1
|
Machado KDC, Silva JDN, Rodrigues DCDN, Lavorato SN, Sousa JMDCE, Melo-Cavalcante AADC, de Souza PC, Meletti PC, Sousa Moura D, Ferreira JRDO, Grisolia CK, Alves RJ, Ferreira PMP. Arylacetamides exhibit antiproliferative effects on non-transformed mammalian and vegetal cells and toxicity on crustaceans and fish embryos. Drug Chem Toxicol 2025:1-11. [PMID: 40340618 DOI: 10.1080/01480545.2025.2492770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/12/2025] [Accepted: 04/08/2025] [Indexed: 05/10/2025]
Abstract
Non-clinical steps for development, validation and biosafety of new medicines and products comprises studies on cells, proteins, and animals. Herein, we evaluated the toxic activity of antitumoral 2-chloro-N-arylacetamides on eukaryotic dividing cells and animal replacement models. Firstly, the cytotoxicity of chloro (compound 2), bromo (compound 3) and nitro (compound 4) acetamides was analyzed by fluorescent assays in fibroblasts. Next, toxicity was evaluated on Allium cepa meristematic cells and 48h-living Artemia salina larvae. Finally, embryos of Danio rerio (zebrafish) were exposed to the compound 2 (0.14 - 7.2 μg/mL) for 120 h exposure. All arylacetamides were cytotoxic on murine and human fibroblasts, with IC50 values ranging from 1.2 μg/mL (5.6 µM = compound 4 on L-929) to 4.9 μg/mL (24 µM = compound 2 on MRC-5 cells), respectively, and inhibited root growth from 10 to 100 µg/mL, corroborated by mitotic index reduction and cell cycle arrest in interphase (p < 0.05) without clastogenic injuries. Compound 2 showed time- and concentration-dependent killing effects on zebrafish embryos. Its 24 h-acute toxicity at higher concentrations (1.93 and 7.2 μg/mL with 90% and 100% death) corroborated toxicity on aquatic A. salina organisms. After 96 h exposure at 0.52 μg/mL (2.55 µM), almost 100% of the embryos showed more than one lethal/sublethal morphological abnormality (p < 0.05). Then, all arylacetamides showed unspecific toxic effects, mainly the halogenated electrophile chloroacetamide. They present strong antimitotic action on vertebrate and vegetal cells, although such antiproliferative activity does not seem to be directly related to chromosomal damage inductions.
Collapse
Affiliation(s)
- Kátia da Conceição Machado
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Jurandy do Nascimento Silva
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | | | - Stefânia Neiva Lavorato
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Brazil
| | - João Marcelo de Castro E Sousa
- Toxicological Genetics Research Laboratory (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
| | | | - Patrícia Canteri de Souza
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Paulo César Meletti
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Diego Sousa Moura
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, University of Brasília, Brasília, Brazil
| | | | - Cesar Koppe Grisolia
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, University of Brasília, Brasília, Brazil
| | - Ricardo José Alves
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
2
|
Jung YH, Lee DC, Choi BH, Park JO, Kim JH. Feature-based molecular networking updates the in vitro metabolic characterisation of fenbendazole across species. Xenobiotica 2025:1-9. [PMID: 40277129 DOI: 10.1080/00498254.2025.2497047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
1. Feature-based molecular networking (FBMN), an advanced metabolomics tool leveraging MS/MS spectral similarity, was applied to update metabolite characterisation of fenbendazole (FBZ), a veterinary antiparasitic agent with emerging anticancer potential in humans. Despite its therapeutic promise, FBZ's human metabolic pathways remain poorly understood. 2. In this study, FBMN was utilised for the comprehensive in vitro profiling of FBZ metabolites across species, employing high-resolution liquid chromatography-mass spectrometry (LC-HRMS) with data-dependant MS2 acquisition. 3. Nine metabolites, including two novel sulphate-conjugated forms (M2 sulphate and M7 sulphate), were identified and structurally characterised through integrated FBMN analysis. Oxidative metabolites (M1-M4) were found to be more abundant in rat liver microsomes, whereas monkey hepatocytes exhibited higher levels of most metabolites. Notably, hydrolysed FBZ (M5) dominated human samples, accounting for the largest proportion in both liver microsomes and hepatocytes, suggesting species-specific enzymatic activity. 4. The application of FBMN provided an enhanced, systematic approach for metabolite identification and inter-species comparison, revealing critical metabolic differences that support FBZ biotransformation. These findings offer novel insights into FBZ's metabolic pathways, supporting its safety and efficacy assessment for potential human therapeutic applications.
Collapse
Affiliation(s)
- Young-Heun Jung
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dong-Cheol Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
Yang L, Liao ZZ, Ran L, Xiao XH. Progress of arylacetamide deacetylase research in metabolic diseases. Front Oncol 2025; 15:1564419. [PMID: 40376582 PMCID: PMC12078129 DOI: 10.3389/fonc.2025.1564419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/31/2025] [Indexed: 05/18/2025] Open
Abstract
Arylacetamide deacetylase (AADAC), a microsomal serine esterase belonging to the polygenic hydrolase family, is predominantly localized in the liver and intestine. It plays a significant role in drug metabolism, lipid metabolism, and the pathogenesis of various diseases. In the context of drug metabolism, AADAC is vital for ensuring the safety of ester-based drugs. Its substrate specificity for short-chain acyl groups, along with genetic polymorphisms among individuals and species, influences drug-related processes. Regarding lipid metabolism, The lipase activity of AADAC is involved in the hydrolysis of cholesterol and triglycerides, lipid mobilization, and the assembly of lipoproteins. The expression of AADAC is regulated by multiple factors. It is associated with metabolic disorders; for instance, its decreased expression in the liver during obesity may impact triglyceride metabolism, and it may also have an indirect role in diabetes. In cardiovascular diseases, AADAC holds potential as a diagnostic marker. Its role in cancer is heterogeneous, being downregulated in certain cancers while upregulated in others, such as pancreatic and ovarian cancers, where it acts to inhibit cancer progression. Within the nervous system, AADAC may influence neurotransmitter regulation and drug metabolism. Currently, research on AADAC agonists is limited, and the development of inhibitors presents challenges, underscoring the necessity for further investigation in this area.
Collapse
Affiliation(s)
| | | | - Li Ran
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Ribone SR, Estrin DA, Quevedo MA. Exploring human carboxylesterases 1 and 2 selectivity of two families of substrates at an atomistic level. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141069. [PMID: 40209868 DOI: 10.1016/j.bbapap.2025.141069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
Human carboxylesterases (CES) are enzymes that play an important role in the metabolism and biotransformation of diverse substances. The two more relevant isoforms, CES1A1 and CES2A1, catalyze the hydrolysis of numerous approved drugs and prodrugs. The elucidation of CES isoform substrates specificity constitutes a very relevant medicinal chemistry issue. The general role pointed that the selectivity towards CES1A1 or CES2A1 depends on the size of the acyl and alkyl moieties present in the structure of the substrate, but several exceptions regarding substrate promiscuity towards both CES have been reported. In this work, a combination of classical molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations were applied with the purpose of studying the substrate selectivity of CES1A1 and CES2A1 on two sets of selected ligands: p-nitrophenyl ester derivatives (NPE) and pyrethroid stereoisomers (Pyr). The classical molecular modeling studies showed that the van der Waals (VDW) component of interaction, with the hydrophobic residues present on CES1A1 and CES2A1 subpocket 1 and subpocket 2, showed a significant contribution to the substrates-CES affinity properties. The hybrid QM/MM simulations exhibited that the rate-limiting step for the studied substrates reactions were related to the transition state (TS) with the higher steric hindrance molecular structure. In conclusion, it was possible to observe that the studied substrates generate the best possible interaction pattern with the residues from subpocket 1 and 2 in order to produce the corresponding affinity constant with the enzyme. Then, this interaction pattern drives the catalytic turn-over reaction through the presence or absence of a high steric hindrance center in the molecular structure of the rate-limiting reaction.
Collapse
Affiliation(s)
- Sergio R Ribone
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba 5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Dario A Estrin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Fíisica de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Mario A Quevedo
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba 5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
5
|
Takahashi M, Sakai S, Takahashi K, Hosokawa M. Species Differences in Carboxylesterases Among Humans, Cynomolgus Monkeys, and Mice in the Hydrolysis of Atorvastatin Derivatives. Biopharm Drug Dispos 2025; 46:49-57. [PMID: 40128100 DOI: 10.1002/bdd.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Nonclinical trials are crucial for assessing pharmaceutical efficacy and safety prior to clinical trials. However, disparities in drug metabolism between humans and animals complicate extrapolating animal data to humans. Variability in drug-metabolizing enzymes, such as carboxylesterases (CESs), contributes to differences in drug kinetics. This study aimed to explore species disparities in CES substrate specificity among humans (hCES1), mice (mCES1), and cynomolgus monkeys (mfCES1) using diverse atorvastatin ester derivatives. This study measured hydrolysis rates of 30 atorvastatin derivatives. Metabolites were identified via HPLC with an internal standard, measuring rates per unit time and enzyme amount. Enzyme metabolic activity was compared using hydrolysis rates. The structure of the alkoxy group resulted in differences ranging from approximately half to 8.97-fold between hCES1 and mCES1 and differences ranging from similar to 15.82-fold between hCES1 and mfCES1. Caution is warranted when extrapolating animal data to humans, especially for esters with diverse structures. Our focus on the alkoxy group structure highlights its impact on hydrolysis rates. Further investigation into species differences among CES enzymes is essential for accurate translational research.
Collapse
Affiliation(s)
- Masato Takahashi
- Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, Chiba, Japan
| | - Sachiko Sakai
- Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, Chiba, Japan
| | - Kohei Takahashi
- Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, Chiba, Japan
| | - Masakiyo Hosokawa
- Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, Chiba, Japan
| |
Collapse
|
6
|
Yang M, Yao S, Zhang W, Zhao T, Li C, Ai H, Wu X, Xiao J, Zhuang X. Species-specific in vivo exposure assessment and in vivo-in vitro correlation of the carboxylate esters prodrug HD56 targeting FK506 binding proteins: The pivotal role of humanized mice. Drug Metab Dispos 2025; 53:100049. [PMID: 40073534 DOI: 10.1016/j.dmd.2025.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 03/14/2025] Open
Abstract
HD561, which was designed to enhance nerve growth, was re-engineered into HD56, a carboxylic acid ester prodrug. The goal of this study was to compare the druggability, species differences, and the correlation between in vitro and in vivo transformation of HD56 to HD561 from a pharmacokinetic (PK) perspective, offering a scientific basis for HD56's clinical research. The bidirectional transmembrane transport of HD56 and HD561 was investigated using Caco-2 cells and LLC-PK1 cells overexpressing MDR1 monolayer cells. Recombinant enzymes and chemical inhibition methods were employed to identify the reaction phenotyping. The conversion of HD56 to HD561 was compared in hepatic and intestinal microsomes, as well as plasma, across different species, including humans, rats, monkeys, and mice with humanized liver. PK studies were conducted in rats, monkeys, and mice with different humanized liver proportions (Hu-URG, Hu-URG-Low, and Hu-URG-High). Finally, an in vivo-in vitro correlation was established between the conversion rate of HD56 to HD561. Results showed that HD56 had better permeability than HD561. HD56 could be hydrolyzed by carboxylesterase 1 to HD561 and be metabolized by cytochrome P450 isoenzymes, while HD561 underwent further metabolism via CYP2C9. Significant species differences existed, and a good in vivo-in vitro correlation was only achieved in humanized mice (r = 0.98). Both in vitro and in vivo PK characteristics of HD56 were remarkably superior to those of HD561, suggesting that HD56 held promise for development. Humanized liver mice serve as a powerful model to address the issue of species differences in ester prodrugs. SIGNIFICANCE STATEMENT: Prodrug HD56 showed superior pharmacokinetic properties compared with the active compound HD561, guiding similar prodrug research. The use of chimeric mice with human hepatocytes, for the first time, to study carboxylesterase (CES) prodrug HD56 provides a model that closely mimics human metabolism. Findings deepen understanding of HD56's behavior and offer a predictive tool for CES prodrugs' metabolic fate, streamlining drug development and improving preclinical accuracy.
Collapse
Affiliation(s)
- Mengmeng Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shi Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Taiyun Zhao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation
| | - Cong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hengxiao Ai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xia Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Junhai Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
7
|
Wang YG, Gan CP, Beukers-Korver J, Rosing H, Li WL, Wagenaar E, Lebre MC, Song JY, Pritchard C, Bin Ali R, Huijbers I, Beijnen JH, Schinkel AH. Intestinal human carboxylesterase 2 (CES2) expression rescues drug metabolism and most metabolic syndrome phenotypes in global Ces2 cluster knockout mice. Acta Pharmacol Sin 2025; 46:777-793. [PMID: 39496863 PMCID: PMC11845761 DOI: 10.1038/s41401-024-01407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
Carboxylesterase 2 (CES2) is expressed mainly in liver and intestine, but most abundantly in intestine. It hydrolyzes carboxylester, thioester, and amide bonds in many exogenous and endogenous compounds, including lipids. CES2 therefore not only plays an important role in the metabolism of many (pro-)drugs, toxins and pesticides, directly influencing pharmacology and toxicology in humans, but it is also involved in energy homeostasis, affecting lipid and glucose metabolism. In this study we investigated the pharmacological and physiological functions of CES2. We constructed Ces2 cluster knockout mice lacking all eight Ces2 genes (Ces2-/- strain) as well as humanized hepatic or intestinal CES2 transgenic strains in this Ces2-/- background. We showed that oral availability and tissue disposition of capecitabine were drastically increased in Ces2-/- mice, and tissue-specifically decreased by intestinal and hepatic human CES2 (hCES2) activity. The metabolism of the chemotherapeutic agent vinorelbine was strongly reduced in Ces2-/- mice, but only marginally rescued by hCES2 expression. On the other hand, Ces2-/- mice exhibited fatty liver, adipositis, hypercholesterolemia and diminished glucose tolerance and insulin sensitivity, but without body mass changes. Paradoxically, hepatic hCES2 expression rescued these metabolic phenotypes but increased liver size, adipose tissue mass and overall body weight, suggesting a "healthy" obesity phenotype. In contrast, intestinal hCES2 expression efficiently rescued all phenotypes, and even improved some parameters, including body weight, relative to the wild-type baseline values. Our results suggest that the induction of intestinal hCES2 may combat most, if not all, of the adverse effects of metabolic syndrome. These CES2 mouse models will provide powerful preclinical tools to enhance drug development, increase physiological insights, and explore potential solutions for metabolic syndrome-associated disorders.
Collapse
Affiliation(s)
- Yao-Geng Wang
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Chang-Pei Gan
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Joke Beukers-Korver
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Wen-Long Li
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Els Wagenaar
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Maria C Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, the Netherlands
| | - Colin Pritchard
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Rahmen Bin Ali
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Ivo Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Nagaoka M, Sakai Y, Nakajima M, Fukami T. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochem Pharmacol 2024; 223:116128. [PMID: 38492781 DOI: 10.1016/j.bcp.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.
Collapse
Affiliation(s)
- Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Sakai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
9
|
Zhang W, Qi C, Wang X, Fu Z, Zhang J, Zhou Y, Wang Y. An ultrasensitive and selective near-infrared fluorescent probe for tracking carboxylesterases with large Stokes shift in living cells and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123708. [PMID: 38042124 DOI: 10.1016/j.saa.2023.123708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Carboxylesterases (CEs) play great role in CEs-related diseases and drug metabolism. Selectively monitoring its activity is important to explore its role in CEs-related diseases and drug combination. Herein, a new "turn-on" near-infrared (NIR) fluorescent probe (CHY-1) was reported with large Stokes shift (145 nm) for CEs detection. Dicyanoisophorone-based derivative was chosen as NIR fluorophore and 4-bromobutyrate was the identifying group. What's more, CHY-1 exhibited ultra-sensitivity (LOD ∼ 9.2 × 10-5 U/mL), high selectivity against Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE) and Chymotrypsin for CEs fluorescence detection under physiological pH and temperature. Furthermore, CHY-1 showed little effect on cell viability at high concentration and featured good optical imaging character for the slight change of CEs activity induced by 5-Fu (5-Fluorouridine, anti-tumor drug) and CEs inhibitor in living cells. Moreover, CHY-1 was also used to detect the activity and distribution of CEs in mice. Taken together, CHY-1 had widely applicable value in the diagnosis of CEs-related diseases and drug combination.
Collapse
Affiliation(s)
- Wenda Zhang
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Chongzhen Qi
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Xinru Wang
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Zhe Fu
- Department of General Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingmin Zhang
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Yubing Zhou
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Yu Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
10
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
11
|
Hirosawa K, Fukami T, Nakano M, Nakajima M. Evaluation of Drug-Drug Interactions via Inhibition of Hydrolases by Orlistat, an Anti-Obesity Drug. Drug Metab Dispos 2023; 51:1016-1023. [PMID: 37137721 DOI: 10.1124/dmd.123.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
Drug-drug interactions (DDI) have a significant impact on drug efficacy and safety. It has been reported that orlistat, an anti-obesity drug, inhibits the hydrolysis of p-nitrophenol acetate, a common substrate of the major drug-metabolizing hydrolases, carboxylesterase (CES) 1, CES2, and arylacetamide deacetylase (AADAC), in vitro. The aim of this study was to examine whether orlistat affects the pharmacokinetics of drug(s) metabolized by hydrolases in vivo after evaluating its inhibitory potencies against CES1, CES2, and AADAC in vitro. Orlistat potently inhibited the hydrolysis of acebutolol, a specific substrate of CES2, in a non-competitive manner (inhibition constant, K i = 2.95 ± 0.16 nM), whereas it slightly inhibited the hydrolysis of temocapril and eslicarbazepine acetate, specific substrates of CES1 and AADAC, respectively (IC50 >100 nM). The in vivo DDI potential was elucidated using mice, in which orlistat showed strong inhibition against acebutolol hydrolase activities in the liver and intestinal microsomes, similar to humans. The area under the curve (AUC) of acebutolol was increased by 43%, whereas the AUC of acetolol, a hydrolyzed metabolite of acebutolol, was decreased by 47% by co-administration of orlistat. The ratio of the K i value to the maximum unbound plasma concentration of orlistat (<0.012) is lower than the risk criteria for DDI in the liver defined by the US Food and Drug Administration guideline (>0.02), whereas the ratio of the K i value to the estimated intestinal luminal concentration (3.3 × 105) is considerably higher than the risk criteria in the intestine (>10). Therefore, this suggests that orlistat causes DDI by inhibiting hydrolases in the intestine. SIGNIFICANCE STATEMENT: This study demonstrated that orlistat, an anti-obesity drug, causes drug-drug interactions in vivo by potently inhibiting carboxylesterase 2 in the intestine. This is the first evidence that inhibition of hydrolases causes drug-drug interactions.
Collapse
Affiliation(s)
- Keiya Hirosawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University (K.H., T.F., Ma.N., Mi.N.) and WPI Nano Life Science Institute, Kanazawa, Japan (T.F., Ma.N., Mi.N.)
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University (K.H., T.F., Ma.N., Mi.N.) and WPI Nano Life Science Institute, Kanazawa, Japan (T.F., Ma.N., Mi.N.)
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University (K.H., T.F., Ma.N., Mi.N.) and WPI Nano Life Science Institute, Kanazawa, Japan (T.F., Ma.N., Mi.N.)
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University (K.H., T.F., Ma.N., Mi.N.) and WPI Nano Life Science Institute, Kanazawa, Japan (T.F., Ma.N., Mi.N.)
| |
Collapse
|
12
|
Diaz-Vidal T, Romero-Olivas CB, Martínez-Pérez RB. Characterization, comparative, and functional analysis of arylacetamide deacetylase from Gnathostomata organisms. J Genet Eng Biotechnol 2022; 20:169. [PMID: 36542226 PMCID: PMC9772364 DOI: 10.1186/s43141-022-00443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Arylacetamide deacetylase (AADAC) is a lipolytic enzyme involved in xenobiotic metabolism. The characterization in terms of activity and substrate preference has been limited to a few mammalian species. The potential role and catalytic activities of AADAC from other organisms are still poorly understood. Therefore, in this work, the physicochemical properties, proteomic analysis, and protein-protein interactions from Gnathostomata organisms were investigated. RESULTS The analysis were performed with 142 orthologue sequences with ~ 48-100% identity with human AADAC. The catalytic motif HGG[A/G] tetrapeptide block was conserved through all AADAC orthologues. Four variations were found in the consensus pentapeptide GXSXG sequence (GDSAG, GESAG, GDSSG, and GSSSG), and a novel motif YXLXP was found. The prediction of N-glycosylation sites projected 4, 1, 6, and 4 different patterns for amphibians, birds, mammals, and reptiles, respectively. The transmembrane regions of AADAC orthologues were not conserved among groups, and variations in the number and orientation of the active site and C-terminal carboxyl were observed among the sequences studied. The protein-protein interaction of AADAC orthologues were related to cancer, lipid, and xenobiotic metabolism genes. CONCLUSION The findings from this computational analysis offer new insight into one of the main enzymes involved in xenobiotic metabolism from mammals, reptiles, amphibians, and birds and its potential use in medical and veterinarian biotechnological approaches.
Collapse
Affiliation(s)
- Tania Diaz-Vidal
- grid.412890.60000 0001 2158 0196Present Address: Department of Chemical Engineering, University of Guadalajara, 44430 Guadalajara, Mexico
| | - Christian Berenice Romero-Olivas
- grid.466844.c0000 0000 9963 8346Present Address: Department of Biotechnology and Food Sciences, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico 85137
| | - Raúl Balam Martínez-Pérez
- grid.466844.c0000 0000 9963 8346Present Address: Department of Biotechnology and Food Sciences, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico 85137 ,grid.418270.80000 0004 0428 7635Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, 45019 Zapopan, Mexico
| |
Collapse
|
13
|
Cavallero A, Puccini P, Aprile V, Lucchi M, Gervasi P, Longo V, Gabriele M. Presence, enzymatic activity, and subcellular localization of paraoxonases 1, 2, and 3 in human lung tissues. Life Sci 2022; 311:121147. [DOI: 10.1016/j.lfs.2022.121147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
14
|
Jung YH, Lee DC, Kim JO, Kim JH. Untargeted metabolomics-assisted comparative cytochrome P450-dependent metabolism of fenbendazole in human and dog liver microsomes. Xenobiotica 2022; 52:986-996. [PMID: 36533905 DOI: 10.1080/00498254.2022.2160676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fenbendazole (FBZ), a benzimidazole carbamate anthelmintic, has attracted attention for its antitumor activity. This study examined the metabolic characteristics of FBZ in humans compared with those in dogs. The phase I metabolites were identified in liver microsomal incubates using liquid chromatography-mass spectrometry (MS)-based untargeted metabolomics approaches. Seven metabolites of FBZ were identified by principal component analysis and orthogonal partial least square-discriminant analysis based on the global ion variables of the FBZ incubation groups. The chemical structure of the FBZ metabolites was suggested by examining the MS/MS spectrum and isotope distribution pattern. Cytochrome P450 (CYP) 1A1, CYP2D6, and CYP2J2 were the major isozymes responsible for the FBZ metabolism. No differences in the types of metabolites produced by the two species were noted. Multivariate analysis of human and dog incubation groups showed that five metabolites were relatively abundant in humans and the other two were not. In summary, the phase I metabolic profile of FBZ and the comparative metabolism between humans and dogs were examined using an untargeted metabolomics approach. This study suggests a successful investigation of FBZ metabolism in humans for conducting safety assessments regarding drug repositioning.
Collapse
Affiliation(s)
| | - Dong-Cheol Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
15
|
Jia Y, Shi S, Cheng B, Cheng S, Liu L, Meng P, Yang X, Chu X, Wen Y, Zhang F, Guo X. Fluorine impairs carboxylesterase 1-mediated hydrolysis of T-2 toxin and increases its chondrocyte toxicity. Front Nutr 2022; 9:935112. [PMID: 35990316 PMCID: PMC9381868 DOI: 10.3389/fnut.2022.935112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background T-2 toxin is recognized as one of the high-risk environmental factors for etiology and pathogenesis of Kashin-Beck disease (KBD). Previous evidence indicates decreased serum fluorine level in KBD patients. However, whether fluoride could regulate carboxylesterase 1 (CES1)-mediated T-2 toxin hydrolysis and alter its chondrocyte toxicity remains largely unknown. Methods In this study, in vitro hydrolytic kinetics were explored using recombinant human CES1. HPLC-MS/MS was used to quantitative determination of hydrolytic metabolites of T-2 toxin. HepG2 cells were treated with different concentration of sodium fluoride (NaF). qRT-PCR and western blot analysis were used to compare the mRNA and protein expression levels of CES1. C28/I2 cells were treated with T-2 toxin, HT-2 toxin, and neosolaniol (NEO), and then cell viability was determined by MTT assay, cell apoptosis was determined by Annexin V-FITC/PI, Hoechst 33258 staining, and cleaved caspase-3, and cell cycle was monitored by flow cytometry assay, CKD4 and CDK6. Results We identified that recombinant human CES1 was involved in T-2 toxin hydrolysis to generate HT-2 toxin, but not NEO, and NaF repressed the formation of HT-2 toxin. Both mRNA and protein expression of CES1 were significantly down-regulated in a dose-dependent manner after NaF treatment in HepG2 cells. Moreover, we evaluated the chondrocyte toxicity of T-2 toxin and its hydrolytic metabolites. Results showed that T-2 toxin induced strongest cell apoptosis, followed by HT-2 toxin and NEO. The decreased the proportion of cells in G0/G1 phase was observed with the descending order of T-2 toxin, HT-2 toxin, and NEO. Conclusions This study reveals that CES1 is responsible for the hydrolysis of T-2 toxin, and that fluoride impairs CES1-mediated T-2 toxin detoxification to increase its chondrocyte toxicity. This study provides novel insight into understanding the relationship between fluoride and T-2 toxin in the etiology of KBD.
Collapse
Affiliation(s)
- Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Thymiakou E, Xenikaki E, Kardassis D. Intestine-specific ablation of the Hepatocyte Nuclear Factor 4a (Hnf4a) gene in mice has minimal impact on serum lipids and ileum gene expression profile due to upregulation of its paralog Hnf4g. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159108. [PMID: 34973414 DOI: 10.1016/j.bbalip.2021.159108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/21/2023]
Abstract
Ablation of the gene encoding the nuclear receptor Hepatocyte Nuclear Factor 4a (Hnf4a) in the liver strongly affects HDL concentration, structure and functionality but the role of this receptor in the intestine, the second organ contributing to serum HDL levels, has been overlooked. In the present study we show that mice with intestine-specific ablation of Hnf4a (H4IntKO) had undetectable levels of ΗΝF4A in ileum, proximal and distal colon but normal expression in liver. H4IntKO mice presented normal serum lipid levels, HDL-C and particle size (α1-α3). The expression of the major HDL biogenesis genes Apoa1, Abca1, Lcat was not affected but there was significant increase in Apoc3 as well as in Hnf4g, a paralog of Hnf4a. RNA-sequencing identified metabolic pathways significantly affected by Hnf4a ablation such as type II diabetes, glycolysis, gluconeogenesis and p53 signaling. Chromatin immunoprecipitation assays showed that HNF4G bound to various apolipoprotein gene promoters in control mice but its binding affinity was reduced in the ileum of H4IntKO mice suggesting a redundancy but also a cooperation between the two factors. In the distal colon of H4IntKO mice, where both HNF4A and HNF4G are absent and in a mouse model of DSS-induced colitis presenting decreased levels of HNF4A, most lipoprotein genes were strongly downregulated. In conclusion, Hnf4a ablation in mice does not significantly affect serum lipid levels or lipoprotein gene expression in ileum possibly due to compensatory effects by its paralog Hnf4g in this tissue.
Collapse
Affiliation(s)
- Efstathia Thymiakou
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece
| | - Efsevia Xenikaki
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece.
| |
Collapse
|
17
|
Uno Y, Uehara S, Yamazaki H. Drug-oxidizing and conjugating non-cytochrome P450 (non-P450) enzymes in cynomolgus monkeys and common marmosets as preclinical models for humans. Biochem Pharmacol 2021; 197:114887. [PMID: 34968483 DOI: 10.1016/j.bcp.2021.114887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Many drug oxidations and conjugations are mediated by a variety of cytochromes P450 (P450) and non-P450 enzymes in humans and non-human primates. These non-P450 enzymes include aldehyde oxidases (AOX), carboxylesterases (CES), flavin-containing monooxygenases (FMO), glutathione S-transferases (GST), arylamine N-acetyltransferases (NAT),sulfotransferases (SULT), and uridine 5'-diphospho-glucuronosyltransferases (UGT) and their substrates include both endobiotics and xenobiotics. Cynomolgus macaques (Macaca fascicularis, an Old-World monkey) are widely used in preclinical studies because of their genetic and physiological similarities to humans. However, many reports have indicated the usefulness of common marmosets (Callithrix jacchus, a New World monkey) as an alternative non-human primate model. Although knowledge of the drug-metabolizing properties of non-P450 enzymes in non-human primates is relatively limited, new research has started to provide an insight into the molecular characteristics of these enzymes in cynomolgus macaques and common marmosets. This mini-review provides collective information on the isoforms of non-P450 enzymes AOX, CES, FMO, GST, NAT, SULT, and UGT and their enzymatic profiles in cynomolgus macaques and common marmosets. In general, these non-P450 cynomolgus macaque and marmoset enzymes have high sequence identities and similar substrate recognitions to their human counterparts. However, these enzymes also exhibit some limited differences in function between species, just as P450 enzymes do, possibly due to small structural differences in amino acid residues. The findings summarized here provide a foundation for understanding the molecular mechanisms of polymorphic non-P450 enzymes and should contribute to the successful application of non-human primates as model animals for humans.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Shotaro Uehara
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
18
|
Virtual Alanine Scan of the Main Protease Active Site in Severe Acute Respiratory Syndrome Coronavirus 2. Int J Mol Sci 2021; 22:ijms22189837. [PMID: 34576002 PMCID: PMC8466562 DOI: 10.3390/ijms22189837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) have been proposed as potential therapeutic agents for COVID-19. Studying effects of amino acid mutations in the conformation of drug targets is necessary for anticipating drug resistance. In this study, with the structure of the SARS-CoV-2 Mpro complexed with a non-covalent inhibitor, we performed molecular dynamics (MD) simulations to determine the conformation of the complex when single amino acid residue in the active site is mutated. As a model of amino acid mutation, we constructed mutant proteins with one residue in the active site mutated to alanine. This method is called virtual alanine scan. The results of the MD simulations showed that the conformation and configuration of the ligand was changed for mutants H163A and E166A, although the structure of the whole protein and of the catalytic dyad did not change significantly, suggesting that mutations in His163 and Glu166 may be linked to drug resistance.
Collapse
|
19
|
Honda S, Fukami T, Hirosawa K, Tsujiguchi T, Zhang Y, Nakano M, Uehara S, Uno Y, Yamazaki H, Nakajima M. Differences in Hydrolase Activities in the Liver and Small Intestine between Marmosets and Humans. Drug Metab Dispos 2021; 49:718-728. [PMID: 34135089 DOI: 10.1124/dmd.121.000513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022] Open
Abstract
For drug development, species differences in drug-metabolism reactions present obstacles for predicting pharmacokinetics in humans. We characterized the species differences in hydrolases among humans and mice, rats, dogs, and cynomolgus monkeys. In this study, to expand the series of such studies, we attempted to characterize marmoset hydrolases. We measured hydrolase activities for 24 compounds using marmoset liver and intestinal microsomes, as well as recombinant marmoset carboxylesterase (CES) 1, CES2, and arylacetamide deacetylase (AADAC). The contributions of CES1, CES2, and AADAC to hydrolysis in marmoset liver microsomes were estimated by correcting the activities by using the ratios of hydrolase protein levels in the liver microsomes and those in recombinant systems. For six out of eight human CES1 substrates, the activities in marmoset liver microsomes were lower than those in human liver microsomes. For two human CES2 substrates and three out of seven human AADAC substrates, the activities in marmoset liver microsomes were higher than those in human liver microsomes. Notably, among the three rifamycins, only rifabutin was hydrolyzed by marmoset tissue microsomes and recombinant AADAC. The activities for all substrates in marmoset intestinal microsomes tended to be lower than those in liver microsomes, which suggests that the first-pass effects of the CES and AADAC substrates are due to hepatic hydrolysis. In most cases, the sums of the values of the contributions of CES1, CES2, and AADAC were below 100%, which indicated the involvement of other hydrolases in marmosets. In conclusion, we clarified the substrate preferences of hydrolases in marmosets. SIGNIFICANCE STATEMENT: This study confirmed that there are large differences in hydrolase activities between humans and marmosets by characterizing marmoset hydrolase activities for compounds that are substrates of human CES1, CES2, or arylacetamide deacetylase. The data obtained in this study may be useful for considering whether marmosets are appropriate for examining the pharmacokinetics and efficacies of new chemical entities in preclinical studies.
Collapse
Affiliation(s)
- Shiori Honda
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., K.H., T.T., Ma.N., Mi.N.), WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., Y.Z., Ma.N., Mi.N.), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (Y.Z.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (S.U., H.Y.); Central Institute for Experimental Animals, Kawasaki, Japan (S.U.); Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan (Y.U.); and Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U.)
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., K.H., T.T., Ma.N., Mi.N.), WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., Y.Z., Ma.N., Mi.N.), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (Y.Z.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (S.U., H.Y.); Central Institute for Experimental Animals, Kawasaki, Japan (S.U.); Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan (Y.U.); and Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U.)
| | - Keiya Hirosawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., K.H., T.T., Ma.N., Mi.N.), WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., Y.Z., Ma.N., Mi.N.), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (Y.Z.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (S.U., H.Y.); Central Institute for Experimental Animals, Kawasaki, Japan (S.U.); Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan (Y.U.); and Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U.)
| | - Takuya Tsujiguchi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., K.H., T.T., Ma.N., Mi.N.), WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., Y.Z., Ma.N., Mi.N.), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (Y.Z.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (S.U., H.Y.); Central Institute for Experimental Animals, Kawasaki, Japan (S.U.); Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan (Y.U.); and Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U.)
| | - Yongjie Zhang
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., K.H., T.T., Ma.N., Mi.N.), WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., Y.Z., Ma.N., Mi.N.), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (Y.Z.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (S.U., H.Y.); Central Institute for Experimental Animals, Kawasaki, Japan (S.U.); Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan (Y.U.); and Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U.)
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., K.H., T.T., Ma.N., Mi.N.), WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., Y.Z., Ma.N., Mi.N.), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (Y.Z.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (S.U., H.Y.); Central Institute for Experimental Animals, Kawasaki, Japan (S.U.); Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan (Y.U.); and Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U.)
| | - Shotaro Uehara
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., K.H., T.T., Ma.N., Mi.N.), WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., Y.Z., Ma.N., Mi.N.), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (Y.Z.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (S.U., H.Y.); Central Institute for Experimental Animals, Kawasaki, Japan (S.U.); Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan (Y.U.); and Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U.)
| | - Yasuhiro Uno
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., K.H., T.T., Ma.N., Mi.N.), WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., Y.Z., Ma.N., Mi.N.), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (Y.Z.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (S.U., H.Y.); Central Institute for Experimental Animals, Kawasaki, Japan (S.U.); Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan (Y.U.); and Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U.)
| | - Hiroshi Yamazaki
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., K.H., T.T., Ma.N., Mi.N.), WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., Y.Z., Ma.N., Mi.N.), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (Y.Z.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (S.U., H.Y.); Central Institute for Experimental Animals, Kawasaki, Japan (S.U.); Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan (Y.U.); and Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U.)
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., K.H., T.T., Ma.N., Mi.N.), WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., Y.Z., Ma.N., Mi.N.), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (Y.Z.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (S.U., H.Y.); Central Institute for Experimental Animals, Kawasaki, Japan (S.U.); Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan (Y.U.); and Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U.)
| |
Collapse
|
20
|
Honda S, Fukami T, Tsujiguchi T, Zhang Y, Nakano M, Nakajima M. Hydrolase activities of cynomolgus monkey liver microsomes and recombinant CES1, CES2, and AADAC. Eur J Pharm Sci 2021; 161:105807. [PMID: 33722734 DOI: 10.1016/j.ejps.2021.105807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/12/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022]
Abstract
The cynomolgus monkey is a nonhuman primate that is often used for pharmacokinetic and toxicokinetic studies of new chemical entities. Species differences in drug metabolism are obstacles for the extrapolation of animal data to humans. This study aimed to characterize hydrolase activities for typical compounds by cynomolgus monkey liver microsomes and recombinant monkey carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC) compared with the activities in humans. To estimate the contribution of each hydrolase, the ratios of the expression level of each hydrolase in the liver microsomes and recombinant systems were used. For almost all of the tested human CES1 substrates, hydrolase activities in cynomolgus monkey liver microsomes tended to be lower than those in human liver microsomes, and recombinant cynomolgus monkey CES1 showed catalytic activity, but not for all substrates. For human CES2 substrates, hydrolase activities in cynomolgus monkey liver were higher than those in human liver microsomes, and recombinant monkey CES2 was responsible for their hydrolysis. Among human AADAC substrates, phenacetin was mainly hydrolyzed by monkey AADAC, whereas indiplon and ketoconazole were hydrolyzed by AADAC and other unknown enzymes. Flutamide was hydrolyzed by monkey CES2, not by AADAC. Rifamycins were hardly hydrolyzed in monkey liver microsomes. In conclusion, this study characterized the hydrolase activities of cynomolgus monkeys compared with those in humans. The findings would be helpful for pharmacokinetic or toxicokinetic studies of new chemical entities whose main metabolic pathway is hydrolysis.
Collapse
Affiliation(s)
- Shiori Honda
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Takuya Tsujiguchi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yongjie Zhang
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
21
|
Gabriele M, Puccini P, Gervasi PG, Longo V. Carboxylesterases and arylacetamide deacetylase comparison in human A549, H460, and H727 pulmonary cells. Life Sci 2021; 277:119486. [PMID: 33864822 DOI: 10.1016/j.lfs.2021.119486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
AIMS Human carboxylesterases (CESs) and arylacetamide deacetylase (AADAC) are serine-esterase enzymes catalyzing the hydrolysis of many compounds containing esters, amides, thioesters, or acetyl groups. This study aimed to investigate the presence, kinetic parameters, and inhibition of CES1, CES2, and AADAC in A549, H460, and H727 pulmonary cells in both living cells and S9 fractions. MATERIALS AND METHODS The p-nitrophenyl acetate (pNPA) and 4-methylumbelliferyl acetate (4-MUA) were used as non-selective esterase substrates, whereas phenacetin as selective AADAC substrate. CESs activities were also investigated in living cells by cellular bioimaging using selective fluorescent probes. KEY FINDINGS AADAC gene was detected in A549 and H460 cells; nevertheless, arylesterase activity was not found in relative S9 fractions. Besides, CES1 and CES2 were expressed to a different extent by all lung cells, and enzymatic activities were quite overlapping each other. All enzymes exhibited a typical Michaelis-Menten saturation curve and, regarding 4-MUA, similar Km values were found in both living cells and S9 fractions. Conversely, kinetic parameters relative to the pNPA hydrolysis by S9 fractions were significantly lower than those detected in living cells. Inhibition studies revealed that 4-MUA hydrolysis was inhibited by bis-p-nitrophenyl phosphate and phenylmethanesulfonyl fluoride more than loperamide; on the contrary, pNPA hydrolysis inhibition was limited with similar inhibition profiles being obtained in both living cells and S9 fractions. The presence of carboxylesterases was definitely confirmed by cellular bioimaging. SIGNIFICANCE These findings add information to esterase knowledge in pulmonary cells that could be used as in vitro models for toxicological and pharmacological studies.
Collapse
Affiliation(s)
- Morena Gabriele
- National Research Council, Institute of Agricultural Biology and Biotechnology, via Moruzzi 1, 56124 Pisa, Italy.
| | - Paola Puccini
- Chiesi Farmaceutici S.p.A., via Palermo 26/A, Parma, Italy
| | - Pier Giovanni Gervasi
- National Research Council, Institute of Agricultural Biology and Biotechnology, via Moruzzi 1, 56124 Pisa, Italy
| | - Vincenzo Longo
- National Research Council, Institute of Agricultural Biology and Biotechnology, via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
22
|
Hammid A, Fallon JK, Lassila T, Salluce G, Smith PC, Tolonen A, Sauer A, Urtti A, Honkakoski P. Carboxylesterase Activities and Protein Expression in Rabbit and Pig Ocular Tissues. Mol Pharm 2021; 18:1305-1316. [PMID: 33595329 PMCID: PMC8023712 DOI: 10.1021/acs.molpharmaceut.0c01154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Hydrolytic reactions constitute an important pathway of drug metabolism and a significant route of prodrug activation. Many ophthalmic drugs and prodrugs contain ester groups that greatly enhance their permeation across several hydrophobic barriers in the eye before the drugs are either metabolized or released, respectively, via hydrolysis. Thus, the development of ophthalmic drug therapy requires the thorough profiling of substrate specificities, activities, and expression levels of ocular esterases. However, such information is scant in the literature, especially for preclinical species often used in ophthalmology such as rabbits and pigs. Therefore, our aim was to generate systematic information on the activity and expression of carboxylesterases (CESs) and arylacetamide deacetylase (AADAC) in seven ocular tissue homogenates from these two species. The hydrolytic activities were measured using a generic esterase substrate (4-nitrophenyl acetate) and, in the absence of validated substrates for rabbit and pig enzymes, with selective substrates established for human CES1, CES2, and AADAC (d-luciferin methyl ester, fluorescein diacetate, procaine, and phenacetin). Kinetics and inhibition studies were conducted using these substrates and, again due to a lack of validated rabbit and pig CES inhibitors, with known inhibitors for the human enzymes. Protein expression levels were measured using quantitative targeted proteomics. Rabbit ocular tissues showed significant variability in the expression of CES1 (higher in cornea, lower in conjunctiva) and CES2 (higher in conjunctiva, lower in cornea) and a poor correlation of CES expression with hydrolytic activities. In contrast, pig tissues appear to express only CES1, and CES3 and AADAC seem to be either low or absent, respectively, in both species. The current study revealed remarkable species and tissue differences in ocular hydrolytic enzymes that can be taken into account in the design of esterase-dependent prodrugs and drug conjugates, the evaluation of ocular effects of systemic drugs, and in translational and toxicity studies.
Collapse
Affiliation(s)
- Anam Hammid
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - John K. Fallon
- Division
of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School
of Pharmacy, University of North Carolina
at Chapel Hill, Campus Box 7355, Chapel Hill, North Carolina 27599-7355, United States
| | | | - Giulia Salluce
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Philip C. Smith
- Division
of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School
of Pharmacy, University of North Carolina
at Chapel Hill, Campus Box 7355, Chapel Hill, North Carolina 27599-7355, United States
| | - Ari Tolonen
- Admescope
Ltd, Typpitie 1, 90620 Oulu, Finland
| | - Achim Sauer
- Department
of Drug Discovery Sciences, Boehringer Ingelheim
Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Arto Urtti
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
- Institute
of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, 198584 Saint Petersburg, Russia
- Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland
| | - Paavo Honkakoski
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
- Division
of Pharmacotherapy and Experimental Therapeutics, Eshelman School
of Pharmacy, University of North Carolina
at Chapel Hill, Campus Box 7569, Chapel Hill, North Carolina 27599-7569, United States
| |
Collapse
|
23
|
Ogiso T, Fukami T, Zhongzhe C, Konishi K, Nakano M, Nakajima M. Human superoxide dismutase 1 attenuates quinoneimine metabolite formation from mefenamic acid. Toxicology 2020; 448:152648. [PMID: 33259822 DOI: 10.1016/j.tox.2020.152648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Mefenamic acid (MFA), one of the nonsteroidal anti-inflammatory drugs (NSAIDs), sometimes causes liver injury. Quinoneimines formed by cytochrome P450 (CYP)-mediated oxidation of MFA are considered to be causal metabolites of the toxicity and are detoxified by glutathione conjugation. A previous study reported that NAD(P)H:quinone oxidoreductase 1 (NQO1) can reduce the quinoneimines, but NQO1 is scarcely expressed in the human liver. The purpose is to identify enzyme(s) responsible for the decrease in MFA-quinoneimine formation in the human liver. The formation of MFA-quinoneimine by recombinant CYP1A2 and CYP2C9 was significantly decreased by the addition of human liver cytosol, and the extent of the decrease in the metabolite formed by CYP1A2 was larger than that by CYP2C9. By column chromatography, superoxide dismutase 1 (SOD1) was identified from the human liver cytosol as an enzyme decreasing MFA-quinoneimine formation. Addition of recombinant SOD1 into the reaction mixture decreased the formation of MFA-quinoneimine from MFA by recombinant CYP1A2. By a structure-activity relationship study, we found that SOD1 decreased the formation of quinoneimines from flufenamic acid and tolfenamic acid, but did not affect those produced from acetaminophen, amodiaquine, diclofenac, and lapatinib. Thus, SOD1 may selectively decrease the quinoneimine formation from fenamate-class NSAIDs. To examine whether SOD1 can attenuate cytotoxicity caused by MFA, siRNA for SOD1 was transfected into CYP1A2-overexpressed HepG2 cells. The leakage of lactate dehydrogenase caused by MFA treatment was significantly increased by knockdown of SOD1. In conclusion, we found that SOD1 can serve as a detoxification enzyme for quinoneimines to protect from drug-induced toxicity.
Collapse
Affiliation(s)
- Takuo Ogiso
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Cheng Zhongzhe
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Keigo Konishi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
24
|
Hashizume H, Fukami T, Mishima K, Arakawa H, Mishiro K, Zhang Y, Nakano M, Nakajima M. Identification of an isoform catalyzing the CoA conjugation of nonsteroidal anti-inflammatory drugs and the evaluation of the expression levels of acyl-CoA synthetases in the human liver. Biochem Pharmacol 2020; 183:114303. [PMID: 33121928 DOI: 10.1016/j.bcp.2020.114303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) containing carboxylic acid are conjugated with coenzyme A (CoA) or glucuronic acid in the body. It has been suggested that these conjugates are associated with toxicities, such as liver injury and anaphylaxis, through their binding via trans-acylation to cellular proteins. Although studies on glucuronidation have progressed, studies on CoA conjugation of drugs catalyzed by acyl-CoA synthetase (ACS) enzymes are still in the early stages. This study aimed to clarify the human ACS isoforms responsible for CoA-conjugation of NSAIDs through consideration of the hepatic expression levels of ACS isoforms. We found that among 10 types of NSAIDs, propionic acid-class NSAIDs, namely, alminoprofen, flurbiprofen, ibuprofen, ketoprofen, and loxoprofen, were conjugated with CoA in the human liver, whereas NSAIDs in the other classes, including diclofenac and mefenamic acid, were not. qRT-PCR revealed that among the 26 ACS isoforms, ACSL1 was the most highly expressed in the human liver, followed by ACSM2B. The propionic acid-class NSAIDs were conjugated with CoA by recombinant human ACSL1. The protein binding abilities of the CoA conjugates and the glucuronide forms of propionic acid-class NSAIDs were compared as an index of toxicity. The CoA conjugates had stronger adduct formation with liver microsomal proteins than glucuronides for all 5 propionic acid-class NSAIDs. In conclusion, we found that propionic acid-class NSAIDs could be conjugated to CoA by ACSL1 in the human liver to form CoA conjugates, which likely cause toxicity by protein adduct formation.
Collapse
Affiliation(s)
- Hiroki Hashizume
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Kanji Mishima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Arakawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Yongjie Zhang
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
25
|
Takahashi M, Lee YJ, Kanayama T, Kondo Y, Nishio K, Mukai K, Haba M, Hosokawa M. Design, synthesis and biological evaluation of water-soluble phenytoin prodrugs considering the substrate recognition ability of human carboxylesterase 1. Eur J Pharm Sci 2020; 152:105455. [DOI: 10.1016/j.ejps.2020.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
|
26
|
Shimizu M, Fukami T, Taniguchi T, Nomura Y, Nakajima M. A Novel Systematic Approach for Selection of Prodrugs Designed to Improve Oral Absorption. J Pharm Sci 2020; 109:1736-1746. [DOI: 10.1016/j.xphs.2020.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 01/02/2023]
|
27
|
Lan L, Ren X, Yang J, Liu D, Zhang C. Detection techniques of carboxylesterase activity: An update review. Bioorg Chem 2020; 94:103388. [DOI: 10.1016/j.bioorg.2019.103388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
|
28
|
Strain and sex differences in drug hydrolase activities in rodent livers. Eur J Pharm Sci 2020; 142:105143. [DOI: 10.1016/j.ejps.2019.105143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/07/2019] [Accepted: 11/09/2019] [Indexed: 01/07/2023]
|
29
|
Johnstone T. A clinical approach to multidrug-resistant urinary tract infection and subclinical bacteriuria in dogs and cats. N Z Vet J 2019; 68:69-83. [PMID: 31707934 DOI: 10.1080/00480169.2019.1689196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multidrug-resistant bacteria are increasingly isolated from the urinary tract of pets, particularly those that suffer from concurrent conditions, have been hospitalised, or were treated with antimicrobials in the recent past. Many of the multidrug-resistant bacteria encountered are resistant to all commonly used oral antibiotics. This poses both a therapeutic dilemma in the individual pet and a threat to public health. This article begins with an overview of multidrug resistance in organisms that are commonly isolated from the urinary tract of pets. This is followed by a proposed clinical approach to managing multidrug-resistant urinary bacteria, which summarises current knowledge regarding appropriate sampling and analysis, reviews the current guidelines regarding appropriate antimicrobial use and discusses treatment options that might be considered. The article highlights several shortcomings of the current knowledge to be considered when planning future clinical research and developing policies.
Collapse
Affiliation(s)
- T Johnstone
- Translational Research and Animal Clinical Trial Study Group, U-Vet Animal Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia
| |
Collapse
|
30
|
Wang YQ, Shang XF, Wang L, Zhang P, Zou LW, Song YQ, Hao DC, Fang SQ, Ge GB, Tang H. Interspecies variation of clopidogrel hydrolysis in liver microsomes from various mammals. Chem Biol Interact 2019; 315:108871. [PMID: 31669218 DOI: 10.1016/j.cbi.2019.108871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
Clopidogrel, a clinically used antiplatelet agent, can be readily hydrolyzed by human carboxylesterase 1A (CES1A) to release an inactive metabolite clopidogrel carboxylic acid (CCA). In this study, clopidogrel was used as a tool substrate to investigate the interspecies variation of clopidogrel hydrolysis in hepatic microsomes from various mammals including human and six laboratory animals (such as mouse, rat, rabbit, beagle dog, minipig and cynomolgus monkey). The results demonstrated that clopidogrel could be hydrolyzed into CCA by all tested hepatic microsomes from human or other mammals, but the hydrolytic rates greatly varied among species. Inhibition assays demonstrated that BNPP (an inactivator of mammalian CES) strongly inactivated clopidogrel hydrolytic activity in all tested hepatic microsomes, suggested that mammalian CES were major contributor(s) responsible for clopidogrel hydrolysis in hepatic preparations from all above-mentioned species. By contrast, the response of a reversible inhibitor of human CES1A on clopidogrel hydrolysis in these liver preparations varied significantly among different species. Moreover, the enzymatic kinetics and the apparent kinetic parameters of clopidogrel hydrolysis in hepatic microsomes from various animal species were evaluated and compared to each other. These findings provide crucial information for deeply understanding the differences in catalytic behaviors of mammalian CES, which will be very helpful for choosing suitable laboratory animal(s) for whole tests of CES1A substrate-drugs.
Collapse
Affiliation(s)
- Ya-Qiao Wang
- Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang, 832000, China
| | - Xiao-Feng Shang
- Zhangye People's Hospital affiliated to Hexi University, Zhangye, Gansu, 734000, China
| | - Lu Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang, 832000, China
| | - Ping Zhang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Li-Wei Zou
- Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China
| | - Yun-Qing Song
- Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China
| | - Da-Cheng Hao
- Dalian Jiaotong University, Dalian, 116028, China
| | - Sheng-Quan Fang
- Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China
| | - Guang-Bo Ge
- Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China.
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang, 832000, China.
| |
Collapse
|
31
|
Gabriele M, Puccini P, Lucchi M, Aprile V, Gervasi PG, Longo V. Arylacetamide Deacetylase Enzyme: Presence and Interindividual Variability in Human Lungs. Drug Metab Dispos 2019; 47:961-965. [PMID: 31235486 DOI: 10.1124/dmd.119.087031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Human arylacetamide deacetylase (AADAC) is a single microsomal serine esterase involved in the hydrolysis of many acetyl-containing drugs. To date, the presence and activity of the AADAC enzyme in human lungs has been scarcely examined. We investigated its gene and protein expression as well as interindividual variations in AADAC activities in a large number of human lungs (n = 25) using phenacetin as a selective substrate. The kinetic parameters K m and V max were determined. Our findings highlighted a high interindividual variability in both AADAC mRNA levels and hydrolysis activities. Furthermore, for the first time we demonstrated the presence of the AADAC protein in various lung samples by means of immunoblot analysis. As a comparison, phenacetin hydrolysis was detected in pooled human liver microsomes. Lung activities were much lower than those found in the liver. However, similar K m values were found, which suggests that this hydrolysis could be due to the same enzyme. Pulmonary phenacetin hydrolysis proved to be positively correlated with AADAC mRNA (*P < 0.05) and protein (*P < 0.05) levels. Moreover, the average values of AADAC activity in smokers was significantly higher than in nonsmoker subjects (*P < 0.05), and this might have an important role in the administration of some drugs. These findings add more information to our knowledge of pulmonary enzymes and could be particularly useful in the design and preclinical development of inhaled drugs. SIGNIFICANCE STATEMENT: This study investigated the presence and activity of the AADAC enzyme in several human lungs. Our results highlight high interindividual variability in both AADAC gene and protein expression as well as in phenacetin hydrolysis activity. These findings add more information to our knowledge of pulmonary enzymes and could be particularly useful in the design and preclinical development of inhaled drugs.
Collapse
Affiliation(s)
- Morena Gabriele
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Pisa, Italy (M.G., P.G.G., V.L.); Chiesi Farmaceutici S.p.A., Parma, Italy (P.P.); and Division of Thoracic Surgery, Department of Surgical Medical Molecular Pathology and Critical Care, University Hospital of Pisa, Pisa, Italy (M.L., V.A.)
| | - Paola Puccini
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Pisa, Italy (M.G., P.G.G., V.L.); Chiesi Farmaceutici S.p.A., Parma, Italy (P.P.); and Division of Thoracic Surgery, Department of Surgical Medical Molecular Pathology and Critical Care, University Hospital of Pisa, Pisa, Italy (M.L., V.A.)
| | - Marco Lucchi
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Pisa, Italy (M.G., P.G.G., V.L.); Chiesi Farmaceutici S.p.A., Parma, Italy (P.P.); and Division of Thoracic Surgery, Department of Surgical Medical Molecular Pathology and Critical Care, University Hospital of Pisa, Pisa, Italy (M.L., V.A.)
| | - Vittorio Aprile
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Pisa, Italy (M.G., P.G.G., V.L.); Chiesi Farmaceutici S.p.A., Parma, Italy (P.P.); and Division of Thoracic Surgery, Department of Surgical Medical Molecular Pathology and Critical Care, University Hospital of Pisa, Pisa, Italy (M.L., V.A.)
| | - Pier Giovanni Gervasi
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Pisa, Italy (M.G., P.G.G., V.L.); Chiesi Farmaceutici S.p.A., Parma, Italy (P.P.); and Division of Thoracic Surgery, Department of Surgical Medical Molecular Pathology and Critical Care, University Hospital of Pisa, Pisa, Italy (M.L., V.A.)
| | - Vincenzo Longo
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Pisa, Italy (M.G., P.G.G., V.L.); Chiesi Farmaceutici S.p.A., Parma, Italy (P.P.); and Division of Thoracic Surgery, Department of Surgical Medical Molecular Pathology and Critical Care, University Hospital of Pisa, Pisa, Italy (M.L., V.A.)
| |
Collapse
|
32
|
Vicagrel enhances aspirin-induced inhibition of both platelet aggregation and thrombus formation in rodents due to its decreased metabolic inactivation. Biomed Pharmacother 2019; 115:108906. [DOI: 10.1016/j.biopha.2019.108906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
|
33
|
Otake K, Yamada K, Miura K, Sasazawa Y, Miyazaki S, Niwa Y, Ogura A, Takao KI, Simizu S. Identification of topoisomerases as molecular targets of cytosporolide C and its analog. Bioorg Med Chem 2019; 27:3334-3338. [PMID: 31204230 DOI: 10.1016/j.bmc.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/27/2022]
Abstract
Cytosporolide (Cytos) A-C, isolated from the fungus Cytospora sp., have anti-microbial activity, but their molecular targets in mammalian cells are unknown. We have previously reported the total synthesis of Cytos A by biomimetic hetero-Diels-Alder reaction. In this study, to examine the novel bioactivity of Cytos, we synthesized Cytos C and measured cell growth-inhibiting activities of 7 compounds, including Cytos A and C, in several human cancer cell lines. Among these compounds, Cytos C and tetradeoxycytosporolide A (TD-Cytos A), a model compound for the synthesis of Cytos A, had anti-proliferative effects on cancer cells, and TD-Cytos A exhibited stronger activity than Cytos C. In vitro topoisomerase-mediated DNA relaxing experiments showed that TD-Cytos A inhibited the activities of topoisomerase I and II, whereas Cytos C targeted only topoisomerase I. These data suggest that the anti-proliferative activities of Cytos correlate with the inhibition of topoisomerases and implicated TD-Cytos A as a novel anti-cancer drug that suppresses the activities of topoisomerase I and II.
Collapse
Affiliation(s)
- Keisuke Otake
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kana Yamada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kazuki Miura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yukiko Sasazawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - So Miyazaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuki Niwa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Akihiro Ogura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
34
|
Minami K, Higashino H, Kataoka M, Togashi K, Mutaguchi K, Yamashita S. Analysis of the Complicated Nonlinear Pharmacokinetics of Orally Administered Telmisartan in Rats Using a Stable Isotope-IV Method. J Pharm Sci 2019; 108:2774-2780. [PMID: 30922857 DOI: 10.1016/j.xphs.2019.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022]
Abstract
This study aimed to kinetically analyze the nonlinear absorption and systemic exposure of telmisartan (TEL) after oral administration to rats by using a stable isotope-IV method. Rats were orally administered different dose of TEL, followed by the intravenous injection of 0.005 mg/kg of deuterium-labeled TEL (TEL-d3). Assuming that TEL-d3 shows same pharmacokinetic properties with TEL, systemic clearance (CLtot), oral bioavailability (Foral), and intestinal and hepatic availability (Fa*Fg, Fh) of TEL were calculated in each individual rat. AUCpo of TEL increased disproportionately with dose and showed a sigmoid-type relation, indicating the involvement of multi-nonlinear processes in oral absorption of TEL. Fa*Fg of TEL increased with dose at the low-dose range while decreased at the high-dose range. In contrast, Fh increased and CLtot decreased significantly in the middle range (2 to 6 mg/kg). As main factors of nonlinearity, saturations of solubility, efflux transport in the intestine, and the hepatic uptake of TEL were indicated. In conclusion, this study demonstrated a high possibility of a stable isotope-IV method to characterize complicated pharmacokinetic properties of oral drugs in animals, which can help to consider the future risks in their clinical use.
Collapse
Affiliation(s)
- Keiko Minami
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Haruki Higashino
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kazutaka Togashi
- Pharmaceutical Business Division, Sumika Chemical Analysis Service, Ltd, Osaka 554-0022, Japan
| | - Kuninori Mutaguchi
- Pharmaceutical Business Division, Sumika Chemical Analysis Service, Ltd, Osaka 554-0022, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
35
|
Wang YQ, Weng ZM, Dou TY, Hou J, Wang DD, Ding LL, Zou LW, Yu Y, Chen J, Tang H, Ge GB. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1. Int J Biol Macromol 2018; 120:1944-1954. [DOI: 10.1016/j.ijbiomac.2018.09.178] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
36
|
|
37
|
Human carboxylesterases: a comprehensive review. Acta Pharm Sin B 2018; 8:699-712. [PMID: 30245959 PMCID: PMC6146386 DOI: 10.1016/j.apsb.2018.05.005] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Mammalian carboxylesterases (CEs) are key enzymes from the serine hydrolase superfamily. In the human body, two predominant carboxylesterases (CES1 and CES2) have been identified and extensively studied over the past decade. These two enzymes play crucial roles in the metabolism of a wide variety of endogenous esters, ester-containing drugs and environmental toxicants. The key roles of CES in both human health and xenobiotic metabolism arouse great interest in the discovery of potent CES modulators to regulate endobiotic metabolism or to improve the efficacy of ester drugs. This review covers the structural and catalytic features of CES, tissue distributions, biological functions, genetic polymorphisms, substrate specificities and inhibitor properties of CES1 and CES2, as well as the significance and recent progress on the discovery of CES modulators. The information presented here will help pharmacologists explore the relevance of CES to human diseases or to assign the contribution of certain CES in xenobiotic metabolism. It will also facilitate medicinal chemistry efforts to design prodrugs activated by a given CES isoform, or to develop potent and selective modulators of CES for potential biomedical applications.
Collapse
|
38
|
Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, Zhang X, Meng Z, Liu S. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Front Genet 2018; 9:265. [PMID: 30065754 PMCID: PMC6056647 DOI: 10.3389/fgene.2018.00265] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Objective: Despite striking advances in multimodality management, gastric cancer (GC) remains the third cause of cancer mortality globally and identifying novel diagnostic and prognostic biomarkers is urgently demanded. The study aimed to identify potential key genes associated with the pathogenesis and prognosis of GC. Methods: Differentially expressed genes between GC and normal gastric tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Key genes related to the pathogenesis and prognosis of GC were identified by employing protein–protein interaction network and Cox proportional hazards model analyses. Results: We identified nine hub genes (TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3, CEP55, TPX2, and TIMP1) which might be tightly correlated with the pathogenesis of GC. A prognostic gene signature consisted of CST2, AADAC, SERPINE1, COL8A1, SMPD3, ASPN, ITGBL1, MAP7D2, and PLEKHS1 was constructed with a good performance in predicting overall survivals. Conclusion: The findings of this study would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of GC.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Konishi K, Fukami T, Ogiso T, Nakajima M. In vitro approach to elucidate the relevance of carboxylesterase 2 and N-acetyltransferase 2 to flupirtine-induced liver injury. Biochem Pharmacol 2018; 155:242-251. [PMID: 30028988 DOI: 10.1016/j.bcp.2018.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/14/2018] [Indexed: 12/30/2022]
Abstract
The use of flupirtine, an analgesic, has been restricted in European countries because it causes liver injury in rare cases. Flupirtine is primarily metabolized to D-13223, an acetylamino form. In the process of D-13223 formation, it has been hypothesized that a reactive metabolite is formed which may be involved in flupirtine hepatotoxicity. The purpose of this study was to identify the potential reactive metabolite and the responsible enzymes in the human liver to get a clue to the mechanism of hepatotoxicity. Using recombinant enzymes, we found that D-13223 was formed from flupirtine via hydrolysis by carboxylesterase 2 (CES2) and subsequent acetylation by N-acetyltransferase (NAT) 2. A conjugate of N-acetyl-l-cysteine (NAC), a nucleophile, was detected by incubation of flupirtine with CES2, and the conjugate formation in human liver microsomes was inhibited by CES2 inhibitors, indicating that a reactive metabolite, which may be a quinone diimine, was produced in the process of CES2-mediated hydrolysis of flupirtine. The formation of the NAC conjugate in liver S9 samples from NAT2 slow acetylators was significantly higher than that from NAT2 rapid/intermediate acetylators, indicating that NAT2 could function as a detoxification enzyme for flupirtine. CES2-overexpressing HepG2 cells showed remarkable lactate dehydrogenase leakage under flupirtine treatment, while no cytotoxicity was observed in control cells, suggesting that the reactive metabolite formed by CES2-mediated hydrolysis of flupirtine would be a trigger of hepatotoxicity. NAT2 slow acetylators with high CES2 activity could be highly susceptible to flupirtine-induced liver injury.
Collapse
Affiliation(s)
- Keigo Konishi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI Nano-LSI), Kanazawa University, Kanazawa, Japan.
| | - Takuo Ogiso
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI Nano-LSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|