1
|
Pandav G, Karanwad T, Banerjee S. 3D printed gastroretentive floating-hollow capsular device (GRF-HCD) for levofloxacin oral delivery using selective laser sintering (SLS) platform technology. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-18. [PMID: 39898585 DOI: 10.1080/09205063.2025.2458841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
The development of gastroretentive drug delivery systems is one such instance, which was developed to improve the oral bioavailability and effectiveness of drugs, which has a poor absorption window in the upper GIT and/or triggers local activity such as duodenal and stomach activity. In this work, the objective of sintering gastroretentive dosage forms was to sustain the release of levofloxacin in the gastric region for an extended period of time. Selective laser sintering (SLS)-mediated powder bed fusion 3D printing technology was utilized to design and fabricate a modified-release gastroretentive floating-hollow capsular device (GRF-HCD) in three distinct capsule sizes namely, 000, 00, and 0 with the aid of pharmaceutical grade polymers (combinations of Kolliphor P188 and Kollidon SR in 1:1 ratio). Sintered GRF-HCD was further subjected to morphological analysis, weight variation, and swelling index. In addition, in vitro and in vivo buoyancy studies were performed in an animal model using X-ray imaging. Finally, the in vitro drug release from GRF-HCD was performed in simulated gastric pH condition (pH-1.2) upto 12 h. Levofloxacin concentration was then quantified using validated RP-HPLC method. The in vitro floating behaviour was mimicked with the in vivo floating, where the GRF-HCD was retained in the rabbit stomach for an extended period which will help to sustain the drug release for a longer period and maintained the maximum concentration of levofloxacin in the gastric region.
Collapse
Affiliation(s)
- Ganesh Pandav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Tukaram Karanwad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| |
Collapse
|
2
|
Auel T, Mentrup AFC, Oldfield LR, Seidlitz A. 3D printing of pharmaceutical dosage forms: Recent advances and applications. Adv Drug Deliv Rev 2025; 217:115504. [PMID: 39706526 DOI: 10.1016/j.addr.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Three-dimensional (3D) printing, also referred to as additive manufacturing, is considered to be a game-changing technology in many industries and is also considered to have potential use cases in pharmaceutical manufacturing, especially if individualization is desired. In this review article the authors systematically researched literature published during the last 5 years (2019 - spring 2024) on the topic of 3D printed dosage forms. Besides all kinds of oral dosage forms ranging from tablets and capsules to films, pellets, etc., numerous reports were also identified on parenteral and cutaneous dosage forms and also rectal, vaginal, dental, intravesical, and ophthalmic preparations. In total, more than 500 publications were identified and grouped according to the site of administration, and an overview of the manuscripts is presented here. Furthermore, selected publications are described and discussed in more detail. The review highlights the very different approaches that are currently used in order to develop 3D printed dosage forms but also addresses remaining challenges.
Collapse
Affiliation(s)
- Tobias Auel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Aaron Felix Christofer Mentrup
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; INVITE GmbH, Formulation Technology, Otto-Bayer-Straße 32, 51061 Köln, Germany
| | - Lee Roy Oldfield
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anne Seidlitz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, Kelchstraße 31, 12169 Berlin, Germany.
| |
Collapse
|
3
|
Ni Q, Li Z, Baqing L, Li T, Xu H, Li F, Peng N, Wang C, Lu J, Wang Z, Wang K, Jiang C, Wu L, Yang Y, Zhou H, Gu Y, Zhang J. Strap-on Buoyant Device to Enhance Gastrointestinal Tract Retention of Felodipine Osmotic Pump Tablets. AAPS PharmSciTech 2024; 25:260. [PMID: 39487263 DOI: 10.1208/s12249-024-02976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Osmotic pump systems require prolonged retention time in the stomach to provide enhanced bioavailability and regulated release, which is quite challenging. This study used a three-dimensional printing (3DP) technique combined with a gastro-retentive floating device (GRFD) to extend the retention of the osmotic pump in the stomach and enhance its bioavailability. The strap-on buoyant device was fabricated by stereolithography 3DP and incorporated a felodipine osmotic pump tablet used in clinical practice, which enabled it to float in the stomach or dissolution media without any floating lag time. The components of the device were affixed using a snap-fix mechanism. GRFD dissolution study revealed a notable in vitro floating capability, lasting over 24 h, with a release profile similarity factor f2 = 65.28 compared to the naked tablet dissolution profile. The pharmacokinetics of felodipine osmotic pump in beagles showed a Cmax of 1.893 ng/mL, which increased to 4.511 ng/mL with GRFD. The delivery of an osmotic pump with GRFD enhanced the AUC0-∞ of felodipine from 10.20 ng/mL·h to 26.54 ng/mL·h. In conclusion, the strap-on buoyant device has been successfully designed to enhance gastrointestinal tract retention of felodipine osmotic pumps and bioavailability in beagles.
Collapse
Affiliation(s)
- Qijia Ni
- Anhui University of Chinese Medicine, Hefei, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226133, China
| | - Zeru Li
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Libumo Baqing
- Anhui University of Chinese Medicine, Hefei, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226133, China
| | - Tianfu Li
- Shenyang Pharmaceutical University, Shenyang, 110016, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226133, China
| | - Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Falan Li
- Anhui University of Chinese Medicine, Hefei, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226133, China
| | - Ningning Peng
- Shenyang Pharmaceutical University, Shenyang, 110016, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226133, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jianhua Lu
- Nantong Haimen People's Hospital, Nantong, 226199, China
| | - Zhigang Wang
- Nantong Haimen People's Hospital, Nantong, 226199, China
| | - Kai Wang
- InnoStar Bio-tech Nantong Co., Ltd, Nantong, 226133, China
| | - Chao Jiang
- InnoStar Bio-tech Nantong Co., Ltd, Nantong, 226133, China
| | - Li Wu
- Anhui University of Chinese Medicine, Hefei, 230000, China
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shenyang Pharmaceutical University, Shenyang, 110016, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226133, China
| | - Ye Yang
- Anhui University of Chinese Medicine, Hefei, 230000, China.
| | - Hua Zhou
- Hefei Lifeon Pharmaceutical Co., Ltd, Hefei, 230088, China.
| | - Yongdong Gu
- InnoStar Bio-tech Nantong Co., Ltd, Nantong, 226133, China.
| | - Jiwen Zhang
- Anhui University of Chinese Medicine, Hefei, 230000, China.
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226133, China.
| |
Collapse
|
4
|
Mora-Castaño G, Domínguez-Robles J, Himawan A, Millán-Jiménez M, Caraballo I. Current trends in 3D printed gastroretentive floating drug delivery systems: A comprehensive review. Int J Pharm 2024; 663:124543. [PMID: 39094921 DOI: 10.1016/j.ijpharm.2024.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Gastrointestinal (GI) environment is influenced by several factors (gender, genetics, sex, disease state, food) leading to oral drug absorption variability or to low bioavailability. In this scenario, gastroretentive drug delivery systems (GRDDS) have been developed in order to solve absorption problems, to lead to a more effective local therapy or to allow sustained drug release during a longer time period than the typical oral sustained release dosage forms. Among all GRDDS, floating systems seem to provide a promising and practical approach for achieving a long intra-gastric residence time and sustained release profile. In the last years, a novel technique is being used to manufacture this kind of systems: three-dimensional (3D) printing technology. This technique provides a versatile and easy process to manufacture personalized drug delivery systems. This work presents a systematic review of the main 3D printing based designs proposed up to date to manufacture floating systems. We have also summarized the most important parameters involved in buoyancy and sustained release of the systems, in order to facilitate the scale up of this technology to industrial level. Finally, a section discussing about the influence of materials in drug release, their biocompatibility and safety considerations have been included.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain.
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
5
|
Barcena AJR, Ravi P, Kundu S, Tappa K. Emerging Biomedical and Clinical Applications of 3D-Printed Poly(Lactic Acid)-Based Devices and Delivery Systems. Bioengineering (Basel) 2024; 11:705. [PMID: 39061787 PMCID: PMC11273440 DOI: 10.3390/bioengineering11070705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(lactic acid) (PLA) is widely used in the field of medicine due to its biocompatibility, versatility, and cost-effectiveness. Three-dimensional (3D) printing or the systematic deposition of PLA in layers has enabled the fabrication of customized scaffolds for various biomedical and clinical applications. In tissue engineering and regenerative medicine, 3D-printed PLA has been mostly used to generate bone tissue scaffolds, typically in combination with different polymers and ceramics. PLA's versatility has also allowed the development of drug-eluting constructs for the controlled release of various agents, such as antibiotics, antivirals, anti-hypertensives, chemotherapeutics, hormones, and vitamins. Additionally, 3D-printed PLA has recently been used to develop diagnostic electrodes, prostheses, orthoses, surgical instruments, and radiotherapy devices. PLA has provided a cost-effective, accessible, and safer means of improving patient care through surgical and dosimetry guides, as well as enhancing medical education through training models and simulators. Overall, the widespread use of 3D-printed PLA in biomedical and clinical settings is expected to persistently stimulate biomedical innovation and revolutionize patient care and healthcare delivery.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Suprateek Kundu
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Mohammed AA, Alqahtani AA, Ahmed MM. Design and fabrication of 3D-printed gastric floating tablets of captopril: effect of geometry and thermal crosslinking of polymer on floating behavior and drug release. Pharm Dev Technol 2024; 29:517-529. [PMID: 38721970 DOI: 10.1080/10837450.2024.2352491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The present study aims to investigate the potential of the 3D printing technique to design gastroretentive floating tablets (GFTs) for modifying the drug release profile of an immediate-release tablet. A 3D-printed floating shell enclosing a captopril tablet was designed having varying number of drug-release windows. The impact of geometrical changes in the design of delivery system and thermal cross-linking of polymers were evaluated to observe the influence on floating ability and drug release. Water uptake, water insolubilization, Differential Scanning Calorimetry (DSC), and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) were performed to assess the degree of thermal cross-linking of polyvinyl alcohol (PVA) filament. The 3D-printed GFT9 was considered the optimized gastric floating tablet that exhibited >12 h of total floating time with zero floating lag time and successfully accomplished modified-drug release by exhibiting >80% of drug release in 8 h. The zero-order release model, with an r2 value of 0.9923, best fitted the drug release kinetic data of the GFT9, which followed a super case II drug transport mechanism with an n value of 0.95. The optimized gastric floating device (GFT9) also exhibited the highest MDT values (238.55), representing slow drug release from the system due to thermal crosslinking and the presence of a single drug-releasing window in the device.
Collapse
Affiliation(s)
- Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Abdulsalam A Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
7
|
Bei H, Zhao P, Shen L, Yang Q, Yang Y. Assembled pH-Responsive Gastric Drug Delivery Systems Based on 3D-Printed Shells. Pharmaceutics 2024; 16:717. [PMID: 38931841 PMCID: PMC11206575 DOI: 10.3390/pharmaceutics16060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric acid secretion is closely associated with the development and treatment of chronic gastritis, gastric ulcers, and reflux esophagitis. However, gastric acid secretion is affected by complex physiological and pathological factors, and real-time detection and control are complicated and expensive. A gastric delivery system for antacids and therapeutics in response to low pH in the stomach holds promise for smart and personalized treatment of stomach diseases. In this study, pH-responsive modular units were used to assemble various modular devices for self-regulation of pH and drug delivery to the stomach. The modular unit with a release window of 50 mm2 could respond to pH and self-regulate within 10 min, which is related to its downward floatation and internal gas production. The assembled devices could stably float downward in the medium and detach sequentially at specific times. The assembled devices loaded with antacids exhibited smart pH self-regulation under complex physiological and pathological conditions. In addition, the assembled devices loaded with antacids and acid suppressors could multi-pulse or prolong drug release after rapid neutralization of gastric acid. Compared with traditional coating technology, 3D printing can print the shell layer by layer, flexibly adjust the internal and external structure and composition, and assemble it into a multi-level drug release system. Compared with traditional coating, 3D-printed shells have the advantage of the flexible adjustment of internal and external structure and composition, and are easy to assemble into a complex drug delivery system. This provides a universal and flexible strategy for the personalized treatment of diseases with abnormal gastric acid secretion, especially for delivering acid-unstable drugs.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.B.); (P.Z.); (L.S.); (Q.Y.)
| |
Collapse
|
8
|
Couți N, Porfire A, Iovanov R, Crișan AG, Iurian S, Casian T, Tomuță I. Polyvinyl Alcohol, a Versatile Excipient for Pharmaceutical 3D Printing. Polymers (Basel) 2024; 16:517. [PMID: 38399895 PMCID: PMC10893462 DOI: 10.3390/polym16040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Three-dimensional (3D) printing in the pharmaceutical field allows rapid manufacturing of a diverse range of pharmaceutical dosage forms, including personalized items. The application of this technology in dosage form manufacturing requires the judicious selection of excipients because the selected materials must be appropriate to the working principle of each technique. Most techniques rely on the use of polymers as the main material. Among the pharmaceutically approved polymers, polyvinyl alcohol (PVA) is one of the most used, especially for fused deposition modeling (FDM) technology. This review summarizes the physical and chemical properties of pharmaceutical-grade PVA and its applications in the manufacturing of dosage forms, with a particular focus on those fabricated through FDM. The work provides evidence on the diversity of dosage forms created using this polymer, highlighting how formulation and processing difficulties may be overcome to get the dosage forms with a suitable design and release profile.
Collapse
Affiliation(s)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (N.C.); (R.I.); (A.G.C.); (S.I.); (T.C.); (I.T.)
| | | | | | | | | | | |
Collapse
|
9
|
Parvanda R, Kala P, Sharma V. Bibliometric Analysis-Based Review of Fused Deposition Modeling 3D Printing Method (1994-2020). 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:383-405. [PMID: 38389670 PMCID: PMC10880680 DOI: 10.1089/3dp.2021.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
This study aimed at the detailed bibliometric analysis (BA) of fused deposition modeling (FDM) to understand the trend and research area. Web of Science database was used for extracting data using keywords, and 2793 documents were analyzed. From the analysis, the most influential and productive authors, countries, sources, and so on were identified and corresponding interrelations were represented by a three-field plot. Lotka's law was derived for author productivity and its reliability was verified by the Kolmogorov-Smirnov (K-S) test. Bradford's law was used for identifying the core sources contributing to the field of FDM. From the trend topic analysis, it was found that initially the research was focused upon removing error related to deposition as well as part orientation, but with the course of time, it diversified to include topics such as optimization of printing parameters, materials, and applications. Based on the inferences from BA, the article also discusses on current research trend and highlights certain future areas for research work.
Collapse
Affiliation(s)
- Rishi Parvanda
- Mechanical Engineering Department, BITS Pilani, Pilani, India
| | - Prateek Kala
- Mechanical Engineering Department, BITS Pilani, Pilani, India
| | - Varun Sharma
- Mechanical and Industrial Engineering Department, IIT Roorkee, Roorkee, India
| |
Collapse
|
10
|
Mishra Y, Mishra V, Aljabali AAA, El-Tanani M, Naikoo GA, Charbe N, Chava SR, Tambuwala MM. 3D Printed Personalized Colon-targeted Tablets: A Novel Approach in Ulcerative Colitis Management. Curr Drug Deliv 2024; 21:1211-1225. [PMID: 37718525 DOI: 10.2174/1567201821666230915150544] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are two types of idiopathic inflammatory bowel disease (IBD) that are increasing in frequency and incidence worldwide, particularly in highly industrialized countries. Conventional tablets struggle to effectively deliver anti-inflammatory drugs since the inflammation is localized in different areas of the colon in each patient. The goal of 3D printing technology in pharmaceutics is to create personalized drug delivery systems (DDS) that are tailored to each individual's specific needs. This review provides an overview of existing 3D printing processes, with a focus on extrusion-based technologies, which have received the most attention. Personalized pharmaceutical products offer numerous benefits to patients worldwide, and 3D printing technology is becoming more affordable every day. Custom manufacturing of 3D printed tablets provides innovative ideas for developing a tailored colon DDS. In the future, 3D printing could be used to manufacture personalized tablets for UC patients based on the location of inflammation in the colon, resulting in improved therapeutic outcomes and a better quality of life.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara (Punjab)-144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara (Punjab)-144411, India
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Nitin Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | | | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS. United Kingdom
| |
Collapse
|
11
|
Alqahtani AA, Mohammed AA, Fatima F, Ahmed MM. Fused Deposition Modelling 3D-Printed Gastro-Retentive Floating Device for Propranolol Hcl Tablets. Polymers (Basel) 2023; 15:3554. [PMID: 37688178 PMCID: PMC10490505 DOI: 10.3390/polym15173554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Three-dimensional printing has revolutionized drug manufacturing and has provided a solution to the limitations associated with the conventional manufacturing method by designing complex drug delivery systems with customized drug release profiles for personalized therapies. The present investigation aims to design a gastric floating tablet with prolonged gastric floating time and sustained drug release profile. In the present study, a gastro retentive floating device (GRFD) was designed and fabricated using a fused deposition modelling (FDM)-based 3D printing technique. This device acts as a multifunctional dosage form exhibiting prolonged gastric retention time and sustained drug release profile with improved oral bioavailability in the upper gastrointestinal tract. Commercial polyvinyl alcohol (PVA) and polylactic acid (PLA) filaments were used to design GRFD, which was comprised of dual compartments. The outer sealed compartment acts as an air-filled chamber that imparts buoyancy to the device and the inner compartment is filled with a commercial propranolol hydrochloride immediate-release tablet. The device is designed as a round-shaped shell with a central opening of varying size (1 mm, 2 mm, 3 mm, and 4 mm), which acts as a drug release window. Scanning electron microscope (SEM) images were used to determine morphological characterization. The in vitro buoyancy and drug release were evaluated using the USP type II dissolution apparatus. All the designed GRFDs exhibit good floating ability and sustained drug release profiles. GRFDs fabricated using PLA filament show maximum buoyancy (>24 h) and sustained drug release for up to 10 h. The floating ability and drug release from the developed devices were governed by the drug release window opening size and the filament material affinity towards the gastric fluid. The designed GRFDs show great prospects in modifying the drug release characteristics and could be applied to any conventional immediate-release product.
Collapse
Affiliation(s)
- Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
12
|
Lopez-Vidal L, Paredes AJ, Palma SD, Real JP. Design and Development of Sublingual Printlets Containing Domperidone Nanocrystals Using 3D Melting Solidification Printing Process (MESO-PP). Pharmaceutics 2023; 15:pharmaceutics15051459. [PMID: 37242699 DOI: 10.3390/pharmaceutics15051459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Domperidone (DOM) is a drug commonly used to treat nausea and vomiting, as well as gastrointestinal disorders. However, its low solubility and extensive metabolism pose significant administration challenges. In this study, we aimed to improve DOM solubility and avoid its metabolism by developing nanocrystals (NC) of DOM through a 3D printing technology-melting solidification printing process (MESO-PP)-to be delivered via a solid dosage form (SDF) that can be administered sublingually. We obtained DOM-NCs using the wet milling process and designed an ultra-rapid release ink (composed of PEG 1500, propylene glycol, sodium starch glycolate, croscarmellose sodium, and sodium citrate) for the 3D printing process. The results demonstrated an increase in the saturation solubility of DOM in both water and simulated saliva without any physicochemical changes in the ink as observed by DSC, TGA, DRX, and FT-IR. The combination of nanotechnology and 3D printing technology enabled us to produce a rapidly disintegrating SDF with an improved drug-release profile. This study demonstrates the potential of developing sublingual dosage forms for drugs with low aqueous solubility using nanotechnology and 3D printing technology, providing a feasible solution to the challenges associated with the administration of drugs with low solubility and extensive metabolism in pharmacology.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Alejandro J Paredes
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Juan Pablo Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la torre y Medina Allende, Córdoba X5000HUA, Argentina
| |
Collapse
|
13
|
Mora-Castaño G, Millán-Jiménez M, Caraballo I. Hydrophilic High Drug-Loaded 3D Printed Gastroretentive System with Robust Release Kinetics. Pharmaceutics 2023; 15:pharmaceutics15030842. [PMID: 36986703 PMCID: PMC10057139 DOI: 10.3390/pharmaceutics15030842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Three-dimensional printing (3DP) technology enables an important improvement in the design of new drug delivery systems, such as gastroretentive floating tablets. These systems show a better temporal and spatial control of the drug release and can be customized based on individual therapeutic needs. The aim of this work was to prepare 3DP gastroretentive floating tablets designed to provide a controlled release of the API. Metformin was used as a non-molten model drug and hydroxypropylmethyl cellulose with null or negligible toxicity was the main carrier. High drug loads were assayed. Another objective was to maintain the release kinetics as robust as possible when varying drug doses from one patient to another. Floating tablets using 10–50% w/w drug-loaded filaments were obtained by Fused Deposition Modelling (FDM) 3DP. The sealing layers of our design allowed successful buoyancy of the systems and sustained drug release for more than 8 h. Moreover, the effect of different variables on the drug release behaviour was studied. It should be highlighted that the robustness of the release kinetics was affected by varying the internal mesh size, and therefore the drug load. This could represent a step forward in the personalization of the treatments, a key advantage of 3DP technology in the pharmaceutical field.
Collapse
|
14
|
Großmann L, Kieckhöfer M, Weitschies W, Krause J. 4D prints of flexible dosage forms using thermoplastic polyurethane with hybrid shape memory effect. Eur J Pharm Biopharm 2022; 181:227-238. [PMID: 36423878 DOI: 10.1016/j.ejpb.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Thermoplastic polyurethanes are versatile materials due to their flexible and elastic properties. In research, medicine, and pharmacy, they are used in dosage forms, implants or as components of medical devices. To gain a deeper understanding of the influences on unfolding or expanding dosage forms, in this publication, 3D printing was used to produce differently shaped and foldable objects from various technical thermoplastic polyurethane filaments. The shape memory behaviour of the dosage forms was exploited to fold and package them in water-soluble hard gelatin capsules. The unfolding time and dimensional recovery of the 3D printed dosage forms were investigated as a function of material properties and shape. As an example, for the use of flexible dosage forms, 3D models have been designed so that their unfolded size is suitable for possible gastric retention. Depending on the shape and material, different unfolding behaviours could be shown. Over a storage period of 60 days, a time related stress on the 4D printed objects was evaluated, which possibly affects the unfolding process. The results of this work aim to be used to evaluate the behaviour of 3D printed unfolding and expanding dosage forms and how they may be suitable for the development of innovative sustained drug delivery concepts or medicinal devices. The basic principle of a hybrid shape memory effect used here could possibly be applied to other drug delivery strategies besides gastric retention.
Collapse
Affiliation(s)
- Linus Großmann
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Maximilian Kieckhöfer
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Julius Krause
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| |
Collapse
|
15
|
Kulinowski P, Malczewski P, Łaszcz M, Baran E, Milanowski B, Kuprianowicz M, Dorożyński P. Development of Composite, Reinforced, Highly Drug-Loaded Pharmaceutical Printlets Manufactured by Selective Laser Sintering-In Search of Relevant Excipients for Pharmaceutical 3D Printing. MATERIALS 2022; 15:ma15062142. [PMID: 35329594 PMCID: PMC8950795 DOI: 10.3390/ma15062142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
3D printing by selective laser sintering (SLS) of high-dose drug delivery systems using pure brittle crystalline active pharmaceutical ingredients (API) is possible but impractical. Currently used pharmaceutical grade excipients, including polymers, are primarily designed for powder compression, ensuring good mechanical properties. Using these excipients for SLS usually leads to poor mechanical properties of printed tablets (printlets). Composite printlets consisting of sintered carbon-stained polyamide (PA12) and metronidazole (Met) were manufactured by SLS to overcome the issue. The printlets were characterized using DSC and IR spectroscopy together with an assessment of mechanical properties. Functional properties of the printlets, i.e., drug release in USP3 and USP4 apparatus together with flotation assessment, were evaluated. The printlets contained 80 to 90% of Met (therapeutic dose ca. 600 mg), had hardness above 40 N (comparable with compressed tablets) and were of good quality with internal porous structure, which assured flotation. The thermal stability of the composite material and the identity of its constituents were confirmed. Elastic PA12 mesh maintained the shape and structure of the printlets during drug dissolution and flotation. Laser speed and the addition of an osmotic agent in low content influenced drug release virtually not changing composition of the printlet; time to release 80% of Met varied from 0.5 to 5 h. Composite printlets consisting of elastic insoluble PA12 mesh filled with high content of crystalline Met were manufactured by 3D SLS printing. Dissolution modification by the addition of an osmotic agent was demonstrated. The study shows the need to define the requirements for excipients dedicated to 3D printing and to search for appropriate materials for this purpose.
Collapse
Affiliation(s)
- Piotr Kulinowski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Piotr Malczewski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Marta Łaszcz
- Department of Falsified Medicines and Medical Devices, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland;
| | - Ewelina Baran
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznan, Poland;
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kępie 3, 64-360 Zbąszyń, Poland;
| | - Mateusz Kuprianowicz
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kępie 3, 64-360 Zbąszyń, Poland;
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Department of Spectroscopic Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
- Correspondence:
| |
Collapse
|
16
|
Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Design and Optimization of 3D-Printed Gastroretentive Floating Devices by Central Composite Design. AAPS PharmSciTech 2021; 22:197. [PMID: 34191172 DOI: 10.1208/s12249-021-02053-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to optimize the size of capsule-shaped 3D-printed devices (CPD) using an experimental design by the response surface methodology to provide a gastroretentive drug delivery system (GRDDS) with optimal floating time. The CPD was fabricated using a fused deposition modeling (FDM) 3D printer. The central composite design was employed for the optimization of the devices. The morphology of the CPD was observed using a digital microscope and scanning electron microscope (SEM). The in vitro floating time and drug release were evaluated using a USP dissolution apparatus II. Appropriate total floating time (TFT) of the devices (more than 3 h) was obtained with the device's body, cap, and bottom thickness of 1.2, 1.8, and 2.9 mm, respectively. The release kinetics of the drug from the devices fitted well with zero-order kinetics. In conclusion, the optimization of CPD for GRDDS using the experimental design provided the devices with desirable floating time and ideal drug release characteristics.
Collapse
|
17
|
Goulart da Silva T, Baptista Pereira D, Ferreira de Carvalho Patricio B, Alvares Sarcinelli M, Antunes Rocha HV, Letichevsky S, Evelise Ribeiro da Silva C, Mendonça RH. Polycaprolactone/alendronate systems intended for production of biomaterials. J Appl Polym Sci 2021. [DOI: 10.1002/app.50678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Talita Goulart da Silva
- Departamento de Engenharia Química/Instituto de Tecnologia Universidade Federal Rural do Rio de Janeiro Seropédica Brazil
| | - Debora Baptista Pereira
- Departamento de Engenharia Química/Instituto de Tecnologia Universidade Federal Rural do Rio de Janeiro Seropédica Brazil
| | | | | | | | - Sonia Letichevsky
- Departamento de Engenharia Química e de Materiais Pontifícia Universidade Católica do Rio de Janeiro Rio de Janeiro Brazil
| | | | - Roberta Helena Mendonça
- Departamento de Engenharia Química/Instituto de Tecnologia Universidade Federal Rural do Rio de Janeiro Seropédica Brazil
| |
Collapse
|
18
|
Can filaments be stored as a shelf-item for on-demand manufacturing of oral 3D printed tablets? An initial stability assessment. Int J Pharm 2021; 600:120442. [PMID: 33675925 DOI: 10.1016/j.ijpharm.2021.120442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
3D printing of oral solid dosage forms is a recently introduced approach for dose personalisation. Fused deposition modelling (FDM) is one of the promising and heavily researched 3D printing techniques in the pharmaceutical field. However, the successful application of this technique relies greatly on the mass manufacturing of physically and chemically stable filaments, that can be readily available as a shelf item to be 3D printed on-demand. In this work, the stability of methacrylate polymers (Eudragit EPO, RL, L100-55 and S100), hydroxypropyl cellulose (HPC SSL) and polyvinyl pyrrolidone (PVP)-based filaments over 6 months were investigated. Filaments manufactured by hot melt extrusion (HME) were stored at either 5 °C or 30 °C + 65 %RH with/without vacuuming. The effects of storage on their dimensions, visual appearance, thermal properties, and 'printability' were analysed. Theophylline content, as well as in vitro release from the 3D printed tablets were also investigated. The filaments were analysed before storage, then after 1, 3 and 6 months from the manufacturing date. Storing the filaments at these conditions had a significant effect on their physical properties, such as shape, dimensions, flexibility and hence compatibility with FDM 3D printing. In general, the methacrylate-based filaments were more physically stable and compatible with FDM 3D printing following storage. Owing to their hygroscopic nature, cellulose- and PVP-based filaments demonstrated a reduction in their glass transition temperature upon storage, leading to increased flexibility and incompatibility with FDM 3D printer. Theophylline contents was not significantly changed during the storage. This work provides preliminary data for the impact of polymer species on the long-term stability of filaments. In general, storage and packaging conditions have a major impact on the potential of on-demand manufacturing of 3D printed tablets using hot melt extruded filaments.
Collapse
|