1
|
Vinarov Z, Müllertz A, Mircheva H, Gouar YL, Menard O, Kumar SP, Paudel A, Dupont D, Augustijns P. Intraluminal enzymatic hydrolysis of API and lipid or polymeric excipients. Int J Pharm 2025; 675:125489. [PMID: 40154815 DOI: 10.1016/j.ijpharm.2025.125489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
The role of intraluminal enzymes for the hydrolysis of active pharmaceutical ingredients (API), prodrugs and pharmaceutical excipients will be reviewed. Carboxylesterases may hydrolyze ester-based API, prodrugs and ester-bond containing polymer excipients, whereas lipases digest lipid formulation excipients, such as mono-, di- and triglycerides. To clarify the conditions that should be mimicked when designing in vitro studies, we briefly review the upper gastrointestinal physiology and provide new data on the inter-individual variability of enzyme activities in human intestinal fluids. Afterwards, the methodology for studying enzymatic hydrolysis of API, prodrugs, lipid and polymeric excipients, as well as the main results that have been obtained, are summarized. In vitro digestion models used to characterize lipid formulations are well described, but data about the hydrolysis of lipid excipients (including surfactants) has been scarce and contradictory. Data on API and prodrug hydrolysis by esterases is available; however, inconsistent use of enzyme types and concentrations limits structure-stability relationships. Hydrolysis of polymer excipients in the lumen has not been significantly explored, with only qualitative data available for cellulose derivates, polyesters, starches, etc. Harmonization of the methodology is required in order to curate larger enzymatic hydrolysis datasets, which will enable mechanistic understanding and theoretical prediction.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria.
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Bioneer: FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - Hristina Mircheva
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| | | | | | - Sharon Pradeep Kumar
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | | | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Shi L, Shen G, Chai R, Gamache PH, Jin Y. A review of polysorbate quantification and its degradation analysis by liquid chromatography coupled with charged aerosol detection. J Chromatogr A 2025; 1742:465651. [PMID: 39765205 DOI: 10.1016/j.chroma.2024.465651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
Polysorbates (PS), as non-ionic surfactants, contribute significantly to the stability of proteins in formulations. However, their lack of chromophore groups makes them difficult to detect with high sensitivity and simplicity. The charged aerosol detector (CAD) is an emerging and universal detector that can provide highly sensitive response signals to non-volatile or semi-volatile substances, such as esters, acids, oxidized aldehydes, and contaminant ions in PS. This article provides a comprehensive review of the qualitative and quantitative analysis of PS, profiling its composition, investigating the reasons for its degradation, and discussing its reaction mechanisms. This review aims to promote the quality control of PS production for the development of stable and safe protein formulations.
Collapse
Affiliation(s)
- Lei Shi
- Thermofisher Scientific (Shanghai) Instrument Co. Ltd. Building 3, No.27, Xin Jinqiao Rd., Pudong Dis., Shanghai 201206, China
| | - Guobin Shen
- Thermofisher Scientific (China) Co. Ltd. Building A, No.2517 Jinke Road, Pudong District, Shanghai 201203, China
| | - Ruiping Chai
- Thermofisher Scientific (China) Co. Ltd. Building A, No.2517 Jinke Road, Pudong District, Shanghai 201203, China
| | | | - Yan Jin
- Thermofisher Scientific (China) Co. Ltd. Building A, No.2517 Jinke Road, Pudong District, Shanghai 201203, China.
| |
Collapse
|
3
|
Felix MN, Waerner T, Lakatos D, Reisinger B, Fischer S, Garidel P. Polysorbates degrading enzymes in biotherapeutics - a current status and future perspectives. Front Bioeng Biotechnol 2025; 12:1490276. [PMID: 39867473 PMCID: PMC11760601 DOI: 10.3389/fbioe.2024.1490276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Polysorbates, in particular polysorbate (PS) 20 and 80, are the most commonly used surfactants for stabilising biotherapeutics produced by biotechnological processes. PSs are derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids of varying chain length and degree of saturation. In the past, these surfactants have been reported to have specific liabilities. Chemical (oxidations and hydrolyses) and enzymatic degradations have been reported to affect the stability of PS in drug products. Specifically, the presence of trace amounts (sub-ppm) of certain host cell proteins (HCPs) can induce enzymatic PS degradation, which can lead to the release of free fatty acids during storage over time. Enzymatic polysorbate degradation may impair the functionality of the surfactant in stabilising therapeutic proteins, leading to the formation of visible and/or sub-visible particles in biopharmaceutical drug products. This review summarises the enzymes currently known to be involved in the degradation of polysorbate in mammalian biotechnological processes for therapeutic proteins. In recent years, advanced analytical methods have been developed to qualify and quantify the PS-degrading enzymes. Most of these assays are based on mass spectrometry with a preceding HCP enrichment approach. Efforts were made to measure the enzyme activity and correlate it with observed PS degradation. The impact on drug product quality attributes, including fatty acid solubility and phase separation, up to the formation of visible particles, and the potential induction of protein and protein/fatty acid mixed particles as well as the sensitivity of specific PS quality towards enzymatic degradation, was considered. Various drug substance (DS) mitigation strategies related to the occurrence of PS degrading enzymes are discussed as amongst them the generation of stable HCP knockout cell lines, which are also carefully analysed. The underlying opinion article reflects the undergoing discussions related to PS degrading enzymes and focusses on (i) impact on drug product, (ii) analytics for identification/quantification (characterisation) of the PS degrading enzymes, (iii) enzyme activity (iv) currently identified enzymes, and (v) potential mitigation strategies to avoid enzymatic PS degradation during DS manufacturing.
Collapse
Affiliation(s)
- Marius Nicolaus Felix
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Thomas Waerner
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Daniel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Bernd Reisinger
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Patrick Garidel
- Pharmaceutical Development Biologicals, TIP, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| |
Collapse
|
4
|
Šprager E, Möller J, Lin Y, Reisinger V, Bratkovič T, Lunder M, Vašl J, Krajnc A. Identification of Acyl-Protein Thioesterase-1 as a Polysorbate-Degrading Host Cell Protein in a Monoclonal Antibody Formulation Using Activity-Based Protein Profiling. J Pharm Sci 2024; 113:2128-2139. [PMID: 38772451 DOI: 10.1016/j.xphs.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Polysorbate (PS) degradation in monoclonal antibody (mAb) formulations poses a significant challenge in the biopharmaceutical industry. PS maintains protein stability during drug product's shelf life but is vulnerable to breakdown by low-abundance residual host cell proteins (HCPs), particularly hydrolytic enzymes such as lipases and esterases. In this study, we used activity-based protein profiling (ABPP) coupled with mass spectrometry to identify acyl-protein thioesterase-1 (APT-1) as a polysorbate-degrading HCP in one case of mAb formulation with stability problems. We validated the role of APT1 by matching the polysorbate degradation fingerprint in the mAb formulation with that of a recombinant APT1 protein. Furthermore, we found an agreement between APT1 levels and PS degradation rates in the mAb formulation, and we successfully halted PS degradation using APT1-specific inhibitors ML348 and ML211. APT1 was found to co-purify with a specific mAb via hitchhiking mechanism. Our work provides a streamlined approach to identifying critical HCPs in PS degradation, supporting quality-by-design principles in pharmaceutical development.
Collapse
Affiliation(s)
- Ernest Šprager
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia; Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia
| | - Jens Möller
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Yuhsien Lin
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Veronika Reisinger
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Mojca Lunder
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Jožica Vašl
- Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia
| | - Aleksander Krajnc
- Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia.
| |
Collapse
|
5
|
Wang SQ, Zhao X, Zhang LJ, Zhao YM, Chen L, Zhang JL, Wang BC, Tang S, Yuan T, Yuan Y, Zhang M, Lee HK, Shi HW. Discrimination of polysorbate 20 by high-performance liquid chromatography-charged aerosol detection and characterization for components by expanding compound database and library. J Pharm Anal 2024; 14:100929. [PMID: 38799234 PMCID: PMC11126531 DOI: 10.1016/j.jpha.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
Analyzing polysorbate 20 (PS20) composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance. The similar structures and polarities of PS20 components make accurate separation, identification, and quantification challenging. In this work, a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography (HPLC) with charged aerosol detection (CAD) to separate 18 key components with multiple esters. The separated components were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) with an identical gradient as the HPLC-CAD analysis. The polysorbate compound database and library were expanded over 7-time compared to the commercial database. The method investigated differences in PS20 samples from various origins and grades for different dosage forms to evaluate the composition-process relationship. UHPLC-Q-TOF-MS identified 1329 to 1511 compounds in 4 batches of PS20 from different sources. The method observed the impact of 4 degradation conditions on peak components, identifying stable components and their tendencies to change. HPLC-CAD and UHPLC-Q-TOF-MS results provided insights into fingerprint differences, distinguishing quasi products.
Collapse
Affiliation(s)
- Shi-Qi Wang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Xun Zhao
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Li-Jun Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Yue-Mei Zhao
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Lei Chen
- Chinese Pharmacopoeia Commission, Beijing, 100061, China
| | - Jin-Lin Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Bao-Cheng Wang
- Nanjing Well Pharmaceutical Group Co., Ltd., Nanjing, 210018, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Tom Yuan
- University of Massachusetts Amherst, Amherst, 01003, USA
| | - Yaozuo Yuan
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Mei Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Hai-Wei Shi
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| |
Collapse
|
6
|
Dehghani A, Binder F, Zorn M, Feigler A, Fischer KI, Felix MN, Happersberger P, Reisinger B. Investigating pH Effects on Enzymes Catalyzing Polysorbate Degradation by Activity-Based Protein Profiling. J Pharm Sci 2024; 113:744-753. [PMID: 37758159 DOI: 10.1016/j.xphs.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Host cell proteins (HCPs) are process-related impurities that can negatively impact the quality of biotherapeutics. Some HCPs possess enzymatic activity and can affect the active pharmaceutical ingredient (API) or excipients such as polysorbates (PS). PSs are a class of non-ionic surfactants commonly used as excipients in biotherapeutics to enhance the stability of APIs. The enzyme activity of certain HCPs can result in the degradation of PSs, leading to particle formation and decreased shelf life of biotherapeutics. Identifying and characterizing these HCPs is therefore crucial. This study employed the Activity-Based Protein Profiling (ABPP) technique to investigate the effect of pH on the activity of HCPs that have the potential to degrade polysorbates. Two probes were utilized: the commercially available fluorophosphonate (FP)-Desthiobiotin probe and a probe based on the antiobesity drug, Orlistat. Over 50 HCPs were identified, showing a strong dependence on pH-milieu regarding their enzyme activity. These findings underscore the importance of accounting for pH variations in the ABPP method and other investigations of HCP activity. Notably, the Orlistat-based probe (OBP) enabled us to investigate the enzymatic activity of a wider range of HCPs, emphasizing the advantage of using more than one probe for ABPP. Finally, this study led to the discovery of previously unreported active enzymes, including three HCPs from the carboxylesterase enzyme family.
Collapse
Affiliation(s)
- Alireza Dehghani
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Florian Binder
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Michael Zorn
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Andreas Feigler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Kathrin Inge Fischer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Marius Nicolaus Felix
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Peter Happersberger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Bernd Reisinger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany.
| |
Collapse
|
7
|
Weiß L, Schmieder-Todtenhaupt V, Haemmerling F, Lakatos D, Schulz P, Fischer S. Multi-lipase gene knockdown in Chinese hamster ovary cells using artificial microRNAs to reduce host cell protein mediated polysorbate degradation. Biotechnol Bioeng 2024; 121:329-340. [PMID: 37743807 DOI: 10.1002/bit.28563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
A large number of companies observe polysorbate (PS) degradation and associated (sub-)visible particle formation in biological drug formulations, which compromise the stability of the drug product, ultimately posing a risk toward delivering innovative medicines to patients. The main culprits of PS degradation are hydrolytic host cell proteins (HCPs) originating from the production cell lines, which are mostly Chinese hamster ovary (CHO) cell derived. Here, a small portion of particularly difficult-to-remove HCPs-mainly lipases-cause hydrolytic cleavage of PS resulting in the accumulation of free fatty acid aggregates/particles. One possible mitigation strategy is the removal of such critical HCPs in the production cell line. Multigene regulation can be achieved via microRNAs (miRNAs) thereby serving as a smart tool to reduce the expression of different target genes using a single miRNA. To enable a tailored gene regulation of multiple specific target lipases self-designed and non-naturally occurring artificial miRNAs (amiRNA) can be designed. Based on micro-conserved regions in the mRNA sequence of two sets of target HCPs, we provide a proof-of-concept for a simultaneous multi-lipase knockdown in CHO cells using single amiRNAs. By this, we were not only able to reduce PS degradation but laid the foundation to expand this tool to other areas of cell line phenotype engineering.
Collapse
Affiliation(s)
- Linus Weiß
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Valerie Schmieder-Todtenhaupt
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Frank Haemmerling
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniel Lakatos
- Late Stage DSP, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
8
|
Carle S, Evers DH, Hagelskamp E, Garidel P, Buske J. All-in-one stability indicating polysorbate 20 degradation root-cause analytics via UPLC-QDa. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123955. [PMID: 38128165 DOI: 10.1016/j.jchromb.2023.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Polysorbates (PS) are the most frequently used surfactants to stabilize biologicals. Ironically, these excellent stabilizing non-ionic surfactants have inherent structural properties, which lead to instabilities of their own. Such PS degradation can be triggered by multiple root-causes, like chemical and enzymatic hydrolysis or oxidative degradation. This can on the one hand reduce the concentration of surface-active PS and on the other hand lead to the formation of unfavorable degradants, like poorly soluble free fatty acids (FFA), which may phase separate and form visible FFA particles. Due to the potential criticality of PS degradation in biopharmaceutical formulations, various analytics have been established in recent years not only to monitor the PS content but also to evaluate specific PS markers and crucial degradants. However, in most cases sample preparations and several analytical assays have to be conducted to obtain a comprehensive picture of potential PS degradation root-causes. Here we show a novel approach for PS degradation UPLC-QDa based root-cause analytics, which utilizes previously established analytics for (i) most relevant polysorbate 20 (PS20) esters, (ii) PS20 free fatty acids and (iii) a newly developed method for the evaluation of PS20 specific oxidation markers. Thereby, this triad of analytical methods uses the same sample preparation and detector, which reduces the overall necessary effort, time investment and sample volume. Furthermore, the innovative PS20 oxidation marker method allows to quantify specific concentrations of the determined markers by external calibration and possible perception of oxidative degradation processes prior to relevant losses of PS20 esters, which could serve as an early indication during formulation development. The applicability of this method set was verified using several PS20 containing stress samples, which cover the most relevant root-causes, including acidic and alkaline hydrolysis, enzyme mediated hydrolysis, oxidative AAPH stress and Fe2+/H2O2 mediated degradation as well as autoxidation via long-term storage at elevated temperatures. Overall, this analytical setup has shown to deliver in-depth data about PS20 degradation, which can be used to narrow down the causative stress without the necessity of fundamentally different methods. Therefore, it can be seen as all-in-one solution during sometimes troublesome development of biopharmaceutical formulations, that supports the elucidation of the PS degradation mechanism(s) and thus establish mitigation strategies.
Collapse
Affiliation(s)
- Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| | - Dirk-H Evers
- RaDes GmbH, Schnackenburgallee 114, 22525 Hamburg, Germany.
| | | | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| |
Collapse
|
9
|
Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Oxidation of polysorbates - An underestimated degradation pathway? Int J Pharm X 2023; 6:100202. [PMID: 37680877 PMCID: PMC10480556 DOI: 10.1016/j.ijpx.2023.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
To ensure the stability of biologicals over their entire shelf-life, non-ionic surface-active compounds (surfactants) are added to protect biologics from denaturation and particle formation. In this context, polysorbate 20 and 80 are the most used detergents. Despite their benefits of low toxicity and high biocompatibility, specific factors are influencing the intrinsic stability of polysorbates, leading to degradation, loss in efficacy, or even particle formation. Polysorbate degradation can be categorized into chemical or enzymatic hydrolysis and oxidation. Under pharmaceutical relevant conditions, hydrolysis is commonly originated from host cell proteins, whereas oxidative degradation may be caused by multiple factors such as light, presence of residual metal traces, peroxides, or temperature, which can be introduced upon manufacturing or could be already present in the raw materials. In this review, we provide an overview of the current knowledge on polysorbates with a focus on oxidative degradation. Subsequently, degradation products and key characteristics of oxidative-mediated polysorbate degradation in respect of different types and grades are summarized, followed by an extensive comparison between polysorbate 20 and 80. A better understanding of the radical-induced oxidative PS degradation pathway could support specific mitigation strategies. Finally, buffer conditions, various stressors, as well as appropriate mitigation strategies, reagents, and alternative stabilizers are discussed. Prior manufacturing, careful consideration and a meticulous risk-benefit analysis are highly recommended in terms of polysorbate qualities, buffers, storage conditions, as well as mitigation strategies.
Collapse
Affiliation(s)
- Johanna Weber
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| |
Collapse
|
10
|
Glücklich N, Carle S, Diederichs T, Buske J, Mäder K, Garidel P. How enzymatic hydrolysis of polysorbate 20 influences colloidal protein stability. Eur J Pharm Sci 2023; 191:106597. [PMID: 37770006 DOI: 10.1016/j.ejps.2023.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/26/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Polysorbates (PS) are esters of ethoxylated sorbitol anhydrides of different composition and are widely used surfactants in biologics. PSs are applied to increase protein stability and concomitant shelf-life via shielding against e.g., interfacial stresses. Due to the presence of specific lipolytic host cell protein (HCP) contaminations in the drug substance, PSs can be degraded via enzymatic hydrolysis. Surfactant hydrolysis leads to the formation of degradants, such as free fatty acids that might form fatty acid particles. In addition, PS degradation may reduce surfactant functionality and thus reduce the protection of the active pharmaceutical ingredient (API). Although enzymatic degradation was observed and reported in the last years, less is known about the relationship between certain polysorbate degradation patterns and the increase of mechanical and interfacial stress towards the API. In this study, the impact of specifically hydrolyzed polysorbate 20 (PS20) towards the stabilization of two monoclonal antibodies (mAbs) during accelerated shaking stress conditions was investigated. The results show that a specific enzymatic degradation pattern of PS20 can influence the colloidal stability of biopharmaceutical formulations. Furthermore, the kinetics of the appearance of visual phenomena, opalescence, and particle formation depended on the polysorbate degradation fingerprint as induced via the presence of surrogate enzymes. The current case study shows the importance of focusing on specific polysorbate ester fractions to understand the overall colloidal protein stabilizing effect. The performed study gives first insight into the functional properties of PS and helps to evaluate the impact of PS degradation in the formulation development of biopharmaceuticals in general.
Collapse
Affiliation(s)
- Nils Glücklich
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Stefan Carle
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Julia Buske
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany; Institute of Chemistry, Faculty of Physical and Theoretical Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) 06120, Germany.
| |
Collapse
|
11
|
Bhagat NR, Chauhan P, Verma P, Mishra A, Bharti VK. High-altitude and low-altitude adapted chicken gut-microbes have different functional diversity. Sci Rep 2023; 13:20856. [PMID: 38012260 PMCID: PMC10682461 DOI: 10.1038/s41598-023-48147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Recently, there has been considerable interest in the functions of gut microbiota in broiler chickens in relation to their use as feed additives. However, the gut-microbiota of chickens reared at different altitudes are not well documented for their potential role in adapting to prevailing conditions and functional changes. In this context, the present study investigates the functional diversity of gut-microbes in high-altitude (HACh) and low-altitude adapted chickens (LACh), assessing their substrate utilization profile through Biolog Ecoplates technology. This will help in the identification of potential microbes or their synthesized metabolites, which could be beneficial for the host or industrial applications. Results revealed that among the 31 different types of studied substrates, only polymers, carbohydrates, carboxylic acids, and amine-based substrates utilization varied significantly (p < 0.05) among the chickens reared at two different altitudes where gut-microbes of LACh utilized a broad range of substrates than the HACh. Further, diversity indices (Shannon and MacIntosh) analysis in LACh samples showed significant (p < 0.05) higher richness and evenness of microbes as compared to the HACh samples. However, no significant difference was observed in the Simpson diversity index in gut microbes of lowversus high-altitude chickens. In addition, the Principal Component Analysis elucidated variation in substrate preferences of gut-microbes, where 13 and 8 carbon substrates were found to constitute PC1 and PC2, respectively, where γ-aminobutyric acid, D-glucosaminic acid, i-erythritol and tween 40 were the most relevant substrates that had a major effect on PC1, however, alpha-ketobutyric acid and glycyl-L-glutamic acid affected PC2. Hence, this study concludes that the gut-microbes of high and low-altitudes adapted chickens use different carbon substrates so that they could play a vital role in the health and immunity of an animal host based on their geographical location. Consequently, this study substantiates the difference in the substrate utilization and functional diversity of the microbial flora in chickens reared at high and low altitudes due to altitudinal changes.
Collapse
Affiliation(s)
- Neha Rani Bhagat
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Priyanka Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- School of Sciences, P. P. Savani University, NH-8, GETCO, Near Biltech, Kosamba, Surat, 394125, India
| | - Pratibha Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India.
| |
Collapse
|
12
|
De Pra M, Ispan DA, Meding S, Müllner T, Lovejoy KS, Grosse S, Cook K, Carillo S, Steiner F, Bones J. Degradation of polysorbate investigated by a high-performance liquid chromatography multi-detector system with charged aerosol and mass detection. J Chromatogr A 2023; 1710:464405. [PMID: 37769426 DOI: 10.1016/j.chroma.2023.464405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
Polysorbate 80 is widely used as a formulation component in biopharmaceutical drug products. Recent studies have shown that polysorbate 80 is readily degraded either through direct or indirect means. The degradation of polysorbate 80 causes a concern for the long-term stability of biopharmaceutical drug product, as the breakdown products of polysorbate 80 have been shown to cause adverse effects, such as formation of sub-visible and visible particles and mAb aggregation. Understanding the path and extent of degradation is of a paramount importance for the formulator during formulation development. A multi-detector HPLC system using charged aerosol and mass detection was developed and optimized for the characterization of polysorbate 80 standards. The system included a post-column make-up flow, i.e. an inverse gradient, that enabled constant eluent composition at the detectors. The inverse gradient eliminated the main source of variability for the charged aerosol detector response, thereby enabling the calculation of the mass balance between polysorbate components with different degrees of esterification. Extracted ion chromatograms of the mass detector combined with their respective retention times were used to qualitatively characterize the polysorbate samples down to the individual components. The system was applied to study the degradation of several polysorbate standards which occurred by enzymatic digestion or long-term storage. The system provided detailed information on the mechanism of degradation without the need for additional orthogonal analytical techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ken Cook
- Thermo Fisher Scientific, Hemel Hempstead, UK
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training, Foster Avenue, Blackrock, Co. Dublin, Mount Merrion A94×099, Ireland
| | | | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Foster Avenue, Blackrock, Co. Dublin, Mount Merrion A94×099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
13
|
Kozuch B, Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Comparative Stability Study of Polysorbate 20 and Polysorbate 80 Related to Oxidative Degradation. Pharmaceutics 2023; 15:2332. [PMID: 37765302 PMCID: PMC10537708 DOI: 10.3390/pharmaceutics15092332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The surfactants polysorbate 20 (PS20) and polysorbate 80 (PS80) are utilized to stabilize protein drugs. However, concerns have been raised regarding the degradation of PSs in biologics and the potential impact on product quality. Oxidation has been identified as a prevalent degradation mechanism under pharmaceutically relevant conditions. So far, a systematic stability comparison of both PSs under pharmaceutically relevant conditions has not been conducted and little is known about the dependence of oxidation on PS concentration. Here, we conducted a comparative stability study to investigate (i) the different oxidative degradation propensities between PS20 and PS80 and (ii) the impact of PS concentration on oxidative degradation. PS20 and PS80 in concentrations ranging from 0.1 mg⋅mL-1 to raw material were stored at 5, 25, and 40 °C for 48 weeks in acetate buffer pH 5.5 and water, respectively. We observed a temperature-dependent oxidative degradation of the PSs with strong (40 °C), moderate (25 °C), and weak/no degradation (5 °C). Especially at elevated temperatures such as 40 °C, fast oxidative PS degradation processes were detected. In this case study, a stronger degradation and earlier onset of oxidation was observed for PS80 in comparison to PS20, detected via the fluorescence micelle assay. Additionally, degradation was found to be strongly dependent on PS concentration, with significantly less oxidative processes at higher PS concentrations. Iron impurities, oxygen in the vial headspaces, and the pH values of the formulations were identified as the main contributing factors to accelerate PS oxidation.
Collapse
Affiliation(s)
- Benedykt Kozuch
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Johanna Weber
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Julia Buske
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Patrick Garidel
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Tim Diederichs
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| |
Collapse
|
14
|
Ji Q, Sokolowska I, Cao R, Jiang Y, Mo J, Hu P. A highly sensitive and robust LC-MS platform for host cell protein characterization in biotherapeutics. Biologicals 2023; 82:101675. [PMID: 37028215 DOI: 10.1016/j.biologicals.2023.101675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/25/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Host cell proteins (HCPs) are a major class of process-related impurities that need to be closely monitored during the production of biotherapeutics. Mass spectrometry (MS) has emerged as a promising tool for HCP analysis due to its specificity for individual HCP's identification and quantitation. However, utilization of MS as a routine characterization tool is still limited due to the time-consuming procedures, non-standardized instrumentation and methodologies, and the limited sensitivity compared to the enzyme-linked immunosorbent assays (ELISA). In this study, we introduced a sensitive (limit of detection (LOD) at 1-2 ppm) and robust HCP profiling platform method with suitable precision and accuracy that can be readily adopted to antibodies and other biotherapeutic modalities without the need for HCP enrichment. The NIST mAb and multiple in-house antibodies were analyzed, and results were benchmarked with other reported studies. In addition, a targeted analysis method with optimized sample preparation for absolute quantitation of lipases was developed and qualified with an LOD of 0.6 ppm and precision of <15%, which can be further improved to an LOD of 5 ppb by using the nano-flow LC.
Collapse
Affiliation(s)
- Qinqin Ji
- Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, LLC, 200 Great Valley Parkway, Malvern, PA, 19355, USA.
| | - Izabela Sokolowska
- Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, LLC, 200 Great Valley Parkway, Malvern, PA, 19355, USA.
| | - Rui Cao
- Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, LLC, 200 Great Valley Parkway, Malvern, PA, 19355, USA.
| | - Yulei Jiang
- Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, LLC, 200 Great Valley Parkway, Malvern, PA, 19355, USA.
| | - Jingjie Mo
- Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, LLC, 200 Great Valley Parkway, Malvern, PA, 19355, USA.
| | - Ping Hu
- Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, LLC, 200 Great Valley Parkway, Malvern, PA, 19355, USA.
| |
Collapse
|
15
|
Characterization of Recombinantly-Expressed Hydrolytic Enzymes from Chinese Hamster Ovary Cells: Identification of Host Cell Proteins that Degrade Polysorbate. J Pharm Sci 2023; 112:1351-1363. [PMID: 36646283 DOI: 10.1016/j.xphs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Enzymatic hydrolysis of polysorbate in drug products is a major challenge for the biopharmaceutical industry. Polysorbate hydrolysis caused by host cell proteins (HCPs) co-purified during bioprocessing can reduce the protective effects of the surfactant for the active pharmaceutical ingredient and cause the accumulation of low-solubility degradation products over the long-term storage. The identities of such HCPs are elusive due to their extremely low concentrations after the efficient purification processes of most biopharmaceuticals. In this work, 20 enzymes-selected for their known or putative hydrolytic activity and potential to degrade polysorbate-were recombinantly expressed, purified, and characterized via orthogonal methods. First, these recombinant HCPs were assessed for hydrolytic activity against a fluorogenic esterase substrate in a recently-developed, high-throughput assay. Second, these HCPs were screened for hydrolytic activity against polysorbate in a representative mAb formulation. Third, HCPs that displayed hydrolytic activities in the first two assays were subjected to more detailed characterization of their enzyme kinetics against polysorbates. Finally, these HCPs were evaluated for substrate specificity towards different sub-species of polysorbates. This work provides critical new insights for targeted LC-MS/MS approaches for identification of relevant polysorbate-degrading enzymes and supports improvements to remove such HCPs, including knockouts or targeted removal during purification.
Collapse
|
16
|
Mittag JJ, Trutschel ML, Kruschwitz H, Mäder K, Buske J, Garidel P. Characterization of radicals in polysorbate 80 using electron paramagnetic resonance (EPR) spectroscopy and spin trapping. Int J Pharm X 2022; 4:100123. [PMID: 35795322 PMCID: PMC9251573 DOI: 10.1016/j.ijpx.2022.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Polysorbates are an important class of nonionic surfactants that are widely used to stabilize biopharmaceuticals. The degradation of polysorbate 20 and 80 and the related particle formation in biologics are heavily discussed in the pharmaceutical community. Although a lot of experimental effort was spent in the detailed study of potential degradation pathways, the underlying mechanisms are only sparsely understood. Besides enzymatic hydrolysis, another proposed mechanism is associated with radical-induced (auto)oxidation of polysorbates. To characterize the types and the origin of the involved radicals and their propagation in bulk material as well as in diluted polysorbate 80 solutions, we applied electron paramagnetic resonance (EPR) spectroscopy using a spin trapping approach. The prerequisite for a meaningful experiment using spin traps is an understanding of the trapping rate, which is an interplay of (i) the presence of the spin trap at the scene of action, (ii) the specific reactivity of the selected spin trap with a certain radical as well as (iii) the stability of the formed spin adducts (a slow decay rate). We discuss whether and to which extent these criteria are fulfilled regarding the identification of different radical classes that might be involved in polysorbate oxidative degradation processes. The ratio of different radicals for different scenarios was determined for various polysorbate 80 quality grades in bulk material and in aqueous solution, showing differences in the ratio of present radicals. Possible correlations between the radical content and product parameters such as the quality grade, the manufacturing date, the manufacturer, the initial peroxide content according to the certificate of analysis of polysorbate 80 are discussed.
Collapse
Key Words
- 5,5-dimethyl-1-pyrroline-N-oxide, DMPO
- DMPO
- EPR
- Oxidation
- Peroxide
- Polysorbate
- Radical
- Spin trap
- alkoxyl radical, RO•
- alkyl radical, R•
- all-oleate, AO
- certificate of analysis, CoA
- china grade, CG
- electron paramagnetic resonance, EPR
- fatty acid, FA
- high purity, HP
- hydrogen peroxide, H2O2
- hydroperoxide, ROOH
- hydroxyl radical, HO•
- peroxyl radical, ROO•
- polyoxyethylene, POE
- polysorbate, PS
- reactive oxygen species, ROS
- super-refined, SR
- superoxide, O2•−
Collapse
Affiliation(s)
- Judith J. Mittag
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Marie-Luise Trutschel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Helen Kruschwitz
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| |
Collapse
|
17
|
Castañeda Ruiz AJ, Shetab Boushehri MA, Phan T, Carle S, Garidel P, Buske J, Lamprecht A. Alternative Excipients for Protein Stabilization in Protein Therapeutics: Overcoming the Limitations of Polysorbates. Pharmaceutics 2022; 14:2575. [PMID: 36559072 PMCID: PMC9781097 DOI: 10.3390/pharmaceutics14122575] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Given their safety and efficiency in protecting protein integrity, polysorbates (PSs) have been the most widely used excipients for the stabilization of protein therapeutics for years. In recent decades, however, there have been numerous reports about visible or sub-visible particles in PS-containing biotherapeutic products, which is a major quality concern for parenteral drugs. Alternative excipients that are safe for parenteral administration, efficient in protecting different protein drugs against various stress conditions, effective in protein stabilization in high-concentrated liquid formulations, stable under the storage conditions for the duration of the product's shelf-life, and compatible with other formulation components and the primary packaging are highly sought after. The aim of this paper is to review potential alternative excipients from different families, including surfactants, carbohydrate- and amino acid-based excipients, synthetic amphiphilic polymers, and ionic liquids that enable protein stabilization. For each category, important characteristics such as the ability to stabilize proteins against thermal and mechanical stresses, current knowledge related to the safety profile for parenteral administration, potential interactions with other formulation components, and primary packaging are debated. Based on the provided information and the detailed discussion thereof, this paper may pave the way for the identification or development of efficient excipients for biotherapeutic protein stabilization.
Collapse
Affiliation(s)
- Angel J. Castañeda Ruiz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | | | - Tamara Phan
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
18
|
Wuchner K, Yi L, Chery C, Nikels F, Junge F, Crotts G, Rinaldi G, Starkey JA, Bechtold-Peters K, Shuman M, Leiss M, Jahn M, Garidel P, de Ruiter R, Richer SM, Cao S, Peuker S, Huille S, Wang T, Brun VL. Industry Perspective on the Use and Characterization of Polysorbates for Biopharmaceutical Products Part 2: Survey Report on Control Strategy Preparing for the Future. J Pharm Sci 2022; 111:2955-2967. [PMID: 36002077 DOI: 10.1016/j.xphs.2022.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Polysorbate (PS) 20 and 80 are the main surfactants used to stabilize biopharmaceutical products. Industry practices on various aspects of PS based on a confidential survey and following discussions by 16 globally acting major biotechnology companies is presented in two publications. Part 1 summarizes the current practice and use of PS during manufacture in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS.1 The current part 2 of the survey focusses on understanding, monitoring, prediction, and mitigation of PS degradation pathways in order to propose an effective control strategy. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature.
Collapse
Affiliation(s)
- Klaus Wuchner
- Janssen R&D, DPDS BTDS Analytical Development, Hochstr. 201, 8200 Schaffhausen, Switzerland.
| | - Linda Yi
- Analytical Development, Biogen, Morrisville, NC 27709, USA
| | - Cyrille Chery
- UCB, Analytical Development Sciences for Biologicals, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Felix Nikels
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Friederike Junge
- Analytical Research and Development, NBE Analytical R&D, AbbVie Deutschland GmbH& Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - George Crotts
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Gianluca Rinaldi
- Merck Serono SpA, Guidonia Montecelio, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Jason A Starkey
- Pfizer, Inc. Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development 875 W. Chesterfield Parkway, Chesterfield, MO 63017, USA
| | | | - Melissa Shuman
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Michael Leiss
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Michael Jahn
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Rien de Ruiter
- Byondis B.V., Downstream Processing, Nijmegen, the Netherlands
| | - Sarah M Richer
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Shawn Cao
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sebastian Peuker
- Bayer AG, Product Supply, Analytical Development and Clinical QC for Biotech Products, Friedrich-Ebert-Str. 217-233, 42117 Wuppertal, Germany
| | - Sylvain Huille
- Sanofi R&D, Biologics Drug Products Development,13 quai Jules Guesde, 94403 Vitry-sur Seine, France
| | - Tingting Wang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Virginie Le Brun
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| |
Collapse
|
19
|
Abstract
Polysorbates (PSs), including PS20 and PS80, are non-ionic surfactants widely used in the pharmaceutical industry to enhance drug solubility and stability. Despite their wide application, PSs are prone to degradation by either hydrolysis or oxidation in drug formulations during storage; therefore, a PS characterization method assessing protein products is needed for stability testing and for understanding the degradation pathway. In this article, we detail our protocol for sample preparation for forced degradation study and our instrumentation setup for PS profiling and quantitation in protein samples. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Sample preparation for forced degradation of polysorbate in protein samples Basic Protocol 2: Two-dimensional liquid chromatography coupled with charged aerosol detector or mass spectrometry to analyze polysorbate degradation.
Collapse
Affiliation(s)
- Sisi Zhang
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Hui Xiao
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Ning Li
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| |
Collapse
|
20
|
Industry perspective on the use and characterization of polysorbates for biopharmaceutical products Part 1: Survey report on current state and common practices for handling and control of polysorbates. J Pharm Sci 2022; 111:1280-1291. [PMID: 35192858 DOI: 10.1016/j.xphs.2022.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
Polysorbates (PS) are widely used as a stabilizer in biopharmaceutical products. Industry practices on various aspects of PS are presented in this part 1 survey report based on a confidential survey and following discussions by 16 globally acting major biotechnology companies. The current practice and use of PS during manufacture across their global manufacturing sites are covered in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature. Part 2 of the survey report (upcoming) will focus on understanding, monitoring, prediction, and mitigation of PS degradation pathways to develop an effective control strategy.
Collapse
|
21
|
Li X, Wang F, Li H, Richardson DD, Roush DJ. The measurement and control of high-risk host cell proteins for polysorbate degradation in biologics formulation. Antib Ther 2022; 5:42-54. [PMID: 35155990 PMCID: PMC8826928 DOI: 10.1093/abt/tbac002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nonionic surfactant polysorbates, including PS-80 and PS-20, are commonly used in the formulation of biotherapeutic products for both preventing surface adsorption and acting as stabilizer against protein aggregation. Trace levels of residual host cell proteins (HCPs) with lipase or esterase enzymatic activity have been shown to degrade polysorbates in biologics formulation. The measurement and control of these low abundance, high-risk HCPs for polysorbate degradation are an industry-wide challenge to achieve desired shelf life of biopharmaceuticals in liquid formulation, especially for high-concentration formulation product development. Here, we reviewed the challenges, recent advances, and future opportunities of analytical method development, risk assessment, and control strategies for polysorbate degradation during formulation development with a focus on enzymatic degradation. Continued efforts to advance our understanding of polysorbate degradation in biologics formulation will help develop high-quality medicines for patients.
Collapse
Affiliation(s)
- Xuanwen Li
- Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
- To whom correspondence should be addressed: Xuanwen Li, Analytical Research & Development Mass Spectrometry, Merck & Co. Inc., 770 Sumneytown Pike, WPP042A-4015, West Point, PA 19486. Tel: 215-652-1829;
| | - Fengqiang Wang
- Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Hong Li
- Biologics Process Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Douglas D Richardson
- Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - David J Roush
- Biologics Process Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| |
Collapse
|
22
|
Identification of the specific causes of polysorbate 20 degradation in monoclonal antibody formulations containing multiple lipases. Pharm Res 2022; 39:75-87. [PMID: 34981317 DOI: 10.1007/s11095-021-03160-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Polysorbates (PS) are excipients used in the biotech industry to stabilize monoclonal antibody (mAb) protein products. However, PS in drug product formulations can be degraded during storage and lead to particle formation because of the limited solubility of the free fatty acids released through the enzymatic hydrolysis of PS-a process driven by residual host cell proteins, especially lipases, that are co-purified with the drugs. When multiple lipases are present, it is very difficult to know the cause for PS degradation. In this study, we aim to determine the cause of PS degradation from two lipases, lysosomal acid lipase (LAL) and lipoprotein lipase (LPL). METHODS PS degradation pattern of the drug product was compared with those induced by recombinant lipases. Correlations between the concentration of LPL or LAL and PS20 loss were compared. Specific inhibitors, LAL inhibitor lalistat2 and LPL inhibitor GSK264220A, were used to differentiate their degradation of PS in the drug products. RESULTS The complete inhibition of PS20 degradation by lalistat2 suggested that LAL, rather than LPL, was responsible for the PS20 degradation. In addition, LAL was more strongly correlated than LPL with the percentage of PS20 degradation. No PS20 degradation was observed for several mAbs containing similar levels of LPL (0.5-1.5 ppm) in the absence of LAL, suggesting that LPL concentrations below 1.5 ppm does not degrade PS20 in drug products. CONCLUSIONS LAL was determined to be the cause of the PS20 degradation. This study provides a practical strategy to determine the root cause of PS degradation.
Collapse
|