soluplus® in a 8:1 ratio with PZH performed best in terms of in vitro dissolution properties. The in vivo results indicated that 300 mg of the developed formulation yields similar exposure and a lower variability (379 μg/mL∗h (36.7% CV)) than previously reported values for the standard PZH formulation (Votrient®) at the approved dose of 800 mg. Furthermore, the expected plasma-Cthrough levels (27.2 μg/mL) exceeds the defined therapeutic efficacy threshold of 20 μg/mL.
Collapse
Affiliation(s)
- Maikel Herbrink
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital and MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands; Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Stefanie L Groenland
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital and MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands; Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital and MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands; Department of Clinical Pharmacy, University Medical Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, Utrecht, The Netherlands
| | - Jan H M Schellens
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital and MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands; Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital and MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands
| |
Collapse
|
49
|
Hetényi G, Griesser J, Fontana S, Gutierrez AM, Ellemunter H, Niedermayr K, Szabó P, Bernkop-Schnürch A. Amikacin-containing self-emulsifying delivery systems via pulmonary administration for treatment of bacterial infections of cystic fibrosis patients. Nanomedicine (Lond) 2018; 13:717-732. [DOI: 10.2217/nnm-2017-0307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: The aim of the study was to develop self-emulsifying delivery systems (SEDDS) exhibiting improved permeation rate for pulmonary delivery of amikacin for treatment of cystic fibrosis (CF) patients. Materials & methods: Solubility of amikacin in lipids was improved by hydrophobic ion pairing with sodium myristyl sulfate. The complex was loaded into SEDDS. Drug-release studies were performed and the permeation properties of SEDDS through human CF mucus were examined. Results: A total of 10% complex could be loaded into SEDDS. SEDDS exhibited sustained release. Up to twofold more amounts of amikacin permeated through the CF mucus compared with reference. Conclusion: The developed SEDDS with amikacin may be a promising tool for the treatment of certain bacterial infections of CF patients.
Collapse
Affiliation(s)
- Gergely Hetényi
- Thiomatrix Forschungs – und Beratungs GmbH, Innsbruck, Austria
| | - Janine Griesser
- Thiomatrix Forschungs – und Beratungs GmbH, Innsbruck, Austria
| | - Simon Fontana
- Thiomatrix Forschungs – und Beratungs GmbH, Innsbruck, Austria
| | | | - Helmut Ellemunter
- Cystic Fibrosis Centre, Department of Child & Adolescent Health, Pediatrics III, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Niedermayr
- Cystic Fibrosis Centre, Department of Child & Adolescent Health, Pediatrics III, Medical University of Innsbruck, Innsbruck, Austria
| | - Péter Szabó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - Andreas Bernkop-Schnürch
- Thiomatrix Forschungs – und Beratungs GmbH, Innsbruck, Austria
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University, Innsbruck, Austria
| |
Collapse
|
50
|
Griesser J, Hetényi G, Kadas H, Demarne F, Jannin V, Bernkop-Schnürch A. Self-emulsifying peptide drug delivery systems: How to make them highly mucus permeating. Int J Pharm 2018; 538:159-166. [DOI: 10.1016/j.ijpharm.2018.01.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 11/30/2022]
|