1
|
Zhang X, Rajaraman PK, Li F, Choi S, Comellas AP, Hoffman EA, Fain SB, Kaczka DW, Smith BM, Choi J, Castro M, Wenzel SE, Jarjour NN, Schiebler ML, Israel E, Levy BD, Fahy JV, Erzurum SC, Babiskin A, Kinjo M, Walenga R, Lin CL. Assessment of ventilation heterogeneity and particle deposition in asthmatics using combined SPECT/CT imaging and computational modeling approaches. Eur J Pharm Sci 2025; 209:107093. [PMID: 40185289 PMCID: PMC12145795 DOI: 10.1016/j.ejps.2025.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
PURPOSE This study investigated asthma phenotypes and their associations with ventilation heterogeneity and particle deposition by utilizing Single-Photon Emission Computed Tomography (SPECT) imaging, quantitative Computed Tomography (qCT) imaging-based subgrouping, and a whole-lung computational model. MATERIALS AND METHODS Two datasets were analyzed: one from a combined SPECT and CT (SPECT/CT) study with six asthmatic subjects, and another from the Severe Asthma Research Program (SARP) with 209 asthmatic subjects. Data from 35 previously acquired healthy subjects served as a control group. Each subject underwent CT scans at full inspiration and expiration, along with pulmonary function testing (PFT). The SPECT/CT study included ventilation SPECT imaging. Key qCT variables such as airway diameter, wall thickness, percentage of air trapping (AirT%), and percentage of small airway disease (fSAD%) were assessed. A subject-specific whole-lung computational fluid and particle dynamics (CFPD) model predicted airway resistance, particle deposition fraction, and the coefficient of variation (CV) for ventilation heterogeneity. Subjects were categorized into four predefined asthma imaging subgroups/clusters with increasing severity (C1-C4). CFPD-predicted CVs were validated against SPECT measurements. We compared PFT, qCT, and CFPD variables across SARP clusters and analyzed particle deposition fractions in large conducting, small conducting, and respiratory airways. RESULTS Cluster C4 exhibited a significantly distinct ventilation profile compared to other clusters and health controls. This distinction contrasted with the insignificant differences between ventilation profiles in severity subgroups defined by conventional spirometry-based guidelines. Airway resistance varied significantly across the asthma clusters. Although both C3 and C4 clusters represented severe asthma, only C4 showed a significant increase in AirT%, primarily due to fSAD%. Since inflammatory phenotypes differ - C3 with wall thickening in large and small conducting airways, and C4 with elevated fSAD% and Emph% in small conducting and respiratory airways - fine particles (∼5 μm) and extrafine particles (∼1 μm) are more effective at reaching the respective regions in C3 and C4. Given that C2 and C4 have hyper-responsive phenotypes with narrowed conducting airways, fine particles are more effective in reaching these areas. Airway enlargement in targeted segments of the left lower lobe resulted in improved particle deposition. CONCLUSION Our cluster-informed CFPD-based approach enhances the understanding of ventilation heterogeneity in asthma and holds potential for refining strategies for inhalational therapies.
Collapse
Affiliation(s)
- Xuan Zhang
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
| | - Prathish K Rajaraman
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
| | - Frank Li
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Sanghun Choi
- School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea
| | | | - Eric A Hoffman
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Sean B Fain
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA; Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA; Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - David W Kaczka
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Departments of Anesthesia and Radiology, University of Iowa, Iowa City, IA, USA
| | - Benjamin M Smith
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Medicine, McGill University Health Centre Research Institute, Montreal, Canada
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nizar N Jarjour
- School of Medicine & Public Health, University of Wisconsin, Madison, WI, USA
| | - Mark L Schiebler
- School of Medicine & Public Health, University of Wisconsin, Madison, WI, USA
| | - Elliot Israel
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John V Fahy
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | | | - Andrew Babiskin
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Minori Kinjo
- Division of Therapeutic Performance II, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ross Walenga
- Division of Therapeutic Performance II, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ching-Long Lin
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA; Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Li F, Zhang X, Comellas AP, Hoffman EA, Graham MM, Lin CL. Longitudinal study of COPD phenotypes using integrated SPECT and qCT imaging. Front Physiol 2025; 16:1555230. [PMID: 40352142 PMCID: PMC12061679 DOI: 10.3389/fphys.2025.1555230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction The aim of this research is to elucidate chronic obstructive pulmonary disease (COPD) progression by quantifying lung ventilation heterogeneities using single-photon emission computed tomography (SPECT) images and establishing correlations with quantitative computed tomography (qCT) imaging-based metrics. This approach seeks to enhance our understanding of how structural and functional changes influence ventilation heterogeneity in COPD. Methods Eight COPD subjects completed a longitudinal study with three visits, spaced about a year apart. CT scans were performed at each visit and qCT-based variables were derived to measure the structural and functional characteristics of the lungs, while the SPECT-based variables were used to quantify lung ventilation heterogeneity. The correlations between key qCT-based variables and SPECT-based variables were examined. Results The SPECT-based ventilation heterogeneity (CVTotal) showed strong correlations with the qCT-based functional small airway disease percentage (fSAD%Total) and emphysematous tissue percentage (Emph%Total) in the total lung, based on cross-sectional data. Over the 2-year period, changes in SPECT-based hot spots (TCMax) exhibited strong negative correlations with changes in fSAD%Total, Emph%Total, and the average airway diameter in the left upper lobe, as well as a strong positive correlation with alternations in airflow distribution between the upper and lower lobes. Discussion In conclusion, this study found strong positive cross-sectional correlations between CVTotal and both fSAD% and Emph%, suggesting that these markers primarily reflect static disease severity at a single time point. In contrast, longitudinal correlations between changes in TCMax and other variables over 2 years may capture the dynamic process of hot spot formation, independent of disease severity. These findings suggest that changes in TCMax may serve as a more sensitive biomarker than changes in CVTotal for tracking the underlying mechanisms of COPD progression.
Collapse
Affiliation(s)
- Frank Li
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, United States
| | - Xuan Zhang
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, United States
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, United States
| | | | - Eric A. Hoffman
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Michael M. Graham
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Ching-Long Lin
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, United States
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, United States
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Monfared M, Mohammadzadeheydgahi M, Farshidfar Z, Mehrabi S, Sadrizadeh S, Abouali O. Morphometric variation in central airways of ten different human lung. Biomed Phys Eng Express 2025; 11:025054. [PMID: 40030995 DOI: 10.1088/2057-1976/adbbf4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
The prevailing scarcity of accurate lung models poses challenges to predicting airborne particle deposition across genders. The present work demonstrates the details of the geometrical specifications of central airways for ten healthy humans (male and female). The data were extracted from HRCT scan images with a minimum resolution of 1 mm. The images cover the trachea to all branches of the G6-G8 generations. The presented data include airway segment diameters, lengths, branching angles, and angles of inclination to gravity, in addition to their average and standard deviation. Our first goal in this study is to generate an average lung model exclusively for humans in laboratory and 1D numerical inhalation investigations. Thus, our primary emphasis in this work is to find the average suitable inclination angle in all generations of central airways for men and women by comparing the available data from previous studies. In the second part of the paper, we have also investigated the particle deposition efficiency in these ten models using the Mimetikos PreludiumTM software package. We compared the regional deposition between males and females and the available respiratory system models.
Collapse
Affiliation(s)
- M Monfared
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
- Department of Agricultural and Biological Engineering, Mississippi State University, United States of America
| | | | - Z Farshidfar
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Mehrabi
- Department of Internal Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - S Sadrizadeh
- KTH Royal Institute of Technology, Stockholm, Sweden
- Mälardalens University, Västerås, Sweden
| | - O Abouali
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
- KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
4
|
Kuprat AP, Feng Y, Corley RA, Darquenne C. Subject-Specific Multi-Scale Modeling of the Fate of Inhaled Aerosols. JOURNAL OF AEROSOL SCIENCE 2025; 183:106471. [PMID: 39678160 PMCID: PMC11636312 DOI: 10.1016/j.jaerosci.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Determining the fate of inhaled aerosols in the respiratory system is essential in assessing the potential toxicity of inhaled airborne materials, responses to airborne pathogens, or in improving inhaled drug delivery. The availability of high-resolution clinical lung imaging and advances in the reconstruction of lung airways from CT images have led to the development of subject-specific in-silico 3D models of aerosol dosimetry, often referred to as computational fluid-particle-dynamics (CFPD) models. As CFPD models require extensive computing resources, they are typically confined to the upper and large airways. These models can be combined with lower-dimensional models to form multiscale models that predict the transport and deposition of inhaled aerosols in the entire respiratory tract. Understanding where aerosols deposit is only the first of potentially several key events necessary to predict an outcome, being a detrimental health effect or a therapeutic response. To that end, multiscale approaches that combine CFPD with physiologically-based pharmacokinetics (PBPK) models have been developed to evaluate the absorption, distribution, metabolism, and excretion (ADME) of toxic or medicinal chemicals in one or more compartments of the human body. CFPD models can also be combined with host cell dynamics (HCD) models to assess regional immune system responses. This paper reviews the state of the art of these different multiscale approaches and discusses the potential role of personalized or subject-specific modeling in respiratory health.
Collapse
Affiliation(s)
- A P Kuprat
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Y Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - R A Corley
- Greek Creek Toxicokinetics Consulting, LLC, Boise, ID, USA
| | - C Darquenne
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
5
|
Jin G, Kumar H, Clark AR, Burrowes KS, Hoffman EA, Tawhai MH. Evaluating the role of sex-related structure-function differences on airway aerosol transport and deposition. J Appl Physiol (1985) 2024; 137:1285-1300. [PMID: 39169840 PMCID: PMC11918303 DOI: 10.1152/japplphysiol.00898.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Several experimental studies have found that females have higher particle deposition in the airways than males. This has implications for the delivery of aerosolized therapeutics and for understanding sex differences in respiratory system response to environmental exposures. This study evaluates several factors that potentially contribute to sex differences in particle deposition, using scale-specific structure-function models of one-dimensional (1-D) ventilation distribution, particle transport, and deposition. The impact of gravity, inhalation flow rate, and dead space are evaluated in 12 structure-based models (7 females; 5 males). Females were found to have significantly higher total, bronchial, and alveolar deposition than males across a particle size range from 0.01 to 10 μm. Results suggest that higher deposition fraction in females is due to higher alveolar deposition for smaller particle sizes and higher bronchial deposition for larger particles. Females had higher alveolar deposition in the lower lobes and slightly lower particle concentration in the left upper lobe. Males were found to be more sensitive to changes due to gravity, showing greater reduction in bronchial deposition fraction. Males were also more sensitive to change in inhalation flow rate and to scaling of dead space due to the larger male baseline airway size. Predictions of sex differences in particle deposition-that are consistent with the literature-suggest that sex-based characteristics of lung and airway size interacting with particle size gives rise to differences in regional deposition.NEW & NOTEWORTHY Sex differences in airway tract particle deposition are analyzed using computational models that account for scale-specific structure and function. We show that sex-related differences in lung and airway size can explain experimental observations of increased deposition fraction in females, with females tending toward enhanced fine particle deposition in the alveolar airways and enhanced bronchial deposition for larger particles.
Collapse
Affiliation(s)
- Ge Jin
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Haribalan Kumar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kelly S Burrowes
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Chalvatzaki E, Lazaridis M. A model study on the effect of human's height variability in particle deposition and retained dose in the respiratory tract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50198-50208. [PMID: 39090297 DOI: 10.1007/s11356-024-34539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The objective of the current study was to investigate the impact of human's height variability to the deposition percentage, the deposited and the retained dose of particulate matter in the respiratory tract. In addition, the dose to the oesophagus, blood and lymph nodes was evaluated after particle clearance. A methodology which correlates anatomical and physiological parameters with height was adopted into an existing particle dosimetry model (Exposure Dose Model 2, ExDoM2). Model results showed that deposition of particles with aerodynamic diameter (dae) ranging from 0.001 to 10 μm depends on the competition between anatomical/physiological parameters, with the maximum effect induced from height variability to be observed for particles in the size range of 0.30 μm
Collapse
Affiliation(s)
- Eleftheria Chalvatzaki
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Greece
| | - Mihalis Lazaridis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Greece.
| |
Collapse
|
7
|
Darquenne C, Corcoran TE, Lavorini F, Sorano A, Usmani OS. The effects of airway disease on the deposition of inhaled drugs. Expert Opin Drug Deliv 2024; 21:1175-1190. [PMID: 39136493 PMCID: PMC11412782 DOI: 10.1080/17425247.2024.2392790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION The deposition of inhaled medications is the first step in the pulmonary pharmacokinetic process to produce a therapeutic response. Not only lung dose but more importantly the distribution of deposited drug in the different regions of the lung determines local bioavailability, efficacy, and clinical safety. Assessing aerosol deposition patterns has been the focus of intense research that combines the fields of physics, radiology, physiology, and biology. AREAS COVERED The review covers the physics of aerosol transport in the lung, experimental, and in-silico modeling approaches to determine lung dose and aerosol deposition patterns, the effect of asthma, chronic obstructive pulmonary disease, and cystic fibrosis on aerosol deposition, and the clinical translation potential of determining aerosol deposition dose. EXPERT OPINION Recent advances in in-silico modeling and lung imaging have enabled the development of realistic subject-specific aerosol deposition models, albeit mainly in health. Accurate modeling of lung disease still requires additional refinements in existing imaging and modeling approaches to better characterize disease heterogeneity in peripheral airways. Nevertheless, recent patient-centric innovation in inhaler device engineering and the incorporation of digital technology have led to more consistent lung deposition and improved targeting of the distal airways, which better serve the clinical needs of patients.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California, San Diego, CA, USA
| | | | - Federico Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Sorano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Omar S Usmani
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
8
|
Sack C, Wang M, Knutson V, Gassett A, Hoffman EA, Sheppard L, Barr RG, Kaufman JD, Smith B. Airway Tree Caliber and Susceptibility to Pollution-associated Emphysema: MESA Air and Lung Studies. Am J Respir Crit Care Med 2024; 209:1351-1359. [PMID: 38226871 PMCID: PMC11146562 DOI: 10.1164/rccm.202307-1248oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024] Open
Abstract
Rationale: Airway tree morphology varies in the general population and may modify the distribution and uptake of inhaled pollutants. Objectives: We hypothesized that smaller airway caliber would be associated with emphysema progression and would increase susceptibility to air pollutant-associated emphysema progression. Methods: MESA (Multi-Ethnic Study of Atherosclerosis) is a general population cohort of adults 45-84 years old from six U.S. communities. Airway tree caliber was quantified as the mean of airway lumen diameters measured from baseline cardiac computed tomography (CT) (2000-2002). Percentage emphysema, defined as percentage of lung pixels below -950 Hounsfield units, was assessed up to five times per participant via cardiac CT scan (2000-2007) and equivalent regions on lung CT scan (2010-2018). Long-term outdoor air pollutant concentrations (particulate matter with an aerodynamic diameter ⩽2.5 μm, oxides of nitrogen, and ozone) were estimated at the residential address with validated spatiotemporal models. Linear mixed models estimated the association between airway tree caliber and emphysema progression; modification of pollutant-associated emphysema progression was assessed using multiplicative interaction terms. Measurements and Main Results: Among 6,793 participants (mean ± SD age, 62 ± 10 yr), baseline airway tree caliber was 3.95 ± 1.1 mm and median (interquartile range) of percentage emphysema was 2.88 (1.21-5.68). In adjusted analyses, 10-year emphysema progression rate was 0.75 percentage points (95% confidence interval, 0.54-0.96%) higher in the smallest compared with largest airway tree caliber quartile. Airway tree caliber also modified air pollutant-associated emphysema progression. Conclusions: Smaller airway tree caliber was associated with accelerated emphysema progression and modified air pollutant-associated emphysema progression. A better understanding of the mechanisms of airway-alveolar homeostasis and air pollutant deposition is needed.
Collapse
Affiliation(s)
- Coralynn Sack
- Department of Medicine
- Department of Environmental and Occupational Health Sciences, and
| | - Meng Wang
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York
| | - Victoria Knutson
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Amanda Gassett
- Department of Environmental and Occupational Health Sciences, and
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, and
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - R. Graham Barr
- Department of Medicine and
- Department of Epidemiology, Columbia University, New York, New York; and
| | - Joel D. Kaufman
- Department of Medicine
- Department of Environmental and Occupational Health Sciences, and
| | - Benjamin Smith
- Department of Medicine and
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Oakes JM. The utility of hybrid in silico models of airflow and aerosol dosimetry in the lung. J Biomech 2024; 168:112126. [PMID: 38718595 DOI: 10.1016/j.jbiomech.2024.112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
The development and application of multi-scale models of the lung has significantly increased in recent years. These hybrid models merge realistic representations of the larger airways with lower-dimensional descriptions of the bronchioles and respiratory airways. Due to recent advancements, it is possible to calculate airflow and dosimetry throughout the entire lung, enabling model validation with human or animal data. Here, we present a hybrid modeling pipeline and corresponding characteristic airflow and particle deposition hotspots. Next, we discuss the limitations of current hybrid models, including the need to update lower-dimensional deposition function descriptions to better represent realistic airway geometries. Future directions should include modeling diseased lungs and use of machine learning to predict whole lung dosimetry maps for a wider population.
Collapse
Affiliation(s)
- Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, MA 02115.
| |
Collapse
|
10
|
Li F, Zhang X, Comellas AP, Hoffman EA, Graham MM, Lin CL. Exploratory Study on COPD Phenotypes and their Progression: Integrating SPECT and qCT Imaging Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.10.24305577. [PMID: 38645219 PMCID: PMC11030493 DOI: 10.1101/2024.04.10.24305577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background The objective of this study is to understand chronic obstructive pulmonary disease (COPD) phenotypes and their progressions by quantifying heterogeneities of lung ventilation from the single photon emission computed tomography (SPECT) images and establishing associations with the quantitative computed tomography (qCT) imaging-based clusters and variables. Methods Eight COPD patients completed a longitudinal study of three visits with intervals of about a year. CT scans of these subjects at residual volume, functional residual capacity, and total lung capacity were taken for all visits. The functional and structural qCT-based variables were derived, and the subjects were classified into the qCT-based clusters. In addition, the SPECT variables were derived to quantify the heterogeneity of lung ventilation. The correlations between the key qCT-based variables and SPECT-based variables were examined. Results The SPECT-based coefficient of variation (CVTotal), a measure of ventilation heterogeneity, showed strong correlations (|r| ≥ 0.7) with the qCT-based functional small airway disease percentage (fSAD%Total) and emphysematous tissue percentage (Emph%Total) in the total lung on cross-sectional data. As for the two-year changes, the SPECT-based maximum tracer concentration (TCmax), a measure of hot spots, exhibited strong negative correlations with fSAD%Total, Emph%Total, average airway diameter in the left upper lobe, and airflow distribution in the middle and lower lobes. Conclusion Small airway disease is highly associated with the heterogeneity of ventilation in COPD lungs. TCmax is a more sensitive functional biomarker for COPD progression than CVTotal. Besides fSAD%Total and Emph%Total, segmental airways narrowing and imbalanced ventilation between upper and lower lobes may contribute to the development of hot spots over time.
Collapse
Affiliation(s)
- Frank Li
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Xuan Zhang
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa, USA
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa, USA
| | | | - Eric A. Hoffman
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | | | - Ching-Long Lin
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa, USA
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa, USA
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Zhang X, Li F, Rajaraman PK, Comellas AP, Hoffman EA, Lin CL. Investigating distributions of inhaled aerosols in the lungs of post-COVID-19 clusters through a unified imaging and modeling approach. Eur J Pharm Sci 2024; 195:106724. [PMID: 38340875 PMCID: PMC10948263 DOI: 10.1016/j.ejps.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Recent studies, based on clinical data, have identified sex and age as significant factors associated with an increased risk of long COVID. These two factors align with the two post-COVID-19 clusters identified by a deep learning algorithm in computed tomography (CT) lung scans: Cluster 1 (C1), comprising predominantly females with small airway diseases, and Cluster 2 (C2), characterized by older individuals with fibrotic-like patterns. This study aims to assess the distributions of inhaled aerosols in these clusters. METHODS 140 COVID survivors examined around 112 days post-diagnosis, along with 105 uninfected, non-smoking healthy controls, were studied. Their demographic data and CT scans at full inspiration and expiration were analyzed using a combined imaging and modeling approach. A subject-specific CT-based computational model analysis was utilized to predict airway resistance and particle deposition among C1 and C2 subjects. The cluster-specific structure and function relationships were explored. RESULTS In C1 subjects, distinctive features included airway narrowing, a reduced homothety ratio of daughter over parent branch diameter, and increased airway resistance. Airway resistance was concentrated in the distal region, with a higher fraction of particle deposition in the proximal airways. On the other hand, C2 subjects exhibited airway dilation, an increased homothety ratio, reduced airway resistance, and a shift of resistance concentration towards the proximal region, allowing for deeper particle penetration into the lungs. CONCLUSIONS This study revealed unique mechanistic phenotypes of airway resistance and particle deposition in the two post-COVID-19 clusters. The implications of these findings for inhaled drug delivery effectiveness and susceptibility to air pollutants were explored.
Collapse
Affiliation(s)
- Xuan Zhang
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
| | - Frank Li
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Prathish K Rajaraman
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
| | | | - Eric A Hoffman
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Ching-Long Lin
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA; Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Usmani O, Li G, De Backer J, Sadafi H, Wu L, Marshall J. Modeled small airways lung deposition of two fixed-dose triple therapy combinations assessed with in silico functional respiratory imaging. Respir Res 2023; 24:226. [PMID: 37742015 PMCID: PMC10517457 DOI: 10.1186/s12931-023-02534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Small airways disease plays a key role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and is a major cause of obstruction; therefore, it is a critical pharmacotherapy target. This study evaluated lung deposition of two inhaled corticosteroid (ICS)/long-acting β2-agonist/long-acting muscarinic antagonist single-inhaler triple therapies using in silico functional respiratory imaging (FRI). Deposition was assessed using real-world inhalation profiles simulating everyday use where optimal inhalation may be compromised. METHODS Three-dimensional airway models were produced from 20 patients with moderate-to-very severe COPD. Total, central, and regional small airways deposition as a percentage of delivered dose of budesonide/glycopyrronium/formoterol fumarate dihydrate (BGF) 160/7.2/5 µg per actuation and fluticasone furoate/umeclidinium/vilanterol (FF/UM/VI) 100/62.5/25 µg were evaluated using in silico FRI based on in vitro aerodynamic particle size distributions of each device. Simulations were performed using multiple inhalation profiles of varying durations and flow rates representing patterns suited for a pressurized metered-dose inhaler or dry-powder inhaler (four for BGF, two for FF/UM/VI, with one common profile). For the common profile, deposition for BGF versus FF/UM/VI was compared post-hoc using paired t-tests. RESULTS Across inhalation profiles, mean total lung deposition was consistently higher with BGF (47.0-54.1%) versus FF/UM/VI (20.8-22.7%) and for each treatment component, with greater deposition for BGF also seen in the central large airways. Mean regional small airways deposition was also greater across inhalation profiles with BGF (16.9-23.6%) versus FF/UM/VI (6.8-8.7%) and for each treatment component. For the common profile, total, central, and regional small airways deposition were significantly greater for BGF versus FF/UM/VI (nominal p < 0.001), overall and for treatment components; notably, regional small airways deposition of the ICS components was approximately five-fold greater with budesonide versus fluticasone furoate (16.1% vs. 3.3%). CONCLUSIONS BGF was associated with greater total, central, and small airways deposition for all components versus FF/UM/VI. Importantly, using an identical inhalation profile, there was an approximately five-fold difference in small airways deposition for the ICS components, with only a small percentage of the ICS from FF/UM/VI reaching the small airways. Further research is needed to understand if the enhanced delivery of BGF translates to clinical benefits.
Collapse
Affiliation(s)
- Omar Usmani
- Imperial College London and Royal Brompton Hospital, London, UK
| | - Grace Li
- AstraZeneca, South San Francisco, CA, USA
| | | | | | - Libo Wu
- AstraZeneca, Durham, NC, USA
| | | |
Collapse
|
13
|
Vameghestahbanati M, Sack C, Wysoczanski A, Hoffman EA, Angelini E, Allen NB, Bertoni AG, Guo J, Jacobs DR, Kaufman JD, Laine A, Lin CL, Malinsky D, Michos ED, Oelsner EC, Shea SJ, Watson KE, Benedetti A, Barr RG, Smith BM. Association of dysanapsis with mortality among older adults. Eur Respir J 2023; 61:2300551. [PMID: 37263750 PMCID: PMC10580540 DOI: 10.1183/13993003.00551-2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023]
Abstract
Dysanapsis – an anthropometric mismatch between airway tree calibre and lung size that is common in the general population – is strongly associated with all-cause mortality and increases susceptibility to tobacco smoking-related diseases https://bit.ly/42oDe8J
Collapse
Affiliation(s)
| | | | | | | | - Elsa Angelini
- Columbia University, New York, NY, USA
- NIHR Imperial Biomedical Research Centre, ITMAT Data Science Group, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Benjamin M Smith
- McGill University, Montreal, QC, Canada
- Columbia University, New York, NY, USA
| |
Collapse
|