1
|
An Y, Sun JX, Ma SY, Xu MY, Xu JZ, Liu CQ, Wang SG, Xia QD. From Plant Based Therapy to Plant-Derived Vesicle-Like Nanoparticles for Cancer Treatment: Past, Present and Future. Int J Nanomedicine 2025; 20:3471-3491. [PMID: 40125436 PMCID: PMC11927496 DOI: 10.2147/ijn.s499893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer stands as a formidable malady profoundly impacting human health. Throughout history, plant-based therapies have remained pivotal in the arsenal against cancer, evolving alongside the epochs. Presently, challenges such as the arduous extraction of active components and potential safety concerns impede the progression of plant-based anticancer therapies. The isolation of plant-derived vesicle-like nanoparticles (PDVLNs), a kind of lipid bilayer capsules isolated from plants, has brought plant-based anticancer therapy into a novel realm and has led to decades of research on PDVLNs. Accumulating evidence indicates that PDVLNs can deliver plant-derived active substances to human cells and regulate cellular functions. Regulating immunity, inducing cell cycle arrest, and promoting apoptosis in cancer cells are the most commonly reported mechanisms of PDVLNs in tumor suppression. Low immunogenicity and lack of tumorigenicity make PDVLNs a good platform for drug delivery. The molecules within the PDVLNs are all from source plants, so the selection of source plants is crucial. In recent years, there has been a clear trend that the source plants have changed from vegetables or fruits to medicinal plants. This review highlights the mechanisms of medicinal plant-based cancer therapies to identify candidate source plants. More importantly, the current research on PDVLN-based cancer therapy and the applications of PDVLNs for drug delivery are systematically discussed.
Collapse
Affiliation(s)
- Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Karabay AZ, Barar J, Hekmatshoar Y, Rahbar Saadat Y. Multifaceted Therapeutic Potential of Plant-Derived Exosomes: Immunomodulation, Anticancer, Anti-Aging, Anti-Melanogenesis, Detoxification, and Drug Delivery. Biomolecules 2025; 15:394. [PMID: 40149930 PMCID: PMC11940522 DOI: 10.3390/biom15030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Most eukaryotic and prokaryotic cells have the potential to secrete a group of structures/membrane-bound organelles, collectively referred to as extracellular vesicles (EVs), which offer several advantages to producer/receiver cells. This review provides an overview of EVs from plant sources with emphasis on their health-promoting potential and possible use as therapeutic agents. This review highlights the essential biological effects of plant-derived extracellular vesicles, including immune modulation, anticancer activities, protection against chemical toxicity and pathogens, as well as anti-aging, anti-melanogenesis, and anti-arthritic effects, along with ongoing clinical studies. Evidence revealed that plant-derived EVs' contents exert their beneficial properties through regulating important signaling pathways by transferring miRNAs and other components. Taken all together, the data proposed that plant-derived EVs can be utilized as nutritional compounds and therapeutic agents, such as drug carriers. However, this emerging research area requires further in vitro/in vivo studies and clinical trials to determine the exact underlying mechanisms of EVs' positive health effects in treating various diseases.
Collapse
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, 34217 Istanbul, Türkiye;
| | - Yalda Rahbar Saadat
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| |
Collapse
|
3
|
Gao C, Chen Y, Wen X, Han R, Qin Y, Li S, Tang R, Zhou W, Zhao J, Sun J, Li Z, Tan Z, Wang D, Zhou C. Plant-derived exosome-like nanoparticles in tissue repair and regeneration. J Mater Chem B 2025; 13:2254-2271. [PMID: 39817682 DOI: 10.1039/d4tb02394c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This article reviews plant-derived exosome-like nanoparticles (ELNs), and highlights their potential in regenerative medicine. Various extraction techniques, including ultracentrifugation and ultrafiltration, and their impact on ELN purity and yield were discussed. Characterization methods such as microscopy and particle analysis are found to play crucial roles in defining ELN properties. This review is focused on exploring the therapeutic potential of ELNs in tissue repair, immune regulation, and antioxidant activities. Further research and optimization methods for extraction of ELNs to realize clinical potential applications are necessary.
Collapse
Affiliation(s)
- Canyu Gao
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yang Chen
- Center of Medical Product Technical Inspection, Chengdu, 610015, China
| | - Xingyue Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuxiang Qin
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Sijie Li
- Department of Burn and Plastic Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Weikai Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junyu Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhengyong Li
- Department of Burn and Plastic Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Changchun Zhou
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
4
|
He J, Xu P, Xu T, Yu H, Wang L, Chen R, Zhang K, Yao Y, Xie Y, Yang Q, Wu W, Sun D, Wu D. Therapeutic potential of hydrogen-rich water in zebrafish model of Alzheimer's disease: targeting oxidative stress, inflammation, and the gut-brain axis. Front Aging Neurosci 2025; 16:1515092. [PMID: 39839307 PMCID: PMC11746902 DOI: 10.3389/fnagi.2024.1515092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder, with amyloid-beta (Aβ) aggregation playing a key role in its pathogenesis. Aβ-induced oxidative stress leads to neuronal damage, mitochondrial dysfunction, and apoptosis, making antioxidative strategies promising for AD treatment. This study investigates the effects of hydrogen-rich water (HRW) in a zebrafish AD model. Zebrafish were exposed to aluminum chloride to induce AD-like pathology and then treated with HRW using a nanobubble device. Behavioral assays, ELISA, Hematoxylin-eosin (H&E) staining, and reactive oxygen species (ROS) and neutrophil fluorescence labeling were employed to assess HRW's impact. Additionally, 16S rRNA sequencing analyzed HRW's effect on gut microbiota. HRW can significantly improve cognitive impairment and depression-like behavior in zebrafish AD model, reduce Aβ deposition (p < 0.0001), regulate liver Soluble epoxide hydrolase (sEH) levels (p < 0.05), reduce neuroinflammation, and reduce oxidative stress. Furthermore, HRW reduced the number of harmful bacteria linked to AD pathology by restoring the balance of microbiota in the gut. These findings suggest that HRW has potential as a therapeutic strategy for AD by targeting oxidative stress, inflammation, and gut-brain axis modulation.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Peiye Xu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Ting Xu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haiyang Yu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Lei Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yueliang Yao
- Fuzhou Innovation Center for AI Drug, Fuzhou Medical College of Nanchang University, Fuzhou, China
| | - Yanyan Xie
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing, China
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Dejun Wu
- Department of Geriatric Medicine, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
5
|
Wu C, Li J, Huang K, Tian X, Guo Y, Skirtach AG, You M, Tan M, Su W. Advances in preparation and engineering of plant-derived extracellular vesicles for nutrition intervention. Food Chem 2024; 457:140199. [PMID: 38955121 DOI: 10.1016/j.foodchem.2024.140199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Plant-derived extracellular vesicles (PLEVs), as a type of naturally occurring lipid bilayer membrane structure, represent an emerging delivery vehicle with immense potential due to their ability to encapsulate hydrophobic and hydrophilic compounds, shield them from external environmental stresses, control release, exhibit biocompatibility, and demonstrate biodegradability. This comprehensive review analyzes engineering preparation strategies for natural vesicles, focusing on PLEVs and their purification and surface engineering. Furthermore, it encompasses the latest advancements in utilizing PLEVs to transport active components, serving as a nanotherapeutic system. The prospects and potential development of PLEVs are also discussed. It is anticipated that this work will not only address existing knowledge gaps concerning PLEVs but also provide valuable guidance for researchers in the fields of food science and biomedical studies, stimulating novel breakthroughs in plant-based therapeutic options.
Collapse
Affiliation(s)
- Caiyun Wu
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Jiaxuan Li
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Kexin Huang
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Xueying Tian
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Yaqiong Guo
- Department of R&D, Hangzhou AimingMed Medical Technology Co., Ltd., China.
| | - Andre G Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Mingliang You
- Department of R&D, Hangzhou AimingMed Medical Technology Co., Ltd., China
| | - Mingqian Tan
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Wentao Su
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
6
|
Rivero-Pino F, Marquez-Paradas E, Montserrat-de la Paz S. Food-derived vesicles as immunomodulatory drivers: Current knowledge, gaps, and perspectives. Food Chem 2024; 457:140168. [PMID: 38908244 DOI: 10.1016/j.foodchem.2024.140168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Extracellular vesicles (EVs) are lipid-bound membrane vesicles released from cells, containing active compounds, which can be found in different foods. In this review, the role of food-derived vesicles (FDVs) as immunomodulatory drivers is summarized, with a focus on sources, isolation techniques and yields, as well as bioavailability and potential health implications. In addition, gaps and perspectives detected in this research field have been highlighted. FDVs have been efficiently extracted from different sources, and differential ultracentrifugation seems to be the most adequate isolation technique, with yields ranging from 108 to 1014 EV particles/mL. Animal studies show promising results in how these FDVs might regulate different pathways related to inflammation. Further investigation on the production of stable components in a cost-effective way, as well as human studies demonstrating safety and health-promoting properties, since scarce information has been reported until now, in the context of modulating the immune system are needed.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| | - Elvira Marquez-Paradas
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| |
Collapse
|
7
|
Sánchez‐López CM, Soler C, Garzo E, Fereres A, Pérez‐Bermúdez P, Marcilla A. Phloem sap from melon plants contains extracellular vesicles that carry active proteasomes which increase in response to aphid infestation. J Extracell Vesicles 2024; 13:e12517. [PMID: 39385682 PMCID: PMC11464910 DOI: 10.1002/jev2.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
The morphogenesis of higher plants requires communication among distant organs throughout vascular tissues (xylem and phloem). Numerous investigations have demonstrated that phloem also act as a distribution route for signalling molecules being observed that different macromolecules translocated by the sap, including nucleic acids and proteins, change under stress situations. The participation of extracellular vesicles (EVs) in this communication has been suggested, although little is known about their role. In fact, in the last decade, the presence of EVs in plants has originated a great controversy, where major concerns arose from their origin, isolation methods, and even the appropriate nomenclature for plant nanovesicles. Phloem sap exudates from melon plants, either aphid-free or infested with Aphis gossypii, were collected by stem incision. After sap concentration (Amicon), phloem EVs (PhlEVs) were isolated by size exclusion chromatography. PhlEVs were characterised using Nanoparticle Tracking Analysis, Transmission electron microscopy and proteomic analysis. Here we confirm the presence of EVs in phloem sap in vivo and the detection of changes in the particles/protein ratio and composition of PhlEVs in response to insect feeding, revealing the presence of typical defence proteins in their cargo as well as components of the proteasome complex. PhlEVs from infested plants showed lower particles/protein ratio and almost two times more proteolytic activity than PhlEVs from aphid-free plants. In both cases, such activity was inhibited in a dose-dependent manner by the proteasome inhibitor MG132. Our results suggest that plants may use this mechanism to prepare themselves to receive infectious agents and open up the possibility of an evolutionary conserved mechanism of defence against pathogens/stresses in eukaryotic organisms.
Collapse
Affiliation(s)
- Christian M. Sánchez‐López
- Área de Parasitología, Dept. Farmacia y Tecnología Farmacéutica y Parasitología, F. FarmàciaUniversitat de ValènciaBurjassotValenciaSpain
- Joint Unit on Endocrinology, Nutrition and Clinical DieteticsIIS La Fe‐Universitat de ValènciaValenciaSpain
| | - Carla Soler
- Joint Unit on Endocrinology, Nutrition and Clinical DieteticsIIS La Fe‐Universitat de ValènciaValenciaSpain
- Instituto de Ciencia de los Materiales, Parque CientíficoUniversitat de ValènciaBurjassotValenciaSpain
| | - Elisa Garzo
- Instituto de Ciencias AgrariasICA‐CSICMadridSpain
| | | | - Pedro Pérez‐Bermúdez
- Dept. Biologia Vegetal, F. Ciències BiológiquesUniversitat de ValènciaBurjassotValenciaSpain
| | - Antonio Marcilla
- Área de Parasitología, Dept. Farmacia y Tecnología Farmacéutica y Parasitología, F. FarmàciaUniversitat de ValènciaBurjassotValenciaSpain
- Joint Unit on Endocrinology, Nutrition and Clinical DieteticsIIS La Fe‐Universitat de ValènciaValenciaSpain
| |
Collapse
|
8
|
Shkryl Y, Tsydeneshieva Z, Menchinskaya E, Rusapetova T, Grishchenko O, Mironova A, Bulgakov D, Gorpenchenko T, Kazarin V, Tchernoded G, Bulgakov V, Aminin D, Yugay Y. Exosome-like Nanoparticles, High in Trans-δ-Viniferin Derivatives, Produced from Grape Cell Cultures: Preparation, Characterization, and Anticancer Properties. Biomedicines 2024; 12:2142. [PMID: 39335655 PMCID: PMC11428831 DOI: 10.3390/biomedicines12092142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Recent interest in plant-derived exosome-like nanoparticles (ENs) has surged due to their therapeutic potential, which includes antioxidant, anti-inflammatory, and anticancer activities. These properties are attributed to their cargo of bioactive metabolites and other endogenous molecules. However, the properties of ENs isolated from plant cell cultures remain less explored. Methods: In this investigation, grape callus-derived ENs (GCENs) were isolated using differential ultracentrifugation techniques. Structural analysis through electron microscopy, nanoparticle tracking analysis, and western blotting confirmed that GCENs qualify as exosome-like nanovesicles. Results: These GCENs contained significant amounts of microRNAs and proteins characteristic of plant-derived ENs, as well as trans-δ-viniferin, a notable stilbenoid known for its health-promoting properties. Functional assays revealed that the GCENs reduced the viability of the triple-negative breast cancer cell line MDA-MB-231 in a dose-dependent manner. Moreover, the GCENs exhibited negligible effects on the viability of normal human embryonic kidney (HEK) 293 cells, indicating selective cytotoxicity. Notably, treatment with these GCENs led to cell cycle arrest in the G1 phase and triggered apoptosis in the MDA-MB-231 cell line. Conclusions: Overall, this study underscores the potential of grape callus-derived nanovectors as natural carriers of stilbenoids and proposes their application as a novel and effective approach in the management of cancer.
Collapse
Affiliation(s)
- Yury Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Zhargalma Tsydeneshieva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
- Advance Engineering School “Institute of Biotechnology, Bioengineering and Food Systems”, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.M.); (D.A.)
| | - Tatiana Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Olga Grishchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Anastasia Mironova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Dmitry Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Tatiana Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Vitaly Kazarin
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Galina Tchernoded
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Victor Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.M.); (D.A.)
| | - Yulia Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| |
Collapse
|
9
|
Wang T, Fu ZY, Li YJ, Zi L, Song CZ, Tao YX, Zhang M, Gu W, Yu J, Yang XX. Recognition on pharmacodynamic ingredients of natural products. Saudi Pharm J 2024; 32:102124. [PMID: 38933713 PMCID: PMC11201352 DOI: 10.1016/j.jsps.2024.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products (NPs) play an irreplaceable role in the intervention of various diseases and have been considered a critical source of drug development. Many new pharmacodynamic compounds with potential clinical applications have recently been derived from NPs. These compounds range from small molecules to polysaccharides, polypeptides, proteins, self-assembled nanoparticles, and extracellular vesicles. This review summarizes various active substances found in NPs. The investigation of active substances in NPs can potentiate new drug development and promote the in-depth comprehension of the mechanism of action of NPs that can be beneficial in the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Zhong-Yu Fu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yan-Juan Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Lei Zi
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Cheng-Zhu Song
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yu-Xuan Tao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Mei Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Wen Gu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| |
Collapse
|
10
|
Norouzi F, Aghajani S, Vosoughi N, Sharif S, Ghahremanzadeh K, Mokhtari Z, Verdi J. Exosomes derived stem cells as a modern therapeutic approach for skin rejuvenation and hair regrowth. Regen Ther 2024; 26:1124-1137. [PMID: 39640923 PMCID: PMC11617408 DOI: 10.1016/j.reth.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/23/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Background The skin covers the surface of the body and acts as the first defense barrier against environmental damage. Exposure of the skin to environmental physical and chemical factors such as mechanical injuries, UV rays, air pollution, chemicals, etc. Leads to numerous damages to skin cells such as fibroblasts, keratinocytes, melanocytes, etc. The harmful effects of environmental factors on skin cells could lead to various skin diseases, chronic wounds, wrinkles, and skin aging. Hair is an essential part of the body, serving multiple functions such as regulating body temperature and protecting against external factors like dust (through eyelashes and eyebrows). It also reflects an individual's personality. Therefore, the need for new treatment methods for skin diseases and lesions and at the same time preserving the youth, freshness, and beauty of the skin has been highly noticed by experts. Exosomes are nanovesicles derived from cells that contain various biological compounds such as lipids, proteins, nucleic acids, and carbohydrates. They are secreted by a variety of mammalian cells and even different plants. Exosomes are of great interest as a new therapeutic approach due to their stability, ability to be transported throughout the body, paracrine and endocrine effects, as well as the ability to carry various compounds and drugs to target cells. Aim In this review, we have discussed the characteristics of exosomes, their cellular sources, and their therapeutic effects on wrinkles, skin aging, and rejuvenation and hair regrowth.
Collapse
Affiliation(s)
- Fatemeh Norouzi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Aghajani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vosoughi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Sharif
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Ghahremanzadeh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Mokhtari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Liu X, Lou K, Zhang Y, Li C, Wei S, Feng S. Unlocking the Medicinal Potential of Plant-Derived Extracellular Vesicles: current Progress and Future Perspectives. Int J Nanomedicine 2024; 19:4877-4892. [PMID: 38828203 PMCID: PMC11141722 DOI: 10.2147/ijn.s463145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Botanical preparations for herbal medicine have received more and more attention from drug researchers, and the extraction of active ingredients and their successful clinical application have become an important direction of drug research in major pharmaceutical companies, but the complexity of extracts, multiple side effects, and significant individual differences have brought many difficulties to the clinical application of herbal preparations. It is noteworthy that extracellular vesicles as active biomolecules extracted from medicinal plants are believed to be useful for the treatment of a variety of diseases, including cancer, inflammation, regenerative-restorative and degenerative diseases, which may provide a new direction for the clinical utilization of herbal preparations. In this review, we sort out recent advances in medicinal plant extracellular vesicles and discuss their potential as disease therapeutics. Finally, future challenges and research directions for the clinical translation of medicinal plant extracellular vesicles are also discussed, and we expect that continued development based on medicinal plant extracellular vesicles will facilitate the clinical application of herbal preparations.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, People’s Republic of China
| | - Yunmeng Zhang
- Department of Anesthesiology, Jiujiang College Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Chuanxiao Li
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Shenghong Wei
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| |
Collapse
|
12
|
Zhang F, Yue Y, Chen J, Xiao P, Ma H, Feng J, Yang M, Min Y. Albumen exosomes alleviate LPS-induced inflammation of intestinal epithelial cells via miR-22/ATM/p53/NF-κB axis. Int J Biol Macromol 2024; 267:131241. [PMID: 38574929 DOI: 10.1016/j.ijbiomac.2024.131241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Biological macromolecules identified in albumen were found benefit to intestinal health, whether albumen contains exosomes and function of their cargos in intestinal inflammation remain unknown. This study aimed to investigate characteristics and cargos of albumen exosomes, as well as their potential roles in alleviating inflammation in intestinal epithelial cells. Our results demonstrated that albumen contains exosomes that are cup-shaped morphology vesicles with diameter ranging from 50 to 200 nm. There were 278 miRNAs and 45 proteins with higher expression levels in albumen exosomes, and they were mainly involved in immune responses and programmed cell death pathways, including apoptosis and p53 signaling pathway. LPS induced overexpression of pro-inflammatory cytokines IL-1β and TNF-α and excessive apoptosis, which could be reversed by albumen exosomes. The beneficial effects of exosomes could be mainly attributed to miRNA cargos and their inhibition on inflammatory response signaling pathways (p53 and NF-κB pathways). Mechanically, exosome miR-22 targeted ATM and inhibited p53/NF-κB pathway, alleviating LPS-induced overexpression of Caspase-3 and Bax, and inflammatory response. Collectively, albumen exosomes alleviate inflammation of intestinal epithelial cells via miR-22/ATM/p53/NF-κB axis and these findings may provide theoretical basis to the potential application of albumen exosomes for intestinal inflammation.
Collapse
Affiliation(s)
- Fengdong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanrui Yue
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pan Xiao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Mingming Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Hillman T. The application of plant-exosome-like nanovesicles as improved drug delivery systems for cancer vaccines. Discov Oncol 2024; 15:136. [PMID: 38683256 PMCID: PMC11058161 DOI: 10.1007/s12672-024-00974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
The use of cancer immunotherapeutics is currently increasing. Cancer vaccines, as a form of immunotherapy, are gaining much attention in the medical community since specific tumor-antigens can activate immune cells to induce an anti-tumor immune response. However, the delivery of cancer vaccines presents many issues for research scientists when designing cancer treatments and requires further investigation. Nanoparticles, synthetic liposomes, bacterial vectors, viral particles, and mammalian exosomes have delivered cancer vaccines. In contrast, the use of many of these nanotechnologies produces many issues of cytotoxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system (MPS). Plant-exosome-like nanovesicles (PELNVs) can provide solutions for many of these challenges because they are innocuous and nonimmunogenic when delivering nanomedicines. Hence, this review will describe the potential use of PELNVs to deliver cancer vaccines. In this review, different approaches of cancer vaccine delivery will be detailed, the mechanism of oral vaccination for delivering cancer vaccines will be described, and the review will discuss the use of PELNVs as improved drug delivery systems for cancer vaccines via oral administration while also addressing the subsequent challenges for advancing their usage into the clinical setting.
Collapse
|
14
|
Kawada K, Ishida T, Morisawa S, Jobu K, Higashi Y, Aizawa F, Yagi K, Izawa-Ishizawa Y, Niimura T, Abe S, Goda M, Miyamura M, Ishizawa K. Atractylodes lancea (Thunb.) DC. [Asteraceae] rhizome-derived exosome-like nanoparticles suppress lipopolysaccharide-induced inflammation in murine microglial cells. Front Pharmacol 2024; 15:1302055. [PMID: 38738173 PMCID: PMC11082290 DOI: 10.3389/fphar.2024.1302055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background Exosome-like nanoparticles (ELNs) mediate interspecies intercellular communications and modulate gene expression. Hypothesis/Purpose In this study, we isolated and purified ELNs from the dried rhizome of Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR-ELNs), a traditional natural medicine, and investigated their potential as neuroinflammatory therapeutic agents. Methods ALR-ELN samples were isolated and purified using differential centrifugation, and their physical features and microRNA contents were analyzed through transmission electron microscopy and RNA sequencing, respectively. BV-2 microglial murine cells and primary mouse microglial cells were cultured in vitro, and their ability to uptake ALR-ELNs was explored using fluorescence microscopy. The capacity of ALR-ELNs to modulate the anti-inflammatory responses of these cells to lipopolysaccharide (LPS) exposure was assessed through mRNA and protein expression analyses. Results Overall, BV-2 cells were found to internalize ALR-ELNs, which comprised three microRNAs (ath-miR166f, ath-miR162a-5p, and ath-miR162b-5p) that could have anti-inflammatory activity. Pretreatment of BV-2 cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide, interleukin-1β, interleukin-6, and tumor necrosis factor-α. Notably, the mRNA levels of Il1b, Il6, iNos, ccl2, and cxcl10 in BV-2 cells, which increased upon LPS exposure, were significantly reduced following ALR-ELN treatment. Moreover, the mRNA levels of heme oxygenase 1, Irf7, ccl12, and Irg1 also increased significantly following ALR-ELN treatment. In addition, pretreatment of primary mouse microglial cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide. Conclusion Our findings indicate that ALR-ELNs exhibit anti-inflammatory effects on murine microglial cells. Further validation may prove ALR-ELNs as a promising neuroinflammatory therapeutic agent.
Collapse
Affiliation(s)
- Kei Kawada
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Clinical Pharmacy Practice Pedagogy, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoaki Ishida
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Shumpei Morisawa
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kenta Yagi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of General Medicine, Taoka Hospital, Tokushima, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Shinji Abe
- Department of Clinical Pharmacy Practice Pedagogy, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Mitsuhiko Miyamura
- Center for Regional Sustainability and Innovation, Kochi University, Kochi, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
- Department of General Medicine, Taoka Hospital, Tokushima, Japan
| |
Collapse
|
15
|
Azizi F, Kazemipour-Khabbazi S, Raimondo S, Dalirfardouei R. Molecular mechanisms and therapeutic application of extracellular vesicles from plants. Mol Biol Rep 2024; 51:425. [PMID: 38492036 DOI: 10.1007/s11033-024-09379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Small extracellular vesicles (sEVs) isolated from animal sources are among the most investigated types of cell-free therapeutic tools to cure different diseases. sEVs have been isolated from a variety of sources, ranging from prokaryotes to animals and plants. Human-derived sEVs have many uses in pre- and clinical studies in medicine and drug delivery, while plant-derived EVs, also known as plant-derived nanovesicles (PDNVs), have not been widely investigated until the second decade of the 21st century. For the past five years, there has been a rapid rise in the use of plant EVs as a therapeutic tool due to the ease of massive production with high efficacy and yield of preparation. Plant EVs contain various active biomolecules such as proteins, regulatory RNAs, and secondary metabolites and play a key role in inter-kingdom communications. Many studies have already investigated the potential application of plant EVs in preventing and treating cancer, inflammation, infectious diseases, and tissue regeneration with no sign of toxicity and are therefore considered safe. However, due to a lack of universal markers, the properties of plant EVs have not been extensively studied. Concerns regarding the safety and therapeutic function of plant EVs derived from genetically modified plants have been raised. In this paper, we review the physiological role of EVs in plants. Moreover, we focus on molecular and cellular mechanisms involved in the therapeutic effects of plant EVs on various human diseases. We also provide detailed information on the methodological aspects of plant EV isolation and analysis, which could pave the way for future clinical translation.
Collapse
Affiliation(s)
- Fatemeh Azizi
- Department of Medical Biotechnology, School of Science and Novel Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salva Kazemipour-Khabbazi
- Department of English Language and Persian Literature, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Stefania Raimondo
- Department of BioMedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Biology and Genetic section, University of Palermo, Palermo, 90133, Italy
| | - Razieh Dalirfardouei
- Department of Medical Biotechnology, School of Science and Novel Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
16
|
Di Santo R, Niccolini B, Romanò S, Vaccaro M, Di Giacinto F, De Spirito M, Ciasca G. Advancements in Mid-Infrared spectroscopy of extracellular vesicles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123346. [PMID: 37774583 DOI: 10.1016/j.saa.2023.123346] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Extracellular vesicles (EVs) are lipid vesicles secreted by all cells into the extracellular space and act as nanosized biological messengers among cells. They carry a specific molecular cargo, composed of lipids, proteins, nucleic acids, and carbohydrates, which reflects the state of their parent cells. Due to their remarkable structural and compositional heterogeneity, characterizing EVs, particularly from a biochemical perspective, presents complex challenges. In this context, mid-infrared (IR) spectroscopy is emerging as a valuable tool, providing researchers with a comprehensive and label-free spectral fingerprint of EVs in terms of their specific molecular content. This review aims to provide an up-to-date critical overview of the major advancements in mid-IR spectroscopy of extracellular vesicles, encompassing both fundamental and applied research achievements. We also systematically emphasize the new possibilities offered by the integration of emerging cutting-edge IR technologies, such as tip-enhanced and surface-enhanced spectroscopy approaches, along with the growing use of machine learning for data analysis and spectral interpretation. Additionally, to assist researchers in navigating this intricate subject, our manuscript includes a wide and detailed collection of the spectral peaks that have been assigned to EV molecular constituents up to now in the literature.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Vaccaro
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Flavio Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
17
|
Olmos-Ruiz R, Garcia-Gomez P, Carvajal M, Yepes-Molina L. Exploring membrane vesicles in citrus fruits: a comparative analysis of conventional and organic farming approaches. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:235-248. [PMID: 37596244 DOI: 10.1002/jsfa.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/03/2023] [Accepted: 08/19/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Recently, vesicles derived from plant cell membranes have received attention for their potential use as active biomolecules and nanocarriers, and obtaining them from organic crops may be an interesting option because different farming systems can affect production, plant secondary metabolism and biochemistry of cell membranes. The present study aimed to determine how organic and conventional farming affects the mineral nutrition, gas exchange, CO2 fixation and biochemical composition of lemon fruits, which could have an impact on the different fractions of cell membranes in pulp and juice. RESULTS Organic trees had higher intrinsic water use efficiency (WUEi) but conventional trees had higher stomatal conductance (gs) and nitrogen use efficiency (NUtE). Also, organic lemons had significantly higher levels of some micronutrients (Ca, Cu, Fe and Zn). Second, the main differences in the membrane vesicles showed that organic pulp vesicles had a higher antioxidant activity and more oleic acid, whereas both types of vesicles from conventional lemons had more linoleic acid. CONCLUSION In conclusion, organic farming did not alter carbon fixation parameters but impacted nitrogen fixation and water uptake, and resulted in higher micronutrient levels in lemons. These mineral nutritional changes could be related to the higher production of membranes that showed suitable morphological traits and a high antioxidant activity, positively correlated with a high amount of oleic acid, which could have stronger cell protection characteristics. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Rafael Olmos-Ruiz
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Pablo Garcia-Gomez
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Lucia Yepes-Molina
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
18
|
Liu H, Luo GF, Shang Z. Plant-derived nanovesicles as an emerging platform for cancer therapy. Acta Pharm Sin B 2024; 14:133-154. [PMID: 38239235 PMCID: PMC10792991 DOI: 10.1016/j.apsb.2023.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 01/22/2024] Open
Abstract
Plant-derived nanovesicles (PDNVs) derived from natural green products have emerged as an attractive nanoplatform in biomedical application. They are usually characterized by unique structural and biological functions, such as the bioactive lipids/proteins/nucleic acids as therapeutics and targeting groups, immune-modulation, and long-term circulation. With the rapid development of nanotechnology, materials, and synthetic chemistry, PDNVs can be engineered with multiple functions for efficient drug delivery and specific killing of diseased cells, which represent an innovative biomaterial with high biocompatibility for fighting against cancer. In this review, we provide an overview of the state-of-the-art studies concerning the development of PDNVs for cancer therapy. The original sources, methods for obtaining PDNVs, composition and structure are introduced systematically. With an emphasis on the featured application, the inherent anticancer properties of PDNVs as well as the strategies in constructing multifunctional PDNVs-based nanomaterials will be discussed in detail. Finally, some scientific issues and technical challenges of PDNVs as promising options in improving anticancer therapy will be discussed, which are expected to promote the further development of PDNVs in clinical translation.
Collapse
Affiliation(s)
- Hanzhe Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guo-Feng Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
19
|
Rahmati S, Karimi H, Alizadeh M, Khazaei AH, Paiva-Santos AC, Rezakhani L, Sharifi E. Prospects of plant-derived exosome-like nanocarriers in oncology and tissue engineering. Hum Cell 2024; 37:121-138. [PMID: 37878214 DOI: 10.1007/s13577-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Almost all cell types, either in vivo or in vitro, create extracellular vesicles (EVs). Among them are exosomes (EXOs), i.e., tiny nanovesicles containing a lipid bilayer, proteins, and RNAs that are actively involved in cellular communication, indicating that they may be exploited as both diagnostics and therapeutics for conditions like cancer. These nanoparticles can also be used as nanocarriers in many types of research to carry agents such as drugs. Plant-derived exosome-like nanoparticles (PENs) are currently under investigation as a substitute for EXOs formed from mammalian cells, allowing researchers to get beyond the technical constraints of mammalian vesicles. Because of their physiological, chemical, and biological properties, PENs have a lot of promise for use as nanocarriers in drug delivery systems that can deliver various dosages, especially when it comes to large-scale repeatability. The present study has looked at the origins and isolation techniques of PENs, their anticancer properties, their usage as nanocarriers in the treatment of different illnesses, and their antioxidant properties. These nanoparticles can aid in the achievement of therapeutic objectives, as they have benign, non-immunogenic side effects and can pass biological barriers. Time-consuming and perhaps damaging PEN separation techniques is used. For the current PEN separation techniques to be used in commercial and therapeutic settings, they must be altered. In this regard, the concurrent application of biological sciences can be beneficial for improving PEN separation techniques. PENs' innate metabolic properties provide them a great deal of promise for application in drug delivery systems. However, there could be a risk to both the loaded medications and the intrinsic bioactive components if these particles are heavily armed with drugs. Therefore, to prevent these side effects, more studies are needed to devise sophisticated drug-loading procedures and to learn more about the physiology of PENs.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hafez Karimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Hossein Khazaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| |
Collapse
|
20
|
Mun D, Kang M, Shin M, Choi HJ, Kang AN, Ryu S, Unno T, Maburutse BE, Oh S, Kim Y. Alleviation of DSS-induced colitis via bovine colostrum-derived extracellular vesicles with microRNA let-7a-5p is mediated by regulating Akkermansia and β-hydroxybutyrate in gut environments. Microbiol Spectr 2023; 11:e0012123. [PMID: 37966243 PMCID: PMC10714758 DOI: 10.1128/spectrum.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Even though studying on the possible involvement of extracellular vesicles (EVs) in host-microbe interactions, how these relationships mediate host physiology has not clarified yet. Our current findings provide insights into the encouraging benefits of dietary source-derived EVs and microRNAs (miRNAs) on organic acid production and ultimately stimulating gut microbiome for human health, suggesting that supplementation of dietary colostrum EVs and miRNAs is a novel preventive strategy for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, South Korea
| | - Hye Jin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Sangdon Ryu
- Division of Evironmental Meterials, Honam National Institute of Biological Resources, Mokpo, South Korea
| | - Tatsuya Unno
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Brighton E. Maburutse
- Department of Animal Production Sciences, Marondera University of Agricultural Sciences & Technology, Marondera, Zimbabwe
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
21
|
Wu P, Wu W, Zhang S, Han J, Liu C, Yu H, Chen X, Chen X. Therapeutic potential and pharmacological significance of extracellular vesicles derived from traditional medicinal plants. Front Pharmacol 2023; 14:1272241. [PMID: 38108066 PMCID: PMC10725203 DOI: 10.3389/fphar.2023.1272241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Medicinal plants are the primary sources for the discovery of novel medicines and the basis of ethnopharmacological research. While existing studies mainly focus on the chemical compounds, there is little research about the functions of other contents in medicinal plants. Extracellular vesicles (EVs) are functionally active, nanoscale, membrane-bound vesicles secreted by almost all eukaryotic cells. Intriguingly, plant-derived extracellular vesicles (PDEVs) also have been implicated to play an important role in therapeutic application. PDEVs were reported to have physical and chemical properties similar to mammalian EVs, which are rich in lipids, proteins, nucleic acids, and pharmacologically active compounds. Besides these properties, PDEVs also exhibit unique advantages, especially intrinsic bioactivity, high stability, and easy absorption. PDEVs were found to be transferred into recipient cells and significantly affect their biological process involved in many diseases, such as inflammation and tumors. PDEVs also could offer unique morphological and compositional characteristics as natural nanocarriers by innately shuttling bioactive lipids, RNA, proteins, and other pharmacologically active substances. In addition, PDEVs could effectively encapsulate hydrophobic and hydrophilic chemicals, remain stable, and cross stringent biological barriers. Thus, this study focuses on the pharmacological action and mechanisms of PDEVs in therapeutic applications. We also systemically deal with facets of PDEVs, ranging from their isolation to composition, biological functions, and biotherapeutic roles. Efforts are also made to elucidate recent advances in re-engineering PDEVs applied as stable, effective, and non-immunogenic therapeutic applications to meet the ever-stringent demands. Considering its unique advantages, these studies not only provide relevant scientific evidence on therapeutic applications but could also replenish and inherit precious cultural heritage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiping Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofeng Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Zhao Y, Tan H, Zhang J, Pan B, Wang N, Chen T, Shi Y, Wang Z. Plant-Derived Vesicles: A New Era for Anti-Cancer Drug Delivery and Cancer Treatment. Int J Nanomedicine 2023; 18:6847-6868. [PMID: 38026523 PMCID: PMC10664809 DOI: 10.2147/ijn.s432279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Lipid-structured vesicles have been applied for drug delivery system for over 50 years. Based on their origin, lipid-structured vesicles are divided into two main categories, namely synthetic lipid vesicles (SLNVEs) and vesicles of mammalian origin (MDVEs). Although SLNVEs can stably transport anti-cancer drugs, their biocompatibility is poor and degradation of exogenous substances is a potential risk. Unlike SLNVEs, MDVEs have excellent biocompatibility but are limited by a lack of stability and a risk of contamination by dangerous pathogens from donor cells. Since the first discovery of plant-derived vesicles (PDVEs) in carrot cell supernatants in 1967, emerging evidence has shown that PDVEs integrate the advantages of both SLNVEs and MDVEs. Notably, 55 years of dedicated research has indicated that PDVEs are an ideal candidate vesicle for drug preparation, transport, and disease treatment. The current review systematically focuses on the role of PDVEs in cancer therapy and in particular compares the properties of PDVEs with those of conventional lipid vesicles, summarizes the preparation methods and quality control of PDVEs, and discusses the application of PDVEs in delivering anti-cancer drugs and their underlying molecular mechanisms for cancer therapy. Finally, the challenges and future perspectives of PDVEs for the development of novel therapeutic strategies against cancer are discussed.
Collapse
Affiliation(s)
- Yuying Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hanxu Tan
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yafei Shi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
23
|
Garzo E, Sánchez-López CM, Fereres A, Soler C, Marcilla A, Pérez-Bermúdez P. Isolation of Extracellular Vesicles from Phloem Sap by Size Exclusion Chromatography. Curr Protoc 2023; 3:e903. [PMID: 37812199 DOI: 10.1002/cpz1.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Extracellular vesicles (EVs) are nanoparticles that are released by cells and participate in the transfer of information. It is now known that EVs from mammalian cells are involved in different physiological and pathophysiological processes (antigen presentation, tissue regeneration, cancer, inflammation, diabetes, etc.). In the past few years, several studies on plants have demonstrated that EVs are also key tools for plant intercellular and cross-kingdom communications, suggesting that these nanostructures may contribute to distinct aspects of plant physiology such as development, defense, reproduction, symbiotic relationships, etc. These findings are challenging the traditional view of signaling in plants. EVs are probably involved in the phloem's transport system, since this vascular tissue plays a crucial role in translocating nutrients, defensive compounds, and informational signals throughout the plant. The collection of phloem is experimentally challenging because sap is under high turgor pressure inside the sieve elements, which have a small diameter and are hidden within the plant organs. The goals of this work are to develop new protocols that allow us to detect EVs for the first time in the phloem of the plants, and to isolate these nanovesicles for in-depth analysis and characterization. Our protocols describe two distinct methods to collect the phloem sap from rice and melon. The first method (Basic Protocol 1) involves 'Aphid stylectomy by radiofrequency microcautery' using rice plants and the aphid Sitobion avenae. This is considered the least invasive method for collecting phloem sap. The second method, 'Stem incision', involves cutting the stem of melon plants for collecting the exuded sap. Phloem sap EVs are then isolated by size exclusion chromatography. The results obtained in this study represent the first report on typical EVs isolated from in vivo-collected phloem sap. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of EVs from phloem sap: Aphid stylectomy by radiofrequency microcautery Basic Protocol 2: Isolation of EVs from phloem sap: Stem incision method.
Collapse
Affiliation(s)
- Elisa Garzo
- Institute of Agricultural Sciences-Spanish National Research Council (ICA-CSIC), Madrid, Spain
| | - Christian M Sánchez-López
- Area of Parasitology, Dept. of Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, Valencia, Spain
| | - Alberto Fereres
- Institute of Agricultural Sciences-Spanish National Research Council (ICA-CSIC), Madrid, Spain
| | - Carla Soler
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, Valencia, Spain
- Food & Health Lab, Institut de Ciències dels Materials, Universitat de València, Paterna, Valencia, Spain
| | - Antonio Marcilla
- Area of Parasitology, Dept. of Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, Valencia, Spain
| | - Pedro Pérez-Bermúdez
- Dept. of Plant Biology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| |
Collapse
|
24
|
Sall IM, Flaviu TA. Plant and mammalian-derived extracellular vesicles: a new therapeutic approach for the future. Front Bioeng Biotechnol 2023; 11:1215650. [PMID: 37781539 PMCID: PMC10534050 DOI: 10.3389/fbioe.2023.1215650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Background: In recent years, extracellular vesicles have been recognized as important mediators of intercellular communication through the transfer of active biomolecules (proteins, lipids, and nucleic acids) across the plant and animal kingdoms and have considerable roles in several physiological and pathological mechanisms, showing great promise as new therapeutic strategies for a variety of pathologies. Methods: In this study, we carefully reviewed the numerous articles published over the last few decades on the general knowledge of extracellular vesicles, their application in the therapy of various pathologies, and their prospects as an approach for the future. Results: The recent discovery and characterization of extracellular vesicles (EVs) of diverse origins and biogenesis have altered the current paradigm of intercellular communication, opening up new diagnostic and therapeutic perspectives. Research into these EVs released by plant and mammalian cells has revealed their involvement in a number of physiological and pathological mechanisms, such as embryonic development, immune response, tissue regeneration, and cancer. They are also being studied as potential biomarkers for disease diagnosis and vectors for drug delivery. Conclusion: Nanovesicles represent powerful tools for intercellular communication and the transfer of bioactive molecules. Their molecular composition and functions can vary according to their origin (plant and mammalian), so their formation, composition, and biological roles open the way to therapeutic applications in a variety of pathologies, which is arousing growing interest in the scientific community. Clinical Trial Registration: ClinicalTrials.gov identifier: NCT03608631.
Collapse
Affiliation(s)
| | - Tabaran Alexandru Flaviu
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
25
|
Zhao Q, Liu G, Liu F, Xie M, Zou Y, Wang S, Guo Z, Dong J, Ye J, Cao Y, Zheng L, Zhao K. An enzyme-based system for extraction of small extracellular vesicles from plants. Sci Rep 2023; 13:13931. [PMID: 37626167 PMCID: PMC10457285 DOI: 10.1038/s41598-023-41224-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
Plant-derived nanovesicles (NVs) and extracellular vesicles (EVs) are the next generation of nanocarrier platforms for biotherapeutics and drug delivery. EVs exist not only in the extracellular space, but also within the cell wall. Due to the limitations of existing isolation methods, the EVs extraction efficiency is low, and a large amount of plant material is wasted, which is of concern for rare and expensive medicinal plants. We proposed and validated a novel method for isolation of plant EVs by enzyme degradation of the plant cell wall to release the EVs. The released EVs can easily be collected. The new method was used for extraction of EVs from the roots of Morinda officinalis (MOEVs). For comparison, nanoparticles from the roots (MONVs) were extracted using the grinding method. The new method yielded a greater amount of MOEVs, and the vesicles had a smaller diameter compared to MONVs. Both MOEVs and MONVs were readily absorbed by endothelial cells without cytotoxic effect and promoted the expression of miR-155. The promotion of miR-155 by MOEVs was dose-dependent. More importantly, we found that MOEVs and MONVs were enriched toward bone tissue. These results support our hypothesis that EVs in plants could be efficiently extracted by enzymatic cell wall digestion and confirm the potential of MOEVs as therapeutic agents and drug carriers.
Collapse
Affiliation(s)
- Qing Zhao
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, Guangdong, China
| | - Guilong Liu
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
- Department of Blood Transfusion, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510378, Guangdong, China
| | - Fubin Liu
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Manlin Xie
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Yanfang Zou
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, 519000, China
| | - Zhaodi Guo
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, Guangdong, China
| | - Jiaming Dong
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Jiali Ye
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Yue Cao
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Lei Zheng
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, Guangdong, China.
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China.
| | - Kewei Zhao
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, Guangdong, China.
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China.
| |
Collapse
|
26
|
Sarasati A, Syahruddin MH, Nuryanti A, Ana ID, Barlian A, Wijaya CH, Ratnadewi D, Wungu TDK, Takemori H. Plant-Derived Exosome-like Nanoparticles for Biomedical Applications and Regenerative Therapy. Biomedicines 2023; 11:biomedicines11041053. [PMID: 37189671 DOI: 10.3390/biomedicines11041053] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs) comprise various bioactive biomolecules. As an alternative cell-free therapeutic approach, they have the potential to deliver nano-bioactive compounds to the human body, and thus lead to various anti-inflammatory, antioxidant, and anti-tumor benefits. Moreover, it is known that Indonesia is one of the herbal centers of the world, with an abundance of unexplored sources of PDENs. This encouraged further research in biomedical science to develop natural richness in plants as a source for human welfare. This study aims to verify the potential of PDENs for biomedical purposes, especially for regenerative therapy applications, by collecting and analyzing data from the latest relevant research and developments.
Collapse
|
27
|
Castaño C, Novials A, Párrizas M. An Overview of Inter-Tissue and Inter-Kingdom Communication Mediated by Extracellular Vesicles in the Regulation of Mammalian Metabolism. Int J Mol Sci 2023; 24:2071. [PMID: 36768391 PMCID: PMC9916451 DOI: 10.3390/ijms24032071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Obesity and type 2 diabetes are associated with defects of insulin action in different tissues or alterations in β-cell secretory capacity that may be triggered by environmental challenges, inadequate lifestyle choices, or an underlying genetic predisposition. In addition, recent data shows that obesity may also be caused by perturbations of the gut microbiota, which then affect metabolic function and energy homeostasis in the host. Maintenance of metabolic homeostasis in complex organisms such as mammals requires organismal-level communication, including between the different organs and the gut microbiota. Extracellular vesicles (EVs) have been identified in all domains of life and have emerged as crucial players in inter-organ and inter-kingdom crosstalk. Interestingly, EVs found in edible vegetables or in milk have been shown to influence gut microbiota or tissue function in mammals. Moreover, there is a multidirectional crosstalk mediated by EVs derived from gut microbiota and body organs that has implications for host health. Untangling this complex signaling network may help implement novel therapies for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Carlos Castaño
- Pathogenesis and Prevention of Diabetes Group, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Pathogenesis and Prevention of Diabetes Group, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
| | - Anna Novials
- Pathogenesis and Prevention of Diabetes Group, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Pathogenesis and Prevention of Diabetes Group, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
| | - Marcelina Párrizas
- Pathogenesis and Prevention of Diabetes Group, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
| |
Collapse
|
28
|
Pérez Martínez G, Giner-Pérez L, Castillo-Romero KF. Bacterial extracellular vesicles and associated functional proteins in fermented dairy products with Lacticaseibacillus paracasei. Front Microbiol 2023; 14:1165202. [PMID: 37152726 PMCID: PMC10157241 DOI: 10.3389/fmicb.2023.1165202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Cells of all kingdoms produce extracellular vesicles (EVs); hence, they are present in most environments and body fluids. Lacticaseibacillus paracasei produces EVs that have attached biologically active proteins (P40 and P75). In this study, EV and functional proteins were found in five different commercial dairy-fermented products carrying L. paracasei. Strains present in those products were isolated, and with one exception, all produced small EVs (24-47 d.nm) carrying P40 and P75. In order to winnow bacterial EV from milk EV, products were subjected to centrifugal fractionation at 15,000 × g (15 K), 33,000 × g (33 K), and 100,000 × g (100 K). P75 was present in all supernatants and pellets, but P40 was only found in two products bound to the 15 and 33 K pellets, and 16S rDNA of L. paracasei could be amplified from all 100 K EVs, indicating the presence of L. paracasei EV. To investigate the interactions of bacterial EV and proteins with milk EV, L. paracasei BL23 EV was added to three commercial UHT milk products. Small-size vesicles (50-60 d.nm) similar to L. paracasei BL23 EV were found in samples from 100 K centrifugations, but intriguingly, P40 and P75 were bound to EV in 15 and 33 K pellets, containing bovine milk EV of larger size (200-300 d.nm). Sequencing 16S rDNA bands amplified from EV evidenced the presence of bacterial EVs of diverse origins in milk and fermented products. Furthermore, L. paracasei 16S rDNA could be amplified with species-specific primers from all samples, showing the presence of L. paracasei EV in all EV fractions (15, 33, and 100 K), suggesting that these bacterial EVs possibly aggregate and are co-isolated with EV from milk. P40 and P75 proteins would be interacting with specific populations of milk EV (15 and 33 K) because they were detected bound to them in fermented products and milk, and this possibly forced the sedimentation of part of L. paracasei EV at lower centrifugal forces. This study has solved technically complex problems and essential questions which will facilitate new research focusing on the molecular behavior of probiotics during fermentation and the mechanisms of action mediating the health benefits of fermented products.
Collapse
Affiliation(s)
- Gaspar Pérez Martínez
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
- *Correspondence: Gaspar Pérez Martínez
| | - Lola Giner-Pérez
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Keshia F. Castillo-Romero
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
29
|
Nonaka T. Application of engineered extracellular vesicles to overcome drug resistance in cancer. Front Oncol 2022; 12:1070479. [PMID: 36591444 PMCID: PMC9797956 DOI: 10.3389/fonc.2022.1070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted therapies have significantly improved survival rates and quality of life for many cancer patients. However, on- and off-target side toxicities in normal tissues, and precocious activation of the immune response remain significant issues that limit the efficacy of molecular targeted agents. Extracellular vesicles (EVs) hold great promise as the mediators of next-generation therapeutic payloads. Derived from cellular membranes, EVs can be engineered to carry specific therapeutic agents in a targeted manner to tumor cells. This review highlights the progress in our understanding of basic EV biology, and discusses how EVs are being chemically and genetically modified for use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
30
|
Sánchez-López CM, Manzaneque-López MC, Pérez-Bermúdez P, Soler C, Marcilla A. Characterization and bioactivity of extracellular vesicles isolated from pomegranate. Food Funct 2022; 13:12870-12882. [PMID: 36441623 DOI: 10.1039/d2fo01806c] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the current study, extracellular vesicles from pomegranate juice (PgEVs) were isolated for the first time using size exclusion chromatography (SEC). This method permitted us to obtain highly enriched EV samples without most of the non-EV co-isolated proteins. The characterization of PgEVs through nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) allowed the determination of vesicles' concentration/volume, size, and morphology. It was confirmed from the analytical data that PgEVs contain a homogeneous population of vesicles, with a dimension and structure comparable to plant-derived EVs. Proteomic analyses by LC-MS/MS led to the characterization of 131 proteins, and several of them were related commonly to the biogenesis and transport of EVs, and/or proposed as EV markers. PgEVs exerted anti-inflammatory, antioxidant and wound-healing effects when added to the in vitro cultures of monocytic (THP-1) and intestinal (Caco-2) cell lines, respectively.
Collapse
Affiliation(s)
- Christian M Sánchez-López
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, 46100, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, Valencia, 46012, Spain
| | - Mari Cruz Manzaneque-López
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, Valencia, 46012, Spain.,Food & Health Lab, Institut de Ciències dels Materials, Universitat de València, Paterna, Valencia, 46980, Spain.
| | - Pedro Pérez-Bermúdez
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, 46100, Spain
| | - Carla Soler
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, Valencia, 46012, Spain.,Food & Health Lab, Institut de Ciències dels Materials, Universitat de València, Paterna, Valencia, 46980, Spain.
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, 46100, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, Valencia, 46012, Spain
| |
Collapse
|
31
|
Jain N, Pandey M, Sharma P, Gupta G, Gorain B, Dua K. Recent developments in plant-derived edible nanoparticles as therapeutic nanomedicines. J Food Biochem 2022; 46:e14479. [PMID: 36268842 DOI: 10.1111/jfbc.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
The use of nanotechnology in the treatment of numerous disorders has proven effective. The predicted development of plant-derived edible nanoparticles (PDNPs) as potential therapeutic agents for treating illness or in the delivery of drugs is inevitable. PDNPs generated from plants resemble mammal-extracted exosomes structurally. In contrast to their excellent biocompatibility with healthy cells, PDNPs are skewed toward malignancies by selectively targeting those cells via unique endocytic pathways. They can be generated in large quantities, are nontoxic, and have tissue-specific targeting abilities. Thus, with fewer off-target effects, using these PDNPs could broaden the breadth of pharmacological therapy. In this discussion, we emphasize the properties and biological activities of PDNPs isolated from fruits and vegetables and discuss the promising implications of these particles as nanomedicines. PRACTICAL APPLICATIONS: PDNPs have reportedly been employed for therapeutic applications for several ailments and are believed to have characteristics in common with exosomes generated from mammals. The advantages of PDNPs over mammalian-derived exosomes are numerous. Firstly, they may be produced on a commercial scale using a variety of efficient renewable sources. Secondly, the PDNPs' natural components developed in plant cells promise improved cytocompatibility, tolerability, low cytotoxicity, or other adverse effects. We evaluated some current studies on the applications and potential of PDNPs in this article. PDNPs could create new opportunities for drug discovery because of recent advancements in medicine and drug delivery system nanotechnology. Unfortunately, the precise mechanisms behind PDNP's functions and interaction in pathogenic processes have not yet been completely elucidated; as a result, the potential consequences of their clinical use are uncertain. Overall, PDNPs show a wide range of therapeutic possibilities that may be advantageous to patients and might eventually make up the next generation of pharmaceuticals.
Collapse
Affiliation(s)
- Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Palak Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
32
|
Ly NP, Han HS, Kim M, Park JH, Choi KY. Plant-derived nanovesicles: Current understanding and applications for cancer therapy. Bioact Mater 2022; 22:365-383. [PMID: 36311046 PMCID: PMC9588993 DOI: 10.1016/j.bioactmat.2022.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
Plant-derived vesicles (PDVs) are membranous structures that originate from plant cells and are responsible for multiple physiological and pathological functions. In the last decade, PDVs have gained much attention for their involvement in different biological processes, including intercellular communication and defense response, and recent scientific evidence has opened a new avenue for their applications in cancer treatment. Nevertheless, much remains unknown about these vesicles, and current research remains inconsistent. This review aims to provide a comprehensive introduction to PDVs, from their biological characteristics to purification methods, and to summarize the status of their potential development for cancer therapy.
Collapse
Affiliation(s)
- Ngoc Phung Ly
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Hwa Seung Han
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Myungsuk Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea,Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, 16419, Republic of Korea,Corresponding author. School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ki Young Choi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea,Corresponding author. Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea.
| |
Collapse
|
33
|
Li Z, Xu X, Wang Y, Kong L, Han C. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res 2022:S2090-1232(22)00215-6. [PMID: 36208834 PMCID: PMC10403678 DOI: 10.1016/j.jare.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. AIM OF REVIEW In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Collapse
Affiliation(s)
- Zhongrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
34
|
Kang SJ, Kim SE, Seo MJ, Kim E, Rhee WJ. Suppression of inflammatory responses in macrophages by onion-derived extracellular vesicles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Ali NB, Abdull Razis AF, Ooi DJ, Chan KW, Ismail N, Foo JB. Theragnostic Applications of Mammal and Plant-Derived Extracellular Vesicles: Latest Findings, Current Technologies, and Prospects. Molecules 2022; 27:3941. [PMID: 35745063 PMCID: PMC9228370 DOI: 10.3390/molecules27123941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The way cells communicate is not fully understood. However, it is well-known that extracellular vesicles (EVs) are involved. Researchers initially thought that EVs were used by cells to remove cellular waste. It is now clear that EVs function as signaling molecules released by cells to communicate with one another, carrying a cargo representing the mother cell. Furthermore, these EVs can be found in all biological fluids, making them the perfect non-invasive diagnostic tool, as their cargo causes functional changes in the cells upon receiving, unlike synthetic drug carriers. EVs last longer in circulation and instigate minor immune responses, making them the perfect drug carrier. This review sheds light on the latest development in EVs isolation, characterization and, application as therapeutic cargo, novel drug loading techniques, and diagnostic tools. We also address the advancement in plant-derived EVs, their characteristics, and applications; since plant-derived EVs only recently gained focus, we listed the latest findings. Although there is much more to learn about, EV is a wide field of research; what scientists have discovered so far is fascinating. This paper is suitable for those new to the field seeking to understand EVs and those already familiar with it but wanting to review the latest findings.
Collapse
Affiliation(s)
- Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Der Jiun Ooi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
| |
Collapse
|
36
|
Nemati M, Singh B, Mir RA, Nemati M, Babaei A, Ahmadi M, Rasmi Y, Golezani AG, Rezaie J. Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges. Cell Commun Signal 2022; 20:69. [PMID: 35606749 PMCID: PMC9128143 DOI: 10.1186/s12964-022-00889-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/28/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many eukaryote cells produce membrane-enclosed extracellular vesicles (EVs) to establish cell-to-cell communication. Plant-derived EVs (P-EVs) contain proteins, RNAs, lipids, and other metabolites that can be isolated from the juice, the flesh, and roots of many species. METHODS In the present review study, we studied numerous articles over the past two decades published on the role of P-EVs in plant physiology as well as on the application of these vesicles in different diseases. RESULTS Different types of EVs have been identified in plants that have multiple functions including reorganization of cell structure, development, facilitating crosstalk between plants and fungi, plant immunity, defense against pathogens. Purified from several edible species, these EVs are more biocompatible, biodegradable, and extremely available from many plants, making them useful for cell-free therapy. Emerging evidence of clinical and preclinical studies suggest that P-EVs have numerous benefits over conventional synthetic carriers, opening novel frontiers for the novel drug-delivery system. Exciting new opportunities, including designing drug-loaded P-EVs to improve the drug-delivery systems, are already being examined, however clinical translation of P-EVs-based therapies faces challenges. CONCLUSION P-EVs hold great promise for clinical application in the treatment of different diseases. In addition, despite enthusiastic results, further scrutiny should focus on unravelling the detailed mechanism behind P-EVs biogenesis and trafficking as well as their therapeutic applications. Video Abstract.
Collapse
Affiliation(s)
- Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bipin Singh
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh 201310 India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Bio-Sciences and Biotechnology Baba Ghulam, Shah Badshah University, Rajouri, Jammu & Kashmir 185234 India
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Babaei
- Department of Anatomical Sciences, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Afsaneh Gholinejad Golezani
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, Urmia, 57147 Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, Urmia, 57147 Iran
| |
Collapse
|
37
|
Díez-Sainz E, Milagro FI, Riezu-Boj JI, Lorente-Cebrián S. Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet. J Physiol Biochem 2022; 78:485-499. [PMID: 34472032 PMCID: PMC8410452 DOI: 10.1007/s13105-021-00837-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
Obesity and diabetes incidence rates are increasing dramatically, reaching pandemic proportions. Therefore, there is an urgent need to unravel the mechanisms underlying their pathophysiology. Of particular interest is the close interconnection between gut microbiota dysbiosis and obesity and diabetes progression. Hence, microbiota manipulation through diet has been postulated as a promising therapeutic target. In this regard, secretion of gut microbiota-derived extracellular vesicles is gaining special attention, standing out as key factors that could mediate gut microbiota-host communication. Extracellular vesicles (EVs) derived from gut microbiota and probiotic bacteria allow to encapsulate a wide range of bioactive molecules (such as/or including proteins and nucleic acids) that could travel short and long distances to modulate important biological functions with the overall impact on the host health. EV-derived from specific bacteria induce differential physiological responses. For example, a high-fat diet-induced increase of the proteobacterium Pseudomonas panacis-derived EV is closely associated with the progression of metabolic dysfunction in mice. In contrast, Akkermansia muciniphila EV are linked with the alleviation of high-fat diet-induced obesity and diabetes in mice. Here, we review the newest pieces of evidence concerning the potential role of gut microbiota and probiotic-derived EV on obesity and diabetes onset, progression, and management, through the modulation of inflammation, metabolism, and gut permeability. In addition, we discuss the role of certain dietary patterns on gut microbiota-derived EV profile and the clinical implication that dietary habits could have on metabolic diseases progression through the shaping of gut microbiota-derived EV.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad Y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - José I Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), Zaragoza, Spain
| |
Collapse
|
38
|
The Potentiality of Plant-Derived Nanovesicles in Human Health-A Comparison with Human Exosomes and Artificial Nanoparticles. Int J Mol Sci 2022; 23:ijms23094919. [PMID: 35563310 PMCID: PMC9101147 DOI: 10.3390/ijms23094919] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Research in science and medicine is witnessing a massive increases in literature concerning extracellular vesicles (EVs). From a morphological point of view, EVs include extracellular vesicles of a micro and nano sizes. However, this simplistic classification does not consider both the source of EVs, including the cells and the species from which Evs are obtained, and the microenvironmental condition during EV production. These two factors are of crucial importance for the potential use of Evs as therapeutic agents. In fact, the choice of the most suitable Evs for drug delivery remains an open debate, inasmuch as the use of Evs of human origin may have at least two major problems: (i) autologous Evs from a patient may deliver dangerous molecules; and (ii) the production of EVs is also limited to cell factory conditions for large-scale industrial use. Recent literature, while limited to only a few papers, when compared to the papers on the use of human EVs, suggests that plant-derived nanovesicles (PDNV) may represent a valuable tool for extensive use in health care.
Collapse
|
39
|
Plant-Derived Exosomes as A Drug-Delivery Approach for the Treatment of Inflammatory Bowel Disease and Colitis-Associated Cancer. Pharmaceutics 2022; 14:pharmaceutics14040822. [PMID: 35456656 PMCID: PMC9029273 DOI: 10.3390/pharmaceutics14040822] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent intestinal disease and includes Crohn’s disease (CD) and ulcerative colitis (UC). Due to the complex etiology of colitis, the current treatments of IBD are quite limited and are mainly concentrated on the remission of the disease. In addition, the side effects of conventional drugs on the body cannot be ignored. IBD also has a certain relationship with colitis-associated cancer (CAC), and inflammatory cells can produce a large number of tumor-promoting cytokines to promote tumor progression. In recent years, exosomes from plants have been found to have the ability to load drugs to target the intestine and have great potential for the treatment of intestinal diseases. This plant-derived exosome-targeting delivery system can load chemical or nucleic acid drugs and deliver them to intestinal inflammatory sites stably and efficiently. This review summarizes the pathophysiological characteristics of IBD and CAC as well as the application and prospect of plant exosomes in the treatment of IBD and CAC.
Collapse
|
40
|
Liu Y, Tan ML, Zhu WJ, Cao YN, Peng LX, Yan ZY, Zhao G. In Vitro Effects of Tartary Buckwheat-Derived Nanovesicles on Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2616-2629. [PMID: 35167751 DOI: 10.1021/acs.jafc.1c07658] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Evidence suggests that plant-derived nanovesicles may play a significant role in human health. Tartary buckwheat has several physiological activities; however, its underlying health-promoting mechanism remains unclear. In this study, first, Tartary buckwheat-derived nanovesicles (TBDNs) were collected, their structures were analyzed, and microRNA sequencing was performed. Next, target prediction and functional verification were conducted. Finally, the effects of TBDNs on gut microbiota and short-chain fatty acid levels were evaluated. The average size of TBDNs was 141.8 nm diameter. Through the sequencing analyses, 129 microRNAs, including 11 novel microRNAs were identified. Target gene prediction showed that some microRNAs could target functional genes in Escherichia coli and Lactobacillus rhamnosus-related physiological processes. TBDNs significantly promoted the growth of E. coli and L. rhamnosus, enhanced the diversity of fecal microorganisms and increased the short-chain fatty acid levels. These findings provided a new nutritional perspective for Tartary buckwheat and were conducive to promote the development and utilization of Tartary buckwheat.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Mao-Ling Tan
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Wen-Jing Zhu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
41
|
Cong M, Tan S, Li S, Gao L, Huang L, Zhang HG, Qiao H. Technology insight: Plant-derived vesicles-How far from the clinical biotherapeutics and therapeutic drug carriers? Adv Drug Deliv Rev 2022; 182:114108. [PMID: 34990792 DOI: 10.1016/j.addr.2021.114108] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/19/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Within the past decades, extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. Besides EVs, exosome-like nanoparticles (ELNs) derived from plants were also emerging. Comparing to EVs, ELNs are source-widespread, cost-effective and easy to obtain. Their definite activities can be utilized for potential prevention/treatment of an abundance of diseases, including metabolic syndrome, cancer, colitis, alcoholic hepatitis and infectious diseases, which highlights ELNs as promising biotherapeutics. In addition, the potential of ELNs as natural or engineered drug carriers is also attractive. In this review, we tease out the timeline of plant EVs and ELNs, introduce the arising separation, purification and characterization techniques, state the stability and transport manner, discuss the therapeutic opportunities as well as the potential as novel drug carriers. Finally, the challenges and the direction of efforts to realize the clinical transformation of ELNs are also discussed.
Collapse
|
42
|
Kim K, Park J, Sohn Y, Oh CE, Park JH, Yuk JM, Yeon JH. Stability of Plant Leaf-Derived Extracellular Vesicles According to Preservative and Storage Temperature. Pharmaceutics 2022; 14:457. [PMID: 35214189 PMCID: PMC8879201 DOI: 10.3390/pharmaceutics14020457] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Plant-derived extracellular vesicles (EVs) are capable of efficiency delivering mRNAs, miRNAs, bioactive lipids, and proteins to mammalian cells. Plant-derived EVs critically contribute to the ability of plants to defend against pathogen attacks at the plant cell surface. They also represent a novel candidate natural substance that shows potential to be developed for food, cosmetic, and pharmaceutical products. However, although plant-derived EVs are acknowledged as having potential for various industrial applications, little is known about how their stability is affected by storage conditions. In this study, we evaluated the stability of Dendropanax morbifera leaf-derived extracellular vesicles (LEVs) alone or combined with the preservatives, 1,3-butylene glycol (to yield LEVs-1,3-BG) or TMO (LEVs-TMO). We stored these formulations at -20, 4, 25, and 45 °C for up to 4 weeks, and compared the stability of fresh and stored LEVs. We also assessed the effect of freeze-thawing cycles on the quantity and morphology of the LEVs. We found that different storage temperatures and number of freeze-thawing cycles altered the stability, size distribution, protein content, surface charge, and cellular uptake of LEVs compared to those of freshly isolated LEVs. LEVs-TMO showed higher stability when stored at 4 °C, compared to LEVs and LEVs-1,3-BG. Our study provides comprehensive information on how storage conditions affect LEVs and suggests that the potential industrial applications of plant-derived EVs may be broadened by the use of preservatives.
Collapse
Affiliation(s)
- Kimin Kim
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (Y.S.); (C.-E.O.)
| | - Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.P.); (J.-M.Y.)
| | - Yehjoo Sohn
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (Y.S.); (C.-E.O.)
| | - Chan-Eui Oh
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (Y.S.); (C.-E.O.)
| | - Ji-Ho Park
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Jong-Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.P.); (J.-M.Y.)
| | - Ju-Hun Yeon
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (Y.S.); (C.-E.O.)
| |
Collapse
|
43
|
Pan S, Chen Y, Yan J, Li F, Chen X, Xu X, Xing H. The emerging roles and mechanisms of exosomal non-coding RNAs in the mutual regulation between adipose tissue and other related tissues in obesity and metabolic diseases. Front Endocrinol (Lausanne) 2022; 13:975334. [PMID: 36060952 PMCID: PMC9433671 DOI: 10.3389/fendo.2022.975334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Exosomes (EXs) are the major types of extracellular vesicles (EVs) of 30-100 nm diameter that can be secreted by most cells to the extracellular environment. EXs transport endogenous cargoes (proteins, lipids, RNAs, etc.) to target cells and thereby triggers the release of these bioactive components, which then play important roles in regulating numerous biological processes under both physiological and pathological conditions. Throughout the studies in recent years, growing evidences have shown that EXs-derived non-coding RNAs (EXs-ncRNAs) are emerging as key players in cell-to-cell communication between adipose tissue and other related tissues in obesity and metabolic diseases. In this review, we will summarize the recent findings about EXs-ncRNAs, especially focus on the following aspects: 1) the biogenesis of EXs and emerging roles of EXs-ncRNAs, 2) the role of EXs-ncRNAs (EXs-miRNAs, EXs-lncRNAs, EXs-circRNAs, etc.) that were secreted by adipose-related tissues in promoting the differentiation of preadipocytes into mature and fully functional adipocytes, and 3) the crosstalk between the adipose tissue derived EXs-ncRNAs and the development of insulin resistance, obesity and various cancers. This review aims to reveal the emerging roles and mechanisms of EXs-ncRNAs in the mutual regulation of adipose tissue and its related tissues in obesity and metabolic diseases, so as to provide references for elucidating the etiology of obesity and related metabolic diseases and screening novel therapeutic targets.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Department of Animal Science, Washington State University, Pullman, WA, United States
- *Correspondence: Shifeng Pan,
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jie Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
44
|
Plant-Derived Extracellular Vesicles as Therapeutic Nanocarriers. Int J Mol Sci 2021; 23:ijms23010191. [PMID: 35008617 PMCID: PMC8745116 DOI: 10.3390/ijms23010191] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian exosomes have emerged as a promising class of functional materials, inspiring novel applications as therapeutic vehicles and nutraceutical compounds. Despite this, their immunogenicity has been an issue of controversy within the scientific community. Although, exosome-like vesicles, innately formed in plants and inherent to eukaryotic cell-derived vesicles, could soothe most of the concerns, they are notably underutilized as therapeutic modalities. This review highlights all efforts published so far, on the use of plant-derived extracellular vesicles (EVs) as therapeutic delivery systems. A summary of the physicochemical characteristics of plant-derived EVs is provided along with their main biological composition and in vitro/in vivo evidence of their therapeutic efficacy provided where available. Despite only a hand full of clinical trials being underway, concerning these vesicles, they arguably possess significant potential as nanodelivery systems of natural origin.
Collapse
|
45
|
Bruno SP, Paolini A, D'Oria V, Sarra A, Sennato S, Bordi F, Masotti A. Extracellular Vesicles Derived From Citrus sinensis Modulate Inflammatory Genes and Tight Junctions in a Human Model of Intestinal Epithelium. Front Nutr 2021; 8:778998. [PMID: 34901124 PMCID: PMC8652296 DOI: 10.3389/fnut.2021.778998] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
It is widely acknowledged that mammalian exosomes (or extracellular vesicles), have a key role in intercellular communication, owing to the presence of various bioactive molecules such as lipids, proteins, and microRNAs within their inner compartment. Most recently, the discovery of extracellular vesicles isolated from edible plants (such as vegetables and fruits) and their similarity in terms of size and content with exosomes has opened new perspectives on possible intercellular communication and regulation of important biological processes in which these vesicles are involved. It is also well-known that a balanced diet rich of fruits and vegetables (i.e., the Mediterranean diet) can contribute to maintain a “healthy gut” by preserving the intestinal epithelial barrier integrity and avoid that inflammatory stimuli that can alter homeostasis. In our study, we optimized a method to isolate extracellular vesicles from the orange juice (Citrus sinensis) (CS-EVs), and we characterized their morphology and behavior when in contact with the intestinal epithelium. We showed that CS-EVs are stable in a simulated gastrointestinal environment and are absorbed by intestinal cells without toxic effects, as expected. Furthermore, we demonstrated that CS-EVs can alter the gene expression of several genes involved in inflammation (i.e., ICAM1 and HMOX-1) and tight junctions (i.e., OCLN, CLDN1, and MLCK), contributing to limit inflammatory stimuli and restore a functional barrier by increasing the tight junction OCLN protein. Therefore, our study emphasizes the relevant role of fruit-derived extracellular vesicles in modulating important biological processes and maintaining a healthy intestinal epithelium, ultimately promoting human health and well-being.
Collapse
Affiliation(s)
| | - Alessandro Paolini
- Research Laboratories, Children's Hospital Bambino Gesù-IRCCS, Rome, Italy
| | - Valentina D'Oria
- Research Laboratories, Children's Hospital Bambino Gesù-IRCCS, Rome, Italy
| | - Angelo Sarra
- Microscopy Center, University of L'Aquila, L'Aquila, Italy.,CNR-ISC UOS Sapienza and Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Simona Sennato
- CNR-ISC UOS Sapienza and Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Federico Bordi
- CNR-ISC UOS Sapienza and Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Children's Hospital Bambino Gesù-IRCCS, Rome, Italy
| |
Collapse
|
46
|
You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater 2021; 6:4321-4332. [PMID: 33997509 PMCID: PMC8105599 DOI: 10.1016/j.bioactmat.2021.04.023] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 02/08/2023] Open
Abstract
There are extensive studies on the applications of extracellular vesicles (EVs) produced in cell culture for therapeutic drug development. However, large quantities of EVs are needed for in vivo applications, which requires high production costs and time. Thus, the development of new EV sources is essential to facilitate their use. Accordingly, plant-derived exosome-like nanovesicles are an emerging alternative for culture-derived EVs. Until now, however, few studies have explored their biological functions and uses. Therefore, it is necessary to elucidate biological activities of plant-derived exosome-like nanovesicles and harness vesicles for biomedical applications. Herein, cabbage and red cabbage were used as nanovesicle sources owing to their easy cultivation. First, an efficient method for nanovesicle isolation from cabbage (Cabex) and red cabbage (Rabex) was developed. Furthermore, isolated nanovesicles were characterized, and their biological functions were assessed. Both Cabex and Rabex promoted mammalian cell proliferation and, interestingly, suppressed inflammation in immune cells and apoptosis in human keratinocytes and fibroblasts. Finally, therapeutic drugs were encapsulated in Cabex or Rabex and successfully delivered to human cells, demonstrating the potential of these vesicles as alternative drug delivery vehicles. Overall, the current results provide strong evidence for the wide application of Cabex and Rabex as novel therapeutic biomaterials.
Collapse
Affiliation(s)
- Jae Young You
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
| | - Su Jin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University Incheon 22012, Republic of Korea
| |
Collapse
|
47
|
Inter-kingdom regulation of human transcriptome by dietary microRNAs: Emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Logozzi M, Di Raimo R, Mizzoni D, Fais S. Nanovesicles from Organic Agriculture-Derived Fruits and Vegetables: Characterization and Functional Antioxidant Content. Int J Mol Sci 2021; 22:ijms22158170. [PMID: 34360936 PMCID: PMC8347793 DOI: 10.3390/ijms22158170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary consumption of fruits and vegetables is related to a risk reduction in a series of leading human diseases, probably due to the plants' antioxidant content. Plant-derived nanovesicles (PDNVs) have been recently receiving great attention regarding their natural ability to deliver several active biomolecules and antioxidants. To investigate the presence of active antioxidants in fruits, we preliminarily analyzed the differences between nanovesicles from either organic or conventional agriculture-derived fruits, at equal volumes, showing a higher yield of nanovesicles with a smaller size from organic agriculture-derived fruits as compared to conventional ones. PDNVs from organic agriculture also showed a higher antioxidant level compared to nanovesicles from conventional agriculture. Using the PDNVs from fruit mixes, we found comparable levels of Total Antioxidant Capacity, Ascorbic Acid, Catalase, Glutathione and Superoxide Dismutase 1. Finally, we exposed the nanovesicle mixes to either chemical or physical lytic treatments, with no evidence of effects on the number, size and antioxidant capacity of the treated nanovesicles, thus showing a marked resistance of PDNVs to external stimuli and a high capability to preserve their content. Our study provides for the first time a series of data supporting the use of plant-derived nanovesicles in human beings' daily supplementation, for both prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Correspondence: (M.L.); (S.F.); Tel.: +39-064-9902-436 (M.L.); +39-064-9903-195 (S.F.); Fax: +39-064-9902-436 (M.L. & S.F.)
| | | | | | - Stefano Fais
- Correspondence: (M.L.); (S.F.); Tel.: +39-064-9902-436 (M.L.); +39-064-9903-195 (S.F.); Fax: +39-064-9902-436 (M.L. & S.F.)
| |
Collapse
|
49
|
Garlic (Allium sativum)-derived SEVs inhibit cancer cell proliferation and induce caspase mediated apoptosis. Sci Rep 2021; 11:14773. [PMID: 34285262 PMCID: PMC8292337 DOI: 10.1038/s41598-021-93876-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
As a key component of the cell-to-cell communication, small extracellular vesicles (SEVs) released from various sources are known to be affecting the physiological conditions of the target cells. Although it has been suggested that edible plant-derived nanoparticles contributes to the cross kingdom communication with the mammalian cells, the effect of these particles on cancer cell progression still needs a further exploration. Here, we isolated and then characterized garlic derived SEVs by nanoparticle tracking analysis, electron microscopy and SEV surface antibodies. In order to investigate anti-cancer property of garlic SEVs A498 human kidney carcinoma, A549 human lung carcinoma were used as cell models along with the normal human dermal fibroblast cell lines. Annexin V/pI staining and analysis of apoptotic mRNA and protein expression levels suggested that garlic SEVs induced apoptosis through activation of intrinsic pathway. Furthermore, angiogenic VEGF protein expression levels significantly decreased in response to SEVs treatment in cancer cells. Our results support that garlic derived SEVs could cause apoptotic cell death among cancer cells while normal cells remain unaffected with the treatment. This study revealed for the first time that plant SEVs possess anti-cancer affects by inducing caspase mediated apoptosis and provided a new alternative for cancer treatment.
Collapse
|
50
|
Pinedo M, de la Canal L, de Marcos Lousa C. A call for Rigor and standardization in plant extracellular vesicle research. J Extracell Vesicles 2021; 10:e12048. [PMID: 33936567 PMCID: PMC8077130 DOI: 10.1002/jev2.12048] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Marcela Pinedo
- Instituto de Investigaciones Biológicas Universidad Nacional de Mar del Plata-CONICET Funes Mar del Plata Argentina
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas Universidad Nacional de Mar del Plata-CONICET Funes Mar del Plata Argentina
| | - Carine de Marcos Lousa
- Centre for Biomedical Sciences Leeds Beckett University Leeds UK.,Centre for Plant Sciences University of Leeds Leeds UK
| |
Collapse
|