1
|
Bisaccia M, Berini F, Marinelli F, Binda E. Emerging Trends in Antimicrobial Resistance in Polar Aquatic Ecosystems. Antibiotics (Basel) 2025; 14:394. [PMID: 40298543 PMCID: PMC12024378 DOI: 10.3390/antibiotics14040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
The global spread of antimicrobial resistance (AMR) threatens to plummet society back to the pre-antibiotic era through a resurgence of common everyday infections' morbidity. Thus, studies investigating antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in urban, agricultural, and clinical settings, as well as in extreme environments, have become increasingly relevant in the One Health perspective. Since the Antarctic and Arctic regions are considered amongst the few remaining pristine environments on Earth, the characterization of their native resistome appears to be of the utmost importance to understand whether and how it is evolving as a result of anthropogenic activities and climate change. In the present review, we report on the phenotypic (e.g., disk diffusion test) and genotypic (e.g., PCR, metagenomics) approaches used to study AMR in the aquatic environment of polar regions, as water represents one of AMR main dissemination routes in nature. Their advantages and limits are described, and the emerging trends resulting from the analysis of ARB and ARGs diffusion in polar waters discussed. The resistome detected in these extreme environments appears to be mostly comparable to those from more anthropized areas, with the predominance of tetracycline, β-lactam, and sulfonamide resistance (and related ARGs). Indeed, AMR is, in all cases, more consistently highlighted in sites impacted by human and wildlife activities with respect to more pristine ones. Surprisingly, aminoglycoside and fluroquinolone determinants seem to have an even higher incidence in the Antarctic and Arctic aquatic environment compared to that from other areas of the world, corroborating the need for a more thorough AMR surveillance in these regions.
Collapse
Affiliation(s)
- Melissa Bisaccia
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
| | - Francesca Berini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
- Climate Change Research Center (CCRC), University of Insubria, 22100 Como, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
- Climate Change Research Center (CCRC), University of Insubria, 22100 Como, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
| |
Collapse
|
2
|
Wu S, Feng Y, Chen S, Zhao Y, Li C, Deng J, Wang D. A Novel Strategy for the Detection of Semicarbazide in Crustaceans by Modified QuEChERS Coupled with Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry. Foods 2025; 14:541. [PMID: 39942134 PMCID: PMC11816364 DOI: 10.3390/foods14030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Semicarbazide (SEM), a metabolite of nitrofurazone (NFZ), is widely used to detect the illegal application of NFZ in crustaceans. The conventional detection method involves chemical derivatization combined with reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS), which is both complex and time-consuming. To address this limitation, a more efficient approach was developed for SEM detection. This study introduces a modified QuEChERS pretreatment method coupled with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) for detecting SEM in crustaceans. The proposed method is simple, fast, and highly accurate, making it universally applicable for SEM detection in crustaceans. Additionally, the method was applied to investigate NFZ metabolism in Macrobrachium rosenbergii with a kinetic model. The findings suggested a plausible mechanism for the absorption of NFZ and its subsequent transfer from meat to the shell. In conclusion, this study provides a simple and rapid technique for SEM detection in crustaceans with immense application value.
Collapse
Affiliation(s)
- Siyuan Wu
- College of Food Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Aquatic Product, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; (Y.Z.); (C.L.); (J.D.); (D.W.)
| | - Yang Feng
- Key Laboratory of Aquatic Product, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; (Y.Z.); (C.L.); (J.D.); (D.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| | - Shengjun Chen
- College of Food Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Aquatic Product, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; (Y.Z.); (C.L.); (J.D.); (D.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; (Y.Z.); (C.L.); (J.D.); (D.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; (Y.Z.); (C.L.); (J.D.); (D.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| | - Jianchao Deng
- Key Laboratory of Aquatic Product, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; (Y.Z.); (C.L.); (J.D.); (D.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| | - Di Wang
- Key Laboratory of Aquatic Product, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; (Y.Z.); (C.L.); (J.D.); (D.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| |
Collapse
|
3
|
N'Da DD, Aucamp J, van Rensburg HDJ, Suganuma K. Design, synthesis, in vitro and in vivo trypanosomaticidal efficacy of novel 5-nitroindolylazines. Eur J Med Chem 2024; 280:116979. [PMID: 39471710 DOI: 10.1016/j.ejmech.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Leishmaniasis and trypanosomiasis rank among lethal vector-borne parasitic diseases that are endemic in tropical and sub-tropical countries. There are currently no preventive vaccines against them, and once diagnosed, a handful of less effective drugs clinically accessible are the only therapeutic options offered to treat these ailments. And although curable, the eradication and elimination of these diseases are hampered by the emergence of multidrug-resistant strains of the causal pathogens. Hence, there is accrued necessity for the development of new, effective, and affordable drugs. In recent decades, several molecular scaffolds, including nitroaromatics, endoperoxides, etc., have been attempted as building blocks to generate new effective clinical antitrypanosomatid agents with low toxicity so far to no avail. In this regard, a series of nitroindolylazine derivatives was synthesised in a three-step process involving nucleophilic substitution (SN), hydrazination and Schiff base condensation reactions, and was evaluated against various Leishmania and Trypanosoma species and strains. Several promising hits portraying leishmanicidal and trypanocidal with in vitro submicromolar activities, and devoid of toxicity on mammalian cells were uncovered. Among these, nitrofurylazine 11 (Tc IC50: 0.08 ± 0.03 μM) and nitrothienylazine 13 (Tc IC50: 0.09 ± 0.01 μM) were evaluated in vivo against Trypanosoma congolense, the causative agent of nagana, which is livestock most virulent trypanosome species in mice-infected preliminary study. However, only partial efficacy was observed as all mice succumbed due to high parasitemia within 13 days post-infection during the treatment. The translational potential of antileishmanial and antichagasic hits, as well as further identification of their molecular targets, will be assessed in future research.
Collapse
Affiliation(s)
- David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | | | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
4
|
Wang CZ, Zhang YJ, Chu YF, Zhong LG, Xu JP, Liang LY, Long TF, Fang LX, Sun J, Liao XP, Zhou YF. Tobramycin-resistant small colony variant mutant of Salmonella enterica serovar Typhimurium shows collateral sensitivity to nitrofurantoin. Virulence 2024; 15:2356692. [PMID: 38797966 PMCID: PMC11135859 DOI: 10.1080/21505594.2024.2356692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
The increasing antibiotic resistance poses a significant global health challenge, threatening our ability to combat infectious diseases. The phenomenon of collateral sensitivity, whereby resistance to one antibiotic is accompanied by increased sensitivity to another, offers potential avenues for novel therapeutic interventions against infections unresponsive to classical treatments. In this study, we elucidate the emergence of tobramycin (TOB)-resistant small colony variants (SCVs) due to mutations in the hemL gene, which render S. Typhimurium more susceptible to nitrofurantoin (NIT). Mechanistic studies demonstrate that the collateral sensitivity in TOB-resistant S. Typhimurium SCVs primarily stems from disruptions in haem biosynthesis. This leads to dysfunction in the electron transport chain (ETC) and redox imbalance, ultimately inducing lethal accumulation of reactive oxygen species (ROS). Additionally, the upregulation of nfsA/B expressions facilitates the conversion of NIT prodrug into its active form, promoting ROS-mediated bacterial killing and contributing to this collateral sensitivity pattern. Importantly, alternative NIT therapy demonstrates a significant reduction of bacterial load by more than 2.24-log10 cfu/g in the murine thigh infection and colitis models. Our findings corroborate the collateral sensitivity of S. Typhimurium to nitrofurans as a consequence of evolving resistance to aminoglycosides. This provides a promising approach for treating infections due to aminoglycoside-resistant strains.
Collapse
Affiliation(s)
- Chang-Zhen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yue-Jun Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yue-Fei Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Long-Gen Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jin-Peng Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liu-Yan Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Teng-Fei Long
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang-Xing Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yu-Feng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Sanni O, N'Da DD, Terre'Blanche G. Insight into the mechanism and toxicology of nitrofurantoin: a metabolomics approach. Drug Chem Toxicol 2024; 47:785-794. [PMID: 38008969 DOI: 10.1080/01480545.2023.2285255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Safety and effectiveness are the two ends of the balance in drug development that needs to be evaluated. The biotransformation of drugs within a living organism could potentiate biochemical insults in the tissue and compromise the safety of drugs. Nitrofurantoin (NFT) is a cheap clinical antibiotic with a wide array of activities against gram-positive and gram-negative organisms. The NFT scaffold has been utilized to develop other derivates or analogues in the quest to repurpose drugs against other infectious diseases. Several techniques were developed over the years to study the mechanism of NFT metabolism and toxicity, such as voltammetry, chromatographic analysis, protein precipitation, liquid-liquid extraction, etc. Due to limitations in these methods, the mechanism of NFT biotransformation in the cell is poorly understood. Metabolomics has been adopted in drug metabolism to understand the mechanism of drug toxicity and could provide a solution to overcome the limitations of current techniques to determine mechanisms of toxicity. Unfortunately, little or no information regarding the metabolomics approach in NFT metabolism and toxicity is available. Hence, this review highlights the metabolomic techniques that can be adopted in NFT metabolism and toxicological studies to encourage the research community to widely adopt and utilize metabolomics in understanding NFT's metabolism and toxicity.
Collapse
Affiliation(s)
- Olakunle Sanni
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences. North-West University (NWU), Potchefstroom, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences. North-West University (NWU), Potchefstroom, South Africa
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences. North-West University (NWU), Potchefstroom, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University (NWU), Potchefstroom, South Africa
| |
Collapse
|
6
|
Sowndarya A, Thangadurai TD, Manjubaashini N, Pavithrakumar M, Senthilkumar K, Nataraj D, Kadirvelu K, Kalagatur KN. Surface-designed AuNPs-based fluorescent probe for ultra-sensitive detection of oral poultry antibacterial drug furaltadone via intermolecular hydrogen bonding. RSC Adv 2024; 14:28224-28233. [PMID: 39234519 PMCID: PMC11372455 DOI: 10.1039/d4ra04293j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/17/2024] [Indexed: 09/06/2024] Open
Abstract
Furaltadone (FTD), a nitrofuran drug, was primarily utilized as a very effective oral veterinary antibiotic, especially in poultry production farms. As a result, FTD, a form of carcinogen, might easily enter people via the food chain, leading to fatal cancers. As a result, it is critical to develop a quick and efficient approach for detecting FTD at extremely low concentrations. Considering the aforementioned purpose, pamoic acid (PA) capped gold nanoparticles (PA@AuNPs) were synthesized in spherical morphology (size 10-15 nm) using the method of chemical reduction and used as a fluorescent probe to detect FTD. The interaction between PA@AuNPs and FTD was validated by UV-vis, XRD, and FTIR methods. Microscopic images (FESEM and HRTEM) show that PA@AuNPs have varying morphologies including rod, triangle, hexagonal, and pentagonal, and average sizes of 20-50 nm after sensing FTD. The average surface roughness of PA@AuNPs was determined to be 46.75 nm using the AFM technique. The addition of FTD (0 → 100 μM) quenched the fluorescence emission intensity of PA@AuNPs at 436 nm (λ ex 353 nm) by 4-fold. This static quenching was confirmed by the formation of a ground state complex, PA@AuNPs·FTD, between AuNPs and FTD using fluorescence lifetime analysis. The presence of an isosbestic point at 412 nm in the UV-visible titration, as well as FTIR data, further demonstrated the existence of this ground state complex. PA@AuNPs revealed high sensitivity (LoD = 9.78 nM; K a = 1.0615 × 102 M-1) to FTD in water, resulting in a decrease in predicted quantum yield (Φ F) from 3.36% to 0.35%. To establish PA@AuNPs as a first-generation fluorescence probe for real samples, FTD in blood serum was measured (LoD = 6.07 nM; K a = 1.0595 × 102 M-1). The non-toxic cytotoxicity and bioimaging in live zebrafish broadened the practical uses of PA@AuNPs. Furthermore, the surface interactions between PA@AuNPs and FTD were studied theoretically using time-dependent density functional theory (TD-DFT) at the B3LYP/6-31G(d,p) level of theory to support the findings from the experiment.
Collapse
Affiliation(s)
- A Sowndarya
- Department of Chemistry and Centre for Research and Development, KPR Institute of Engineering and Technology Coimbatore 641407 Tamilnadu India
| | - T Daniel Thangadurai
- Department of Chemistry and Centre for Research and Development, KPR Institute of Engineering and Technology Coimbatore 641407 Tamilnadu India
| | - N Manjubaashini
- National Centre for Nanoscience and Nanotechnology, University of Madras Chennai 600025 India
| | - M Pavithrakumar
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - K Senthilkumar
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - D Nataraj
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - K Kadirvelu
- DRDO-Life Sciences, Bharathiar University Coimbatore 641046 India
| | | |
Collapse
|
7
|
Wang JX, Zhang PL, Gopala L, Lv JS, Lin JM, Zhou CH. A Unique Hybridization Route to Access Hydrazylnaphthalimidols as Novel Structural Scaffolds of Multitargeting Broad-Spectrum Antifungal Candidates. J Med Chem 2024; 67:8932-8961. [PMID: 38814290 DOI: 10.1021/acs.jmedchem.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This study developed a class of novel structural antifungal hydrazylnaphthalimidols (HNs) with multitargeting broad-spectrum potential via multicomponent hybridization to confront increasingly severe fungal invasion. Some prepared HNs exhibited considerable antifungal potency; especially nitrofuryl HN 4a (MIC = 0.001 mM) exhibited a potent antifungal activity against Candida albicans, which is 13-fold higher than that of fluconazole. Furthermore, nitrofuryl HN 4a displayed low cytotoxicity, hemolysis and resistance, as well as a rapid fungicidal efficacy. Preliminary mechanistic investigations revealed that nitrofuryl HN 4a could inhibit lactate dehydrogenase to decrease metabolic activity and promote the accumulation of reactive oxygen species, leading to oxidative stress. Moreover, nitrofuryl HN 4a did not exhibit membrane-targeting ability; it could embed into DNA to block DNA replication but could not cleave DNA. These findings implied that HNs are promising as novel structural scaffolds of potential multitargeting broad-spectrum antifungal candidates for treating fungal infection.
Collapse
Affiliation(s)
- Jin-Xin Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jing-Song Lv
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Jian-Mei Lin
- Department of Infections, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
8
|
Yang X, Qian M, Wang Y, Qin Z, Luo M, Chen G, Yi C, Ma Y, Liu X, Liu Z. Thiol-Based Modification of MarR Protein VnrR Regulates Resistance Toward Nitrofuran in Vibrio cholerae By Promoting the Expression of a Novel Nitroreductase VnrA and of NO-Detoxifying Enzyme HmpA. Antioxid Redox Signal 2024; 40:926-942. [PMID: 37742113 DOI: 10.1089/ars.2022.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Aims: Epidemiological investigations have indicated low resistance toward nitrofuran in clinical isolates, suggesting its potential application in the treatment of multidrug-resistant bacteria. Therefore, it is valuable to explore the mechanism of bacterial resistance to nitrofuran. Results: Through phenotypic screening of ten multiple antibiotic resistance regulator (MarR) proteins in Vibrio cholerae, we discovered that the regulator VnrR (VCA1058) plays a crucial role in defending against nitrofuran, specifically furazolidone (FZ). Our findings demonstrate that VnrR responds to FZ metabolites, such as hydroxylamine, methylglyoxal, hydrogen peroxide (H2O2), β-hydroxyethylhydrazine. Notably, VnrR exhibits reversible responses to the addition of H2O2 through three cysteine residues (Cys180, Cys223, Cys247), leading to the derepression of its upstream gene, vnrA (vca1057). Gene vnrA encodes a novel nitroreductase, which directly contributes to the degradation of FZ. Our study reveals that V. cholerae metabolizes FZ via the vnrR-vnrA system and achieves resistance to FZ with the assistance of the classical reactive oxygen/nitrogen species scavenging pathway. Innovation and Conclusion: This study represents a significant advancement in understanding the antibiotic resistance mechanisms of V. cholerae and other pathogens. Our findings demonstrate that the MarR family regulator, VnrR, responds to the FZ metabolite H2O2, facilitating the degradation and detoxification of this antibiotic in a thiol-dependent manner. These insights not only enrich our knowledge of antibiotic resistance but also provide new perspectives for the control and prevention of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Xiaoman Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjie Qian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zixin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chunrong Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Ma
- Research Institute of Tsinghua University in Shenzhen, Human Microecology and Healthcare R&D Centre, High-tech Industrial Park, Shenzhen, Guangdong, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Jinachandran A, Kokulnathan T, Wang TJ, Kumar KMA, Kumar J, Panneerselvam R. Silver nanopopcorns decorated on flexible membrane for SERS detection of nitrofurazone. Mikrochim Acta 2024; 191:347. [PMID: 38802574 DOI: 10.1007/s00604-024-06421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
The synthesis of three-dimensional silver nanopopcorns (Ag NPCs) onto a flexible polycarbonate membrane (PCM) for the detection of nitrofurazone (NFZ) on the fish surface by surface-enhanced Raman spectroscopy (SERS) is presented. The proposed flexible Ag-NPCs/PCM SERS substrate exhibits significant Raman signal intensity enhancement with the measured enhancement factor of 2.36 × 106. This is primarily attributed to the hotspots created on Ag NPCs, including numerous nanoscale protrusions and internal crevices distributed across the surface of Ag NPCs. The detection of NFZ by this flexible SERS substrate demonstrates a low limit of detection (LOD) of 3.7 × 10-9 M and uniform and reproducible Raman signal intensities with a relative standard deviation below 8.34%. It also exhibits excellent stability, retaining 70% of its efficacy even after 10 days of storage. Notably, the practical detection of NFZ in tap water, honey water, and fish surfaces achieves LOD values of 1.35 × 10-8 M, 5.76 × 10-7 M, and 3.61 × 10-8 M, respectively, which highlights its effectiveness across different sample types. The developed Ag-NPCs/PCM SERS substrate presents promising potential for sensitive SERS detection of toxic substances in real-world samples.
Collapse
Affiliation(s)
- Arunima Jinachandran
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | | | - Jayasree Kumar
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India
| | - Rajapandiyan Panneerselvam
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India.
| |
Collapse
|
10
|
Gu J, Jia Y, Jin Z, Wei T, Li Y. An efficient electrochemical sensor based on the Ce-MOF/g-C 3N 5 composite for the detection of nitrofurazone. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2661-2668. [PMID: 38619383 DOI: 10.1039/d3ay02221h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The Ce-MOF/g-C3N5 composite was first constructed using a simple reflux method in an oil bath. Herein, we report that the electrochemical sensor fabricated based on this composite exhibits high performance in the detection of nitrofurazone. Interestingly, this sensor exhibits an extra-wide linear range of detection composed of two line segments (7-100 μM and 100-2913 μM), as well as a low detection limit (LOD) of 6.15 μM (S/N = 3) under optimal experimental conditions. Additionally, the sensor demonstrates exceptional selectivity, reproducibility and stability. More importantly, the proposed electrochemical sensor can effectively monitor nitrofurazone in real samples such as urea and tap water, and obtain ideal recoveries. The sensor has such excellent performance because of the synergistic effect of the two components in the Ce-MOF/g-C3N5 composite. Compared with Ce-MOF, the introduction of g-C3N5 effectively not only enhances the conductivity of Ce-MOF/g-C3N5 but also exposes more active sites, which is conducive to increasing the electrocatalytic activity to reduce nitrofurazone. This research contributes new scientific research ideas for fabricating ideal electrochemical sensors based on g-C3N5 and MOFs.
Collapse
Affiliation(s)
- Jianxia Gu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, China
| | - Yiqiong Jia
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, China
| | - Zhanbin Jin
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, China
| | - Tingting Wei
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, China
| | - Yongxia Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, China
| |
Collapse
|
11
|
Phansawat P, Chuchird N, Keetanon A, Chongprachavat N, Pichitkul P, Paankhao N, Paankhao S, Kitsanayanyong L, Baoprasertkul P, Rairat T. Depletion kinetics of semicarbazide in giant river prawn (Macrobrachium rosenbergii) following nitrofurazone oral administration and its occurrence in an aquaculture farm. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104389. [PMID: 38360333 DOI: 10.1016/j.etap.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Semicarbazide (SEM), a marker residue used to monitor the use of prohibited drug nitrofurazone (NFZ), is commonly found in wild crustaceans, implying the natural origin. However, the difference between endogenous and exogenous SEM has rarely been investigated. So, tissue-bound SEM was determined in samples collected from giant river prawns cultured in an aquaculture farm and in samples from an experiment where giant river prawns were fed twice a day with NFZ at 30 mg/kg for 5 days. At day 10 of drug withdrawal, muscle SEM of the NFZ-fed prawn was 17.78 ng/g and depleted to 1.18 ng/g at day 90 (half-life 20.31 days) which was significantly higher than the control prawn (usually ≤ 0.1 ng/g). In contrast, the average SEM in the shell was independent of NFZ treatment. SEM was not found in the aquaculture farm samples, implying that the SEM in cultured prawn did not originate from SEM contamination.
Collapse
Affiliation(s)
- Putsucha Phansawat
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Niti Chuchird
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Arunothai Keetanon
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Natnicha Chongprachavat
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Phongchate Pichitkul
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Natthapong Paankhao
- Kamphaengsaen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Nakhon Pathom, Thailand
| | - Suwinai Paankhao
- Kamphaengsaen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Nakhon Pathom, Thailand
| | | | - Puttharat Baoprasertkul
- Aquatic Animal Health Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Tirawat Rairat
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
12
|
Efthymiou C, Boti V, Konstantinou I, Albanis T. Aqueous fate of furaltadone: Kinetics, high-resolution mass spectrometry - based elucidation and toxicity assessment of photoproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170848. [PMID: 38340835 DOI: 10.1016/j.scitotenv.2024.170848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Furaltadone (FTD) is an antibiotic belonging to the nitrofurans group. It has been broadly used in livestock and aquaculture for therapeutic purposes, as well as for stimulating promotion. Although the European Union has imposed restrictions on the use of FTD since 1995 due to concerns regarding its toxicity, in many cases FTD has been excessively and/or illegally applied in productive animals in developing countries, because of its high efficacy and low-cost. Unlike other nitrofuran compounds, the hydrolytic and photolytic behavior of FTD in natural aquatic systems has not been thoroughly investigated. To this end, hydrolysis in different pH values and photolysis in aquatic environment, including lake, river and sea water have been both examined. Hydrolysis was found to have an insignificant impact on degradation of FTD in the aquatic environment relevant pH values, whereas indirect photolysis proved to be the main route of its elimination. The identification of tentative photoproducts (PPs) was performed using ultra high performance liquid chromatography coupled to hybrid LTQ/Orbitrap high resolution mass spectrometry. A possible pathway for photolytic transformation of FTD was proposed. Additionally, in silico simulations were used to evaluate the toxicity such as the mutagenicity of FTD and PPs. Complementary to the low-cost and time-limited simulations, an in vitro method (Vibrio Fischeri bioluminescence) was also used to assess ecotoxicity.
Collapse
Affiliation(s)
| | - Vasiliki Boti
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece; Unit of Environmental, Organic and Biochemical high-resolution analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina 45110, Greece.
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece; Unit of Environmental, Organic and Biochemical high-resolution analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina 45110, Greece
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece; Unit of Environmental, Organic and Biochemical high-resolution analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
13
|
Barbosa BMG, Sfyaki A, Rafael S, José-Duran F, Pous J, Sánchez-Zarzalejo C, Perez-Lopez C, Vilanova M, Cigler M, Gay M, Vilaseca M, Winter GE, Riera A, Mayor-Ruiz C. Discovery and Mechanistic Elucidation of NQO1-Bioactivatable Small Molecules That Overcome Resistance to Degraders. Angew Chem Int Ed Engl 2024; 63:e202316730. [PMID: 38153885 DOI: 10.1002/anie.202316730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Degraders hold the promise to efficiently inactivate previously intractable disease-relevant targets. Unlike traditional inhibitors, degraders act substoichiometrically and rely on the hijacked proteolysis machinery, which can also act as an entry point for resistance. To fully harness the potential of targeted protein degradation, it is crucial to comprehend resistance mechanisms and formulate effective strategies to overcome them. We conducted a chemical screening to identify synthetic lethal vulnerabilities of cancer cells that exhibit widespread resistance to degraders. Comparative profiling followed by tailored optimization delivered the small molecule RBS-10, which shows preferential cytotoxicity against cells pan-resistant to degraders. Multiomics deconvolution of the mechanism of action revealed that RBS-10 acts as a prodrug bioactivated by the oxidoreductase enzyme NQO1, which is highly overexpressed in our resistance models. Collectively, our work informs on NQO1 as an actionable vulnerability to overcome resistance to degraders and as a biomarker to selectively exploit bioactivatable prodrugs in cancer.
Collapse
Affiliation(s)
- Bárbara M G Barbosa
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Aikaterini Sfyaki
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Sergi Rafael
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Ferran José-Duran
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Joan Pous
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Carolina Sánchez-Zarzalejo
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Carles Perez-Lopez
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Mar Vilanova
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Marko Cigler
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), 1090, Vienna, Austria
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Georg E Winter
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), 1090, Vienna, Austria
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Cristina Mayor-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| |
Collapse
|
14
|
Janse van Rensburg HD, N'Da DD, Suganuma K. In vitro trypanocidal potency and in vivo treatment efficacy of oligomeric ethylene glycol-tethered nitrofurantoin derivatives. Eur J Pharm Sci 2024; 192:106668. [PMID: 38065268 DOI: 10.1016/j.ejps.2023.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
African trypanosomiasis is a significant vector-borne disease of humans and animals in the tsetse fly belt of Africa, particularly affecting production animals such as cattle, and thus, hindering food security. Trypanosoma congolense (T. congolense), the causative agent of nagana, is livestock's most virulent trypanosome species. There is currently no vaccine against trypanosomiasis; its treatment relies solely on chemotherapy. However, pathogenic resistance has been established against trypanocidal agents in clinical use. This underscores the need to develop new therapeutics to curb trypanosomiasis. Many nitroheterocyclic drugs or compounds, including nitrofurantoin, possess antiparasitic activities in addition to their clinical use as antibiotics. The current study evaluated the in vitro trypanocidal potency and in vivo treatment efficacy of previously synthesized antileishmanial active oligomeric ethylene glycol derivatives of nitrofurantoin. The trypanocidal potency of analogues 2a-o varied among the trypanosome species; however, T. congolense strain IL3000 was more susceptible to these drug candidates than the other human and animal trypanosomes. The arylated analogues 2k (IC50 0.04 µM; SI >6365) and 2l (IC50 0.06 µM; SI 4133) featuring 4-chlorophenoxy and 4-nitrophenoxy moieties, respectively, were revealed as the most promising antitrypanosomal agents of all analogues against T. congolense strain IL3000 trypomastigotes with nanomolar activities. In a preliminary in vivo study involving T. congolense strain IL3000 infected BALB/c mice, the oral administration of 100 mg/kg/day of 2k caused prolonged survival up to 18 days post-infection relative to the infected but untreated control mice which survived 9 days post-infection. However, no cure was achieved due to its poor solubility in the in vivo testing medium, assumably leading to low oral bioavailability. These results confirm the importance of the physicochemical properties lipophilicity and water solubility in attaining not only in vitro trypanocidal potency but also in vivo treatment efficacy. Future work will focus on the chemical optimization of 2k through the investigation of analogues containing solubilizing groups at certain positions on the core structure to improve solubility in the in vivo testing medium which, in the current investigation, is the biggest stumbling block in successfully treating either animal or human Trypanosoma infections.
Collapse
Affiliation(s)
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
15
|
Kazmi SSUH, Saqib HSA, Pastorino P, Grossart HP, Yaseen ZM, Abualreesh MH, Liu W, Wang Z. Influence of the antibiotic nitrofurazone on community dynamics of marine periphytic ciliates: Evidence from community-based bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166687. [PMID: 37659544 DOI: 10.1016/j.scitotenv.2023.166687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Marine periphytic ciliates play a pivotal role in shaping coastal ecosystems dynamics, thereby acting as robust biological indicators of aquatic ecosystem health and functionality. However, the understanding of the effects of veterinary antibiotics on composition and structure of periphytic ciliate communities remains limited. Therefore, this research investigates the influence of the veterinary antibiotic nitrofurazone on the community dynamics of marine periphytic ciliates through bioassay experiments conducted over a one-year cycle. Various concentrations of nitrofurazone were administered to the tested ciliate assemblages, and subsequent changes in community composition, abundance, and diversity were quantitatively analyzed. The research revealed significant alterations in periphytic ciliate communities following exposure to nitrofurazone. Concentration-dependent (0-8 mg L-1) decrease in ciliates abundance, accompanied by shifts in species composition, community structure, and community patterns were observed. Comprehensive assessment of diversity metrics indicated significant changes in species richness and evenness in the presence of nitrofurazone, potentially disrupting the stability of ciliate communities. Furthermore, nitrofurazone significantly influenced the community structure of ciliates in all seasons (winter: R2 = 0.489; spring: R2 = 0.666; summer: R2 = 0.700, autumn: R2 = 0.450), with high toxic potential in treatments 4 and 8 mg L-1. Differential abundances of ciliates varied across seasons and nitrofurazone treatments, some orders like Pleurostomatida were consistently affected, while others (i.e., Strombidida and Philasterida) showed irregular distributions or were evenly affected (e.g., Urostylida and Synhymeniida). Retrieved contrasting patterns between nitrofurazone and community responses underscore the broad response repertoire exhibited by ciliates to antibiotic exposure, suggesting potential cascading effects on associated ecological processes in the periphyton community. These findings significantly enhance the understanding of the ecological impacts of nitrofurazone on marine periphytic ciliate communities, emphasizing the imperative for vigilant monitoring and regulation of veterinary antibiotics to protect marine ecosystem health and biodiversity. Further research is required to explore the long-term effects of nitrofurazone exposure and evaluate potential strategies to reduce the ecological repercussions of antibiotics in aquatic environments, with a particular focus on nitrofurazone.
Collapse
Affiliation(s)
- Syed Shabi Ul Hassan Kazmi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Biochemistry and Biological Engineering Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, (IGB), Alte Fischerhuette 2, Neuglobsow 16775, Germany; Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, Potsdam 14469, Germany
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muyassar H Abualreesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
16
|
Doğan ŞD, Özcan E, Çetinkaya Y, Han Mİ, Şahin O, Bogojevic SS, Nikodinovic-Runic J, Gündüz MG. Linking quinoline ring to 5-nitrofuran moiety via sulfonyl hydrazone bridge: Synthesis, structural characterization, DFT studies, and evaluation of antibacterial and antifungal activity. J Mol Struct 2023; 1292:136155. [DOI: 10.1016/j.molstruc.2023.136155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Saayman M, Kannigadu C, Aucamp J, Janse van Rensburg HD, Joseph C, Swarts AJ, N'Da DD. Design, synthesis, electrochemistry and anti-trypanosomatid hit/lead identification of nitrofuranylazines. RSC Med Chem 2023; 14:2012-2029. [PMID: 37859713 PMCID: PMC10583827 DOI: 10.1039/d3md00220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023] Open
Abstract
Chagas disease and leishmaniasis are vector-borne infectious diseases affecting both humans and animals. These neglected tropical diseases can be fatal if not treated. Hundreds to thousands of new Chagas disease and leishmaniasis cases are being reported by the WHO every year, and currently available treatments are insufficient. Severe adverse effects, impractical administrations and increased pathogen resistance against current clinical treatments underscore a serious need for the development of new drugs to curb these ailments. In search for such drugs, we investigated a series of nitrofuran-based azine derivatives. Herein, we report the design, synthesis, electrochemistry, and biological activity of these derivatives against promastigotes and amastigotes of Leishmania major, and L. donovani strains, as well as epimastigotes and trypomastigotes of Trypanosoma cruzi. Two leishmanicidal early leads and one trypanosomacidal hit with submicromolar activity were uncovered and stand for further in vivo investigation in the search for new antitrypanosomatid drugs. Future objective will focus on the identification of involved biological targets with the parasites.
Collapse
Affiliation(s)
- Maryna Saayman
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Cassiem Joseph
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - Andrew J Swarts
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| |
Collapse
|
18
|
Rogers I, Berg K, Ramirez H, Hovel-Miner GA. Fexinidazole induced cytotoxicity is distinct from related anti-trypanosome nitroaromatic drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561529. [PMID: 37873123 PMCID: PMC10592674 DOI: 10.1101/2023.10.09.561529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Nitroaromatic drugs are of critical importance for the treatment of trypanosome infections in Africa and the Americas. Fexinidazole recently joined benznidazole and nifurtimox in this family when it was approved as the first oral therapy against Human African trypanosomiasis (HAT). Nitroaromatic prodrugs are bioactivated by the trypanosome-specific type I nitroreductase (NTR) enzyme that renders the compounds trypanocidal. A caveat to the specificity of NTR activation is the potential for drug resistance and cross-resistance that can arise if NTR expression or functionality is altered through mutation. The outcomes of NTR bioactivation of nitroaromatic compounds is variable but can include the formation highly reactive open chain nitriles that can damage biomolecules including DNA. A proposed mechanism of action of nitroaromatic compounds is the formation of reactive oxygen species (ROS) resulting in the formation of trypanocidal levels of DNA damage. Fexinidazole made its way to clinical approval without a significant interrogation of its effects on trypanosome biology and a limited understanding of its mechanism of action. Early reports mentioned fexinidazole potentially affects DNA synthesis but without supporting data. In this study, we evaluated and compared the cytotoxic effects of nifurtimox, benznidazole, and fexinidazole on Trypanosoma brucei using in vitro analyses. Specifically, we sought to differentiate between the proposed effects of nitroaromatics on DNA damage and DNA synthesis. Toward this goal we generated a novel γH2A-based flow cytometry assay that reports DNA damage formation in conjunction with cell cycle progression. Here we report that fexinidazole's cytotoxic outcomes are distinct from the related drugs nifurtimox and benznidazole. Specifically, we show that fexinidazole treatment results in a pronounced defect in DNA synthesis that reduces the population of parasites in S phase. In contrast, treatment with nifurtimox and benznidazole appear accumulate DNA damage early in cell cycle and result in a defective G 2 population. The findings presented here bring us closer to understanding the anti-trypanosomatid mechanisms of action of nitroaromatic compounds, which will promote improved drug design and help combat potential drug resistance in the future. Our findings also highlight DNA synthesis inhibition as a powerful anti-parasitic drug target.
Collapse
|
19
|
Rogacheva E, Kraeva L, Lukin A, Vinogradova L, Komarova K, Chudinov M, Gureev M, Chupakhin E. 5-Nitrofuran-Tagged Oxazolyl Pyrazolopiperidines: Synthesis and Activity against ESKAPE Pathogens. Molecules 2023; 28:6491. [PMID: 37764267 PMCID: PMC10537382 DOI: 10.3390/molecules28186491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
A series of eight 5-nitrofuran-tagged oxazolyl tetrahydropyrazolopyridines (THPPs) has been prepared in six stages with excellent regioselectivity. The testing of these compounds against pathogens of the ESKAPE panel showed a good activity of lead compound 1-(2-methoxyethyl)-5-(5-nitro-2-furoyl)-3-(1,3-oxazol-5-yl)-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c] pyridine (13g), which is superior to nitrofurantoin. These results confirmed the benefit of combining a THPP scaffold with a nitrofuran warhead. Certain structure-activity relationships were established in the course of this study which were rationalized by the induced-fit docking experiments in silico.
Collapse
Affiliation(s)
- Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg 197101, Russia; (E.R.)
| | - Lyudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg 197101, Russia; (E.R.)
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Mikhail Chudinov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Maxim Gureev
- Laboratory of Bio- and Chemoinformatics, I. M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Molecular Modeling Laboratory, HSE University, Saint-Petersburg 190121, Russia
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| |
Collapse
|
20
|
Ren H, Zhong Z, Zhou S, Wei Y, Liang Y, He H, Zheng Z, Li M, He Q, Long T, Lian X, Liao X, Liu Y, Sun J. CpxA/R-Controlled Nitroreductase Expression as Target for Combinatorial Therapy against Uropathogens by Promoting Reactive Oxygen Species Generation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300938. [PMID: 37407509 PMCID: PMC10477892 DOI: 10.1002/advs.202300938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/07/2023] [Indexed: 07/07/2023]
Abstract
The antibiotic resistances emerged in uropathogens lead to accumulative treatment failure and recurrent episodes of urinary tract infection (UTI), necessitating more innovative therapeutics to curb UTI before systematic infection. In the current study, the combination of amikacin and nitrofurantoin is found to synergistically eradicate Gram-negative uropathogens in vitro and in vivo. The mechanistic analysis demonstrates that the amikacin, as an aminoglycoside, induced bacterial envelope stress by introducing mistranslated proteins, thereby constitutively activating the cpxA/R two-component system (Cpx signaling). The activation of Cpx signaling stimulates the expression of bacterial major nitroreductases (nfsA/nfsB) through soxS/marA regulons. As a result, the CpxA/R-dependent nitroreductases overexpression generates considerable quantity of lethal reactive intermediates via nitroreduction and promotes the prodrug activation of nitrofurantoin. As such, these actions together disrupt the bacterial cellular redox balance with excessively-produced reactive oxygen species (ROS) as "Domino effect", accelerating the clearance of uropathogens. Although aminoglycosides are used as proof-of-principle to elucidate the mechanism, the synergy between nitrofurantoin is generally applicable to other Cpx stimuli. To summarize, this study highlights the potential of aminoglycoside-nitrofurantoin combination to replenish the arsenal against recurrent Gram-negative uropathogens and shed light on the Cpx signaling-controlled nitroreductase as a potential target to manipulate the antibiotic susceptibility.
Collapse
Affiliation(s)
- Hao Ren
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Zixing Zhong
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Shuang Zhou
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Yiyang Wei
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Yujiao Liang
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Huiling He
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Zijian Zheng
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Mengyuan Li
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Qian He
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Tengfei Long
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhou225009China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhou225009China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhou225009China
| |
Collapse
|
21
|
García-Estrada C, Pérez-Pertejo Y, Domínguez-Asenjo B, Holanda VN, Murugesan S, Martínez-Valladares M, Balaña-Fouce R, Reguera RM. Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules 2023; 13:biom13040637. [PMID: 37189384 DOI: 10.3390/biom13040637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases.
Collapse
Affiliation(s)
- Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanderlan Nogueira Holanda
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (IGM), Consejo Superior de Investigaciones Científicas-Universidad de León, Carretera León-Vega de Infanzones, Vega de Infanzones, 24346 León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
22
|
Elzahhar PA, Nematalla HA, Al-Koussa H, Abrahamian C, El-Yazbi AF, Bodgi L, Bou-Gharios J, Azzi J, Al Choboq J, Labib HF, Kheir WA, Abu-Serie MM, Elrewiny MA, El-Yazbi AF, Belal ASF. Inclusion of Nitrofurantoin into the Realm of Cancer Chemotherapy via Biology-Oriented Synthesis and Drug Repurposing. J Med Chem 2023; 66:4565-4587. [PMID: 36921275 DOI: 10.1021/acs.jmedchem.2c01408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Structural modifications of the antibacterial drug nitrofurantoin were envisioned, employing drug repurposing and biology-oriented drug synthesis, to serve as possible anticancer agents. Eleven compounds showed superior safety in non-cancerous human cells. Their antitumor efficacy was assessed on colorectal, breast, cervical, and liver cancer cells. Three compounds induced oxidative DNA damage in cancer cells with subsequent cellular apoptosis. They also upregulated the expression of Bax while downregulated that of Bcl-2 along with activating caspase 3/7. The DNA damage induced by these compounds, demonstrated by pATM nuclear shuttling, was comparable in both MCF7 and MDA-MB-231 (p53 mutant) cell lines. Mechanistic studies confirmed the dependence of these compounds on p53-mediated pathways as they suppressed the p53-MDM2 interaction. Indeed, exposure of radiosensitive prostatic cancer cells to low non-cytotoxic concentrations of compound 1 enhanced the cytotoxic response to radiation indicating a possible synergistic effect. In vivo antitumor activity was verified in an MCF7-xenograft animal model.
Collapse
Affiliation(s)
- Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Hisham A Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Houssam Al-Koussa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut 11072020, Lebanon
| | - Carla Abrahamian
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Amira F El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 11072020, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Jolie Bou-Gharios
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 11072020, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Joyce Azzi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 11072020, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Joelle Al Choboq
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 11072020, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Hala F Labib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Arab Academy of Science Technology and Maritime Transport, Alexandria 21913, Egypt
| | - Wassim Abou Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Mohamed A Elrewiny
- Faculty of Pharmacy and the Research and Innovation Hub, Alamein International University, Alamein 5060335, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut 11072020, Lebanon.,Faculty of Pharmacy and the Research and Innovation Hub, Alamein International University, Alamein 5060335, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
23
|
Ndlovu K, Kannigadu C, Aucamp J, van Rensburg HDJ, N'Da DD. Exploration of ethylene glycol linked nitrofurantoin derivatives against Leishmania: Synthesis and in vitro activity. Arch Pharm (Weinheim) 2023; 356:e2200529. [PMID: 36759973 DOI: 10.1002/ardp.202200529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 12/30/2022] [Indexed: 02/11/2023]
Abstract
Leishmaniasis is a neglected tropical disease that is caused by the Leishmania parasite. It is estimated that there are more than 350 million people at risk of infection annually. Current treatments that are in clinical use are expensive, have toxic side effects, and are facing parasitic resistance. Therefore, new drugs are urgently required. In the quest for new, safe, and cost-effective drugs, a series of novel ethylene glycol derivatives of nitrofurantoin was synthesised and the in vitro antileishmanial efficacy of the compounds tested against Leishmania donovani and Leishmania major strains. Arylated ethylene glycol derivatives were found to be the most potent, with submicromolar activity up to 294-fold greater than the parent compound nitrofurantoin. Analogues 2j and 2k had the best antipromastigote activities with submicromolar IC50 values against L. major IR-173 and antimonial-resistant L. donovani 9515 strains.
Collapse
Affiliation(s)
- Keitumetsi Ndlovu
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
24
|
Chen G, Chang Z, Yuan P, Wang S, Yang Y, Liang X, Zhao D. Late-stage functionalization of 5-nitrofurans derivatives and their antibacterial activities. RSC Adv 2023; 13:3204-3209. [PMID: 36756397 PMCID: PMC9853512 DOI: 10.1039/d2ra07676d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Structure modification of drugs is a reliable way to optimize lead compounds, among which the most striking and direct method is late-stage functionalization (LSF). Here, we employed the Cu-catalyzed C-H LSF to modify 5-nitrofuran drugs. A series of modifications have been carried out including hydroxylation, methylation, azidination, cyanation, arylation, etc. Antibacterial activities of all compounds in vitro were measured. The results showed that compound 1 and compound 18 were the most active among all compounds. Meanwhile, the cell cytotoxicity assays of potent compounds 1, 3, 4, 5 & 18 and the parent drug FZD were conducted.
Collapse
Affiliation(s)
- Geshuyi Chen
- The First Clinical Medical College, Lanzhou University Lanzhou China
| | - Zhe Chang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou China
| | - Pei Yuan
- The First Clinical Medical College, Lanzhou University Lanzhou China
| | - Si Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou China
| | - Yongxiu Yang
- The First Clinical Medical College, Lanzhou University Lanzhou China .,The First Clinical Medical College, Lanzhou University. Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Lanzhou 730000 Gansu Province China .,Lead Contact China
| | - Xiaolei Liang
- The First Clinical Medical College, Lanzhou University Lanzhou China .,The First Clinical Medical College, Lanzhou University. Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Lanzhou 730000 Gansu Province China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou China
| |
Collapse
|
25
|
Zuma NH, Aucamp J, Janse van Rensburg HD, N'Da DD. Synthesis and in vitro antileishmanial activity of alkylene-linked nitrofurantoin-triazole hybrids. Eur J Med Chem 2023; 246:115012. [PMID: 36516584 DOI: 10.1016/j.ejmech.2022.115012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a vector-borne parasitic disease that mostly affects populations in tropical and sub-tropical countries. There is currently no protective anti-leishmanial vaccine and only a paucity of clinical drugs is available to treat this disease albeit their toxicity. Leishmaniasis is curable but its eradication and elimination have been hampered by the emergence of multidrug resistant strains of the causative pathogens. This heightens the necessity for new and effective antileishmanial drugs. In search for such agents, nitrofurantoin, a clinical antibiotic, was appended to triazole scaffold through alkylene linkers of various length, and the resulting hybrids were evaluated for in vitro antileishmanial efficacy against Leishmania (L.) parasite of two strains. The hybrid 13, harboring a n-pentylene linker was uncovered as a leishmanicidal hit with micromolar activity against antimonial-resistant L. donovani, the causative of deadly visceral Leishmaniasis.
Collapse
Affiliation(s)
- Nonkululeko H Zuma
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | | | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
26
|
Lee JE, Choi MY, Min KY, Jo MG, Kim YM, Kim HS, Choi WS. Drug repositioning of anti-microbial agent nifuratel to treat mast cell-mediated allergic responses. Int J Immunopathol Pharmacol 2023; 37:3946320231202349. [PMID: 37706235 PMCID: PMC10503296 DOI: 10.1177/03946320231202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Objectives: Our objective was to assess the effects and mechanisms of nifuratel on IgE-mediated mast cell (MC) degranulation and anaphylaxis in both in vitro and in vivo settings.Methods: The anti-allergic activity of nifuratel was evaluated in mast cell cultures and the passive cutaneous anaphylaxis (PCA) model. The effects of nifuratel on signaling pathways stimulated by antigen in mast cells were measured by immunoblotting, immunoprecipitation, in vitro protein tyrosine kinase assay, and other molecular biological methods.Results: Nifuratel reversibly inhibited antigen-induced degranulation of MCs (IC50, approximately 0.34 μM for RBL-2H3 cells; approximately 0.94 μM for BMMCs) and suppressed the secretion of inflammatory cytokines IL-4 (IC50, approximately 0.74 μM) and TNF-α (IC50, approximately 0.48 μM). Mechanism studies showed that nifuratel inhibited the phosphorylation of Syk by antigen via the inhibition of recruitment of cytosolic Syk to the ɣ subunit of FcεRI, and decreased the activation of Syk downstream signaling proteins LAT, Akt, and MAPKs. Finally, nifuratel dose-dependently suppressed the IgE-mediated passive cutaneous anaphylaxis in mice (ED50, approximately 22 mg/kg).Conclusion: Our findings suggest that nifuratel inhibits pathways essential for the activation of mast cells to suppress anaphylaxis, thereby indicating that the anti-microbial drug, nifuratel, could be a potential drug candidate for IgE-mediated allergic disorders.
Collapse
Affiliation(s)
- Ji Eon Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Min Yeong Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
27
|
Melekhin AO, Tolmacheva VV, Apyari VV, Dmitrienko SG. Current trends in analytical strategies for the chromatographic determination of nitrofuran metabolites in food samples. An update since 2012. J Chromatogr A 2022; 1685:463620. [DOI: 10.1016/j.chroma.2022.463620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
28
|
Süleymanoğlu N, Ustabaş R, Güler Hİ, Direkel Ş, Çelik F, Ünver Y. Bis-1,2,4-triazol derivatives: Synthesis, characterization, DFT, antileishmanial activity and molecular docking studyo. J Biomol Struct Dyn 2022:1-11. [PMID: 35850638 DOI: 10.1080/07391102.2022.2098825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study, triazol derivatives, 4,4'-(((1E, 1E')-1,2-phenylenebis (methanylyidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (2), 4,4'-(((1E, 1E')-1,3-phenylenebis (methanylyidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3) and 4,4'-(((1E, 1E')-1,4-phenylene bis (methanyl yidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (4) were synthesized from the reaction of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one and phthalaldehyde/isophthalaldehyde/terephthalaldehyde, respectively. Compounds 2-4 were characterized by Fourier transform infrared (FTIR), proton and carbon-13 nuclear magnetic resonance (1H- and 13C- NMR) spectroscopic methods. Theoretical study for compounds 2-4 were carried out by DFT/B3LYP/6-311++G(d,p). Structural and spectroscopic parameters were determined theoreticaly and compared with experimental ones. Also, the molecular electrostatic potential (MEP) maps of compounds were obtained. Leishmanicidal activity of compounds 2-4 against to Leishmania infantum was determined by microdilution broth method containing alamar blue. As a result of the study, compounds 2-4 were found to be effective against the specie of Leishmania. Molecular docking analysis against Trypanothione Reductase (TRe) with compound 2 was carried out to see the necessary interactions responsible for antileishmanial activity. The docking calculations of compound 2 supported the antileishmanial activity exhibiting high inhibition constant.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nevin Süleymanoğlu
- Vocational School of Technical Sciences, Gazi University, Ostim/Ankara, Turkey
| | - Reşat Ustabaş
- Department of Mathematics and Science Education, Ondokuz Mayıs University, Samsun, Turkey
| | - Halil İbrahim Güler
- Faculty of Science, Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Turkey
| | - Şahin Direkel
- Department of Medical Microbiology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Fatih Çelik
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Yasemin Ünver
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
29
|
Kannigadu C, Aucamp J, N'Da DD. Exploring novel nitrofuranyl sulfonohydrazides as anti-Leishmania and anti-cancer agents: Synthesis, in vitro efficacy and hit identification. Chem Biol Drug Des 2022; 100:267-279. [PMID: 35648075 PMCID: PMC9546217 DOI: 10.1111/cbdd.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/06/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
Leishmaniasis and cancer are two deadly diseases that plague the human population. There are a limited number of drugs available for the treatment of these diseases; however, their overuse has resulted in pathogenic resistance. Recent studies have indicated the repurposing of nitro‐containing compounds to be a new avenue into finding new treatments. In this study, new nitrofuranyl sulfonohydrazide derivatives were synthesized and evaluated for their in vitro antileishmanial and anticancer activities. The analogue 2h, featuring biphenyl moiety exhibited selective (SI > 10) submicromolar activity (IC50 0.97 μM) against acute promyelocytic leukemia cells hence was identified anticancer hit. This study revealed no antileishmanial hit. However, several promising analogues were uncovered and are worthy of further structural modifications to improve their toxicity and bioactivity profiles.
Collapse
Affiliation(s)
- Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
30
|
Evaluation of the Anti-Histoplasma capsulatum Activity of Indole and Nitrofuran Derivatives and Their Pharmacological Safety in Three-Dimensional Cell Cultures. Pharmaceutics 2022; 14:pharmaceutics14051043. [PMID: 35631629 PMCID: PMC9147190 DOI: 10.3390/pharmaceutics14051043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Histoplasma capsulatum is a fungus that causes histoplasmosis. The increased evolution of microbial resistance and the adverse effects of current antifungals help new drugs to emerge. In this work, fifty-four nitrofurans and indoles were tested against the H. capsulatum EH-315 strain. Compounds with a minimum inhibitory concentration (MIC90) equal to or lower than 7.81 µg/mL were selected to evaluate their MIC90 on ATCC G217-B strain and their minimum fungicide concentration (MFC) on both strains. The quantification of membrane ergosterol, cell wall integrity, the production of reactive oxygen species, and the induction of death by necrosis–apoptosis was performed to investigate the mechanism of action of compounds 7, 11, and 32. These compounds could reduce the extracted sterol and induce necrotic cell death, similarly to itraconazole. Moreover, 7 and 11 damaged the cell wall, causing flaws in the contour (11), or changing the size and shape of the fungal cell wall (7). Furthermore, 7 and 32 induced reactive oxygen species (ROS) formation higher than 11 and control. Finally, the cytotoxicity was measured in two models of cell culture, i.e., monolayers (cells are flat) and a three-dimensional (3D) model, where they present a spheroidal conformation. Cytotoxicity assays in the 3D model showed a lower toxicity in the compounds than those performed on cell monolayers. Overall, these results suggest that derivatives of nitrofurans and indoles are promising compounds for the treatment of histoplasmosis.
Collapse
|
31
|
Saber S, Nasr M, Kaddah MMY, Mostafa-Hedeab G, Cavalu S, Mourad AAE, Gaafar AGA, Zaghlool SS, Saleh S, Hafez MM, Girgis S, Elgharabawy RM, Nader K, Alsharidah M, Batiha GES, El-Ahwany E, Amin NA, Elagamy HI, Shata A, Nader R, Khodir AE. Nifuroxazide-loaded cubosomes exhibit an advancement in pulmonary delivery and attenuate bleomycin-induced lung fibrosis by regulating the STAT3 and NF-κB signaling: A new challenge for unmet therapeutic needs. Pharmacotherapy 2022; 148:112731. [PMID: 35220029 DOI: 10.1016/j.biopha.2022.112731] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic progressive disease that portends a very poor prognosis. It has been suggested that STAT3 is a potential target in PF. This study highlights the importance of cubosomes as a drug delivery system in enhancing the bioavailability of nifuroxazide (NXZD), a poorly soluble STAT3 inhibitor. NXZD-loaded cubosomes (NXZD-LC) were in vitro and in vivo evaluated. In vitro, cubosomes presented a poly-angular nanosized particles with a mean size and zeta potential of 223.73 ± 4.73 nm and - 20.93 ± 2.38 mV, respectively. The entrapment efficiency of nifuroxazide was 90.56 ± 4.25%. The in vivo pharmacokinetic study and the lung tissue accumulation of NXZD were performed by liquid chromatography-tandem mass spectrometry after oral administration to rats. The nanoparticles exhibited a two-fold increase and 1.33 times of bioavailability and lung tissue concentration of NXZD compared to NXZD dispersion, respectively. In view of this, NXZD-LC effectively attenuated PF by targeting STAT3 and NF-κB signals. As a result, NXZD-LC showed a potential anti-inflammatory effect as revealed by the significant decrease in MCP-1, ICAM-1, IL-6, and TNF-α and suppressed fibrogenic mediators as indicated by the significant reduction in TGF-β, TIMP-1, and PDGF-BB in lung tissues. Besides, NXZD-LC improved antioxidant defense mechanisms and decreased LDH and BALF total protein. These effects contributed to decreased collagen deposition. To conclude, cubosomes represent an advantageous pharmaceutical delivery system for enhancing pulmonary delivery of poorly soluble drugs. Additionally, repurposing NXZD as an antifibrotic agent is a promising challenge and new therapeutic approach for unmet therapeutic needs.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Mohamed Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Saudi Arabia; Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt.
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Ahmed A E Mourad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt.
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt.
| | - Sameh S Zaghlool
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt.
| | - Safaa Saleh
- Department of Clinical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| | - Mohamed M Hafez
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Samuel Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Alsalam University, Egypt.
| | | | - Karim Nader
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Qassim 51452, Kingdom of Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt.
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Noha A Amin
- Department of Haematology, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Heba I Elagamy
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Reem Nader
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Ahmed E Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| |
Collapse
|
32
|
Nabizadeh M, Naimi-Jamal MR, Rohani M, Azerang P, Tahghighi A. Hydrazone analogues with promising antibacterial profiles: Synthesis, morphology, in vitro and in silico approaches. Lett Appl Microbiol 2022; 75:667-679. [PMID: 35334115 DOI: 10.1111/lam.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
Abstract
Emergence of resistance to antibacterial drugs remains an important global threat that necessitates an urgent need for the discovery of alternative drugs. This study was undertaken to synthesize some novel nitroaryl/heteroaryl hydrazone derivatives as potential antibacterial agents. After synthesizing by a simple reaction between quinoline/quinazoline hydrazine and nitroaryl/heteroaryl aldehydes, all the compounds were screened for their antibacterial activities, cytotoxicity, and in silico investigations. The compound, 2-(4-nitrobenzylidene)-1-(quinazolin-4-yl)hydrazine (1b) displayed significant antimicrobial activity against several susceptible and resistant bacteria without any cytotoxicity. Moreover, scanning electron microscopy (SEM) revealed the complete destruction of Staphylococcus aureus and Escherichia coli following exposure to this compound after 2 hours exposure. The in silico studies confirmed the better binding energy of these compounds in comparison with the reference drugs in complex with topoisomerase IV and bacterial ribosomal receptor. Compound 1b can be considered as a promising lead compound for the development of broad-spectrum antibacterial medications after further studies.
Collapse
Affiliation(s)
- M Nabizadeh
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.,Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - M R Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - M Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran.,Research Center for Emerging and Reemerging Infectious diseases, Pasteur Institute of Iran, Tehran, Iran
| | - P Azerang
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - A Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
33
|
Therapeutic Efficacy of Orally Administered Nitrofurantoin against Animal African Trypanosomosis Caused by Trypanosoma congolense Infection. Pathogens 2022; 11:pathogens11030331. [PMID: 35335655 PMCID: PMC8956101 DOI: 10.3390/pathogens11030331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Animal African trypanosomosis (AAT) leads to emaciation and low productivity in infected animals. Only six drugs are commercially available against AAT; they have severe side effects and face parasite resistance. Thus, the development of novel trypanocidal drugs is urgently needed. Nitrofurantoin, an antimicrobial, is used for treating bacterial urinary tract infections. Recently, we reported the trypanocidal effects of nitrofurantoin and its analogs in vitro. Furthermore, a nitrofurantoin analog, nifurtimox, is currently used to treat Chagas disease and chronic human African trypanosomiasis. Thus, this study was aimed at evaluating the in vivo efficacy of nitrofurantoin in treating AAT caused by Trypanosoma congolense. Nitrofurantoin was orally administered for 7 consecutive days from 4 days post-infection in T. congolense-infected mice, and the animals were observed for 28 days. Compared to the control group, the treatment group showed significantly suppressed parasitemia at 6 days post-infection. Furthermore, survival was significantly prolonged in the group treated with at least 10 mg/kg nitrofurantoin. Moreover, 100% survival and cure was achieved with a dose of nitrofurantoin higher than 30 mg/kg. Thus, oral nitrofurantoin administration has potential trypanocidal efficacy against T. congolense-induced AAT. This preliminary data will serve as a benchmark when comparing future nitrofurantoin-related compounds, which can overcome the significant shortcomings of nitrofurantoin that preclude its viable use in livestock.
Collapse
|
34
|
Bendre RS, Patil RD, Patil PN, Patel HM, Sancheti RS. Synthesis and characterization of new Schiff-bases as Methicillin resistant Staphylococcus aureus (MRSA) inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Melekhin AO, Tolmacheva VV, Shubina EG, Dmitrienko SG, Apyari VV, Grudev AI, Zolotov YA. A New Derivatizing Agent for Determining Nitrofuran Metabolites in Chicken Eggs by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821110071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Novel cytotoxic amphiphilic nitro-compounds derived from a synthetic route for paraconic acids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
37
|
Feitosa IB, Mori B, Santos APDAD, Villanova JCO, Teles CBG, Costa AG. What are the immunopharmacological effects of furazolidone? A systematic review. Immunopharmacol Immunotoxicol 2021; 43:674-679. [PMID: 34570666 DOI: 10.1080/08923973.2021.1979034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Furazolidone (FZD) is a widely used drug in human and veterinary medicine, and has antibacterial and antiprotozoal action. Although it is widely used as a therapy in various pathological conditions, studies on the efficacy of FZD associated with immune responses are still limited. In this review, we seek to describe which immunopharmacological responses are caused by the administration of FZD. The study followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). A systematic review of clinical trials and in vitro and in vivo experimental studies was carried out, which resulted in 943 papers, of which 35 were considered eligible and, of these 35, 4 were selected for analysis. The studies listed indicated that administration of FZD can modulate pro- or anti-inflammatory pathways, with a probable increase in the expression of reactive oxygen species and a modulation of apoptotic pathways.
Collapse
Affiliation(s)
- Ivan Brito Feitosa
- Programa de Pós-graduação em Imunologia Básica e Aplicada (PPGIBA), Instituto de Ciências Biológicas (ICB), Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Departamento de Medicina, Faculdade Metropolitana de Rondônia, Porto Velho, Brazil
| | - Bruno Mori
- Programa de Pós-graduação em Imunologia Básica e Aplicada (PPGIBA), Instituto de Ciências Biológicas (ICB), Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Ana Paula de Azevedo Dos Santos
- Plataforma Técnica de Bioensaio de Malária e Leishmaniose, Fundação Oswaldo Cruz, Fiocruz-Rondônia, Porto Velho, Brazil.,Departamento de Medicina, Centro Universitário São Lucas, Porto Velho, Brazil
| | - Janaína Cecília Oliveira Villanova
- Programa de Pós-Graduação em Ciências Veterinárias, Departamento de Ciências Veterinárias, Universidade Federal do Espírito Santo, Alegre, Brazil.,Laboratório de Produção Farmacêutica, Departamento de Farmácia e Nutrição, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Carolina Bioni Garcia Teles
- Plataforma Técnica de Bioensaio de Malária e Leishmaniose, Fundação Oswaldo Cruz, Fiocruz-Rondônia, Porto Velho, Brazil.,Departamento de Medicina, Centro Universitário São Lucas, Porto Velho, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-graduação em Imunologia Básica e Aplicada (PPGIBA), Instituto de Ciências Biológicas (ICB), Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| |
Collapse
|
38
|
Madugula SS, Nagamani S, Jamir E, Priyadarsinee L, Sastry GN. Drug repositioning for anti-tuberculosis drugs: an in silico polypharmacology approach. Mol Divers 2021; 26:1675-1695. [PMID: 34468898 DOI: 10.1007/s11030-021-10296-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023]
Abstract
Development of potential antitubercular molecules is a challenging task due to the rapidly emerging drug-resistant strains of Mycobacterium tuberculosis (M.tb). Structure-based approaches hold greater benefit in identifying compounds/drugs with desired polypharmacological profiles. These methods can be employed based on the knowledge of protein binding sites to identify the complementary ligands. In this study, polypharmacology guided computational drug repurposing approach was applied to identify potential antitubercular drugs. 20 important druggable protein targets in M.tb were considered from the target library of Molecular Property Diagnostic Suite-Tuberculosis (MPDSTB- http://mpds.neist.res.in:8084 ) for virtual screening. FDA approved drugs were collected, preprocessed and docked in the active sites of the 20 M.tb targets. The top 300 drug molecules from each target (20 × 300) were filtered-in and subsequently screened for possible antitubercular and antimycobacterial activity using PASS tool. Using this approach, 34 drugs with predicted antitubercular and anti-mycobacterial activity were identified along with good binding affinity against multiple M.tb targets. Interestingly, 21 out of the 34 identified drugs are antibiotics while 4 drug molecules (nitrofural, stavudine, quinine and quinidine) are non-antibiotics showing promising predicted antitubercular activity. Most of these molecules have the similar privileged antimycobacterial drugs scaffold. Further drug likeness properties were calculated to get deeper insights to M.tb lead molecules. Interestingly, it was also observed that the drugs identified from the study are under different stages of drug discovery (i.e., in vitro, clinical trials) for the effective treatment of various diseases including cancer, degenerative diseases, dengue virus infection, tuberculosis, etc. Krasavin et al., 2017 synthesized nitrofuran analogues with appreciable MICs (22-23 µM) against M.tb H37Rv. These experiments further add to the credibility of the drugs identified in this study (TB).
Collapse
Affiliation(s)
- Sita Sirisha Madugula
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - Esther Jamir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - Lipsa Priyadarsinee
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - G Narahari Sastry
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. .,Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India.
| |
Collapse
|
39
|
Zeng B, Cheng Y, Zheng K, Liu S, Shen L, Hu J, Li Y, Pan X. Design, synthesis and in vivo anticancer activity of novel parthenolide and micheliolide derivatives as NF-κB and STAT3 inhibitors. Bioorg Chem 2021; 111:104973. [PMID: 34004586 DOI: 10.1016/j.bioorg.2021.104973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023]
Abstract
Parthenolide and micheliolide have attracted great attention in anticancer research due to their unique activities. In this study, thirteen parthenolide derivatives and twenty-three micheliolide derivatives were synthesized. Most synthesized compounds showed higher cytotoxicity than parthenolide or micheliolide. The in vivo anticancer activity of several representative compounds was evaluated in mice. One micheliolide derivative, 9-oxomicheliolide (43), showed promising in vivo antitumor activity compared with clinical drugs cyclophosphamide or temozolomide. Compound 43 was particularly effective against glioblastoma, with its tumor inhibition rate in mice comparable to the drug temozolomide. The discovery of compound 43 also demonstrates the feasibility of developing anticancer micheliolide derivatives by modification at C-9 position. Anticancer mechanism studies revealed that 9-oxomicheliolide exhibited inhibition effect against NF-κB and STAT3 signaling pathways, as well as induction effects of cell apoptosis. It is postulated that 9-oxomicheliolide is likely to be a modulator of the immune system, which regulates the anticancer immune responses.
Collapse
Affiliation(s)
- Binglin Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yu Cheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Kailu Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Shuoxiao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Longying Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Xiandao Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
40
|
El-Wakil MH, Meheissen MA, Abu-Serie MM. Nitrofurazone repurposing towards design and synthesis of novel apoptotic-dependent anticancer and antimicrobial agents: Biological evaluation, kinetic studies and molecular modeling. Bioorg Chem 2021; 113:104971. [PMID: 34051413 DOI: 10.1016/j.bioorg.2021.104971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
Drug repurposing has gained much attention as a cost-effective strategy that plays an exquisite role in identifying undescribed biological activities in clinical drugs. In the present work, we report the repurposing of the antibacterial drug nitrofurazone (NFZ) as a potential anticancer agent against CaCo-2, MDA-MB 231 and HepG-2 cancer cell lines. Novel series of nitrofurazone analogs were then designed considering the important pharmacologic features present in NFZ. Synthesis and biological evaluation of the target compounds revealed their promising anticancer activities endowed with antimicrobial potential and possessing better lipophilicity than NFZ. Compound 7, exclusively, inhibited the growth of all tested cancer cells more potently than NFZ with the least cytotoxicity against normal cells, displaying anti Gram-positive bacterial activities and antifungal potential. Analysis of the stereo-electronic properties of compound 7 via investigating the energies of HOMO, LUMO, HOMO-LUMO energy gap and MEP maps demonstrated its high reactivity and the expected molecular mechanism of action through reduction of the 5-nitrofuryl moiety. Data of the bioactivity studies indicated that the potent anticancer activity of 7 is mainly through increasing intracellular ROS levels and induction of apoptosis via significantly down-regulating the expression of Bcl-2 while up-regulating BAX, p53 and caspase 3 expression levels. Compound 7 potently inhibited the cellular expression levels of antioxidant enzymes GPx1 and GR compared to NFZ. Antioxidant enzymes kinetic studies and blind molecular docking simulations disclosed the mechanistic and structural aspects of the interaction between 7 and both GR and GPx1. Thus, the successful discovery of 7 as a potential dual anticancer-antimicrobial nitrofurazone analog might validate the applicability of drug repurposing strategy in unravelling the unrecognized bioactivity of the present conventional drugs, besides furnishing the way towards more optimization and development studies.
Collapse
Affiliation(s)
- Marwa H El-Wakil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Marwa Ahmed Meheissen
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria 21521, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| |
Collapse
|
41
|
Pacholak A, Burlaga N, Guzik U, Kaczorek E. Investigation of the bacterial cell envelope nanomechanical properties after long-term exposure to nitrofurans. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124352. [PMID: 33160784 DOI: 10.1016/j.jhazmat.2020.124352] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic residues in the environment may negatively affect biological communities in the natural ecosystems. However, their influence on environmental bacterial strains has not been thoroughly investigated. In this study, two representatives of 5-nitrofuran antibiotics (nitrofurantoin and furaltadone) were investigated in terms of their long-term influence on the cell envelopes of newly isolated environmental bacterial strains (Sphingobacterium caeni FTD2, Achromobacter xylosoxidans NFZ2 and Pseudomonas hibiscicola FZD2). A 12-month exposure of bacterial cells to nitrofurans at a concentration of 20 mg L-1 induced changes in the cell structure and texture (bacteria under stress conditions showed a loss of their original shape and seemed to be vastly inflated, the cells increased average surface roughness after exposure to NFT and FTD, respectively). AFM observations allowed the calculation of the bacterial cell nanomechanical properties. Significant increase in adhesion energy of bacteria after prolonged contact with nitrofurantoin was demonstrated. Changes in the permeability of bacterial membrane, fatty acids' composition and bacterial cell surface hydrophobicity were determined. Despite visible bacterial adaptation to nitrofurans, prolonged presence of pharmaceuticals in the environment has led to significant alterations in the cells' structures which was particularly visible in P. hibiscicola.
Collapse
Affiliation(s)
- Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Natalia Burlaga
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Urszula Guzik
- University of Silesia in Katowice, Faculty of Natural Science, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40 032 Katowice, Poland.
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
42
|
Melekhin AO, Tolmacheva VV, Shubina EG, Dmitrienko SG, Apyari VV, Grudev AI. Determination of nitrofuran metabolites in honey using a new derivatization reagent, magnetic solid-phase extraction and LC-MS/MS. Talanta 2021; 230:122310. [PMID: 33934775 DOI: 10.1016/j.talanta.2021.122310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/14/2023]
Abstract
In this study, 5-nitro-2-furaldehyde (5-NFA) was proposed as a new derivatizing agent for nitrofuran metabolites. It reacts with nitrofuran metabolites producing the parent nitrofurans (furazolidone, furaltadone, nitrofurantoin, and nitrofurazone). Magnetic hypercrosslinked polystyrene (HCP/Fe3O4) was first used for magnetic solid phase extraction (MSPE) clean-up before the determination of nitrofuran metabolite derivatives in honey via LC-MS/MS. Main parameters affecting the derivatization and MSPE efficiency were investigated in detail and the optimal conditions were found. The method was validated using honey spiked with the four metabolites at 1, 2 and 200 μg kg-1. Recoveries of >85% were achieved for the all analytes. The matrix calibration curve was fitted with the correlation coefficient (R2) > 0.99 in the range of 1-200 μg kg-1. Precision values expressed as relative standard deviation (RSD) were <12% and <15% for intra-day and inter-day precision, respectively. The limits of detection (LODs) for the nitrofuran metabolites were of 0.1-0.3 μg kg-1 and the limits of quantitation (LOQs) were of 0.3-1.0 μg kg-1. The proposed LC-MS/MS method was applied to the analysis of real honey samples.
Collapse
Affiliation(s)
- Artem O Melekhin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia; Central Scientific Methodological Veterinary Laboratory, Orangereynaya st., 23, 111622, Moscow, Russia
| | - Veronika V Tolmacheva
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia
| | - Elena G Shubina
- Central Scientific Methodological Veterinary Laboratory, Orangereynaya st., 23, 111622, Moscow, Russia
| | - Stanislava G Dmitrienko
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia
| | - Vladimir V Apyari
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia.
| | - Artyom I Grudev
- Central Scientific Methodological Veterinary Laboratory, Orangereynaya st., 23, 111622, Moscow, Russia
| |
Collapse
|
43
|
Kannigadu C, Aucamp J, N'Da DD. Synthesis and in vitro antileishmanial efficacy of benzyl analogues of nifuroxazide. Drug Dev Res 2020; 82:287-295. [PMID: 33141473 DOI: 10.1002/ddr.21755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
Leishmaniasis is a vector-borne parasitic disease that mostly affects populations in tropical and subtropical countries. There is currently no vaccine to protect against and only a handful of drugs are available to treat this disease. Leishmaniasis is curable, but its eradication and elimination are hindered by the emergence of multidrug resistant strains of the causative pathogens, accentuating the need for new and effective antileishmanial drugs. In search for such agents, nifuroxazide, a clinical antibiotic, was evaluated through investigation of its benzyl analogues for in vitro antileishmanial efficacy against promastigotes of various Leishmania (L.) strains. The monobenzylated analogues 1 and 2 were the most potent of all, possessing nanomolar activities up to 10-fold higher than the parent drug nifuroxazide against all three tested Leishmania strains. Both analogues stand as antipromastigote hits for further lead investigation into their potential to act as new antileishmanial agents.
Collapse
Affiliation(s)
- Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
44
|
Dubey KK, Indu, Sharma M. Reprogramming of antibiotics to combat antimicrobial resistance. Arch Pharm (Weinheim) 2020; 353:e2000168. [DOI: 10.1002/ardp.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kashyap K. Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
- School of Biotechnology Jawaharlal Nehru University New Delhi India
| | - Indu
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| | - Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| |
Collapse
|
45
|
Wang K, Kou Y, Wang M, Ma X, Wang J. Determination of Nitrofuran Metabolites in Fish by Ultraperformance Liquid Chromatography-Photodiode Array Detection with Thermostatic Ultrasound-Assisted Derivatization. ACS OMEGA 2020; 5:18887-18893. [PMID: 32775890 PMCID: PMC7408213 DOI: 10.1021/acsomega.0c02068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Nitrofuran (NF) is a class of broad-spectrum antibiotics that are used illegally in animal feeding. NF and its metabolites have proven to pose potential risk to human health. To address the current analytical needs to quantify low levels of NF metabolites in animal foods, a sensitive method was developed for simultaneous detection of four NF metabolites in fish products by an ultraperformance liquid chromatography-diode array detector (UPLC-DAD). With 2-nitrobenzaldehyde (2-NBA) as the derivatizing reagent, the metabolites were hydrolyzed and derivatized under the assistance of thermostatic ultrasound. Compared with the current detection methods, the time of the derivatization reaction has been shortened from 16 to 2 h. The relative coefficient of four NF metabolite derivatives reached more than 0.998, with excellent linear relationship. The limits of detection (LODs) and limits of quantification (LOQs) of six repeated determinations reached 0.25-0.33 and 0.80-1.10 μg/kg, respectively. For all four NF metabolites, the limit of detection of the method was below the minimum required performance limit (MRPL) of 1.0 μg/kg, which makes it compatible with the EU requirements. The recoveries ranging from 89.8 to 101.9% with relative standard deviation below 6.5% were obtained for all of the NF metabolites. What's more, this method was successfully applied for the determination of four NF metabolites in the fish products. As a promising approach, this method could also be extended for the quantitation of NF metabolites in aquaculture and poultry products.
Collapse
Affiliation(s)
- Kangkang Wang
- Xinjiang
Key Laboratory of Oil and Gas Fine Chemicals, College of Chemistry
and Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Yuli Kou
- Xinjiang
Key Laboratory of Oil and Gas Fine Chemicals, College of Chemistry
and Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Meng Wang
- Xinjiang
Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi 830002, China
| | - Xin Ma
- Xinjiang
Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi 830002, China
| | - Jide Wang
- Xinjiang
Key Laboratory of Oil and Gas Fine Chemicals, College of Chemistry
and Chemical Engineering, Xinjiang University, Urumqi 830046, China
| |
Collapse
|