1
|
Fu Y, Han YT, Xie JL, Liu RQ, Zhao B, Zhang XL, Zhang J, Zhang J. Mesenchymal stem cell exosomes enhance the development of hair follicle to ameliorate androgenetic alopecia. World J Stem Cells 2025; 17:102088. [PMID: 40160691 PMCID: PMC11947894 DOI: 10.4252/wjsc.v17.i3.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/21/2025] [Accepted: 02/26/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) and their secretome have significant potential in promoting hair follicle development. However, the effects of MSC therapy have been reported to vary due to their heterogeneous characteristics. Different sources of MSCs or culture systems may cause heterogeneity of exosomes. AIM To define the potential of human adipose-derived MSC exosomes (hADSC-Exos) and human umbilical cord-derived MSC exosomes (hUCMSC-Exos) for improving dermal papillary cell proliferation in androgenetic alopecia. METHODS We conducted liquid chromatography-mass spectrometry proteomic analysis of hADSC-Exos and hUCMSC-Exos. Liquid chromatography-mass spectrometry suggested that hADSC-Exos were related to metabolism and immunity. Additionally, the hADSC-Exo proteins regulated the cell cycle and other 9 functional groups. RESULTS We verified that hADSC-Exos inhibited glycogen synthase kinase-3β expression by activating the Wnt/β-catenin signaling pathway via cell division cycle protein 42, and enhanced dermal papillary cell proliferation and migration. Excess dihydrotestosterone caused androgenetic alopecia by shortening the hair follicle growth phase, but hADSC-Exos reversed these effects. CONCLUSION This study indicated that hair development is influenced by hADSC-Exo-mediated cell-to-cell communication via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yao-Ting Han
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jun-Ling Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Rong-Qi Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Bo Zhao
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xing-Liao Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jun Zhang
- Tongji Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai 200092, China
- Research Center for Translational Medicine at East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Zhang
- Tongji Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai 200092, China
- Research Center for Translational Medicine at East Hospital, School of Life Science, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Kimsa-Dudek M, Kruszniewska-Rajs C, Krawczyk A, Grzegorczyk A, Synowiec-Wojtarowicz A, Gola J. Effect of Caffeic Acid and a Static Magnetic Field on Human Fibroblasts at the Molecular Level - Next-generation Sequencing Analysis. Appl Biochem Biotechnol 2025; 197:1516-1533. [PMID: 39585554 PMCID: PMC11953221 DOI: 10.1007/s12010-024-05094-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Due to their properties, numerous polyphenols and a static magnetic field could have therapeutic potential. Therefore, the aim of our research was to investigate the effect of caffeic acid (CA), a moderate-strength static magnetic field (SMF) and their simultaneous action on human fibroblasts in order to determine the molecular pathways they affect, which might contribute to their potential use in therapeutic strategies. The research was conducted using normal human dermal fibroblasts (NHDF cells) that had been treated with caffeic acid at a concentration of 1 mmol/L and then exposed to a moderate-strength static magnetic field. The RNA that had been extracted from the collected cells was used as a template for next-generation sequencing (NGS) and an RT-qPCR reaction. We identified a total of 1,006 differentially expressed genes between CA-treated and control cells. Exposure of cells to a SMF altered the expression of only 99 genes. Simultaneous exposure to both factors affected the expression of 953 genes. It has also been shown that these genes mainly participate in cellular processes, including apoptosis. The highest fold change value were observed for HSPA6 and HSPA7 genes. In conclusion, the results of our research enabled the modulators, primarily caffeic acid and to a lesser extent a static magnetic field, of the apoptosis signaling pathway in human fibroblasts to be identified and to propose a mechanism of their action, which might be useful in the development of new preventive and/or therapeutic strategies. However, more research using other cell lines is needed including cancer cells.
Collapse
Affiliation(s)
- Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, Sosnowiec, 41-200, Poland.
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, Sosnowiec, 41-200, Poland
| | - Agata Krawczyk
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, Sosnowiec, 41-200, Poland
| | - Anna Grzegorczyk
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, Sosnowiec, 41-200, Poland
| | - Agnieszka Synowiec-Wojtarowicz
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, Sosnowiec, 41-200, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, Sosnowiec, 41-200, Poland
| |
Collapse
|
3
|
He Z, Starkuviene V, Keese M. The Differentiation and Regeneration Potential of ABCB5 + Mesenchymal Stem Cells: A Review and Clinical Perspectives. J Clin Med 2025; 14:660. [PMID: 39941329 PMCID: PMC11818130 DOI: 10.3390/jcm14030660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are a family of multipotent stem cells that show self-renewal under proliferation, multilineage differentiation, immunomodulation, and trophic function. Thus, these cells, such as adipose tissue-derived mesenchymal stem cells (ADSCs), bone marrow-derived MSCs (BM-MSCs), and umbilical cord-derived mesenchymal stem cells (UC-MSCs), carry great promise for novel clinical treatment options. However, the challenges associated with the isolation of MSCs and the instability of their in vitro expansion remain significant barriers to their clinical application. The plasma membrane-spanning P-glycoprotein ATP-binding cassette subfamily B member 5 positive MSCs (ABCB5+ MSCs) derived from human skin specimens offer a distinctive advantage over other MSCs. They can be easily extracted from the dermis and expanded. In culture, ABCB5+ MSCs demonstrate robust innate homeostasis and a classic trilineage differentiation. Additionally, their ability to modulate the recipients' immune system highlights their potential for allogeneic applications in regenerative medicine. In this review, we primarily discuss the differentiation potential of ABCB5+ MSCs and their perspectives in regenerative medicine.
Collapse
Affiliation(s)
- Zheng He
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
- Institute of Biosciences, Vilnius University Life Sciences Center, 10257 Vilnius, Lithuania
| | - Michael Keese
- Department of Vascular Surgery, Theresienkrankenhaus, Bassermannstraße 1, 68165 Mannheim, Germany
| |
Collapse
|
4
|
Sun Q, Li Y, Yang W, Feng W, Zhou J, Cao Y, Zhang B, Zhu Z, Han C. CircMYH9/miR-133a-3p/CXCR4 axis: a novel regulatory network in sperm fertilization and embryo development. MOLECULAR BIOMEDICINE 2024; 5:69. [PMID: 39671083 PMCID: PMC11645365 DOI: 10.1186/s43556-024-00236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
This study aimed to investigate the influence of sperm miRNAs on fertilization rates (FR) in in vitro fertilization (IVF) and to explore potential regulatory mechanisms in sperm-mediated fertilization and embryo development. Through high-throughput sequencing, we identified differentially expressed miRNAs in sperm, with miR-133a-3p significantly upregulated in samples associated with low FR and available embryo rate (AER). Key regulatory circRNAs and mRNAs were further identified via the Starbase database, intersected with differentially expressed RNA, and analyzed through GO, KEGG, and PPI analyses. The circMYH9/miR-133a-3p/CXCR4 axis emerged as a critical regulatory network. In vitro assays using the GC-2 spd mouse spermatogenic cell line revealed that miR-133a-3p inhibited cell growth and proliferation while promoting apoptosis. circMYH9, acting as a competing endogenous RNA (ceRNA) for miR-133a-3p, modulated CXCR4 expression, enhancing GC-2 spd cell growth and inhibiting apoptosis through the miR-133a-3p/CXCR4 axis. In vivo experiments using a mouse model confirmed that circMYH9 overexpression increased IVF success rates and promoted embryo development via this axis. Mechanistically, miR-133a-3p suppresses sperm fertilization and embryo development by targeting the circMYH9/miR-133a-3p/CXCR4 axis. These findings suggest that this regulatory network could serve as a novel biomarker for assessing fertilization potential and embryo quality in clinical settings and as a potential therapeutic target to improve IVF outcomes and address infertility. This study provides valuable insights into the molecular mechanisms governing sperm function and early embryonic development.
Collapse
Affiliation(s)
- Qian Sun
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Department of Gynecology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222061, China
| | - Yanyu Li
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Clinical Medicine Postgraduate Workstation, Soochow University, Xuzhou, 221009, China
- Department of Gynecology, Xuzhou Central Hospital, No. 199, South Jiefang Road, Quanshan District, Xuzhou, 221009, China
| | - Wen Yang
- Department of Gynecology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222061, China
| | - Wen Feng
- Department of Gynecology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222061, China
| | - Jiayun Zhou
- Department of Gynecology, Xuzhou Central Hospital, No. 199, South Jiefang Road, Quanshan District, Xuzhou, 221009, China
| | - Yijuan Cao
- Department of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Bei Zhang
- Suzhou Medical College, Soochow University, Suzhou, 215123, China.
- Clinical Medicine Postgraduate Workstation, Soochow University, Xuzhou, 221009, China.
- Department of Gynecology, Xuzhou Central Hospital, No. 199, South Jiefang Road, Quanshan District, Xuzhou, 221009, China.
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Conghui Han
- Clinical Medicine Postgraduate Workstation, Soochow University, Xuzhou, 221009, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, 221009, China.
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, China.
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.
- Department of Urology, Heilongjiang Provincial Hospital, Harbin, 150006, China.
| |
Collapse
|
5
|
Desmurget C, Perilleux A, Souquet J, Borth N, Douet J. Molecular biomarkers identification and applications in CHO bioprocessing. J Biotechnol 2024; 392:11-24. [PMID: 38852681 DOI: 10.1016/j.jbiotec.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Biomarkers are valuable tools in clinical research where they allow to predict susceptibility to diseases, or response to specific treatments. Likewise, biomarkers can be extremely useful in the biomanufacturing of therapeutic proteins. Indeed, constraints such as short timelines and the need to find hyper-productive cells could benefit from a data-driven approach during cell line and process development. Many companies still rely on large screening capacities to develop productive cell lines, but as they reach a limit of production, there is a need to go from empirical to rationale procedures. Similarly, during bioprocessing runs, substrate consumption and metabolism wastes are commonly monitored. None of them possess the ability to predict the culture behavior in the bioreactor. Big data driven approaches are being adapted to the study of industrial mammalian cell lines, enabled by the publication of Chinese hamster and CHO genome assemblies which allowed the use of next-generation sequencing with these cells, as well as continuous proteome and metabolome annotation. However, if these different -omics technologies contributed to the characterization of CHO cells, there is a significant effort remaining to apply this knowledge to biomanufacturing methods. The correlation of a complex phenotype such as high productivity or rapid growth to the presence or expression level of a specific biomarker could save time and effort in the screening of manufacturing cell lines or culture conditions. In this review we will first discuss the different biological molecules that can be identified and quantified in cells, their detection techniques, and associated challenges. We will then review how these markers are used during the different steps of cell line and bioprocess development, and the inherent limitations of this strategy.
Collapse
Affiliation(s)
- Caroline Desmurget
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Arnaud Perilleux
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Jonathan Souquet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julien Douet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland.
| |
Collapse
|
6
|
Zhang LC, Li N, Chen JL, Sun J, Xu M, Liu WQ, Zuo ZF, Shi LL, Wang TH, Luo XY. Molecular network mechanism in cerebral ischemia-reperfusion rats treated with human urine stem cells. Heliyon 2024; 10:e27508. [PMID: 38560254 PMCID: PMC10979071 DOI: 10.1016/j.heliyon.2024.e27508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To explore the effect of human urine-derived stem cells (husc) in improving the neurological function of rats with cerebral ischemia-reperfusion (CIR), and report new molecular network by bioinformatics, combined with experiment validation. Methods After CIR model was established, and husc were transplanted into the lateral ventricle of rats,neurological severe score (NSS) andgene network analysis were performed. Firstly, we input the keywords "Cerebral reperfusion" and "human urine stem cells" into Genecard database and merged data with findings from PubMed so as to get their targets genes, and downloaded them to make Venny intersection plot. Then, Gene ontology (GO) analysis, kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and protein-protein interaction (PPI) were performed to construct molecular network of core genes. Lastly, the expressional level of core genes was validated via quantitative real-time polymerase chain reaction (qRT-PCR), and localized by immunofluorescence. Results Compared with the Sham group, the neurological function of CIR rats was significantly improved after the injection of husc into the lateral ventricle; at 14 days, P = 0.028, which was statistically significant. There were 258 overlapping genes between CIR and husc, and integrated with 252 genes screened from PubMed and CNKI. GO enrichment analysis were mainly involved neutrophil degranulation, neutrophil activation in immune response and platelet positive regulation of degranulation, Hemostasis, blood coagulation, coagulation, etc. KEGG pathway analysis was mainly involved in complement and coagulation cascades, ECM-receptor. Hub genes screened by Cytoscape consist ofCD44, ACTB, FN1, ITGB1, PLG, CASP3, ALB, HSP90AA1, EGF, GAPDH. Lastly, qRT-PCR results showed statistic significance (P < 0.05) in ALB, CD44 and EGF before and after treatment, and EGF immunostaining was localized in neuron of cortex. Conclusion husc transplantation showed a positive effect in improving neural function of CIR rats, and underlying mechanism is involved in CD44, ALB, and EGF network.
Collapse
Affiliation(s)
- Lang-Chun Zhang
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Na Li
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Ji-Lin Chen
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Jie Sun
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Min Xu
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Wen-Qiang Liu
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhong-Fu Zuo
- Department of Anatomy, Jinzhou Medical University, Jinzhou, China
| | - Lan-Lan Shi
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| | - Ting-Hua Wang
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| | - Xiang-Yin Luo
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| |
Collapse
|
7
|
Zhu JJ, Huang FY, Chen H, Zhang YL, Chen MH, Wu RH, Dai SZ, He GS, Tan GH, Zheng WP. Autocrine phosphatase PDP2 inhibits ferroptosis by dephosphorylating ACSL4 in the Luminal A Breast Cancer. PLoS One 2024; 19:e0299571. [PMID: 38466744 PMCID: PMC10927110 DOI: 10.1371/journal.pone.0299571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Phosphatases can dephosphorylate phosphorylated kinases, leading to their inactivation, and ferroptosis is a type of cell death. Therefore, our aim is to identify phosphatases associated with ferroptosis by analyzing the differentially expressed genes (DEGs) of the Luminal A Breast Cancer (LumABC) cohort from the Cancer Genome Atlas (TCGA). An analysis of 260 phosphatase genes from the GeneCard database revealed that out of the 28 DEGs with high expression, only the expression of pyruvate dehydrogenase phosphatase 2 (PDP2) had a significant correlation with patient survival. In addition, an analysis of DEGs using gene ontology, Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analysis revealed a significant variation in the expression of ferroptosis-related genes. To further investigate this, we analyzed 34 ferroptosis-related genes from the TCGA-LumABC cohort. The expression of long-chain acyl-CoA synthetase 4 (ACSL4) was found to have the highest correlation with the expression of PDP2, and its expression was also inversely proportional to the survival rate of patients. Western blot experiments using the MCF-7 cell line showed that the phosphorylation level of ACSL4 was significantly lower in cells transfected with the HA-PDP2 plasmid, and ferroptosis was correspondingly reduced (p < 0.001), as indicated by data from flow cytometry detection of membrane-permeability cell death stained with 7-aminoactinomycin, lipid peroxidation, and Fe2+. Immunoprecipitation experiments further revealed that the phosphorylation level of ACSL4 was only significantly reduced in cells where PDP2 and ACSL4 co-precipitated. These findings suggest that PDP2 may act as a phosphatase to dephosphorylate and inhibit the activity of ACSL4, which had been phosphorylated and activated in LumABC cells. Further experiments are needed to confirm the molecular mechanism of PDP2 inhibiting ferroptosis.
Collapse
Affiliation(s)
- Jun-Jie Zhu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital and Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Feng-Ying Huang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital and Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital and Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Yun-long Zhang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital and Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Ming-Hui Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital and Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Ri-Hong Wu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital and Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Shu-Zhen Dai
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital and Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Gui-Sheng He
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital and Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Guang-Hong Tan
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital and Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Wu-Ping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital and Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Wu M, Mi J, Qu GX, Zhang S, Jian Y, Gao C, Cai Q, Liu J, Jiang J, Huang H. Role of Hedgehog Signaling Pathways in Multipotent Mesenchymal Stem Cells Differentiation. Cell Transplant 2024; 33:9636897241244943. [PMID: 38695366 PMCID: PMC11067683 DOI: 10.1177/09636897241244943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) have high self-renewal and multi-lineage differentiation potentials and low immunogenicity, so they have attracted much attention in the field of regenerative medicine and have a promising clinical application. MSCs originate from the mesoderm and can differentiate not only into osteoblasts, cartilage, adipocytes, and muscle cells but also into ectodermal and endodermal cell lineages across embryonic layers. To design cell therapy for replacement of damaged tissues, it is essential to understand the signaling pathways, which have a major impact on MSC differentiation, as this will help to integrate the signaling inputs to initiate a specific lineage. Hedgehog (Hh) signaling plays a vital role in the development of various tissues and organs in the embryo. As a morphogen, Hh not only regulates the survival and proliferation of tissue progenitor and stem populations but also is a critical moderator of MSC differentiation, involving tri-lineage and across embryonic layer differentiation of MSCs. This review summarizes the role of Hh signaling pathway in the differentiation of MSCs to mesodermal, endodermal, and ectodermal cells.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Junwei Mi
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Guo-xin Qu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shu Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Yi Jian
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Chu Gao
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Qingli Cai
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jing Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hong Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Wang YT, Meng XT. A review of the evidence to support electrical stimulation -induced vascularization in engineered tissue. Regen Ther 2023; 24:237-244. [PMID: 37534238 PMCID: PMC10393514 DOI: 10.1016/j.reth.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Tissue engineering presents a promising solution for regenerative medicine and the success depends on the supply of oxygen/nutrients to the cells by rapid vascularization. More and more technologies are being developed to facilitate vascularization of engineered tissues. In this review, we indicated that a regulatory system which influences all angiogenesis associated cells to achieve their desired functional state is ideal for the construction of vascularized engineered tissues in vitro. We presented the evidence that electrical stimulation (ES) enhances the synergistic promotion of co-cultured angiogenesis associated cells and its potential regulatory mechanisms, highlighted the potential advantages of a combination of mesenchymal stem cells (MSCs), endothelial cells (ECs) and ES to achieve tissue vascularization, with particular emphasis on the different biological pathways of ES-regulated ECs. Finally, we proposed the future direction of using ES to reconstruct engineered tissue blood vessels, pointed out the potential advantages and disadvantages of ES application on tissue vascularization.
Collapse
Affiliation(s)
- Ying-tong Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiao-ting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
10
|
Liu Y, Zhou Q, Ye F, Yang C, Jiang H. Gut microbiota-derived short-chain fatty acids promote prostate cancer progression via inducing cancer cell autophagy and M2 macrophage polarization. Neoplasia 2023; 43:100928. [PMID: 37579688 PMCID: PMC10429288 DOI: 10.1016/j.neo.2023.100928] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
We have previously demonstrated abnormal gut microbial composition in castration-resistant prostate cancer (CRPC) patients, here we revealed the mechanism of gut microbiota-derived short-chain fatty acids (SCFAs) as a mediator linking CRPC microbiota dysbiosis and prostate cancer (PCa) progression. By using transgenic TRAMP mouse model, PCa patient samples, in vitro PCa cell transwell and macrophage recruitment assays, we examined the effects of CRPC fecal microbiota transplantation (FMT) and SCFAs on PCa progression. Our results showed that FMT with CRPC patients' fecal suspension increased SCFAs-producing gut microbiotas such as Ruminococcus, Alistipes, Phascolarctobaterium in TRAMP mice, and correspondingly raised their gut SCFAs (acetate and butyrate) levels. CRPC FMT or SCFAs supplementation significantly accelerated mice's PCa progression. In vitro, SCFAs enhanced PCa cells migration and invasion by inducing TLR3-triggered autophagy that further activated NF-κB and MAPK signalings. Meanwhile, autophagy of PCa cells released higher level of chemokine CCL20 that could reprogramme the tumor microenvironment by recruiting more macrophage infiltration and simultaneously polarizing them into M2 type, which in turn further strengthened PCa cells invasiveness. Finally in a cohort of 362 PCa patients, we demonstrated that CCL20 expression in prostate tissue was positively correlated with Gleason grade, pre-operative PSA, neural/seminal vesical invasion, and was negatively correlated with post-operative biochemical recurrence-free survival. Collectively, CRPC gut microbiota-derived SCFAs promoted PCa progression via inducing cancer cell autophagy and M2 macrophage polarization. CCL20 could become a biomarker for prediction of prognosis in PCa patients. Intervention of SCFAs-producing microbiotas may be a useful strategy in manipulation of CRPC.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China.
| | - Quan Zhou
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Chen Yang
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China.
| |
Collapse
|
11
|
Zhang M, Zheng J, Wu S, Chen H, Xiang L. Dynamic expression of IGFBP3 modulate dual actions of mineralization micro-environment during tooth development via Wnt/beta-catenin signaling pathway. Biol Direct 2023; 18:34. [PMID: 37365579 DOI: 10.1186/s13062-023-00391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Tooth development, as one of the major mineralized tissues in the body, require fine-tuning of mineralization micro-environment. The interaction between dental epithelium and mesenchyme plays a decisive role in this process. With epithelium-mesenchyme dissociation study, we found interesting expression pattern of insulin-like growth factor binding protein 3 (IGFBP3) in response to disruption of dental epithelium-mesenchyme interaction. Its action and related mechanisms as regulator of mineralization micro-environment during tooth development are investigated. RESULTS Expressions of osteogenic markers at early stage of tooth development are significantly lower than those at later stage. BMP2 treatment further confirmed a high mineralization micro-environment is disruptive at early stage, but beneficial at later stage of tooth development. In contrast, IGFBP3's expression increased gradually from E14.5, peaked at P5, and decreased afterwards, demonstrating an inverse correlation with osteogenic markers. RNA-Seq and Co-immunoprecipitation showed that IGFBP3 regulates the Wnt/beta-catenin signaling pathway activity by enhancing DKK1 expression and direct protein-protein interaction. The suppression of the mineralization microenvironment effectuated by IGFBP3 could be reversed by the DKK1 inhibitor WAY-262611, further demonstrating that IGFBP3 exerted its influence via DKK1. CONCLUSION A deeper understanding of tooth development mechanisms is essential for tooth regeneration, which have great implications for dental care. The current study demonstrated that the IGFBP3 expression is regulated in accordance with the needs of the mineralization microenvironment during tooth development, and IGFBP3 exerts its modulating action on osteogenic/odontogenic differentiation of hDPSCs by DKK1-Wnt/ beta-catenin axis.
Collapse
Affiliation(s)
- MengDan Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No. 56 Lingyuan West Road, Guangzhou, 510055, Guangdong, China
| | - Junming Zheng
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, No. 5, Hebin Road, Chancheng District, Foshan, 528000, Guangdong, China
| | - Siyuan Wu
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, No. 5, Hebin Road, Chancheng District, Foshan, 528000, Guangdong, China
| | - Hailing Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No. 56 Lingyuan West Road, Guangzhou, 510055, Guangdong, China
| | - Lusai Xiang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No. 56 Lingyuan West Road, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
12
|
Aries A, Zanetti C, Hénon P, Drénou B, Lahlil R. Deciphering the Cardiovascular Potential of Human CD34 + Stem Cells. Int J Mol Sci 2023; 24:ijms24119551. [PMID: 37298503 DOI: 10.3390/ijms24119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Ex vivo monitored human CD34+ stem cells (SCs) injected into myocardium scar tissue have shown real benefits for the recovery of patients with myocardial infarctions. They have been used previously in clinical trials with hopeful results and are expected to be promising for cardiac regenerative medicine following severe acute myocardial infarctions. However, some debates on their potential efficacy in cardiac regenerative therapies remain to be clarified. To elucidate the levels of CD34+ SC implication and contribution in cardiac regeneration, better identification of the main regulators, pathways, and genes involved in their potential cardiovascular differentiation and paracrine secretion needs to be determined. We first developed a protocol thought to commit human CD34+ SCs purified from cord blood toward an early cardiovascular lineage. Then, by using a microarray-based approach, we followed their gene expression during differentiation. We compared the transcriptome of undifferentiated CD34+ cells to those induced at two stages of differentiation (i.e., day three and day fourteen), with human cardiomyocyte progenitor cells (CMPCs), as well as cardiomyocytes as controls. Interestingly, in the treated cells, we observed an increase in the expressions of the main regulators usually present in cardiovascular cells. We identified cell surface markers of the cardiac mesoderm, such as kinase insert domain receptor (KDR) and the cardiogenic surface receptor Frizzled 4 (FZD4), induced in the differentiated cells in comparison to undifferentiated CD34+ cells. The Wnt and TGF-β pathways appeared to be involved in this activation. This study underlined the real capacity of effectively stimulated CD34+ SCs to express cardiac markers and, once induced, allowed the identification of markers that are known to be involved in vascular and early cardiogenesis, demonstrating their potential priming towards cardiovascular cells. These findings could complement their paracrine positive effects known in cell therapy for heart disease and may help improve the efficacy and safety of using ex vivo expanded CD34+ SCs.
Collapse
Affiliation(s)
- Anne Aries
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| | - Céline Zanetti
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| | | | - Bernard Drénou
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
- Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, Hôpital E. Muller, 20 Avenue de Dr Laennec, 68100 Mulhouse, France
| | - Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| |
Collapse
|
13
|
Ogi DA, Jin S. Transcriptome-Powered Pluripotent Stem Cell Differentiation for Regenerative Medicine. Cells 2023; 12:1442. [PMID: 37408278 DOI: 10.3390/cells12101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
Pluripotent stem cells are endless sources for in vitro engineering human tissues for regenerative medicine. Extensive studies have demonstrated that transcription factors are the key to stem cell lineage commitment and differentiation efficacy. As the transcription factor profile varies depending on the cell type, global transcriptome analysis through RNA sequencing (RNAseq) has been a powerful tool for measuring and characterizing the success of stem cell differentiation. RNAseq has been utilized to comprehend how gene expression changes as cells differentiate and provide a guide to inducing cellular differentiation based on promoting the expression of specific genes. It has also been utilized to determine the specific cell type. This review highlights RNAseq techniques, tools for RNAseq data interpretation, RNAseq data analytic methods and their utilities, and transcriptomics-enabled human stem cell differentiation. In addition, the review outlines the potential benefits of the transcriptomics-aided discovery of intrinsic factors influencing stem cell lineage commitment, transcriptomics applied to disease physiology studies using patients' induced pluripotent stem cell (iPSC)-derived cells for regenerative medicine, and the future outlook on the technology and its implementation.
Collapse
Affiliation(s)
- Derek A Ogi
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
14
|
Zhang H, Xie L, Zhang N, Qi X, Lu T, Xing J, Akhtar MF, Li L, Liu G. Donkey Oil-Based Ketogenic Diet Prevents Tumor Progression by Regulating Intratumor Inflammation, Metastasis and Angiogenesis in CT26 Tumor-Bearing Mice. Genes (Basel) 2023; 14:genes14051024. [PMID: 37239383 DOI: 10.3390/genes14051024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Colon cancer is one of the typical malignant tumors, and its prevalence has increased yearly. The ketogenic diet (KD) is a low-carbohydrate and high-fat dietary regimen that inhibits tumor growth. Donkey oil (DO) is a product with a high nutrient content and a high bioavailability of unsaturated fatty acids. Current research investigated the impact of the DO-based KD (DOKD) on CT26 colon cancer in vivo. Our findings revealed that DOKD administration significantly lowered CT26+ tumor cell growth in mice, and the blood β-hydroxybutyrate levels in the DOKD group was significantly higher than those in the natural diet group. Western blot results showed that DOKD significantly down-regulated Src, hypoxia inducible factor-1α (HIF-1α), extracellular signal-related kinases 1 and 2 (Erk1/2), snail, neural cadherin (N-cadherin), vimentin, matrix metallopeptidase 9 (MMP9), signal transducer and activator of transcription 3 (STAT3), and vascular endothelial growth factor A (VEGFA), and it significantly up-regulated the expressions of Sirt3, S100a9, interleukin (IL)-17, nuclear factor-kappaB (NF-κB) p65, Toll-like receptor 4 (TLR4), MyD88, and tumor necrosis factor-α. Meanwhile, in vitro validation results showed that LW6 (a HIF-1α inhibitor) significantly down-regulated the expressions of HIF-1α, N-cadherin, vimentin, MMP9, and VEGFA, which supported those of the in vivo findings. Furthermore, we found that DOKD inhibited CT26+ tumor cell growth by regulating inflammation, metastasis, and angiogenesis by activating the IL-17/TLR4/NF-κB p65 pathway and inhibiting the activation of the Src/HIF-1α/Erk1/2/Snail/N-cadherin/Vimentin/MMP9 and Erk1/2/HIF-1α/STAT3/VEGFA pathways. Our findings suggest that DOKD may suppress colon cancer progression and help prevent colon cancer cachexia.
Collapse
Affiliation(s)
- Huachen Zhang
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| | - Lan Xie
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| | - Ning Zhang
- Biopharmaceutical Research Institute, Liaocheng University, Liaocheng 252000, China
| | - Xingzhen Qi
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| | - Ting Lu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| | - Jingya Xing
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Muhammad Faheem Akhtar
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| | - Lanjie Li
- Office of International Programs, Liaocheng University, Liaocheng 252000, China
| | - Guiqin Liu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
15
|
Xu X, Deng L, Tang Y, Li J, Zhong T, Hao X, Fan Y, Mu S. Cytostatic Activity of Sanguinarine and a Cyanide Derivative in Human Erythroleukemia Cells Is Mediated by Suppression of c-MET/MAPK Signaling. Int J Mol Sci 2023; 24:ijms24098113. [PMID: 37175820 PMCID: PMC10179035 DOI: 10.3390/ijms24098113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Sanguinarine (1) is a natural product with significant pharmacological effects. However, the application of sanguinarine has been limited due to its toxic side effects and a lack of clarity regarding its molecular mechanisms. To reduce the toxic side effects of sanguinarine, its cyanide derivative (1a) was first designed and synthesized in our previous research. In this study, we confirmed that 1a presents lower toxicity than sanguinarine but shows comparable anti-leukemia activity. Further biological studies using RNA-seq, lentiviral transfection, Western blotting, and flow cytometry analysis first revealed that both compounds 1 and 1a inhibited the proliferation and induced the apoptosis of leukemic cells by regulating the transcription of c-MET and then suppressing downstream pathways, including the MAPK, PI3K/AKT and JAK/STAT pathways. Collectively, the data indicate that 1a, as a potential anti-leukemia lead compound regulating c-MET transcription, exhibits better safety than 1 while maintaining cytostatic activity through the same mechanism as 1.
Collapse
Affiliation(s)
- Xinglian Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| | - Lulu Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| | - Yaling Tang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
- Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, China
| | - Jiang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| | - Ting Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
- Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, China
| | - Yanhua Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| |
Collapse
|
16
|
Liang Y, Wu D, Qu Q, Li Z, Yin H. MORC4 plays a tumor-promoting role in colorectal cancer via regulating PCGF1/CDKN1A axis in vitro and in vivo. Cancer Gene Ther 2023:10.1038/s41417-023-00605-2. [PMID: 36932196 DOI: 10.1038/s41417-023-00605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
MORC family CW-type zinc finger 4 (MORC4) possessing nuclear matrix binding domains has been observed to be involved in multiple cancer development. By digging three gene expression omnibus (GEO) gene microarrays (GSE110223, GSE110224 and GSE24514), we found that MORC4 was overexpressed in colorectal cancer (CRC) samples (log2 Fold change >1, p < 0.05). We aimed to investigate the role of MORC4 in CRC malignant behaviors, with an emphasis on polycomb group ring finger 1 (PCGF1)/cyclin-dependent kinase inhibitor 1A (CDKN1A) axis. Firstly, we confirmed MORC4 as an upregulated gene in 60 pairs of frozen CRC and adjacent normal samples. MORC4 overexpression increased proliferation and metastasis, and decreased apoptosis in SW480 and HT29 cells, which was diminished by the knockdown of PCGF1, a transcriptional repressor of CDKN1A (a potent cyclin-dependent kinase inhibitor). MORC4 was further identified as a novel molecule that interacted with PCGF1 via coimmunoprecipitation. MORC4 itself did not substantially suppress CDKN1A transcriptional activity, but it augmented PCGF1's effect on CDKN1A. Additionally, MORC4 acted as the substrate of HECT, C2, and WW domain-containing E3 ubiquitin protein ligase 2 (HECW2) and was degraded through ubiquitin-proteasome system. Collectively, our work suggested that MORC4 accelerated CRC progression via governing PCGF1/CDKN1A signaling.
Collapse
Affiliation(s)
- Yichao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Di Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Qiao Qu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Zhilong Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
17
|
Pieczara A, Borek-Dorosz A, Buda S, Tipping W, Graham D, Pawlowski R, Mlynarski J, Baranska M. Modified glucose as a sensor to track the metabolism of individual living endothelial cells - Observation of the 1602 cm−1 band called “Raman spectroscopic signature of life”. Biosens Bioelectron 2023; 230:115234. [PMID: 36989660 DOI: 10.1016/j.bios.2023.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
A relatively new approach to subcellular research is Raman microscopy with the application of sensors called Raman probes. This paper describes the use of the sensitive and specific Raman probe, 3-O-propargyl-d-glucose (3-OPG), to track metabolic changes in endothelial cells (ECs). ECs play a significant role in a healthy and dysfunctional state, the latter is correlated with a range of lifestyle diseases, particularly with cardiovascular disorders. The metabolism and glucose uptake may reflect the physiopathological conditions and cell activity correlated with energy utilization. To study metabolic changes at the subcellular level the glucose analogue, 3-OPG was used, which shows a characteristic and intense Raman band at 2124 cm-1.3-OPG was applied as a sensor to track both, its accumulation in live and fixed ECs and then metabolism in normal and inflamed ECs, by employing two spectroscopic techniques, i.e. spontaneous and stimulated Raman scattering microscopies. The results indicate that 3-OPG is a sensitive sensor to follow glucose metabolism, manifested by the Raman band of 1602 cm-1. The 1602 cm-1 band has been called the "Raman spectroscopic signature of life" in the cell literature, and here we demonstrate that it is attributed to glucose metabolites. Additionally, we have shown that glucose metabolism and its uptake are slowed down in the cellular inflammation. We showed that Raman spectroscopy can be classified as metabolomics, and its uniqueness lies in the fact that it allows the analysis of the processes of a single living cell. Gaining further knowledge on metabolic changes in the endothelium, especially in pathological conditions, may help in identifying markers of cellular dysfunction, and more broadly in cell phenotyping, better understanding of the mechanism of disease development and searching for new treatments.
Collapse
Affiliation(s)
- Anna Pieczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland; Jagiellonian University in Kraków, Doctoral School of Exact and Natural Sciences, 11 Lojasiewicza St., Krakow, Poland
| | | | - Szymon Buda
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland
| | - William Tipping
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom
| | - Robert Pawlowski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224, Warsaw, Poland
| | - Jacek Mlynarski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224, Warsaw, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland.
| |
Collapse
|
18
|
Cui H, Sun Y, Zhao D, Zhang X, Kong H, Hu N, Wang P, Zuo X, Fan W, Yao Y, Fu B, Tian J, Wu M, Gao Y, Ning S, Zhang L. Radiogenomic analysis of prediction HER2 status in breast cancer by linking ultrasound radiomic feature module with biological functions. J Transl Med 2023; 21:44. [PMID: 36694240 PMCID: PMC9875533 DOI: 10.1186/s12967-022-03840-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) overexpressed associated with poor prognosis in breast cancer and HER2 has been defined as a therapeutic target for breast cancer treatment. We aimed to explore the molecular biological information in ultrasound radiomic features (URFs) of HER2-positive breast cancer using radiogenomic analysis. Moreover, a radiomics model was developed to predict the status of HER2 in breast cancer. METHODS This retrospective study included 489 patients who were diagnosed with breast cancer. URFs were extracted from a radiomics analysis set using PyRadiomics. The correlations between differential URFs and HER2-related genes were calculated using Pearson correlation analysis. Functional enrichment of the identified URFs-correlated HER2 positive-specific genes was performed. Lastly, the radiomics model was developed based on the URF-module mined from auxiliary differential URFs to assess the HER2 status of breast cancer. RESULTS Eight differential URFs (p < 0.05) were identified among the 86 URFs extracted by Pyradiomics. 25 genes that were found to be the most closely associated with URFs. Then, the relevant biological functions of each differential URF were obtained through functional enrichment analysis. Among them, Zone Entropy is related to immune cell activity, which regulate the generation of calcification in breast cancer. The radiomics model based on the Logistic classifier and URF-module showed good discriminative ability (AUC = 0.80, 95% CI). CONCLUSION We searched for the URFs of HER2-positive breast cancer, and explored the underlying genes and biological functions of these URFs. Furthermore, the radiomics model based on the Logistic classifier and URF-module relatively accurately predicted the HER2 status in breast cancer.
Collapse
Affiliation(s)
- Hao Cui
- grid.412463.60000 0004 1762 6325Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| | - Yue Sun
- grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081 China
| | - Dantong Zhao
- grid.412463.60000 0004 1762 6325Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| | - Xudong Zhang
- grid.412463.60000 0004 1762 6325Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| | - Hanqing Kong
- grid.412463.60000 0004 1762 6325Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| | - Nana Hu
- grid.412463.60000 0004 1762 6325Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| | - Panting Wang
- grid.412463.60000 0004 1762 6325Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| | - Xiaoxuan Zuo
- grid.412463.60000 0004 1762 6325Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| | - Wei Fan
- grid.412463.60000 0004 1762 6325Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| | - Yuan Yao
- grid.412463.60000 0004 1762 6325Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| | - Baiyang Fu
- grid.412463.60000 0004 1762 6325Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| | - Jiawei Tian
- grid.412463.60000 0004 1762 6325Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| | - Meixin Wu
- grid.412463.60000 0004 1762 6325Department of Clinical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, 150086 China
| | - Yue Gao
- grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081 China
| | - Shangwei Ning
- grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081 China
| | - Lei Zhang
- grid.412463.60000 0004 1762 6325Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 Heilongjiang China
| |
Collapse
|
19
|
LncRNA SNHG5 Suppresses Cell Migration and Invasion of Human Lung Adenocarcinoma via Regulation of Epithelial-Mesenchymal Transition. JOURNAL OF ONCOLOGY 2023; 2023:3335959. [PMID: 36711024 PMCID: PMC9879674 DOI: 10.1155/2023/3335959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 01/21/2023]
Abstract
Long noncoding RNAs (lncRNAs) are gradually being annotated as important regulators of multiple cellular processes. The goal of our study was to investigate the effects of the lncRNA small nucleolar RNA host gene 5 (SNHG5) in lung adenocarcinoma (LAD) and its underlying mechanisms. The findings revealed a substantial drop in SNHG5 expression in LAD tissues, which correlated with clinical-pathological parameters. Transcriptome sequencing analysis demonstrated that the inhibitory effect of SNHG5 was associated with cell adhesion molecules. Moreover, the expression of SNHG5 was shown to be correlated with epithelial-mesenchymal transition (EMT) markers in western blots and immunofluorescence. SNHG5 also had significant effects of antimigration and anti-invasion on LAD cells in vitro. Furthermore, the migration and invasion of A549 cells were suppressed by overexpressed SNHG5 in the EMT progress induced by transforming growth factor β1 (TGF-β1), and this might be due to the inhibition of the expression of EMT-associated transcription factors involving Snail, SLUG, and ZEB1. In LAD tissues, the expression of SNHG5 exhibited a positive association with E-cadherin protein expression but a negative correlation with N-cadherin and vimentin, according to the results of quantitative real-time PCR (qRT-PCR). In summary, the current work demonstrated that the lncRNA SNHG5 might limit cell migration and invasion of LAD cancer via decreasing the EMT process, indicating that SNHG5 might be used as a target for LAD therapeutic methods.
Collapse
|
20
|
Lu L, Liu LP, Gui R, Dong H, Su YR, Zhou XH, Liu FX. Discovering common pathogenetic processes between COVID-19 and sepsis by bioinformatics and system biology approach. Front Immunol 2022; 13:975848. [PMID: 36119022 PMCID: PMC9471316 DOI: 10.3389/fimmu.2022.975848] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19), an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread rapidly worldwide, resulting in a pandemic with a high mortality rate. In clinical practice, we have noted that many critically ill or critically ill patients with COVID-19 present with typical sepsis-related clinical manifestations, including multiple organ dysfunction syndrome, coagulopathy, and septic shock. In addition, it has been demonstrated that severe COVID-19 has some pathological similarities with sepsis, such as cytokine storm, hypercoagulable state after blood balance is disrupted and neutrophil dysfunction. Considering the parallels between COVID-19 and non-SARS-CoV-2 induced sepsis (hereafter referred to as sepsis), the aim of this study was to analyze the underlying molecular mechanisms between these two diseases by bioinformatics and a systems biology approach, providing new insights into the pathogenesis of COVID-19 and the development of new treatments. Specifically, the gene expression profiles of COVID-19 and sepsis patients were obtained from the Gene Expression Omnibus (GEO) database and compared to extract common differentially expressed genes (DEGs). Subsequently, common DEGs were used to investigate the genetic links between COVID-19 and sepsis. Based on enrichment analysis of common DEGs, many pathways closely related to inflammatory response were observed, such as Cytokine-cytokine receptor interaction pathway and NF-kappa B signaling pathway. In addition, protein-protein interaction networks and gene regulatory networks of common DEGs were constructed, and the analysis results showed that ITGAM may be a potential key biomarker base on regulatory analysis. Furthermore, a disease diagnostic model and risk prediction nomogram for COVID-19 were constructed using machine learning methods. Finally, potential therapeutic agents, including progesterone and emetine, were screened through drug-protein interaction networks and molecular docking simulations. We hope to provide new strategies for future research and treatment related to COVID-19 by elucidating the pathogenesis and genetic mechanisms between COVID-19 and sepsis.
Collapse
Affiliation(s)
- Lu Lu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Le-Ping Liu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yan-Rong Su
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiong-Hui Zhou
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Feng-Xia Liu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Feng-Xia Liu,
| |
Collapse
|
21
|
Moon JE, Lawrence JB. Chromosome silencing in vitro reveals trisomy 21 causes cell-autonomous deficits in angiogenesis and early dysregulation in Notch signaling. Cell Rep 2022; 40:111174. [PMID: 35947952 PMCID: PMC9505374 DOI: 10.1016/j.celrep.2022.111174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/24/2021] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the prevalence of Down syndrome (DS), little is known regarding the specific cell pathologies that underlie this multi-system disorder. To understand which cell types and pathways are more directly affected by trisomy 21 (T21), we used an inducible-XIST system to silence one chromosome 21 in vitro. T21 caused the dysregulation of Notch signaling in iPSCs, potentially affecting cell-type programming. Further analyses identified dysregulation of pathways important for two cell types: neurogenesis and angiogenesis. Angiogenesis is essential to many bodily systems, yet is understudied in DS; therefore, we focused next on whether T21 affects endothelial cells. An in vitro assay for microvasculature formation revealed a cellular pathology involving delayed tube formation in response to angiogenic signals. Parallel transcriptomic analysis of endothelia further showed deficits in angiogenesis regulators. Results indicate a direct cell-autonomous impact of T21 on endothelial function, highlighting the importance of angiogenesis, with wide-reaching implications for development and disease progression. Moon and Lawrence examine the immediate effects of trisomy 21 silencing and find angiogenesis and neurogenesis pathways, including Notch signaling, affected as early as pluripotency. In endothelial cells, functional analyses show that trisomy delays the angiogenic response for microvessel formation and transcriptomics show a parallel impact on angiogenic regulators and signal-response and cytoskeleton processes.
Collapse
Affiliation(s)
- Jennifer E Moon
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
22
|
Zhang Y, Zhong Y, Liu W, Zheng F, Zhao Y, Zou L, Liu X. PFKFB3-mediated glycometabolism reprogramming modulates endothelial differentiation and angiogenic capacity of placenta-derived mesenchymal stem cells. Stem Cell Res Ther 2022; 13:391. [PMID: 35918720 PMCID: PMC9344722 DOI: 10.1186/s13287-022-03089-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have a great potential ability for endothelial differentiation, contributing to an effective means of therapeutic angiogenesis. Placenta-derived mesenchymal stem cells (PMSCs) have gradually attracted attention, while the endothelial differentiation has not been fully evaluated in PMSCs. Metabolism homeostasis plays an important role in stem cell differentiation, but less is known about the glycometabolic reprogramming during the PMSCs endothelial differentiation. Hence, it is critical to investigate the potential role of glycometabolism reprogramming in mediating PMSCs endothelial differentiation. METHODS Dil-Ac-LDL uptake assay, flow cytometry, and immunofluorescence were all to verify the endothelial differentiation in PMSCs. Seahorse XF Extracellular Flux Analyzers, Mito-tracker red staining, Mitochondrial membrane potential (MMP), lactate secretion assay, and transcriptome approach were to assess the variation of mitochondrial respiration and glycolysis during the PMSCs endothelial differentiation. Glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) was considered a potential modulator for endothelial differentiation in PMSCs by small interfering RNA. Furthermore, transwell, in vitro Matrigel tube formation, and in vivo Matrigel plug assays were performed to evaluate the effect of PFKFB3-induced glycolysis on angiogenic capacities in this process. RESULTS PMSCs possessed the superior potential of endothelial differentiation, in which the glycometabolic preference for glycolysis was confirmed. Moreover, PFKFB3-induced glycometabolism reprogramming could modulate the endothelial differentiation and angiogenic abilities of PMSCs. CONCLUSIONS Our results revealed that PFKFB3-mediated glycolysis is important for endothelial differentiation and angiogenesis in PMSCs. Our understanding of cellular glycometabolism and its regulatory effects on endothelial differentiation may propose and improve PMSCs as a putative strategy for clinical therapeutic angiogenesis.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yanqi Zhong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Fanghui Zheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
23
|
Li D, Zhang H, Wu X, Dai Q, Tang S, Liu Y, Yang S, Zhang W. Role of tRNA derived fragments in renal ischemia-reperfusion injury. Ren Fail 2022; 44:815-825. [PMID: 35546262 PMCID: PMC9116270 DOI: 10.1080/0886022x.2022.2072336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Ischemia–reperfusion injury (IRI) is one of the major causes of acute kidney injury (AKI). tRNA derived fragments (tRFs/tiRNAs) are groups of small noncoding RNAs derived from tRNAs. To date, the role of tRFs/tiRNAs in renal IRI has not been reported. Herein, we aimed to investigate the involvement of tRFs/tiRNAs in the occurrence and development of ischemia–reperfusion-induced AKI. Methods Moderate/severe renal IRI mouse models were established by bilateral renal pedicle clamping. The tRF/tiRNA profiles of healthy controls and moderate/severe IRI-stressed kidney tissues were sequenced by Illumina NextSeq 500. Candidate differentially expressed tiRNAs were further verified by RT-qPCR. Biological analysis was also performed. Results Overall, 152 tRFs/tiRNAs were differentially expressed in the moderate ischemic injury group compared with the normal control group (FC > 2, p < 0.05), of which 47 were upregulated and 105 were downregulated; in the severe ischemic injury group, 285 tRFs/tiRNAs were differentially expressed (FC > 2, p < 0.05), of which 157 were upregulated, and 128 were downregulated. RT-qPCR determination of eight abundantly expressed tiRNAs was consistent with the sequencing results. Gene Ontology analysis for target genes of the tRFs/tiRNAs showed that the most enriched cell components, molecular functions and biological processes were Golgi apparatus, cytoplasmic vesicles, protein binding, cellular protein localization and multicellular organism development. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these target genes were mainly involved in the natural killer cell mediated cytotoxicity pathway, citrate cycle, and regulation of actin cytoskeleton signaling pathway. Conclusion Our results indicated that tRFs/tiRNAs were involved in renal IRI. These tRFs/tiRNAs may be effective partly via regulation of renal immunity, inflammation and metabolism processes. Candidate genes, including tiRNA-Gly-GCC-003, tiRNA-Lys-CTT-003, and tiRNA-His-GTG-002, might be potential biomarkers and therapeutic targets of ischemia–reperfusion injury-induced acute kidney injury.
Collapse
Affiliation(s)
- Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qing Dai
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shiqi Tang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Gao ZR, Liu Q, Zhao J, Zhao YQ, Tan L, Zhang SH, Zhou YH, Chen Y, Guo Y, Feng YZ. A comprehensive analysis of the circRNA-miRNA-mRNA network in osteocyte-like cell associated with Mycobacterium leprae infection. PLoS Negl Trop Dis 2022; 16:e0010379. [PMID: 35500036 PMCID: PMC9098081 DOI: 10.1371/journal.pntd.0010379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/12/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bone formation and loss are the characteristic clinical manifestations of leprosy, but the mechanisms underlying the bone remodeling with Mycobacterium leprae (M. leprae) infection are unclear. METHODOLOGY/PRINCIPAL FINDINGS Osteocytes may have a role through regulating the differentiation of osteogenic lineages. To investigate osteocyte-related mechanisms in leprosy, we treated osteocyte-like cell with N-glycosylated muramyl dipeptide (N.g MDP). RNA-seq analysis showed 724 differentially expressed messenger RNAs (mRNAs) and 724 differentially expressed circular RNA (circRNAs). Of these, we filtered through eight osteogenic-related differentially expressed genes, according to the characteristic of competing endogenous RNA, PubMed databases, and bioinformatic analysis, including TargetScan, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. Based on these results, we built a circRNA-microRNA (miRNA)-mRNA triple network. Quantitative reverse-transcription polymerase chain reaction and western blots analyses confirmed decreased Clock expression in osteocyte-like cell, while increased in bone mesenchymal stem cells (BMSCs), implicating a crucial factor in osteogenic differentiation. Immunohistochemistry showed obviously increased expression of CLOCK protein in BMSCs and osteoblasts in N.g MDP-treated mice, but decreased expression in osteocytes. CONCLUSIONS/SIGNIFICANCE This analytical method provided a basis for the relationship between N.g MDP and remodeling in osteocytes, and the circRNA-miRNA-mRNA triple network may offer a new target for leprosy therapeutics.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Wang W, Tayier B, Guan L, Yan F, Mu Y. Pre-transplantation of Bone Marrow Mesenchymal Stem Cells Amplifies the Therapeutic Effect of Ultrasound-Targeted Microbubble Destruction-Mediated Localized Combined Gene Therapy in Post-Myocardial Infarction Heart Failure Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:830-845. [PMID: 35246339 DOI: 10.1016/j.ultrasmedbio.2022.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Although stem cell transplantation and single-gene therapy have been intensively discussed separately as treatments for myocardial infarction (MI) hearts and have exhibited ideal therapeutic efficiency in animal models, clinical trials turned out to be disappointing. Here, we deliver sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) and connexin 43 (Cx43) genes simultaneously via an ultrasound-targeted microbubble destruction (UTMD) approach to chronic MI hearts that have been pre-treated with bone marrow mesenchymal stem cells (BMSCs) to amplify cardiac repair. First, biotinylated microbubbles (BMBs) were fabricated, and biotinylated recombinant adenoviruses carrying the SERCA2a or Cx43 gene were conjugated to the surface of self-assembled BMBs to form SERCA2a-BMBs, Cx43-BMBs or dual gene-loaded BMBs. Then, the general characteristics of these bubbles, including particle size, concentration, contrast signal and gene loading capacity, were examined. Second, a rat myocardial infarction model was created by ligating the left anterior descending coronary artery and injecting BMSCs into the infarct and border zones. Four weeks later, co-delivery of SERCA2a and Cx43 genes to the infarcted heart were delivered together to the infarcted heart using the UTMD approach. Cardiac mechano-electrical function was determined 4 wk after gene transfection, and the infarcted hearts were collected for myocardial infarct size measurement and detection of expression of SERCA2a, Cx43 and cardiac-specific markers. Finally, to validate the role of BMSC transplantation, MI rats transplanted or not with BMSCs were transfected with SERCA2a and Cx43, and the cardiac mechano-electrical function of these two groups of rats was recorded and compared. General characteristics of the self-assembled gene-loaded BMBs were qualified, and the gene loading rate was satisfactory. The self-assembled gene-loaded BMBs were in microscale and exhibit satisfactory dual-gene loading capacity. High transfection efficiency was achieved under ultrasound irradiation in vitro. In addition, rats in which SERCA2a and Cx43 were overexpressed simultaneously had the best contractile function and electrical stability among all experimental groups. Immunofluorescence assay revealed that the levels of SERCA2a and/or Cx43 proteins were significantly elevated, especially in the border zone. Moreover, compared with rats that did not receive BMSCs, rats pre-treated with BMSCs have better mechano-electrical function after transfection with SERCA2a and Cx43. Collectively, we report a promising cardiac repair strategy for post-MI hearts that exploits the providential advantages of stem cell therapy and UTMD-mediated localized co-delivery of specific genes.
Collapse
Affiliation(s)
- Wei Wang
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Baihetiya Tayier
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuming Mu
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China.
| |
Collapse
|
26
|
Lu L, Liu X, Fu J, Liang J, Hou Y, Dou H. sTREM-1 promotes the phagocytic function of microglia to induce hippocampus damage via the PI3K-AKT signaling pathway. Sci Rep 2022; 12:7047. [PMID: 35487953 PMCID: PMC9054830 DOI: 10.1038/s41598-022-10973-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) is a soluble form of TREM-1 released during inflammation. Elevated sTREM-1 levels have been found in neuropsychiatric systemic lupus erythematosus (NPSLE) patients; yet, the exact mechanisms remain unclear. This study investigated the role of sTREM-1 in brain damage and its underlying mechanism. The sTREM-1 recombinant protein (2.5 μg/3 μL) was injected into the lateral ventricle of C57BL/6 female mice. After intracerebroventricular (ICV) injection, the damage in hippocampal neurons increased, and the loss of neuronal synapses and activation of microglia increased compared to the control mice (treated with saline). In vitro. after sTREM-1 stimulation, the apoptosis of BV2 cells decreased, the polarization of BV2 cells shifted to the M1 phenotype, the phagocytic function of BV2 cells significantly improved, while the PI3K-AKT signal pathway was activated in vivo and in vitro. PI3K-AKT pathway inhibitor LY294002 reversed the excessive activation and phagocytosis of microglia caused by sTREM-1 in vivo and in vitro, which in turn improved the hippocampus damage. These results indicated that sTREM-1 activated the microglial by the PI3K-AKT signal pathway, and promoted its excessive phagocytosis of the neuronal synapse, thus inducing hippocampal damage. sTREM-1 might be a potential target for inducing brain lesions.
Collapse
Affiliation(s)
- Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Xuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Juanhua Fu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
27
|
Shao F, Liu R, Tan X, Zhang Q, Ye L, Yan B, Zhuang Y, Xu J. MSC Transplantation Attenuates Inflammation, Prevents Endothelial Damage and Enhances the Angiogenic Potency of Endogenous MSCs in a Model of Pulmonary Arterial Hypertension. J Inflamm Res 2022; 15:2087-2101. [PMID: 35386223 PMCID: PMC8977867 DOI: 10.2147/jir.s355479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Pulmonary arterial hypertension (PAH) is a progressive and fatal pulmonary vascular disease initiated by endothelial dysfunction. Mesenchymal stromal cells (MSCs) have been shown to ameliorate PAH in various rodent models; however, these models do not recapitulate all the histopathological alterations observed in human PAH. Broiler chickens (Gallus gallus) can develop PAH spontaneously with neointimal and plexogenic arteriopathy strikingly similar to that in human patients. Herein, we examined the protective effects of MSC transplantation on the development of PAH in this avian model. Methods Mixed-sex broilers at 15 d of age were received 2×106 MSCs or PBS intravenously. One day later, birds were exposed to cool temperature with excessive salt in their drinking water to induce PAH. Cumulative morbidity from PAH and right-to-left ventricle ratio were recorded. Lung histologic features were evaluated for the presence of endothelial damage, endothelial proliferation and plexiform lesions. Expression of proinflammatory mediators and angiogenic factors in the lung was detected. Matrigel tube formation assay was performed to determine the angiogenic potential of endogenous MSCs. Results MSC administration reduced cumulative PAH morbidity and attenuated endothelial damage, plexiform lesions and production of inflammatory mediators in the lungs. No significant difference in the expression of paracrine angiogenic factors including VEGF-A and TGF-β was determined between groups, suggesting that they are not essential for the beneficial effect of MSC transplantation. Interestingly, the endogenous MSCs from birds receiving MSC transplantation demonstrated endothelial differentiatial capacity in vitro whereas those from the mock birds did not. Conclusion Our results support the therapeutic use of MSC transplantation for PAH treatment and suggest that exogenous MSCs produce beneficial effects through modulating inflammation and endogenous MSC-mediated vascular repair.
Collapse
Affiliation(s)
- Fengjin Shao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Rui Liu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Qiaoyan Zhang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lujie Ye
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Bingxuan Yan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhuang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Jiaxue Xu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| |
Collapse
|
28
|
Nosoudi N, Hart C, McKnight I, Esmaeilpour M, Ghomian T, Zadeh A, Raines R, Ramirez Vick JE. Differentiation of adipose-derived stem cells to chondrocytes using electrospraying. Sci Rep 2021; 11:24301. [PMID: 34934143 PMCID: PMC8692477 DOI: 10.1038/s41598-021-03824-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
An important challenge in the fabrication of tissue engineered constructs for regenerative medical applications is the development of processes capable of delivering cells and biomaterials to specific locations in a consistent manner. Electrospraying live cells has been introduced in recent years as a cell seeding method, but its effect on phenotype nor genotype has not been explored. A promising candidate for the cellular component of these constructs are human adipose-derived stem cells (hASCs), which are multipotent stem cells that can be differentiated into fat, bone, and cartilage cells. They can be easily and safely obtained from adipose tissue, regardless of the age and sex of the donor. Moreover, these cells can be maintained and expanded in culture for long periods of time without losing their differentiation capacity. In this study, hASCs directly incorporated into a polymer solution were electrosprayed, inducing differentiation into chondrocytes, without the addition of any exogenous factors. Multiple studies have demonstrated the effects of exposing hASCs to biomolecules—such as soluble growth factors, chemokines, and morphogens—to induce chondrogenesis. Transforming growth factors (e.g., TGF-β) and bone morphogenetic proteins are particularly known to play essential roles in the induction of chondrogenesis. Although growth factors have great therapeutic potential for cell-based cartilage regeneration, these growth factor-based therapies have presented several clinical complications, including high dose requirements, low half-life, protein instability, higher costs, and adverse effects in vivo. The present data suggests that electrospraying has great potential as hASCs-based therapy for cartilage regeneration.
Collapse
Affiliation(s)
- Nasim Nosoudi
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA.
| | - Christoph Hart
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Ian McKnight
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Mehdi Esmaeilpour
- Mechanical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Taher Ghomian
- Computer Sciences and Electrical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Amir Zadeh
- Information Systems Department, College of Business, Wright State University, Dayton, OH, USA
| | - Regan Raines
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Jaime E Ramirez Vick
- Biomedical, Industrial and Human Factors Engineering Department, College of Engineering, Wright State University, Dayton, OH, USA
| |
Collapse
|
29
|
Fibroblast membrane-camouflaged nanoparticles for inflammation treatment in the early stage. Int J Oral Sci 2021; 13:39. [PMID: 34785637 PMCID: PMC8595357 DOI: 10.1038/s41368-021-00144-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Unrestrained inflammation is harmful to tissue repair and regeneration. Immune cell membrane-camouflaged nanoparticles have been proven to show promise as inflammation targets and multitargeted inflammation controls in the treatment of severe inflammation. Prevention and early intervention of inflammation can reduce the risk of irreversible tissue damage and loss of function, but no cell membrane-camouflaged nanotechnology has been reported to achieve stage-specific treatment in these conditions. In this study, we investigated the prophylactic and therapeutic efficacy of fibroblast membrane-camouflaged nanoparticles for topical treatment of early inflammation (early pulpitis as the model) with the help of in-depth bioinformatics and molecular biology investigations in vitro and in vivo. Nanoparticles have been proven to act as sentinels to detect and competitively neutralize invasive Escherichia coli lipopolysaccharide (E. coli LPS) with resident fibroblasts to effectively inhibit the activation of intricate signaling pathways. Moreover, nanoparticles can alleviate the secretion of multiple inflammatory cytokines to achieve multitargeted anti-inflammatory effects, attenuating inflammatory conditions in the early stage. Our work verified the feasibility of fibroblast membrane-camouflaged nanoparticles for inflammation treatment in the early stage, which widens the potential cell types for inflammation regulation.
Collapse
|
30
|
Sun F, Lu Y, Wang Z, Shi H. Vascularization strategies for tissue engineering for tracheal reconstruction. Regen Med 2021; 16:549-566. [PMID: 34114475 DOI: 10.2217/rme-2020-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering technology provides effective alternative treatments for tracheal reconstruction. The formation of a functional microvascular network is essential to support cell metabolism and ensure the long-term survival of grafts. Although several tracheal replacement therapy strategies have been developed in the past, the critical significance of the formation of microvascular networks in 3D scaffolds has not attracted sufficient attention. Here, we review key technologies and related factors of microvascular network construction in tissue-engineered trachea and explore optimized preparation processes of vascularized functional tissues for clinical applications.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|