1
|
Emanuel J, Papies J, Galander C, Adler JM, Heinemann N, Eschke K, Merz S, Pischon H, Rose R, Krumbholz A, Kulić Ž, Lehner MD, Trimpert J, Müller MA. In vitro and in vivo effects of Pelargonium sidoides DC. root extract EPs ® 7630 and selected constituents against SARS-CoV-2 B.1, Delta AY.4/AY.117 and Omicron BA.2. Front Pharmacol 2023; 14:1214351. [PMID: 37564181 PMCID: PMC10410074 DOI: 10.3389/fphar.2023.1214351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
The occurrence of immune-evasive SARS-CoV-2 strains emphasizes the importance to search for broad-acting antiviral compounds. Our previous in vitro study showed that Pelargonium sidoides DC. root extract EPs® 7630 has combined antiviral and immunomodulatory properties in SARS-CoV-2-infected human lung cells. Here we assessed in vivo effects of EPs® 7630 in SARS-CoV-2-infected hamsters, and investigated properties of EPs® 7630 and its functionally relevant constituents in context of phenotypically distinct SARS-CoV-2 variants. We show that EPs® 7630 reduced viral load early in the course of infection and displayed significant immunomodulatory properties positively modulating disease progression in hamsters. In addition, we find that EPs® 7630 differentially inhibits SARS-CoV-2 variants in nasal and bronchial human airway epithelial cells. Antiviral effects were more pronounced against Omicron BA.2 compared to B.1 and Delta, the latter two preferring TMPRSS2-mediated fusion with the plasma membrane for cell entry instead of receptor-mediated low pH-dependent endocytosis. By using SARS-CoV-2 Spike VSV-based pseudo particles (VSVpp), we confirm higher EPs® 7630 activity against Omicron Spike-VSVpp, which seems independent of the serine protease TMPRSS2, suggesting that EPs® 7630 targets endosomal entry. We identify at least two molecular constituents of EPs® 7630, i.e., (-)-epigallocatechin and taxifolin with antiviral effects on SARS-CoV-2 replication and cell entry. In summary, our study shows that EPs® 7630 ameliorates disease outcome in SARS-CoV-2-infected hamsters and has enhanced activity against Omicron, apparently by limiting late endosomal SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Jackson Emanuel
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Jan Papies
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Celine Galander
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Julia M. Adler
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Kathrin Eschke
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | | | - Ruben Rose
- Institute for Infection Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Žarko Kulić
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co. KG, Karlsruhe, Germany
| | - Martin D. Lehner
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co. KG, Karlsruhe, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Marcel A. Müller
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| |
Collapse
|
2
|
Kiecka A, Macura B, Szczepanik M. Modulation of allergic contact dermatitis via gut microbiota modified by diet, vitamins, probiotics, prebiotics, and antibiotics. Pharmacol Rep 2023; 75:236-248. [PMID: 36729361 PMCID: PMC10060339 DOI: 10.1007/s43440-023-00454-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023]
Abstract
Allergic contact dermatitis is one of the most common recorded occupational diseases. There are many different substances that the skin comes into contact with on a daily basis and that can cause ACD, e.g., preservatives, surfactants, and antimicrobial agents. The development of a mouse model of ACD has provided insight into the immune mechanisms involved. Drugs used in the treatment of skin diseases have many side effects. Therefore, alternative methods of suppressing the immune response to reduce the symptoms of skin diseases are being sought. In recent years, high hopes have been placed on dietary modulation and supplementation to affect the intestinal microbial composition and promote anti-inflammatory responses. In addition, other studies have shown the crucial role of intestinal microbiota in many immune-mediated diseases. Recognition and characterization of pro- and anti-inflammatory nutrients and supplements may be crucial to support the treatment of diseases such as atopic dermatitis, acne vulgaris, psoriasis, and allergic contact dermatitis.
Collapse
Affiliation(s)
- Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland.
| | - Barbara Macura
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| |
Collapse
|
3
|
Chen X, Chen Y, Liu Y, Zou L, McClements DJ, Liu W. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Compr Rev Food Sci Food Saf 2022; 21:3963-4001. [PMID: 35912644 DOI: 10.1111/1541-4337.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Increasing awareness of the health benefits of specific constituents in fruits, vegetables, cereals, and other whole foods has sparked a broader interest in the potential health benefits of nutraceuticals. Many nutraceuticals are hydrophobic substances, which means they must be encapsulated in colloidal delivery systems. Oil-in-water emulsions are one of the most widely used delivery systems for improving the bioavailability and bioactivity of these nutraceuticals. The composition and structure of emulsions can be designed to improve the water dispersibility, physicochemical stability, and bioavailability of the encapsulated nutraceuticals. The nature of the emulsion used influences the interfacial area and properties of the nutraceutical-loaded oil droplets in the gastrointestinal tract, which influences their digestion, as well as the bioaccessibility, metabolism, and absorption of the nutraceuticals. In this article, we review recent in vitro and in vivo studies on the utilization of emulsions to improve the bioavailability of nutraceuticals. The findings from this review should facilitate the design of more efficacious nutraceutical-loaded emulsions with increased bioactivity.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Yan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yikun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Beverage-Drug Interaction: Effects of Green Tea Beverage Consumption on Atorvastatin Metabolism and Membrane Transporters in the Small Intestine and Liver of Rats. MEMBRANES 2020; 10:membranes10090233. [PMID: 32937767 PMCID: PMC7559440 DOI: 10.3390/membranes10090233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Green tea (GT) beverages are popular worldwide and may prevent the development of many chronic diseases including cardiovascular disease and cancer. To investigate whether the consumption of a GT beverage causes drug interactions, the effects of GT beverage consumption on atorvastatin metabolism and membrane transporters were evaluated. Male rats were fed a chow diet with tap water or the GT beverage for 3 weeks. Then, the rats were given a single oral dose (10 mg/kg body weight (BW)) of atorvastatin (ATV), and blood was collected at various time points within 6 h. The results show that GT consumption increased the plasma concentrations (AUC0–6h) of ATV (+85%) and 2-OH ATV (+93.3%). GT also increased the 2-OH ATV (+40.9%) and 4-OH ATV (+131.6%) contents in the liver. Decreased cytochrome P450 (CYP) 3A enzyme activity, with no change in P-glycoprotein expression in the intestine, was observed in rats treated with GT. Additionally, GT increased hepatic CYP3A-mediated ATV metabolism and decreased organic anion transporting polypeptides (OATP) 2 membrane protein expression. There was no significant difference in the membrane protein expression of OATP2B1 and P-glycoprotein in the intestine and liver after the GT treatment. The results show that GT consumption may lower hepatic OATP2 and, thus, limit hepatic drug uptake and increase plasma exposure to ATV and 2-OH ATV.
Collapse
|
5
|
Ikarashi N, Fujitate N, Togashi T, Takayama N, Fukuda N, Kon R, Sakai H, Kamei J, Sugiyama K. Acacia Polyphenol Ameliorates Atopic Dermatitis in Trimellitic Anhydride-Induced Model Mice via Changes in the Gut Microbiota. Foods 2020; 9:foods9060773. [PMID: 32545274 PMCID: PMC7353469 DOI: 10.3390/foods9060773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 01/02/2023] Open
Abstract
We have previously shown that acacia polyphenol (AP), which was extracted from the bark of Acacia mearnsii De Wild, exerts antiobesity, antidiabetic, and antihypertensive effects. In this study, we examined the effect of AP on atopic dermatitis. Trimellitic anhydride (TMA) was applied to the ears of mice to create model mice with atopic dermatitis. The frequency of scratching behavior in the TMA-treated group was significantly higher than that in the control group, and the expression levels of inflammatory markers (tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2) in the skin also increased. In contrast, both the frequency of scratching behavior and the expression levels of skin inflammatory markers in the AP-treated group were significantly lower than those in the TMA-treated group. The abundances of beneficial bacteria, such as Bifidobacterium spp. and Lactobacillus spp., increased in the AP-treated group compared with the TMA-treated group. Furthermore, the abundances of Bacteroides fragilis and Clostridium coccoides in the gut, which are known for anti-inflammatory properties, increased significantly with AP administration. The present results revealed that AP inhibits TMA-induced atopic dermatitis-like symptoms. In addition, the results also suggested that this effect may be associated with the mechanism of gut microbiota improvement.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (T.T.); (N.T.); (N.F.); (R.K.); (H.S.); (J.K.)
- Correspondence: (N.I.); (K.S.); Tel.: +81-3-5498-5918 (N.I.)
| | - Natsumi Fujitate
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (T.T.); (N.T.); (N.F.); (R.K.); (H.S.); (J.K.)
| | - Takumi Togashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (T.T.); (N.T.); (N.F.); (R.K.); (H.S.); (J.K.)
| | - Naoya Takayama
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (T.T.); (N.T.); (N.F.); (R.K.); (H.S.); (J.K.)
| | - Natsuko Fukuda
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (T.T.); (N.T.); (N.F.); (R.K.); (H.S.); (J.K.)
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (T.T.); (N.T.); (N.F.); (R.K.); (H.S.); (J.K.)
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (T.T.); (N.T.); (N.F.); (R.K.); (H.S.); (J.K.)
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (T.T.); (N.T.); (N.F.); (R.K.); (H.S.); (J.K.)
| | - Kiyoshi Sugiyama
- Department of Functional Molecular Kinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Correspondence: (N.I.); (K.S.); Tel.: +81-3-5498-5918 (N.I.)
| |
Collapse
|
6
|
Morales-Prieto N, Huertas-Abril PV, López de Lerma N, Pacheco IL, Pérez J, Peinado R, Abril N. Pedro Ximenez sun-dried grape must: a dietary supplement for a healthy longevity. Food Funct 2020; 11:4387-4402. [DOI: 10.1039/d0fo00204f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sun-dried Pedro Ximénez white grapes must (PXM) is a potent antioxidant that regularizes apoptosis, proliferation, and regeneration of the structure and the function of aged mice liver. PXM consumption contributes to a healthy aging process.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Paula V. Huertas-Abril
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | | | - Isabel. L. Pacheco
- Departamento de Anatomía y Anatomía Patológica Comparadas. Facultad de Veterinaria. Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas. Facultad de Veterinaria. Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Rafael Peinado
- Departamento de Química Agrícola
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| |
Collapse
|
7
|
A Pharmacokinetic Interaction Study of Sorafenib and Iced Teas in Rats Using UPLC-MS/MS: An Illustration of Beverage-Drug Interaction. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2410845. [PMID: 31871933 PMCID: PMC6907072 DOI: 10.1155/2019/2410845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/01/2019] [Accepted: 10/22/2019] [Indexed: 11/18/2022]
Abstract
Iced teas (ITs), also known as ready-to-drink teas, have gained much popularity among many nations. The modulatory effect of tea beverages on CYP3A4 increases the possibility of their potential interactions with many coadministered medications. Being a substrate of CYP3A4, sorafenib (SOR), the first-line therapy for the treatment of hepatocellular carcinoma, shows a great probability to exhibit pharmacokinetic (PK) interaction with ITs. For this purpose, different groups of Wistar rats were given oral doses of SOR (40 mg/kg), along with different types of ITs. The concentration of SOR in rat plasma was determined using UPLC-MS/MS. Chromatographic analysis was performed on a C18 analytical column, Acquity UPLC BEH™ (100 × 1.0 mm, i.d., 1.7 μm particle size), using erlotinib (ERL) as an internal standard. Isocratic elution was performed with a mobile phase consisting of two solvents: solvent A (water with 0.1% formic acid) and solvent B (acetonitrile with 0.1% formic acid), in a ratio of 30 : 70, v/v, respectively. Quantitation was performed using MRM of the transitions from protonated precursor ions [M+H]+ to product ions at m/z 465.12 > 252.02 (SOR) and m/z 394.29 > 278.19 (ERL). The method was fully validated as per the FDA guidance for bioanalytical method validation in the concentration range of 2.5–500 ng/mL. Different PK parameters were calculated for SOR in all rat groups and groups administered with ITs and SOR, compared with groups with simply water and SOR. Experimental data revealed that ITs caused a general reduction in SOR bioavailability; an approximate reduction of 30% was recorded for all types of tested ITs. These data indicate that ITs could affect the PK profile of SOR in rats.
Collapse
|
8
|
Adrar NS, Madani K, Adrar S. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Ogawa S, Matsuo Y, Tanaka T, Yazaki Y. Utilization of Flavonoid Compounds from Bark and Wood. III. Application in Health Foods. Molecules 2018; 23:E1860. [PMID: 30049977 PMCID: PMC6222561 DOI: 10.3390/molecules23081860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 11/16/2022] Open
Abstract
Dietary supplements ACAPOLIA® and ACAPOLIA PLUS have been sold in Japan under the classification "Foods in General" for a number of years. In April 2015, the classification of "Foods with Function Claims" was introduced in Japan to make more products available to the public that were clearly labeled with functional claims based on scientific evidence. In order to obtain recognition of ACAPOLIA PLUS under this new classification, the following information needed to be established. The safety of the bark extract of Acacia mearnsii was shown from the history of the long-term safe consumption of the extract as a health supplement, together with several additional clinical safety tests. Robinetinidol-(4α,8)-catechin was detected by high performance liquid chromatography (HPLC) in the supplement and was suitable for use as the basis of the quantitative analysis. In clinical tests, the amount of change in the plasma glucose concentration in the initial 60 min after rice consumption by a test group who had been given the Acadia extract was significantly lower than the glucose concentration in the group that was given a placebo. The blood glucose incremental areas under the curve (IAUC) in the first 60 min after rice consumption were also significantly lower in the Acacia group. The functional mechanisms were explained in terms of the inhibition of the absorption of glucose in the small intestine and the reduction in the activity of the digestive enzymes caused by proanthocyanidins derived from A. mearnsii bark. As a result, ACAPOLIA PLUS was accepted as a "Food with Function Claims" in August 2016. ACAPOLIA PLUS is now sold under this new classification. The growth of a typical intestinal bacterium is inhibited by an extract containing flavonoid compounds from A. mearnsii bark; thus, one of the future directions of study must be a comprehensive investigation of the effect that flavonoid compounds, proanthocyanidins, have on intestinal bacteria.
Collapse
Affiliation(s)
- Sosuke Ogawa
- Mimozax Co., Ltd., 4291-1, Miyauchi, Hatsukaichi-shi, Hiroshima 738-0034, Japan.
| | - Yosuke Matsuo
- Department of Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan.
| | - Takashi Tanaka
- Department of Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan.
| | - Yoshikazu Yazaki
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
10
|
Domínguez-Avila JA, Wall-Medrano A, Velderrain-Rodríguez GR, Chen CYO, Salazar-López NJ, Robles-Sánchez M, González-Aguilar GA. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct 2018; 8:15-38. [PMID: 28074953 DOI: 10.1039/c6fo01475e] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The positive health effects of phenolic compounds (PCs) have been extensively reported in the literature. An understanding of their bioaccessibility and bioavailability is essential for the elucidation of their health benefits. Before reaching circulation and exerting bioactions in target tissues, numerous interactions take place before and during digestion with either the plant or host's macromolecules that directly impact the organism and modulate their own bioaccessibility and bioavailability. The present work is focused on the gastrointestinal (GI) interactions that are relevant to the absorption and metabolism of PCs and how these interactions impact their pharmacokinetic profiles. Non-digestible cell wall components (fiber) interact intimately with PCs and delay their absorption in the small intestine, instead carrying them to the large intestine. PCs not bound to fiber interact with digestible nutrients in the bolus where they interfere with the digestion and absorption of proteins, carbohydrates, lipids, cholesterol, bile salts and micronutrients through the inhibition of digestive enzymes and enterocyte transporters and the disruption of micelle formation. PCs internalized by enterocytes may reach circulation (through transcellular or paracellular transport), be effluxed back into the lumen (P-glycoprotein, P-gp) or be metabolized by phase I and phase II enzymes. Some PCs can inhibit P-gp or phase I/II enzymes, which can potentially lead to drug-nutrient interactions. The absorption and pharmacokinetic parameters are modified by all of the interactions within the digestive tract and by the presence of other PCs. Undesirable interactions have promoted the development of nanotechnological approaches to promote the bioaccessibility, bioavailability, and bioefficacy of PCs.
Collapse
Affiliation(s)
- J Abraham Domínguez-Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a la Victoria Km 0.6. C.P. 83304, Hermosillo, Sonora, Mexico.
| | - Abraham Wall-Medrano
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, CP 32310, Cd. Juárez, Chihuahua, Mexico.
| | - Gustavo R Velderrain-Rodríguez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a la Victoria Km 0.6. C.P. 83304, Hermosillo, Sonora, Mexico.
| | - C-Y Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, Massachusetts 02111, USA.
| | - Norma Julieta Salazar-López
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N Col. Centro, C.P. 83000, Hermosillo, Sonora, Mexico.
| | - Maribel Robles-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N Col. Centro, C.P. 83000, Hermosillo, Sonora, Mexico.
| | - Gustavo A González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a la Victoria Km 0.6. C.P. 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
11
|
Ikarashi N, Ogawa S, Hirobe R, Kon R, Kusunoki Y, Yamashita M, Mizukami N, Kaneko M, Wakui N, Machida Y, Sugiyama K. Epigallocatechin gallate induces a hepatospecific decrease in the CYP3A expression level by altering intestinal flora. Eur J Pharm Sci 2017; 100:211-218. [PMID: 28115221 DOI: 10.1016/j.ejps.2017.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/10/2017] [Accepted: 01/19/2017] [Indexed: 01/25/2023]
Abstract
In previous studies, we showed that a high-dose intake of green tea polyphenol (GP) induced a hepatospecific decrease in the expression and activity of the drug-metabolizing enzyme cytochrome P450 3A (CYP3A). In this study, we examined whether this decrease in CYP3A expression is induced by epigallocatechin gallate (EGCG), which is the main component of GP. After a diet containing 1.5% EGCG was given to mice, the hepatic CYP3A expression was measured. The level of intestinal bacteria of Clostridium spp., the concentration of lithocholic acid (LCA) in the feces, and the level of the translocation of pregnane X receptor (PXR) to the nucleus in the liver were examined. A decrease in the CYP3A expression level was observed beginning on the second day of the treatment with EGCG. The level of translocation of PXR to the nucleus was significantly lower in the EGCG group. The fecal level of LCA was clearly decreased by the EGCG treatment. The level of intestinal bacteria of Clostridium spp. was also decreased by the EGCG treatment. It is clear that the hepatospecific decrease in the CYP3A expression level observed after a high-dose intake of GP was caused by EGCG. Because EGCG, which is not absorbed from the intestine, causes a decrease in the level of LCA-producing bacteria in the colon, the level of LCA in the liver decreases, resulting in a decrease in the nuclear translocation of PXR, which in turn leads to the observed decrease in the expression level of CYP3A.
Collapse
Affiliation(s)
| | - Sosuke Ogawa
- Department of Clinical Pharmacokinetics, Hoshi University, Japan
| | - Ryuta Hirobe
- Department of Clinical Pharmacokinetics, Hoshi University, Japan
| | - Risako Kon
- Department of Clinical Pharmacokinetics, Hoshi University, Japan
| | - Yoshiki Kusunoki
- Department of Clinical Pharmacokinetics, Hoshi University, Japan
| | - Marin Yamashita
- Department of Clinical Pharmacokinetics, Hoshi University, Japan
| | - Nanaho Mizukami
- Department of Clinical Pharmacokinetics, Hoshi University, Japan
| | - Miho Kaneko
- Department of Clinical Pharmacokinetics, Hoshi University, Japan
| | - Nobuyuki Wakui
- Division of Applied Pharmaceutical Education and Research, Hoshi University, Japan
| | - Yoshiaki Machida
- Division of Applied Pharmaceutical Education and Research, Hoshi University, Japan
| | - Kiyoshi Sugiyama
- Department of Clinical Pharmacokinetics, Hoshi University, Japan.
| |
Collapse
|
12
|
Zhao M, Li D, Ye JH, Zheng XQ, Liang YR, Lu JL. Stop for tea? Enzyme inhibitors from tea - what good are they? Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Min Zhao
- Zhejiang University Tea Research Institute; 866# Yuhangtang Road Hangzhou 310058 China
| | - Da Li
- Zhejiang University Tea Research Institute; 866# Yuhangtang Road Hangzhou 310058 China
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute; 866# Yuhangtang Road Hangzhou 310058 China
| | - Xin-Qiang Zheng
- Zhejiang University Tea Research Institute; 866# Yuhangtang Road Hangzhou 310058 China
| | - Yue-Rong Liang
- Zhejiang University Tea Research Institute; 866# Yuhangtang Road Hangzhou 310058 China
| | - Jian-Liang Lu
- Zhejiang University Tea Research Institute; 866# Yuhangtang Road Hangzhou 310058 China
| |
Collapse
|