1
|
Moawad F, Pouliot R, Brambilla D. Dissolving microneedles in transdermal drug delivery: A critical analysis of limitations and translation challenges. J Control Release 2025:113794. [PMID: 40319916 DOI: 10.1016/j.jconrel.2025.113794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Microneedles (MNs) have emerged as an innovative approach for transdermal drug delivery, offering an efficient and minimally invasive alternative to conventional injections and oral delivery systems. While their potential has been widely recognized and extensively studied, the translation of MN technology into clinical practice remains limited. Despite the vast amount of published research, much of it involves over-complexification without addressing the core barriers to practical application. For example, dissolving/degradable MNs face key limitations such as poor drug loading capacity, low dosing consistency, and challenges in delivering effective therapeutic concentrations. These constraints restrict their utility to niche applications, such as vaccination or delivering potent drugs that require minimal doses. Additionally, the lack of standardized quality control measures, the complex manufacturing processes, and the high costs associated specifically with sterile/aseptic production further impede clinical translation. Regulatory frameworks for MNs remain vague, slowing the development of products that meet approval standards. This review critically examines the fundamental barriers to dissolving/degradable MN commercialization, as the most studied type of MN, while exploring promising strategies to overcome them. Advances in formulation science, fabrication techniques, and material engineering have demonstrated potential in enhancing drug loading efficiency and delivery consistency. Moreover, the establishment of clearer regulatory guidelines and scalable production strategies could significantly accelerate the commercialization of MN technology. By shifting focus toward pragmatic and clinically relevant solutions, this review aims to bridge the gap between research innovations and real-world applications, paving the way for broader implementation of MN technology in medicine.
Collapse
Affiliation(s)
- Fatma Moawad
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 625617, Egypt
| | - Roxane Pouliot
- Faculté de Pharmacie, Université Laval, Québec G1V 0A6, Canada
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
2
|
Fu Y, Fu Z, Yu J, Wang H, Zhang Y, Liu M, Wang X, Yu W, Han F. Biochemical Characterization of Hyaluronate Lyase CpHly8 from an Intestinal Microorganism Clostridium perfringens G1121. Appl Biochem Biotechnol 2025; 197:771-792. [PMID: 39235659 DOI: 10.1007/s12010-024-05025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/06/2024]
Abstract
Hyaluronic acid (HA) is an important component of extracellular matrices (ECM) and a linear polysaccharide involved in various physiological and pathological processes within the biological system. Several pathogens exploit HA degradation within the extracellular matrix to facilitate infection. While many intestinal microorganisms play significant roles in HA utilization in the human body, there remains a scarcity of related studies. This paper addressed this gap by screening intestinal microorganisms capable of degrading HA, resulting in the isolation of Clostridium perfringens G1121, which had been demonstrated the ability to degrade HA. Subsequent genome sequencing and analysis of C. perfringens G1121 revealed its utilization of the polysaccharide utilization loci of HA (PULHA), which was obtained by horizontal gene transfer. The PULHA contains a sequence encoding a hyaluronic acid-specific degradation enzyme designated CpHly8, belonging to polysaccharide lyase family 8. The specific activity of CpHly8 towards HA was 142.98 U/mg, with the optimum reaction temperature and pH observed at 50℃ and 6.0, respectively. The final product of HA degradation by CpHly8 was unsaturated hyaluronic acid disaccharide. Moreover, subcutaneous diffusion experiments with trypan blue in mice revealed that CpHly8 effectively promoted subcutaneous diffusion and sustained its effects long-term, suggesting its potential application as an adjunct in drug delivery. Overall, our study enriches our understanding of intestinal microbial degradation of HA, provides new evidence for horizontal gene transfer among intestinal microorganisms, and confirms that CpHly8 is a promising candidate for intestinal microbial hyaluronidase.
Collapse
Affiliation(s)
- Yongqing Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China
| | - Zheng Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China
| | - Jing Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China
| | - Hainan Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China
| | - Yuzhu Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China
| | - Mei Liu
- School of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266071, China
| | - Xiaolei Wang
- School of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266071, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2025; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
4
|
Ramadon D, Karn PR, Anjani QK, Kim MH, Cho DY, Hwang H, Kim DH, Kim DH, Kim G, Lee K, Eum JH, Im JY, Aileen V, Hamda OT, Donnelly RF. Development of ropivacaine hydrochloride-loaded dissolving microneedles as a local anesthetic agent: A proof-of-concept. Int J Pharm 2024; 660:124347. [PMID: 38885777 DOI: 10.1016/j.ijpharm.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Ropivacaine hydrochloride (RPL) is a local anesthetic agent that has been widely used for the treatment of pain during or after surgery. However, this drug is only available in parenteral dosage form and may contribute to the infiltration of RPL into the plasma, causing some undesirable side effects. Intradermal delivery of RPL using dissolving microneedles may become a promising strategy to deliver such drugs into the skin. This research aimed to develop RPL-loaded dissolving microneedles (DMN-RPLs) as a proof of the concept of intradermal delivery of a local anesthetic. The DMN-RPLs were fabricated using either centrifugation or air-pressurized chamber methods. Several polymers, such as poly(vinyl pyrrolidone) (PVP), poly(vinyl alcohol) (PVA), and sodium hyaluronate (SH), were utilized for manufacturing the DMN-RPLs. The prepared DMN-RPLs were assessed for their thermal properties, chemical bonds, mechanical strength, insertion ability, skin-dissolution study, and drug content. Furthermore, in-skin deposition and dermatokinetic studies were also performed. The results showed that F9 (30 % w/w PVP-4 % w/w SH) and F10 (30 % w/w PVP-5 % w/w PVA) containing 5 % w/w of RPL were the most promising formulations, as shown by their needle height reduction (<10 %) and insertion depth (∼400 μm). Both formulations were also able to deliver more than 60 % of the RPL contained in the DMNs into the epidermis, dermis, and receiver compartment. This study, for the first time, has provided a proof concept to deliver RPL as a local anesthetic using DMNs and the intradermal route, aiming to minimize pain and discomfort during administration and improve the patient's experience.
Collapse
Affiliation(s)
- Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
| | - Pankaj Ranjan Karn
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Qonita Kurnia Anjani
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Min-Hwan Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Youl Cho
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Hana Hwang
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Da Hye Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Dong Hwan Kim
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Gwanyoung Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungmin Lee
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Jae Hong Eum
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Yeon Im
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Vania Aileen
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Okto Tri Hamda
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Ryan F Donnelly
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
5
|
He Y, He D, Fan L, Ren S, Wang L, Sun J. Application of hydrogel microneedles in the oral cavity. Biopolymers 2024; 115:e23573. [PMID: 38506560 DOI: 10.1002/bip.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Microneedles are a transdermal drug delivery system in which the needle punctures the epithelium to deliver the drug directly to deep tissues, thus avoiding the influence of the first-pass effect of the gastrointestinal tract and minimizing the likelihood of pain induction. Hydrogel microneedles are microneedles prepared from hydrogels that have good biocompatibility, controllable mechanical properties, and controllable drug release and can be modified to achieve environmental control of drug release in vivo. The large epithelial tissue in the oral cavity is an ideal site for drug delivery via microneedles. Hydrogel microneedles can overcome mucosal hindrances to delivering drugs to deep tissues; this prevents humidity and a highly dynamic environment in the oral cavity from influencing the efficacy of the drugs and enables them to obtain better therapeutic effects. This article analyzes the materials and advantages of common hydrogel microneedles and reviews the application of hydrogel microneedles in the oral cavity.
Collapse
Affiliation(s)
- Yiyao He
- Graduate School of Dalian Medical University, Dalian, China
| | - Dawei He
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Lin Fan
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Song Ren
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Lin Wang
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Jiang Sun
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| |
Collapse
|
6
|
Wang Q, Gan Z, Wang X, Li X, Zhao L, Li D, Xu Z, Mu C, Ge L, Li D. Dissolving Hyaluronic Acid-Based Microneedles to Transdermally Deliver Eugenol Combined with Photothermal Therapy for Acne Vulgaris Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21595-21609. [PMID: 38635857 DOI: 10.1021/acsami.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A microneedle transdermal drug delivery system simultaneously avoids systemic toxicity of oral administration and low efficiency of traditional transdermal administration, which is of great significance for acne vulgaris therapy. Herein, eugenol-loaded hyaluronic acid-based dissolving microneedles (E@P-EO-HA MNs) with antibacterial and anti-inflammatory activities are developed for acne vulgaris therapy via eugenol transdermal delivery integrated with photothermal therapy. E@P-EO-HA MNs are pyramid-shaped with a sharp tip and a hollow cavity structure, which possess sufficient mechanical strength to penetrate the stratum corneum of the skin and achieve transdermal delivery, in addition to excellent in vivo biocompatibility. Significantly, E@P-EO-HA MNs show effective photothermal therapy to destroy sebaceous glands and achieve antibacterial activity against deep-seated Propionibacterium acnes (P. acnes) under near-infrared-light irradiation. Moreover, cavity-loaded eugenol is released from rapidly dissolved microneedle bodies to play a sustained antibacterial and anti-inflammatory therapy on the P. acnes infectious wound. E@P-EO-HA MNs based on a synergistic therapeutic strategy combining photothermal therapy and eugenol transdermal administration can significantly alleviate inflammatory response and ultimately facilitate the repair of acne vulgaris. Overall, E@P-EO-HA MNs are expected to be clinically applied as a functional minimally invasive transdermal delivery strategy for superficial skin diseases therapy in skin tissue engineering.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhiyang Gan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinxin Wang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinying Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Derong Li
- People's Hospital of Lanshan District, Linyi 27600, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
7
|
Yamagishi R, Miura S, Yabu K, Ando M, Hachikubo Y, Yokoyama Y, Yasuda K, Takei S. Fabrication Technology of Self-Dissolving Sodium Hyaluronate Gels Ultrafine Microneedles for Medical Applications with UV-Curing Gas-Permeable Mold. Gels 2024; 10:65. [PMID: 38247787 PMCID: PMC10815747 DOI: 10.3390/gels10010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Microneedles are of great interest in diverse fields, including cosmetics, drug delivery systems, chromatography, and biological sensing for disease diagnosis. Self-dissolving ultrafine microneedles of pure sodium hyaluronate hydrogels were fabricated using a UV-curing TiO2-SiO2 gas-permeable mold polymerized by sol-gel hydrolysis reactions in nanoimprint lithography processes under refrigeration at 5 °C, where thermal decomposition of microneedle components can be avoided. The moldability, strength, and dissolution behavior of sodium hyaluronate hydrogels with different molecular weights were compared to evaluate the suitability of ultrafine microneedles with a bottom diameter of 40 μm and a height of 80 μm. The appropriate molecular weight range and formulation of pure sodium hyaluronate hydrogels were found to control the dissolution behavior of self-dissolving ultrafine microneedles while maintaining the moldability and strength of the microneedles. This fabrication technology of ultrafine microneedles expands their possibilities as a next-generation technique for bioactive gels for controlling the blood levels of drugs and avoiding pain during administration.
Collapse
Affiliation(s)
- Rio Yamagishi
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| | - Sayaka Miura
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| | - Kana Yabu
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (K.Y.); (M.A.); (Y.H.)
| | - Mano Ando
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (K.Y.); (M.A.); (Y.H.)
| | - Yuna Hachikubo
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (K.Y.); (M.A.); (Y.H.)
| | - Yoshiyuki Yokoyama
- Toyama Industrial Technology Research and Development Center, Takaoka 933-0981, Toyama, Japan;
| | - Kaori Yasuda
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| | - Satoshi Takei
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| |
Collapse
|
8
|
Luo Z, Wang Y, Li J, Wang J, Yu Y, Zhao Y. Tailoring Hyaluronic Acid Hydrogels for Biomedical Applications. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202306554] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Indexed: 05/04/2025]
Abstract
AbstractHyaluronic acid (HA) is an attractive anionic polysaccharide polymer with inherent pharmacological properties and versatile chemical groups for modification. Due to their water retention ability, biocompatibility, biodegradation, cluster of differentiation‐44 targeting, and highly designable capacity, HA hydrogels have been an emerging biomaterial, showing tailoring performance in terms of chemical modifications and hydrogel forms. Various preparation technologies have been developed for the fabrication of the tailoring HA hydrogels with unique structures and functions. They have been utilized in diverse biomedical applications like drug delivery and tissue engineering scaffolds. Herein, this review comprehensively summarizes the HA derivatives with different molecule weights and functional modifications. Then the various fabrication methods to obtain tailoring hydrogels in the forms of nanogel, nanofiber, microparticle, microneedle patch, injectable hydrogel, and scaffold are reviewed as well. The emphasis is focused on the shining biomedical applications of these tailoring HA hydrogels in anti‐bacteria, anti‐inflammation, wound healing, cancer treatment, regenerative medicine, psoriasis treatment, diagnosis, etc. The potentials and prospects are subsequently given to inspire further investigation, aiming at accelerating product translation from research to clinic.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Yu Wang
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Jinbo Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
| | - Jinglin Wang
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
- Southeast University Shenzhen Research Institute Shenzhen 518071 China
| |
Collapse
|
9
|
Edwards C, Shah SA, Gebhardt T, Jewell CM. Exploiting Unique Features of Microneedles to Modulate Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302410. [PMID: 37380199 PMCID: PMC10753036 DOI: 10.1002/adma.202302410] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Microneedle arrays (MNAs) are small patches containing hundreds of short projections that deliver signals directly to dermal layers without causing pain. These technologies are of special interest for immunotherapy and vaccine delivery because they directly target immune cells concentrated in the skin. The targeting abilities of MNAs result in efficient immune responses-often more protective or therapeutic-compared to conventional needle delivery. MNAs also offer logistical benefits, such as self-administration and transportation without refrigeration. Thus, numerous preclinical and clinical studies are exploring these technologies. Here the unique advantages of MNA, as well as critical challenges-such as manufacturing and sterility issues-the field faces to enable widespread deployment are discussed. How MNA design parameters can be exploited for controlled release of vaccines and immunotherapies, and the application to preclinical models of infection, cancer, autoimmunity, and allergies are explained. Specific strategies are also discussed to reduce off-target effects compared to conventional vaccine delivery routes, and novel chemical and manufacturing controls that enable cargo stability in MNAs across flexible intervals and temperatures. Clinical research using MNAs is then examined. Drawbacks of MNAs and the implications, and emerging opportunities to exploit MNAs for immune engineering and clinical use are concluded.
Collapse
Affiliation(s)
- Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Thomas Gebhardt
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC, 3000, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
10
|
Lobita MC, El-Sayed N, Pinto JF, Santos HA. Development of fast dissolving polymer-based microneedles for delivery of an antigenic melanoma cell membrane. Int J Pharm 2023; 642:123143. [PMID: 37330154 DOI: 10.1016/j.ijpharm.2023.123143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Delivery of cancer cell membranes (CM) is a new approach for the activation of the immune system and the induction of immunotherapy of cancer. Local delivery of melanoma CM into skin can induce efficient immune stimulation of antigen presenting cells (APCs), such as dendritic cells. In the current study, fast dissolving microneedles (MNs) were developed for the delivery of melanoma B16F10 CM. Two polymers were tested for the fabrication of MNs: poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) and hyaluronic acid (HA). The incorporation of CM in MNs was achieved through coating of the MNs using a multi-step layering procedure or the micromolding technique. The CM loading and its stabilization were improved by adding sugars (sucrose and trehalose) and a surfactant (Poloxamer 188), respectively. In an ex vivo experiment, both PMVE-MA and HA showed fast dissolutions (<30 s) after insertion into porcine skin. However, HA-MN showed better mechanical properties, namely improved resistance to fracture when submitted to a compression force. Overall, a B16F10 melanoma CM-dissolving MN system was efficiently developed as a promising device suggesting further studies in immunotherapy and melanoma applications.
Collapse
Affiliation(s)
- Maria C Lobita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Nesma El-Sayed
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), University of Helsinki, FI-00014 Helsinki, Finland; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - João F Pinto
- iMED-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1640-003 Lisbon, Portugal
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
11
|
Kang H, Zuo Z, Lin R, Yao M, Han Y, Han J. The most promising microneedle device: present and future of hyaluronic acid microneedle patch. Drug Deliv 2022; 29:3087-3110. [PMID: 36151726 PMCID: PMC9518289 DOI: 10.1080/10717544.2022.2125600] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Microneedle patch (MNP) is an alternative to the oral route and subcutaneous injection with unique advantages such as painless administration, good compliance, and fewer side effects. Herein, we report MNP as a prominent strategy for drug delivery to treat local or systemic disease. Hyaluronic acid (HA) has advantageous properties, such as human autologous source, strong water absorption, biocompatibility, and viscoelasticity. Therefore, the Hyaluronic acid microneedle patch (HA MNP) occupies a large part of the MNP market. HA MNP is beneficial for wound healing, targeted therapy of certain specific diseases, extraction of interstitial skin fluid (ISF), and preservation of drugs. In this review, we summarize the benefits of HA and cross-linked HA (x-HA) as an MNP matrix. Then, we introduce the types of HA MNP, delivered substances, and drug distribution. Finally, we focus on the biomedical application of HA MNP as an excellent drug carrier in some specific diseases and the extraction and analysis of biomarkers. We also discuss the future development prospect of HA MNP in transdermal drug delivery systems (TDDS).
Collapse
Affiliation(s)
- Huizhi Kang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Zuo
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Ru Lin
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Muzi Yao
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Han
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
12
|
Juhaščik M, Kováčik A, Huerta-Ángeles G. Recent Advances of Hyaluronan for Skin Delivery: From Structure to Fabrication Strategies and Applications. Polymers (Basel) 2022; 14:4833. [PMID: 36432961 PMCID: PMC9694326 DOI: 10.3390/polym14224833] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Hyaluronan (HA) plays a fundamental role in maintaining the homeostasis on skin health. Furthermore, the effect of HA in skin inflammatory diseases is worth studying in the next future. HA and its conjugates change the solubility of active pharmaceutical ingredients, improve emulsion properties, prolong stability, reduce immunogenicity, and provide targeting. HA penetrates to deeper layers of the skin via several mechanisms, which depend on the macromolecular structure and composition of the formulation. The cellular and molecular mechanisms involved in epidermal dysfunction and skin aging are not well understood. Nevertheless, HA is known to selectively activate CD44-mediated keratinocyte signaling that regulates its proliferation, migration, and differentiation. The molecular size of HA is critical for molecular mechanisms and interactions with receptors. High molecular weight HA is used in emulsions and low molecular weight is used to form nanostructured lipid carriers, polymeric micelles, bioconjugates, and nanoparticles. In the fabrication of microneedles, HA is combined with other polymers to enhance mechanical properties for piercing the skin. Hence, this review aims to provide an overview of the current state of the art and last reported ways of processing, and applications in skin drug delivery, which will advocate for their broadened use in the future.
Collapse
Affiliation(s)
- Martin Juhaščik
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolnί Dobrouč, Czech Republic
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Gloria Huerta-Ángeles
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolnί Dobrouč, Czech Republic
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic
| |
Collapse
|
13
|
Pang B, Wang H, Huang H, Liao L, Wang Y, Wang M, Du G, Kang Z. Enzymatic Production of Low-Molecular-Weight Hyaluronan and Its Oligosaccharides: A Review and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14129-14139. [PMID: 36300844 DOI: 10.1021/acs.jafc.2c05709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a nonsulfated linear glycosaminoglycan with a negative charge. Different from the high-molecular-weight HAs, the low-molecular-weight HAs (LMW-HAs, 4-120 kDa) and hyaluronan oligosaccharides (O-HAs, <4 kDa) exhibit certain unique biological properties, owing to which these have a wide range of applications in the field of medicine. However, the chemical synthesis of high-purity LMW-HAs and O-HAs requires complex procedures, which renders this process difficult to achieve. The degradation of HA is achieved under the catalysis of hyaluronidases. In recent years, various hyaluronidase genes have been identified, and their enzymatic properties have been analyzed. In this context, the present review summarizes the hyaluronidases from different sources, which have been characterized. The review focuses on the crystal structure and the catalytic mechanism underlying the biological properties of hyaluronidases. In addition, the molecular weight distributions and the preparation approaches of the enzymatic products LMW-HAs and O-HAs are described. The general orientation of the research on hyaluronidases was speculated based on the existing literature. Accordingly, the efficient large-scale production of LMW-HAs and O-HAs using the green enzymatic approach was anticipated.
Collapse
Affiliation(s)
- Bo Pang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., 678 Tianchen Avenue, Jinan 250010, China
| | - Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lizhi Liao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
14
|
Zhu T, Zhang W, Jiang P, Zhou S, Wang C, Qiu L, Shi H, Cui P, Wang J. Progress in Intradermal and Transdermal Gene Therapy with Microneedles. Pharm Res 2022; 39:2475-2486. [PMID: 36008737 DOI: 10.1007/s11095-022-03376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/17/2022] [Indexed: 01/18/2023]
Abstract
Gene therapy is one of the most widely studied treatments and has the potential to treat a variety of intractable diseases. The skin's limited permeability, as the body's initial protective barrier, drastically inhibits the delivery effect of gene medicine. Given the potential adverse effects and physicochemical features of the medications, improving generic drug penetration into the skin barrier and achieving an effective level of target tissues remains a challenge. Microneedles have made tremendous improvements in aided gene transfer and medication delivery as a unique method. Microneedles offer the advantage of being minimally invasive and painless, as well as the ability to distribute gene medicines straight through the stratum corneum. Microneedles have been used to penetrate skin tissue with various nucleic acids and medicines in recent years, allowing for a wide range of applications in the treatment of skin ailments. This review focuses on skin-related disorders and immunity, and it primarily discusses the progress of microneedle transdermal gene therapy in recent years. It also complements the current major vectors and related microneedle gene therapy applications.
Collapse
Affiliation(s)
- Ting Zhu
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Wenya Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Honglei Shi
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, People's Republic of China.
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, People's Republic of China.
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China.
| |
Collapse
|
15
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
16
|
Chi Y, Huang Y, Kang Y, Dai G, Liu Z, Xu K, Zhong W. The effects of molecular weight of hyaluronic acid on transdermal delivery efficiencies of dissolving microneedles. Eur J Pharm Sci 2022; 168:106075. [PMID: 34813921 DOI: 10.1016/j.ejps.2021.106075] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022]
Abstract
Hyaluronic acid (HA) is widely adopted to fabricate dissolving microneedles for transdermal drug delivery applications, yet the structure-activity relationship between molecular weight of HA and transdermal delivery efficiency of microneedles (HA-MNs) has not been fully explored, particularly in the transdermal delivery of small molecule drugs. Herein, we report the fabrication of three types of HA-MNs of various molecular weights (10k, 74k and 290k Da), which incorporate rhodamine B as the model drug. We assess the influence of molecular weight of HA on the mechanical properties of HA-MNs and transdermal delivery of rhodamine B in vitro and in vivo. The mechanical strength of all types of HA-MNs exceeds the minimal force requirement for skin penetration, with the highest values of compression force found in 10k-HA-MN. Interestingly, 74k-HA-MN that owns a medium mechanical strength, exhibits the highest efficiency in transdermal delivery of rhodamine B in a porcine skin and a Franz cell transdermal model. Further in vivo fluorescence imaging of HA-MN-treated mice reveals a tunable transdermal delivery of rhodamine B, which is controllable according to the molecular weight of HA. Importantly, 74k-HA-MN treatment demonstrates the highest initial delivering amount and longest retention time of rhodamine B in mice. In addition, histological examinations of puncture sites of the skin tissues confirm the complete recovery of skin and excellent biocompatibility of HA-MNs.
Collapse
Affiliation(s)
- Yuquan Chi
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yanping Huang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yixin Kang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Guoru Dai
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ziqi Liu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
17
|
Kubíčková J, Medek T, Husby J, Matonohová J, Vágnerová H, Marholdová L, Velebný V, Chmelař J. Nonwoven Textiles from Hyaluronan for Wound Healing Applications. Biomolecules 2021; 12:16. [PMID: 35053164 PMCID: PMC8773973 DOI: 10.3390/biom12010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/19/2023] Open
Abstract
Nonwoven textiles are used extensively in the field of medicine, including wound healing, but these textiles are mostly from conventional nondegradable materials, e.g., cotton or synthetic polymers such as polypropylene. Therefore, we aimed to develop nonwoven textiles from hyaluronan (HA), a biocompatible, biodegradable and nontoxic polysaccharide naturally present in the human body. For this purpose, we used a process based on wet spinning HA into a nonstationary coagulation bath combined with the wet-laid textile technology. The obtained HA nonwoven textiles are soft, flexible and paper like. Their mechanical properties, handling and hydration depend on the microscale fibre structure, which is tuneable by selected process parameters. Cell viability testing on two relevant cell lines (3T3, HaCaT) demonstrated that the textiles are not cytotoxic, while the monocyte activation test ruled out pyrogenicity. Biocompatibility, biodegradability and their high capacity for moisture absorption make HA nonwoven textiles a promising material for applications in the field of wound healing, both for topical and internal use. The beneficial effect of HA in the process of wound healing is well known and the form of a nonwoven textile should enable convenient handling and application to various types of wounds.
Collapse
Affiliation(s)
- Jolana Kubíčková
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Tomáš Medek
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Jarmila Husby
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Jana Matonohová
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Hana Vágnerová
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Lucie Marholdová
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Josef Chmelař
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| |
Collapse
|
18
|
Gomes KB, D'Souza B, Vijayanand S, Menon I, D'Souza MJ. A Dual-Delivery Platform for Vaccination using Antigen-loaded Nanoparticles in Dissolving Microneedles. Int J Pharm 2021; 613:121393. [PMID: 34929312 DOI: 10.1016/j.ijpharm.2021.121393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Effective vaccines delivered via painless methods would revolutionize the way people approach vaccinations. This study focused on the development of fast-dissolving microneedles (MNs) to deliver antigen-loaded sustained release polymeric nanoparticles (NPs), achieving a dual-delivery platform for vaccination through the skin. The platform utilizes dissolving MNs (dMNs), which penetrate to the epidermal layer of the skin and rapidly dissolve, releasing the antigen-loaded NPs. In this study, seven dissolving microneedle formulations were tested based on screening of various biocompatible and biodegradable polymers and sugars. The lead dMN formulation was selected based on optimal mechanical strength and dissolution of the needles and was loaded with poly(lactic-co-glycolic) acid (PLGA) NPs encapsulating a model influenza matrix 2 (M2) protein antigen. Antigen-loading efficiency in the needles was determined by centrifugation of the lead formulation containing various concentrations of antigen nanoparticles. Next, the reproducibility and translatability of ex vivo mechanical strength and dissolvability of the lead M2 PLGA NP-loaded dMN formulation was assessed by formulating and testing two different microneedle arrays on murine and porcine skin. Finally, the lead microneedle array was loaded with fluorescent dye NPs and evaluated for pore formation and closure in vivo in a murine model. This proof-of-concept study yielded an easy-to-formulate, well-characterized, translatable antigen NP-loaded dMN platform for transdermal vaccine administration.
Collapse
Affiliation(s)
- Keegan Braz Gomes
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA USA
| | - Bernadette D'Souza
- Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, College of Health Sciences, Samford University, Birmingham, AL USA
| | - Sharon Vijayanand
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA USA
| | - Ipshita Menon
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA USA
| | - Martin J D'Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA USA.
| |
Collapse
|
19
|
Microneedle-Mediated Vaccination: Innovation and Translation. Adv Drug Deliv Rev 2021; 179:113919. [PMID: 34375682 DOI: 10.1016/j.addr.2021.113919] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Vaccine administration by subcutaneous or intramuscular injection is the most commonly prescribed route for inoculation, however, it is often associated with some deficiencies such as low compliance, high professionalism, and risk of infection. Therefore, the application of microneedles for vaccine delivery has gained widespread interests in the past few years due to its high compliance, minimal invasiveness, and convenience. This review focuses on recent advances in the development and application of microneedles for vaccination based on different delivery strategies, and introduces the current status of microneedle-mediated vaccination in clinical translation. The prospects for its application including opportunities and challenges are further discussed.
Collapse
|
20
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 336] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
21
|
Polymeric microneedles for transdermal delivery of nanoparticles: Frontiers of formulation, sterility and stability aspects. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Xing M, Yang G, Zhang S, Gao Y. Acid-base combination principles for preparation of anti-acne dissolving microneedles loaded with azelaic acid and matrine. Eur J Pharm Sci 2021; 165:105935. [PMID: 34284096 DOI: 10.1016/j.ejps.2021.105935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 07/04/2021] [Indexed: 11/29/2022]
Abstract
To overcome the poor solubility, skin irritation, and low permeability of azelaic acid (AZA) existed on the marketed formulations, a co-drug principle via matrine (MAT) was adopted to prepare anti-acne dissolving microneedles (DMNs). The formula was optimized according to the solubility and antibacterial activity of novel ionic salt. The results indicated solubilization of AZA could be achieved at a molar ratio between AZA and MAT was 1:1. Meanwhile, synergistic antibacterial and anti-irritative properties were acquired. The matrix materials were composed of sodium carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), and trehalose. And drug loadings of AZA and MAT in DMNs were 201.88 ± 4.81 µg and 259.71 ± 1.72 µg, respectively. After insertion into porcine skin for 10 h, the cumulative permeability of AZA and MAT were 68.16% ± 3.79% and 57.37 ± 5.17%, respectively, while just 4.13 ± 0.39% (p < 0.01) was detected for commercially available AZA gel. In vitro antibacterial experiment, bacteriostatic rates of DMNs were all above 95% for Staphylococcus aureus, Staphylococcus epidermidis, and Propionibacterium acnes. Besides, DMNs exhibited no cytotoxicity and skin irritation. In conclusion, combination between AZA and MAT addressed shortcomings of AZA, and made it easier, safer, and more effective in acne treatment.
Collapse
Affiliation(s)
- Mengzhen Xing
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozhong Yang
- Beijing CAS Microneedle Technology Ltd, Beijing 102609, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; Beijing CAS Microneedle Technology Ltd, Beijing 102609, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing CAS Microneedle Technology Ltd, Beijing 102609, China.
| |
Collapse
|
23
|
Wang C, Liu S, Xu J, Gao M, Qu Y, Liu Y, Yang Y, Cui X. Dissolvable microneedles based on Panax notoginseng polysaccharide for transdermal drug delivery and skin dendritic cell activation. Carbohydr Polym 2021; 268:118211. [PMID: 34127215 DOI: 10.1016/j.carbpol.2021.118211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
This work explored the feasibility of using biological polysaccharide to fabricate dissolvable microneedles (MNs) for the purpose of transdermal drug delivery and skin dendritic cell (DC) activation. Panax notoginseng polysaccharide (PNPS), a naturally derived immunoactive macromolecule, was used to fabricate dissolvable MNs. The prepared PNPS MNs showed a satisfactory mechanical strength and a skin penetration depth. By Franz diffusion cell assay, the PNPS MNs demonstrated a high transdermal delivery amount of model drugs. Furthermore, with the assistance of MNs, PNPS easily penetrated across the stratum corneum and target ear skin DCs, activating the maturation and migration of immunocytes by increasing the expressions of CD40, CD80, CD86, and MHC II of skin DCs. Consequently, the matured DCs migrated to the auricular draining lymph nodes and increased the proportions of CD4+ T and CD8+ T cells. Thus, PNPS might be a promising biomaterial for transdermal drug delivery, with adjuvant potential.
Collapse
Affiliation(s)
- Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Shengnan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Junwei Xu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingju Gao
- Wenshan University, Yunnan Province, Wenshan 663000, China
| | - Yuan Qu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
24
|
Yadav PR, Munni MN, Campbell L, Mostofa G, Dobson L, Shittu M, Pattanayek SK, Uddin MJ, Das DB. Translation of Polymeric Microneedles for Treatment of Human Diseases: Recent Trends, Progress, and Challenges. Pharmaceutics 2021; 13:1132. [PMID: 34452093 PMCID: PMC8401662 DOI: 10.3390/pharmaceutics13081132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing search for biodegradable and biocompatible microneedles (MNs) that are strong enough to penetrate skin barriers, easy to prepare, and can be translated for clinical use continues. As such, this review paper is focused upon discussing the key points (e.g., choice polymeric MNs) for the translation of MNs from laboratory to clinical practice. The review reveals that polymers are most appropriately used for dissolvable and swellable MNs due to their wide range of tunable properties and that natural polymers are an ideal material choice as they structurally mimic native cellular environments. It has also been concluded that natural and synthetic polymer combinations are useful as polymers usually lack mechanical strength, stability, or other desired properties for the fabrication and insertion of MNs. This review evaluates fabrication methods and materials choice, disease and health conditions, clinical challenges, and the future of MNs in public healthcare services, focusing on literature from the last decade.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India;
| | | | - Lauryn Campbell
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Golam Mostofa
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
| | - Lewis Dobson
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Morayo Shittu
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | | | - Md. Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| |
Collapse
|
25
|
Bubić Pajić N, Vucen S, Ilić T, O'Mahony C, Dobričić V, Savić S. Comparative efficacy evaluation of different penetration enhancement strategies for dermal delivery of poorly soluble drugs - A case with sertaconazole nitrate. Eur J Pharm Sci 2021; 164:105895. [PMID: 34087357 DOI: 10.1016/j.ejps.2021.105895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023]
Abstract
The aim of this study was to compare the efficacy of different approaches for enhancement of dermal availability of the highly lipophilic antifungal model drug - sertaconazole nitrate (SN). For this purpose, a physical penetration enhancer - dissolving microneedles (MNs) was fabricated by filling moulds with liquid formulation based on polyvinylpyrrolidone and loaded with SN. Dissolving MNs were characterised regarding their morphological and mechanical characteristics. A penetration enhancement efficacy of MNs was evaluated in vitro using porcine ear skin in parallel with the efficacy of formerly developed chemical penetration enhancer - biocompatible microemulsion (ME) formulation. Moreover, an ability of solid silicon MNs to significantly improve delivery of SN from ME into the skin has also been investigated. The obtained results showed that dissolving MNs had satisfying morphological properties and mechanical strength. This type of MNs provided comparable drug deposition in the skin as ME formulation, but also revealed an indication of percutaneous absorption of a portion of the administered drug dose. However, the penetration/permeation study results were largely influenced by experimental setup and dosing regimen. Although solid silicon MNs assisted SN dermal delivery led to increase of drug cutaneous retention (1.9-fold) under infinite dosing regimen, the synergistic action of solid MNs and ME applied under finite dosing was more pronounced in comparison with the application either of physical (dissolving MNs) or chemical enhancer (ME) alone. Namely, SN amount accumulated into the skin increased up to 4.67 and 4.37 folds in comparison with ME and dissolving MNs alone, respectively, while reaching a significant decrease in drug permeation through the skin compared to the use of dissolving MNs. Application of ME per se was the only approach that provided selective in vitro dermal drug delivery without SN permeation across the skin. However, despite both types of the used MNs lead to SN permeation in vitro, the ratio between the drug amount deposited in the skin and SN content permeated was significantly higher for the combined approach (12.05) than for dissolving MNs (2.10). Therefore, a combination of solid silicon MNs and biocompatible ME favoured more pronouncedly SN skin accumulation, which is preferable in the treatment of skin fungal infections.
Collapse
Affiliation(s)
- Nataša Bubić Pajić
- University of Banja Luka, Faculty of Medicine, Department of Pharmaceutical Technology and Cosmetology, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina.
| | - Sonja Vucen
- School of Pharmacy, University College Cork, Cork, Ireland.
| | - Tanja Ilić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Vladimir Dobričić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 11221 Belgrade, Serbia.
| | - Snežana Savić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
26
|
A Perspective on Imiquimod Microneedles for Treating Warts. Pharmaceutics 2021; 13:pharmaceutics13050607. [PMID: 33922157 PMCID: PMC8146107 DOI: 10.3390/pharmaceutics13050607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Warts are a common skin problem and are caused by infection with a virus. Warts are currently mainly treated by therapies involving ablating tissue or interrupting cellular division. However, all these existing treatments are either invasive or cause skin pain and tissue destruction. Imiquimod is a synthetic compound that belongs to the imidazoquinolinone family. It has been successfully used as a topical drug to treat external anogenital warts. However, topical imiquimod cream for warts is restricted by low skin permeability, and several side effects such as itching, pain, and erosions occur most frequently following topical treatment. Microneedle technology, a minimally invasive drug delivery system, has the potential to overcome the barrier of the stratum corneum. This technique would also offer a painless treatment choice and provide personalized therapies. In the study, we loaded imiquimod within dissolving microneedles using the molding method. Gelatin was used as a structural material for microneedle formation without adding a crosslinker. To our knowledge, this is the first study of using dissolving microneedles and exploring their utilization with imiquimod for the treatment of warts. First, we added fluorescent dye and trypan blue into the microneedles to evaluate the status of drugs in the microneedles and the degradation property of microneedles made of gelatin, respectively. Here we also prove the strength of the imiquimod microneedles and study their capability to penetrate the skin. The results show no apparent differences in mechanical failure after an additional imiquimod-loaded. Besides, we provide evidence that imiquimod microneedles induce secreted embryonic alkaline phosphatase (SEAP) in the RAW 264.7 macrophages. Gelatin does not affect the imiquimod in microneedles; a similar immune response was affected by the imiquimod alone or imiquimod complexed with gelatin. Our research demonstrates a proof of concept of using imiquimod microneedles for future warts treatment.
Collapse
|
27
|
Yan Q, Wang W, Weng J, Zhang Z, Yin L, Yang Q, Guo F, Wang X, Chen F, Yang G. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimer's disease. Drug Deliv 2020; 27:1147-1155. [PMID: 32729341 PMCID: PMC7470133 DOI: 10.1080/10717544.2020.1797240] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 01/07/2023] Open
Abstract
Increasingly attention has been paid to the transdermal drug delivery systems with microneedles owing to their excellent compliance, high efficiency, and controllable drug release, therefore, become promising alternative with tremendous advantages for delivering specific drugs such as huperzine A (Hup A) for treatment of Alzheimer's disease (AD) yet with low oral bioavailability. The purpose of the present study is to design, prepare, and evaluate a dissolving microneedle patch (DMNP) as a transdermal delivery system for the Hup A, investigating its in vitro drug release profiles and in vivo pharmacokinetics as well as pharmacodynamics treating of AD. Skin penetration experiments and intradermal dissolution tests showed that the blank DMNP could successfully penetrate the skin with an adequate depth and could be quickly dissolved within 5 min. In vitro transdermal release tests exhibited that more than 80% of the Hup A was accumulatively permeated from DMNP through the skin within three days, indicating a sustained release profile. In vivo pharmacokinetic analysis demonstrated that the DMNP group resulted in longer T max (twofold), longer t 1/2 (fivefold), lower C max (3:4), and larger AUC(0-∞) (twofold), compared with the oral group at the same dose of Hup A. Pharmacodynamic research showed a significant improvement in cognitive function in AD rats treated with DMNP-Hup A and Oral-Hup A, as compared to the model group without treatment. Those results demonstrated that this predesigned DMNP is a promising alternative to deliver Hup A transdermally for the treatment of AD.
Collapse
Affiliation(s)
- Qinying Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou, China
| | - Weiwei Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jiaqi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Zhenghan Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Lina Yin
- Zhejiang Academy of Medical Sciences, Institute of Materia Medica, Hangzhou, China
| | - Qingliang Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou, China
| | - Fangyuan Guo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xingang Wang
- Department of Burns, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Fan Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Life Sciences School of Hubei University, Wuhan, China
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
28
|
Iacob AT, Drăgan M, Ionescu OM, Profire L, Ficai A, Andronescu E, Confederat LG, Lupașcu D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020; 12:E983. [PMID: 33080849 PMCID: PMC7589858 DOI: 10.3390/pharmaceutics12100983] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, despite the thoroughgoing scientific research carried out in the area of wound healing management, the treatment of skin injuries, regardless of etiology remains a big provocation for health care professionals. An optimal wound dressing should be nontoxic, non-adherent, non-allergenic, should also maintain a humid medium at the wound interfacing, and be easily removed without trauma. For the development of functional and bioactive dressings, they must meet different conditions such as: The ability to remove excess exudates, to allow gaseous interchange, to behave as a barrier to microbes and to external physical or chemical aggressions, and at the same time to have the capacity of promoting the process of healing by stimulating other intricate processes such as differentiation, cell adhesion, and proliferation. Over the past several years, various types of wound dressings including hydrogels, hydrocolloids, films, foams, sponges, and micro/nanofibers have been formulated, and among them, the electrospun nanofibrous mats received an increased interest from researchers due to the numerous advantages and their intrinsic properties. The drug-embedded nanofibers are the potential candidates for wound dressing application by virtue of: Superior surface area-to volume ratio, enormous porosity (can allow oxy-permeability) or reticular nano-porosity (can inhibit the microorganisms'adhesion), structural similitude to the skin extracellular matrix, and progressive electrospinning methodology, which promotes a prolonged drug release. The reason that we chose to review the formulation of electrospun nanofibers based on polysaccharides as dressings useful in wound healing was based on the ever-growing research in this field, research that highlighted many advantages of the nanofibrillary network, but also a marked versatility in terms of numerous active substances that can be incorporated for rapid and infection-free tissue regeneration. In this review, we have extensively discussed the recent advancements performed on electrospun nanofibers (eNFs) formulation methodology as wound dressings, and we focused as well on the entrapment of different active biomolecules that have been incorporated on polysaccharides-based nanofibers, highlighting those bioagents capable of improving the healing process. In addition, in vivo tests performed to support their increased efficacy were also listed, and the advantages of the polysaccharide nanofiber-based wound dressings compared to the traditional ones were emphasized.
Collapse
Affiliation(s)
- Andreea-Teodora Iacob
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Maria Drăgan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Oana-Maria Ionescu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Lenuța Profire
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Luminița Georgeta Confederat
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania;
| | - Dan Lupașcu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| |
Collapse
|
29
|
Champeau M, Jary D, Mortier L, Mordon S, Vignoud S. A facile fabrication of dissolving microneedles containing 5-aminolevulinic acid. Int J Pharm 2020; 586:119554. [DOI: 10.1016/j.ijpharm.2020.119554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/30/2023]
|
30
|
Leone M, Romeijn S, Du G, Le Dévédec S, Vrieling H, O'Mahony C, Bouwstra J, Kersten G. Diphtheria toxoid dissolving microneedle vaccination: Adjuvant screening and effect of repeated-fractional dose administration. Int J Pharm 2020; 580:119182. [DOI: 10.1016/j.ijpharm.2020.119182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
|