1
|
Venturelli V, Maranini B, Tohidi-Esfahani I, Isenberg DA, Cohen H, Efthymiou M. Can complement activation be the missing link in antiphospholipid syndrome? Rheumatology (Oxford) 2024; 63:3243-3254. [PMID: 38483257 PMCID: PMC11637425 DOI: 10.1093/rheumatology/keae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 12/14/2024] Open
Abstract
APS is an autoimmune disorder with life-threatening complications that, despite therapeutic advantages, remains associated with thrombotic recurrences and treatment failure. The role of complement activation in APS pathogenesis is increasingly recognized, specifically in obstetric APS. However, its exact role in thrombotic APS and on the severity of the disease is not yet fully elucidated. Further mechanistic studies are needed to delineate the role of complement activation in the various APS clinical manifestations with aim to identify novel markers of disease severity, together with clinical trials to evaluate the efficacy of complement inhibition in APS. This could ultimately improve risk stratification in APS, patient-tailored targeted therapy with complement inhibition identified as an adjunctive treatment. This article reviews current findings and challenges about complement activation in APS, discusses the potential role of platelet-mediated complement activation in this setting and provides an overview of clinical implications and current therapeutics.
Collapse
Affiliation(s)
- Veronica Venturelli
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda, Ospedaliero-Universitaria S. Anna, Cona, Italy
- Centre for Rheumatology, Department of Medicine, University College London, London, UK
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Beatrice Maranini
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda, Ospedaliero-Universitaria S. Anna, Cona, Italy
| | - Ibrahim Tohidi-Esfahani
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David A Isenberg
- Centre for Rheumatology, Department of Medicine, University College London, London, UK
| | - Hannah Cohen
- Department of Haematology, Cancer Institute, University College London, London, UK
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Maria Efthymiou
- Department of Haematology, Cancer Institute, University College London, London, UK
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Kulle A, Li Z, Kwak A, Mancini M, Young D, Avizonis DZ, Groleau M, Baglole CJ, Behr MA, King IL, Divangahi M, Langlais D, Wang J, Blagih J, Penz E, Dufour A, Thanabalasuriar A. Alveolar macrophage function is impaired following inhalation of berry e-cigarette vapor. Proc Natl Acad Sci U S A 2024; 121:e2406294121. [PMID: 39312670 PMCID: PMC11459156 DOI: 10.1073/pnas.2406294121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
In the lower respiratory tract, the alveolar spaces are divided from the bloodstream and the external environment by only a few microns of interstitial tissue. Alveolar macrophages (AMs) defend this delicate mucosal surface from invading infections by regularly patrolling the site. AMs have three behavior modalities to achieve this goal: extending cell protrusions to probe and sample surrounding areas, squeezing the whole cell body between alveoli, and patrolling by moving the cell body around each alveolus. In this study, we found Rho GTPase, cell division control protein 42 (CDC42) expression significantly decreased after berry-flavored e-cigarette (e-cig) exposure. This shifted AM behavior from squeezing to probing. Changes in AM behavior led to a reduction in the clearance of inhaled bacteria, Pseudomonas aeruginosa. These findings shed light on pathways involved in AM migration and highlight the harmful impact of e-cig vaping on AM function.
Collapse
Affiliation(s)
- Amelia Kulle
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
| | - Ziyi Li
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Ashley Kwak
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
| | - Mathieu Mancini
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
- Dahdaleh Institute for Genomic Medicine, Montréal, QCH3A 0G1, Canada
| | - Daniel Young
- Department of Physiology and Pharmacology, University of Calgary, Calgary, ABT2N 4N1, Canada
| | | | - Marc Groleau
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
| | - Carolyn J. Baglole
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QCH4A 3J1, Canada
| | - Marcel A. Behr
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
| | - Irah L. King
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QCH4A 3J1, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montréal, QCH3A 1Y2, Canada
- McGill Centre for Microbiome Research, Montréal, QCH4A 3J1, Canada
| | - Maziar Divangahi
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QCH4A 3J1, Canada
| | - David Langlais
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
- Dahdaleh Institute for Genomic Medicine, Montréal, QCH3A 0G1, Canada
- Department of Human Genetics, McGill University, Montréal, QCH3A 0C7, Canada
| | - Jing Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai20025, China
| | - Julianna Blagih
- Department of Obstetrics and Gynecology, University of Montréal, Montréal, QCH3C 3J7, Canada
| | - Erika Penz
- Department of Medicine, University of Saskatchewan, Saskatoon, SKS7N 5E5, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Ajitha Thanabalasuriar
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| |
Collapse
|
3
|
Maqsood M, Suntharalingham S, Khan M, Ortiz-Sandoval CG, Feitz WJC, Palaniyar N, Licht C. Complement-Mediated Two-Step NETosis: Serum-Induced Complement Activation and Calcium Influx Generate NADPH Oxidase-Dependent NETs in Serum-Free Conditions. Int J Mol Sci 2024; 25:9625. [PMID: 39273570 PMCID: PMC11394910 DOI: 10.3390/ijms25179625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The complement system and neutrophils play crucial roles in innate immunity. Neutrophils release neutrophil extracellular traps (NETs), which are composed of decondensed DNA entangled with granular contents, as part of their innate immune function. Mechanisms governing complement-mediated NET formation remain unclear. In this study, we tested a two-step NETosis mechanism, as follows: classical complement-mediated neutrophil activation in serum and subsequent NET formation in serum-free conditions, using neutrophils from healthy donors, endothelial cells, and various assays (Fluo-4AM, DHR123, and SYTOX), along with flow cytometry and confocal microscopy. Our findings reveal that classical complement activation on neutrophils upregulated the membrane-anchored complement regulators CD46, CD55, and CD59. Additionally, complement activation increased CD11b on neutrophils, signifying activation and promoting their attachment to endothelial cells. Complement activation induced calcium influx and citrullination of histone 3 (CitH3) in neutrophils. However, CitH3 formation alone was insufficient for NET generation. Importantly, NET formation occurred only when neutrophils were in serum-free conditions. In such environments, neutrophils induced NADPH oxidase-dependent reactive oxygen species (ROS) production, leading to NET formation. Hence, we propose that complement-mediated NET formation involves a two-step process, as follows: complement deposition, neutrophil priming, calcium influx, CitH3 formation, and attachment to endothelial cells in serum. This is followed by NADPH-dependent ROS production and NET completion in serum-free conditions. Understanding this process may unveil treatment targets for pathologies involving complement activation and NET formation.
Collapse
Affiliation(s)
- Maria Maqsood
- Cell Biology, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.M.); (S.S.); (C.G.O.-S.); (W.J.C.F.)
| | - Samuel Suntharalingham
- Cell Biology, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.M.); (S.S.); (C.G.O.-S.); (W.J.C.F.)
| | - Meraj Khan
- Translational Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.K.); (N.P.)
| | - Carolina G. Ortiz-Sandoval
- Cell Biology, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.M.); (S.S.); (C.G.O.-S.); (W.J.C.F.)
| | - Wouter J. C. Feitz
- Cell Biology, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.M.); (S.S.); (C.G.O.-S.); (W.J.C.F.)
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Nades Palaniyar
- Translational Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.K.); (N.P.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Christoph Licht
- Cell Biology, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.M.); (S.S.); (C.G.O.-S.); (W.J.C.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
4
|
Gwozdzinski L, Pieniazek A, Gwozdzinski K. Factors Influencing Venous Remodeling in the Development of Varicose Veins of the Lower Limbs. Int J Mol Sci 2024; 25:1560. [PMID: 38338837 PMCID: PMC10855638 DOI: 10.3390/ijms25031560] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
One of the early symptoms of chronic venous disease (CVD) is varicose veins (VV) of the lower limbs. There are many etiological environmental factors influencing the development of chronic venous insufficiency (CVI), although genetic factors and family history of the disease play a key role. All these factors induce changes in the hemodynamic in the venous system of the lower limbs leading to blood stasis, hypoxia, inflammation, oxidative stress, proteolytic activity of matrix metalloproteinases (MMPs), changes in microcirculation and, consequently, the remodeling of the venous wall. The aim of this review is to present current knowledge on CVD, including the pathophysiology and mechanisms related to vein wall remodeling. Particular emphasis has been placed on describing the role of inflammation and oxidative stress and the involvement of extracellular hemoglobin as pathogenetic factors of VV. Additionally, active substances used in the treatment of VV were discussed.
Collapse
Affiliation(s)
- Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Krzysztof Gwozdzinski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
5
|
Tang A, Zhao X, Tao T, Xie D, Xu B, Huang Y, Li M. Unleashing the power of complement activation: unraveling renal damage in human anti-glomerular basement membrane disease. Front Immunol 2023; 14:1229806. [PMID: 37781380 PMCID: PMC10540768 DOI: 10.3389/fimmu.2023.1229806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Anti-glomerular basement membrane (GBM) disease is a rare but life-threatening autoimmune disorder characterized by rapidly progressive glomerulonephritis with or without pulmonary hemorrhage. Renal biopsies of anti-GBM patients predominantly show linear deposition of IgG and complement component 3 (C3), indicating a close association between antigen-antibody reactions and subsequent complement activation in the pathogenesis of the disease. All three major pathways of complement activation, including the classical, lectin, and alternative pathways, are involved in human anti-GBM disease. Several complement factors, such as C3, C5b-9, and factor B, show a positive correlation with the severity of the renal injury and act as risk factors for renal outcomes. Furthermore, compared to patients with single positivity for anti-GBM antibodies, individuals who are double-seropositive for anti-neutrophil cytoplasmic antibody (ANCA) and anti-GBM antibodies exhibit a unique clinical phenotype that lies between ANCA-associated vasculitis (AAV) and anti-GBM disease. Complement activation may serve as a potential "bridge" for triggering both AAV and anti-GBM conditions. The aim of this article is to provide a comprehensive review of the latest clinical evidence regarding the role of complement activation in anti-GBM disease. Furthermore, potential therapeutic strategies targeting complement components and associated precautions are discussed, to establish a theoretical basis for complement-targeted therapies.
Collapse
Affiliation(s)
- Anqi Tang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Tao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dengpiao Xie
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bojun Xu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Cavalcante JS, de Almeida DEG, Santos-Filho NA, Sartim MA, de Almeida Baldo A, Brasileiro L, Albuquerque PL, Oliveira SS, Sachett JAG, Monteiro WM, Ferreira RS. Crosstalk of Inflammation and Coagulation in Bothrops Snakebite Envenoming: Endogenous Signaling Pathways and Pathophysiology. Int J Mol Sci 2023; 24:11508. [PMID: 37511277 PMCID: PMC10380640 DOI: 10.3390/ijms241411508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023] Open
Abstract
Snakebite envenoming represents a major health problem in tropical and subtropical countries. Considering the elevated number of accidents and high morbidity and mortality rates, the World Health Organization reclassified this disease to category A of neglected diseases. In Latin America, Bothrops genus snakes are mainly responsible for snakebites in humans, whose pathophysiology is characterized by local and systemic inflammatory and degradative processes, triggering prothrombotic and hemorrhagic events, which lead to various complications, organ damage, tissue loss, amputations, and death. The activation of the multicellular blood system, hemostatic alterations, and activation of the inflammatory response are all well-documented in Bothrops envenomings. However, the interface between inflammation and coagulation is still a neglected issue in the toxinology field. Thromboinflammatory pathways can play a significant role in some of the major complications of snakebite envenoming, such as stroke, venous thromboembolism, and acute kidney injury. In addition to exacerbating inflammation and cell interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and, eventually, organic damage and necrosis. In this review, we discuss the role of inflammatory pathways in modulating coagulation and inducing platelet and leukocyte activation, as well as the inflammatory production mediators and induction of innate immune responses, among other mechanisms that are altered by Bothrops venoms.
Collapse
Affiliation(s)
- Joeliton S Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Denis Emanuel Garcia de Almeida
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Norival A Santos-Filho
- Institute of Chemistry, São Paulo State University (UNESP-Univ Estadual Paulista), Araraquara 14800-900, São Paulo, Brazil
| | - Marco Aurélio Sartim
- Laboratory of Bioprospection, University Nilton Lins, Manaus 69058-030, Amazonas, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Amanda de Almeida Baldo
- Institute of Biosciences, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Lisele Brasileiro
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Polianna L Albuquerque
- Toxicological Information and Assistance Center, Instituto Doutor Jose Frota Hospital, Fortaleza 60025-061, Ceará, Brazil
- Faculty of Medicine, University of Fortaleza, Fortaleza 60430-140, Ceará, Brazil
| | - Sâmella S Oliveira
- Research Management, Hospital Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-001, Amazonas, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu 18610-307, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18610-307, São Paulo, Brazil
| |
Collapse
|
7
|
Teoh CW, Riedl Khursigara M, Ortiz-Sandoval CG, Park JW, Li J, Bohorquez-Hernandez A, Bruno V, Bowen EE, Freeman SA, Robinson LA, Licht C. The loss of glycocalyx integrity impairs complement factor H binding and contributes to cyclosporine-induced endothelial cell injury. Front Med (Lausanne) 2023; 10:891513. [PMID: 36860338 PMCID: PMC9968885 DOI: 10.3389/fmed.2023.891513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Background Calcineurin inhibitors (CNIs) are associated with nephrotoxicity, endothelial cell dysfunction, and thrombotic microangiopathy (TMA). Evolving evidence suggests an important role for complement dysregulation in the pathogenesis of CNI-induced TMA. However, the exact mechanism(s) of CNI-induced TMA remain(s) unknown. Methods Using blood outgrowth endothelial cells (BOECs) from healthy donors, we evaluated the effects of cyclosporine on endothelial cell integrity. Specifically, we determined complement activation (C3c and C9) and regulation (CD46, CD55, CD59, and complement factor H [CFH] deposition) as these occurred on the endothelial cell surface membrane and glycocalyx. Results We found that exposing the endothelium to cyclosporine resulted in a dose- and time-dependent enhancement of complement deposition and cytotoxicity. We, therefore, employed flow cytometry, Western blotting/CFH cofactor assays, and immunofluorescence imaging to determine the expression of complement regulators and the functional activity and localization of CFH. Notably, while cyclosporine led to the upregulation of complement regulators CD46, CD55, and CD59 on the endothelial cell surface, it also diminished the endothelial cell glycocalyx through the shedding of heparan sulfate side chains. The weakened endothelial cell glycocalyx resulted in decreased CFH surface binding and surface cofactor activity. Conclusion Our findings confirm a role for complement in cyclosporine-induced endothelial injury and suggest that decreased glycocalyx density, induced by cyclosporine, is a mechanism that leads to complement alternative pathway dysregulation via decreased CFH surface binding and cofactor activity. This mechanism may apply to other secondary TMAs-in which a role for complement has so far not been recognized-and provide a potential therapeutic target and an important marker for patients on calcineurin inhibitors.
Collapse
Affiliation(s)
- Chia Wei Teoh
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada,Department of Paediatrics, University of Toronto, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Magdalena Riedl Khursigara
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada,Department of Paediatrics, University of Toronto, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jee Woo Park
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jun Li
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Valentina Bruno
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada,Division of Paediatric Nephrology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Emily E. Bowen
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Spencer A. Freeman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lisa A. Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada,Department of Paediatrics, University of Toronto, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada,Department of Paediatrics, University of Toronto, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada,Institute of Medical Science, University of Toronto, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,*Correspondence: Christoph Licht ✉
| |
Collapse
|
8
|
Abstract
The complement and hemostatic systems are complex systems, and both involve enzymatic cascades, regulators, and cell components-platelets, endothelial cells, and immune cells. The two systems are ancestrally related and are defense mechanisms that limit infection by pathogens and halt bleeding at the site of vascular injury. Recent research has uncovered multiple functional interactions between complement and hemostasis. On one side, there are proteins considered as complement factors that activate hemostasis, and on the other side, there are coagulation proteins that modulate complement. In addition, complement and coagulation and their regulatory proteins strongly interact each other to modulate endothelial, platelet and leukocyte function and phenotype, creating a potentially devastating amplifying system that must be closely regulated to avoid unwanted damage and\or disseminated thrombosis. In view of its ability to amplify all complement activity through the C3b-dependent amplification loop, the alternative pathway of complement may play a crucial role in this context. In this review, we will focus on available and emerging evidence on the role of the alternative pathway of complement in regulating hemostasis and vice-versa, and on how dysregulation of either system can lead to severe thromboinflammatory events.
Collapse
Affiliation(s)
- Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Miriam Galbusera
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
9
|
Tampe D, Baier E, Hakroush S, Tampe B. Comparative analysis of complement C3 and C4 serum levels for outcome prediction in ANCA-associated renal vasculitis. J Nephrol 2023; 36:125-132. [PMID: 35962865 PMCID: PMC9894999 DOI: 10.1007/s40620-022-01414-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The activation of the complement system contributes essentially to the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated renal vasculitis. We here aimed to directly compare levels of C3 and C4 for outcome prediction in ANCA-associated renal vasculitis. METHODS Serum levels of complement components C3 and C4 were directly compared in association with clinical and outcome data in a retrospective cohort of ANCA-associated renal vasculitis. RESULTS As compared to poor outcome prediction by low levels of complement C3 (p = 0.0093), low levels of complement C4 did not associate with early requirement of kidney replacement therapy (KRT) or death (p = 0.2396). In the subgroup that experienced KRT or death, low C3 levels identified 11/14 (78.6%, p = 0.0071) and C4 levels 9/14 (64.3%, p = 0.1786) cases. Interestingly, 2/14 (14.3%) patients that experienced KRT or death had isolated C4 lowering, and combining low C3 and/or C4 levels identified 13/14 (92.3%, p < 0.0001) cases in this subgroup. Non-superiority to predict poor outcome by low C3 and/or C4 as compared to C3 alone in the total cohort was attributed to 4/24 (16.7%) patients with isolated C4 lowering in the subgroup that did not experience KRT or death. CONCLUSION While low levels of complement C3 were superior in predicting poor outcome in ANCA-associated renal vasculitis, a minor fraction with poor outcome had isolated C4 lowering not captured by serum C3 measurements. Therefore, detailed knowledge of distinct complement components contributing to kidney injury could be of relevance to improve current strategies targeting the complement system in ANCA-associated renal vasculitis.
Collapse
Affiliation(s)
- Désirée Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Baier
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
10
|
Complement and Fungal Dysbiosis as Prognostic Markers and Potential Targets in PDAC Treatment. Curr Oncol 2022; 29:9833-9854. [PMID: 36547187 PMCID: PMC9777542 DOI: 10.3390/curroncol29120773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still hampered by a dismal prognosis. A better understanding of the tumor microenvironment within the pancreas and of the factors affecting its composition is of utmost importance for developing new diagnostic and treatment tools. In this context, the complement system plays a prominent role. Not only has it been shown to shape a T cell-mediated immune response, but it also directly affects proliferation and apoptosis of the tumor cells, influencing angiogenesis, metastatic spread and therapeutic resistance. This makes complement proteins appealing not only as early biomarkers of PDAC development, but also as therapeutic targets. Fungal dysbiosis is currently the new kid on the block in tumorigenesis with cancer-associated mycobiomes extracted from several cancer types. For PDAC, colonization with the yeast Malassezia seems to promote cancer progression, already in precursor lesions. One responsible mechanism appears to be complement activation via the lectin pathway. In the present article, we review the role of the complement system in tumorigenesis, presenting observations that propose it as the missing link between fungal dysbiosis and PDAC development. We also present the results of a small pilot study supporting the crucial interplay between the complement system and Malassezia colonization in PDAC pathogenesis.
Collapse
|
11
|
Hakroush S, Tampe D, Baier E, Kluge IA, Ströbel P, Tampe B. Intrarenal synthesis of complement C3 localized to distinct vascular compartments in ANCA-associated renal vasculitis. J Autoimmun 2022; 133:102924. [PMID: 36209693 DOI: 10.1016/j.jaut.2022.102924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a small vessel vasculitis affecting multiple organ systems, including the kidney. The activation of the complement system contributes essentially to its pathogenesis by autoantibody-antigen recognition directed against host cells in ANCA-associated renal vasculitis. We herein provide evidence for intrarenal synthesis of complement C3 localized to distinct vascular compartments in ANCA-associated renal vasculitis that associated with distinct inflammatory signaling pathways. Therefore, a total number of 43 kidney biopsies with ANCA-associated renal vasculitis were retrospectively included and evaluated for presence/absence of C3 deposits localized to distinct vascular compartments in association with clinicopathological biopsy findings. In addition, intrarenal C3 mRNA expression levels specifically from microdissected tubulointerstitial and glomerular compartments were extracted from transcriptome datasets. C3 deposits were present in the glomerular tuft, interlobular arteries, peritubular capillaries, and venules in ANCA-associated renal vasculitis. Most C3 deposits are localized to the glomerular tuft overlapping with peritubular capillaries. The presence of C3 deposits in the glomerular tuft correlated with impaired kidney function and overall short-term survival. Intrarenal complement C3 deposits were not associated with consumption of respective serum levels, supporting the concept of intrarenal C3 synthesis. Finally, intrarenal synthesis of complement C3 was linked to distinct inflammatory signaling pathways in the kidney that is especially relevant in ANCA-associated renal vasculitis. Considering recent advances in AAV therapy with the emergence of new therapeutics that inhibit complement activation, we here provide novel insights into intrarenal complement synthesis and associated inflammatory signaling pathways in ANCA-associated renal vasculitis.
Collapse
Affiliation(s)
- Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Germany; SYNLAB Pathology Hannover, SYNLAB Holding Germany, Augsburg, Germany
| | - Désirée Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Germany
| | - Eva Baier
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Germany
| | | | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Germany.
| |
Collapse
|
12
|
Modulation of Neutrophil Activity by Soluble Complement Cleavage Products—An In-Depth Analysis. Cells 2022; 11:cells11203297. [PMID: 36291163 PMCID: PMC9600402 DOI: 10.3390/cells11203297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
The cellular and fluid phase-innate immune responses of many diseases predominantly involve activated neutrophil granulocytes and complement factors. However, a comparative systematic analysis of the early impact of key soluble complement cleavage products, including anaphylatoxins, on neutrophil granulocyte function is lacking. Neutrophil activity was monitored by flow cytometry regarding cellular (electro-)physiology, cellular activity, and changes in the surface expression of activation markers. The study revealed no major effects induced by C3a or C4a on neutrophil functions. By contrast, exposure to C5a or C5a des-Arg stimulated neutrophil activity as reflected in changes in membrane potential, intracellular pH, glucose uptake, and cellular size. Similarly, C5a and C5a des-Arg but no other monitored complement cleavage product enhanced phagocytosis and reactive oxygen species generation. C5a and C5a des-Arg also altered the neutrophil surface expression of several complement receptors and neutrophil activation markers, including C5aR1, CD62L, CD10, and CD11b, among others. In addition, a detailed characterization of the C5a-induced effects was performed with a time resolution of seconds. The multiparametric response of neutrophils was further analyzed by a principal component analysis, revealing CD11b, CD10, and CD16 to be key surrogates of the C5a-induced effects. Overall, we provide a comprehensive insight into the very early interactions of neutrophil granulocytes with activated complement split products and the resulting neutrophil activity. The results provide a basis for a better and, importantly, time-resolved and multiparametric understanding of neutrophil-related (patho-)physiologies.
Collapse
|
13
|
Riedl Khursigara M, Matsuda-Abedini M, Radhakrishnan S, Hladunewich MA, Lemaire M, Teoh CW, Noone D, Licht C. A Guide for Adult Nephrologists and Hematologists to Managing Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy in Teens Transitioning to Young Adults. Adv Chronic Kidney Dis 2022; 29:231-242. [PMID: 36084970 DOI: 10.1053/j.ackd.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Abstract
Atypical hemolytic uremic syndrome and C3 glomerulopathy/immune complex membranoproliferative glomerulonephritis are ultra-rare chronic, complement-mediated diseases with childhood manifestation in a majority of cases. Transition of clinical care of patients from pediatric to adult nephrologists-typically with controlled disease in native or transplant kidneys in case of atypical hemolytic uremic syndrome and often with chronic progressive disease despite treatment efforts in case of C3 glomerulopathy/immune complex membranoproliferative glomerulonephritis-identifies a challenging juncture in the journey of these patients. Raising awareness for the vulnerability of this patient cohort; providing education on disease pathophysiology and management including the use of new, high-precision complement antagonists; and establishing an ongoing dialog of patients, families, and all members of the health care team involved on either side of the age divide will be inevitable to ensure optimal patient outcomes and a safe transition of these patients to adulthood.
Collapse
Affiliation(s)
| | - Mina Matsuda-Abedini
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Seetha Radhakrishnan
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michelle A Hladunewich
- Division of Nephrology and Obstetric Medicine, Department of Medicine, Sunnybrook Health Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chia Wei Teoh
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
14
|
Abstract
Hyperactivation of the complement and coagulation systems is recognized as part of the clinical syndrome of COVID-19. Here we review systemic complement activation and local complement activation in response to the causative virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and their currently known relationships to hyperinflammation and thrombosis. We also provide an update on early clinical findings and emerging clinical trial evidence that suggest potential therapeutic benefit of complement inhibition in severe COVID-19.
Collapse
Affiliation(s)
- Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Marina Noris
- Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Center for Rare Diseases "Aldo e Cele Daccò", Ranica, Italy.
- "Centro Anna Maria Astori", Bergamo, Italy.
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
15
|
Aiello S, Gastoldi S, Galbusera M, Ruggenenti P, Portalupi V, Rota S, Rubis N, Liguori L, Conti S, Tironi M, Gamba S, Santarsiero D, Benigni A, Remuzzi G, Noris M. C5a and C5aR1 are key drivers of microvascular platelet aggregation in clinical entities spanning from aHUS to COVID-19. Blood Adv 2022; 6:866-881. [PMID: 34852172 PMCID: PMC8945302 DOI: 10.1182/bloodadvances.2021005246] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022] Open
Abstract
Unrestrained activation of the complement system till the terminal products, C5a and C5b-9, plays a pathogenetic role in acute and chronic inflammatory diseases. In endothelial cells, complement hyperactivation may translate into cell dysfunction, favoring thrombus formation. The aim of this study was to investigate the role of the C5a/C5aR1 axis as opposed to C5b-9 in inducing endothelial dysfunction and loss of antithrombogenic properties. In vitro and ex vivo assays with serum from patients with atypical hemolytic uremic syndrome (aHUS), a prototype rare disease of complement-mediated microvascular thrombosis due to genetically determined alternative pathway dysregulation, and cultured microvascular endothelial cells, demonstrated that the C5a/C5aR1 axis is a key player in endothelial thromboresistance loss. C5a added to normal human serum fully recapitulated the prothrombotic effects of aHUS serum. Mechanistic studies showed that C5a caused RalA-mediated exocytosis of von Willebrand factor (vWF) and P-selectin from Weibel-Palade bodies, which favored further vWF binding on the endothelium and platelet adhesion and aggregation. In patients with severe COVID-19 who suffered from acute activation of complement triggered by severe acute respiratory syndrome coronavirus 2 infection, we found the same C5a-dependent pathogenic mechanisms. These results highlight C5a/C5aR1 as a common prothrombogenic effector spanning from genetic rare diseases to viral infections, and it may have clinical implications. Selective C5a/C5aR1 blockade could have advantages over C5 inhibition because the former preserves the formation of C5b-9, which is critical for controlling bacterial infections that often develop as comorbidities in severely ill patients. The ACCESS trial registered at www.clinicaltrials.gov as #NCT02464891 accounts for the results related to aHUS patients treated with CCX168.
Collapse
Affiliation(s)
- Sistiana Aiello
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| | - Sara Gastoldi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| | - Miriam Galbusera
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| | - Piero Ruggenenti
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Valentina Portalupi
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Stefano Rota
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Nadia Rubis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| | - Lucia Liguori
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| | - Sara Conti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| | - Matteo Tironi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| | - Sara Gamba
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| | - Donata Santarsiero
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; and
| |
Collapse
|
16
|
Abstract
Severe COVID-19 is characterized by lung and multiorgan inflammation and coagulation in the presence of overactivation of the complement system. Complement is a double edged-sward in SARS-Cov-2 infection. On one hand, it can control the viral infection in milder cases, on the other hand in cases with severe and prolonged infection massive complement activation occurs, which can intensify lung and systemic inflammation and promote a procoagulant and prothrombotic state. Several uncontrolled studies and controlled clinical trials with different complement inhibitors have been performed and others are ongoing. Results are promising in some but negative in others. Further studies are required to elucidate the benefit to risk profile of complement inhibitors in COVID-19 patients at different stages of the disease and to clarify the best targets in the complement cascade.
Collapse
|
17
|
Delvasto-Nuñez L, Jongerius I, Zeerleder S. It takes two to thrombosis: Hemolysis and complement. Blood Rev 2021; 50:100834. [PMID: 33985796 DOI: 10.1016/j.blre.2021.100834] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
Thromboembolic events represent the most common complication of hemolytic anemias characterized by complement-mediated hemolysis such as paroxysmal nocturnal hemoglobinuria and autoimmune hemolytic anemia. Similarly, atypical hemolytic uremic syndrome is characterized by hemolysis and thrombotic abnormalities. The main player in the development of thrombosis in hemolytic diseases is suggested to be the complement system. However, the release of extracellular hemoglobin and heme by hemolysis itself can also drive procoagulant responses. Both, complement activation and hemolysis promote the activation of neutrophils resulting in the formation of neutrophil extracellular traps and induce inflammation and vascular damage which all together might (synergistically) lead to hypercoagulability. In this review we aim to summarize the current knowledge on the role of complement activation and hemolysis in the onset of thrombosis in hemolytic diseases. This review will discuss the interplay between different biological systems and neutrophil activation contributing to the pathogenesis of thrombosis. Finally, we will combine this fundamental knowledge and address the pathophysiology of hemolysis in prototypical complement-driven diseases.
Collapse
Affiliation(s)
- Laura Delvasto-Nuñez
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Immunology, Amsterdam UMC, University of Amsterdam, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, University of Bern, Switzerland.
| |
Collapse
|
18
|
Mylvaganam S, Riedl M, Vega A, Collins RF, Jaqaman K, Grinstein S, Freeman SA. Stabilization of Endothelial Receptor Arrays by a Polarized Spectrin Cytoskeleton Facilitates Rolling and Adhesion of Leukocytes. Cell Rep 2021; 31:107798. [PMID: 32579925 PMCID: PMC7548125 DOI: 10.1016/j.celrep.2020.107798] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Multivalent complexes of endothelial adhesion receptors (e.g., selectins) engage leukocytes to orchestrate their migration to inflamed tissues. Proper anchorage and sufficient density (clustering) of endothelial receptors are required for efficient leukocyte capture and rolling. We demonstrate that a polarized spectrin network dictates the stability of the endothelial cytoskeleton, which is attached to the apical membrane, at least in part, by the abundant transmembrane protein CD44. Single-particle tracking revealed that CD44 undergoes prolonged periods of immobilization as it tethers to the cytoskeleton. The CD44-spectrin "picket fence" alters the behavior of bystander molecules-notably, selectins-curtailing their mobility, inducing their apical accumulation, and favoring their clustering within caveolae. Accordingly, depletion of either spectrin or CD44 virtually eliminated leukocyte rolling and adhesion to the endothelium. Our results indicate that a unique spectrin-based apical cytoskeleton tethered to transmembrane pickets-notably, CD44-is essential for proper extravasation of leukocytes in response to inflammation.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Magdalena Riedl
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Anthony Vega
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard F Collins
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
19
|
Chaturvedi S, Braunstein EM, Brodsky RA. Antiphospholipid syndrome: Complement activation, complement gene mutations, and therapeutic implications. J Thromb Haemost 2021; 19:607-616. [PMID: 32881236 PMCID: PMC8080439 DOI: 10.1111/jth.15082] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Antiphospholipid syndrome (APS) is an acquired thromboinflammatory disorder characterized by the presence of antiphospholipid antibodies as well as an increased frequency of venous or arterial thrombosis and/or obstetrical morbidity. The spectrum of disease varies from asymptomatic to a severe form characterized by widespread thrombosis and multiorgan failure, termed catastrophic APS (CAPS). CAPS affects only about ∼1% of APS patients, often presents as a thrombotic microangiopathy and has a fulminant course with >40% mortality, despite the best available therapy. Animal models have implicated complement in the pathophysiology of thrombosis in APS, with more recent data from human studies confirming the interaction between the coagulation and complement pathways. Activation of the complement cascade via antiphospholipid antibodies can cause cellular injury and promote coagulation via multiple mechanisms. Finally, analogous to classic complement-mediated diseases such as atypical hemolytic uremic syndrome, a subset of patients with APS may be at increased risk for development of CAPS because of the presence of germline variants in genes crucial for complement regulation. Together, these data make complement inhibition an attractive and potentially lifesaving therapy to mitigate morbidity and mortality in severe thrombotic APS and CAPS.
Collapse
Affiliation(s)
- Shruti Chaturvedi
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan M Braunstein
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A Brodsky
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Mormile I, Granata F, Punziano A, de Paulis A, Rossi FW. Immunosuppressive Treatment in Antiphospholipid Syndrome: Is It Worth It? Biomedicines 2021; 9:biomedicines9020132. [PMID: 33535377 PMCID: PMC7911562 DOI: 10.3390/biomedicines9020132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
The antiphospholipid syndrome (APS) is characterized by the development of venous and/or arterial thrombosis and pregnancy morbidity in patients with persistent antiphospholipid antibodies (aPL). Catastrophic antiphospholipid syndrome (CAPS) is a life-threatening form of APS occurring in about 1% of cases. Lifelong anticoagulation with vitamin K antagonists remains the cornerstone of the therapy for thrombotic APS, but frequently the use of anticoagulation may be problematic due to the increased risk of bleeding, drug interactions, or comorbidities. Immunosuppressant drugs are widely used to treat several autoimmune conditions, in which their safety and effectiveness have been largely demonstrated. Similar evidence in the treatment of primary APS is limited to case reports or case series, and studies on a large scale lack. Immunomodulatory drugs may be an emerging tool in managing such particular situations, like refractory obstetrical complications, CAPS, or so-called APS non-criteria manifestations. In addition, immunomodulatory drugs may be useful in patients experiencing recurrent thromboembolic events despite optimized anticoagulant therapy. We did a comprehensive review of literature analyzing the possible role of immunomodulation in primary APS to provide a broad overview of potentially safe and effective target treatments for managing this devastating disease.
Collapse
Affiliation(s)
- Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (F.G.); (A.P.); (A.d.P.)
| | - Francescopaolo Granata
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (F.G.); (A.P.); (A.d.P.)
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (F.G.); (A.P.); (A.d.P.)
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (F.G.); (A.P.); (A.d.P.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (F.G.); (A.P.); (A.d.P.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-81-7464513
| |
Collapse
|
21
|
Piras R, Iatropoulos P, Bresin E, Todeschini M, Gastoldi S, Valoti E, Alberti M, Mele C, Galbusera M, Cuccarolo P, Benigni A, Remuzzi G, Noris M. Molecular Studies and an ex vivo Complement Assay on Endothelium Highlight the Genetic Complexity of Atypical Hemolytic Uremic Syndrome: The Case of a Pedigree With a Null CD46 Variant. Front Med (Lausanne) 2020; 7:579418. [PMID: 33224962 PMCID: PMC7670076 DOI: 10.3389/fmed.2020.579418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is an ultra-rare disease characterized by microangiopathic hemolysis, thrombocytopenia, and renal impairment and is associated with dysregulation of the alternative complement pathway on the microvascular endothelium. Outcomes have improved greatly with pharmacologic complement C5 blockade. Abnormalities in complement genes (CFH, CD46, CFI, CFB, C3, and THBD), CFH–CFHR genomic rearrangements, and anti-FH antibodies have been reported in 40–60% of cases. The penetrance of aHUS is incomplete in carriers of complement gene abnormalities; and multiple hits, including the CFH–H3 and CD46GGAAC risk haplotypes and the CFHR1*B risk allele, as well as environmental factors, contribute to disease development. Here, we investigated the determinants of penetrance of aHUS associated with CD46 genetic abnormalities. We studied 485 aHUS patients and found CD46 rare variants (RVs) in about 10%. The c.286+2T>G RV was the most prevalent (13/485) and was associated with <30% penetrance. We conducted an in-depth study of a large pedigree including a proband who is heterozygous for the c.286+2T>G RV who experienced a severe form of aHUS and developed end-stage renal failure. The father and paternal uncle with the same variant in homozygosity and six heterozygous relatives are unaffected. Flow cytometry analysis showed about 50% reduction of CD46 expression on blood mononuclear cells from the heterozygous proband and over 90% reduction in cells from the proband's unaffected homozygous father and aunt. Further genetic studies did not reveal RVs in known aHUS-associated genes or common genetic modifiers that segregated with the disease. Importantly, a specific ex vivo test showed excessive complement deposition on endothelial cells exposed to sera from the proband, and also from his mother and maternal uncle, who do not carry the c.286+2T>G RV, indicating that they share a circulating defect that results in complement dysregulation on the endothelium. These results highlight the complexity of the genetics of aHUS and indicate that CD46 deficiency may not be enough to induce aHUS. We hypothesize that the proband inherited from his mother a genetic abnormality in a complement circulating factor that has not been identified yet, which synergized with the CD46 RV in predisposing him to the aHUS phenotype.
Collapse
Affiliation(s)
- Rossella Piras
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Paraskevas Iatropoulos
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elena Bresin
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Todeschini
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Sara Gastoldi
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elisabetta Valoti
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Alberti
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Caterina Mele
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Miriam Galbusera
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Paola Cuccarolo
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marina Noris
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò,' Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
22
|
Li Y, Zou W, Brestoff JR, Rohatgi N, Wu X, Atkinson JP, Harris CA, Teitelbaum SL. Fat-Produced Adipsin Regulates Inflammatory Arthritis. Cell Rep 2020; 27:2809-2816.e3. [PMID: 31167128 DOI: 10.1016/j.celrep.2019.05.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
We explored the relationship of obesity and inflammatory arthritis (IA) by selectively expressing diphtheria toxin in adipose tissue yielding "fat-free" (FF) mice completely lacking white and brown fat. FF mice exhibit systemic neutrophilia and elevated serum acute phase proteins suggesting a predisposition to severe IA. Surprisingly, FF mice are resistant to K/BxN serum-induced IA and attendant bone destruction. Despite robust systemic basal neutrophilia, neutrophil infiltration into joints of FF mice does not occur when challenged with K/BxN serum. Absence of adiponectin, leptin, or both has no effect on joint disease, but deletion of the adipokine adipsin (complement factor D) completely prevents serum-induced IA. Confirming that fat-expressed adipsin modulates the disorder, transplantation of wild-type (WT) adipose tissue into FF mice restores susceptibility to IA, whereas recipients of adipsin-deficient fat remain resistant. Thus, adipose tissue regulates development of IA through a pathway in which adipocytes modify neutrophil responses in distant tissues by producing adipsin.
Collapse
Affiliation(s)
- Yongjia Li
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nidhi Rohatgi
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles A Harris
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Teitelbaum
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Abstract
Cardiovascular disease and infections are major causes for the high incidence of morbidity and mortality of patients with chronic kidney disease. Both complications are directly or indirectly associated with disturbed functions or altered apoptotic rates of polymorphonuclear leukocytes, monocytes, lymphocytes, and dendritic cells. Normal responses of immune cells can be reduced, leading to infectious diseases or pre-activated/primed, giving rise to inflammation and subsequently to cardiovascular disease. This review summarizes the impact of kidney dysfunction on the immune system. Renal failure results in disturbed renal metabolic activities with reduced renin, erythropoietin, and vitamin D production, which adversely affects the immune system. Decreased kidney function also leads to reduced glomerular filtration and the retention of uremic toxins. A large number of uremic toxins with detrimental effects on immune cells have been identified. Besides small water-soluble and protein-bound compounds originating from the intestinal microbiome, several molecules in the middle molecular range, e.g., immunoglobulin light chains, retinol-binding protein, the neuropeptides Met-enkephalin and neuropeptide Y, endothelin-1, and the adipokines leptin and resistin, adversely affect immune cells. Posttranslational modifications such as carbamoylation, advanced glycation products, and oxidative modifications contribute to uremic toxicity. Furthermore, high-density lipoprotein from uremic patients has an altered protein profile and thereby loses its anti-inflammatory properties.
Collapse
Affiliation(s)
- Gerald Cohen
- Department of Nephrology and Dialysis, Medical University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
24
|
Riedl Khursigara M, Schlam D, Noone DG, Bruno V, Ortiz-Sandoval CG, Pluthero FG, Kahr WHA, Bowman ML, James P, Grinstein S, Licht C. Vascular endothelial cells evade complement-mediated membrane injury via Weibel-Palade body mobilization. J Thromb Haemost 2020; 18:1484-1494. [PMID: 32073731 DOI: 10.1111/jth.14767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Defective complement inhibition can lead to the formation of membrane attack complexes (MAC; C5b-9) on the plasma membranes of vascular endothelial cells, resulting in injury that drives the progression of thrombotic microangiopathy (TMA), a key pathology in kidney disease. OBJECTIVE/METHODS We examined the response of human endothelial cells to complement-mediated damage using blood outgrowth endothelial cells (BOECs) derived from healthy donors. BOECs were sensitized to complement factors present in normal human serum to induce the formation of C5b-9 on their plasma membranes. RESULTS This triggered an expected abrupt rise in intracellular Ca2+ reflecting membrane leakage. Remarkably, while intracellular Ca2+ remained elevated, membrane leakage ceased within 30 minutes, and cells did not show significant death. Extensive mobilization of Weibel-Palade bodies (WPBs) was observed along with secretion of von Willebrand factor (VWF). The potential role of WPBs and VWF in mitigating complement-mediated damage was examined by comparing the effects of C5b-9 on BOECs derived from von Willebrand disease (VWD) patients expressing reduced amounts of VWF, lacking expression of functional VWF, or lacking both VWF and WPBs. BOECs lacking WPBs were not resistant to complement-mediated damage, but became resistant when transfected to express VWF (and thus WPBs). CONCLUSION We conclude that BOECs exposed to C5b-9 attack respond by mobilizing WPBs, which mitigate and repair damage by fusing with the plasma membrane. We propose that a similar cell-specific response may protect the vascular endothelium from complement-mediated damage in vivo.
Collapse
Affiliation(s)
- Magdalena Riedl Khursigara
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Innsbruck Medical University, Innsbruck, Austria
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Daniel Schlam
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Damien G Noone
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Valentina Bruno
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | | | - Fred G Pluthero
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Paula James
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Sergio Grinstein
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Christoph Licht
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Choi M, Butler E, Clarke A, Girard LP, Gibson P, Skeith L. Managing pregnancy-associated clinical emergencies in systemic lupus erythematosus: a case-based approach. Expert Rev Clin Immunol 2019; 16:5-22. [PMID: 31791152 DOI: 10.1080/1744666x.2019.1699057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Systemic lupus erythematosus (SLE)-related thrombocytopenia during pregnancy and the postpartum period have been associated with adverse pregnancy outcomes and perinatal complications. In this case report, we present two SLE patients with thrombocytopenia emergencies secondary to HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome and thrombotic thrombocytopenic purpura (TTP).Areas covered: The first case involved a 26-year-old woman, G1P0 at 26 weeks gestation (GA), with high-titer antiphospholipid antibodies (aPL) (positive lupus anticoagulant, anti-beta 2 glycoprotein-1 (aβ2GP1), anti-cardiolipin) and non-criteria aPL to phosphatidylserine/prothrombin complex and anti-domain 1 β2GP1. This case highlights the risks associated with aPL in pregnancy, considers management issues relating to anticoagulation during pregnancy and highlights the importance of maintaining a high index of suspicion for diagnosis of HELLP in SLE patients. The second case was a 36-year-old female, G3P2 at 32 weeks GA, with class III lupus nephritis (LN) who developed severe pre-eclampsia, which included mild thrombocytopenia. This case illustrates the challenges in identifying and differentiating between three pregnancy emergencies that can be seen in SLE patients (pre-eclampsia, LN, and TTP) and presents the management of TTP in peripartum SLE.Expert opinion: These two cases remind us of the importance of timely diagnosis and management of thrombocytopenia in this population.
Collapse
Affiliation(s)
- May Choi
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin Butler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ann Clarke
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Louis Phillipe Girard
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Gibson
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Obstetrics & Gynecology, University of Calgary, Calgary, Alberta, Canada
| | - Leslie Skeith
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Chaturvedi S, Brodsky RA, McCrae KR. Complement in the Pathophysiology of the Antiphospholipid Syndrome. Front Immunol 2019; 10:449. [PMID: 30923524 PMCID: PMC6426753 DOI: 10.3389/fimmu.2019.00449] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
The antiphospholipid syndrome (APS) is characterized by thrombosis and pregnancy morbidity in the presence of antiphospholipid antibodies (aPL). Complement is a system of enzymes and regulatory proteins of the innate immune system that plays a key role in the inflammatory response to pathogenic stimuli. The complement and coagulation pathways are closely linked, and expanding data indicate that complement may be activated in patients with aPL and function as a cofactor in the pathogenesis of aPL-associated clinical events. Complement activation by aPL generates C5a, which induces neutrophil tissue factor-dependent procoagulant activity. Beta-2-glycoprotein I, the primary antigen for pathogenic aPL, has complement regulatory effects in vitro. Moreover, aPL induce fetal loss in wild-type mice but not in mice deficient in specific complement components (C3, C5). Antiphospholipid antibodies also induce thrombosis in wild type mice and this effect is attenuated in C3 or C6 deficient mice, or in the presence of a C5 inhibitor. Increased levels of complement activation products have been demonstrated in sera of patients with aPL, though the association with clinical events remains unclear. Eculizumab, a terminal complement inhibitor, has successfully been used to treat catastrophic APS and prevent APS-related thrombotic microangiopathy in the setting of renal transplant. However, the mechanisms of complement activation in APS, its role in the pathogenesis of aPL related complications in humans, and the potential of complement inhibition as a therapeutic target in APS require further study.
Collapse
Affiliation(s)
- Shruti Chaturvedi
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert A Brodsky
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Keith R McCrae
- Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland, OH, United States.,Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
27
|
P-selectin drives complement attack on endothelium during intravascular hemolysis in TLR-4/heme-dependent manner. Proc Natl Acad Sci U S A 2019; 116:6280-6285. [PMID: 30850533 DOI: 10.1073/pnas.1814797116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hemolytic diseases are frequently linked to multiorgan failure subsequent to vascular damage. Deciphering the mechanisms leading to organ injury upon hemolytic event could bring out therapeutic approaches. Complement system activation occurs in hemolytic disorders, such as sickle cell disease, but the pathological relevance and the acquisition of a complement-activating phenotype during hemolysis remain unclear. Here we found that intravascular hemolysis, induced by injection of phenylhydrazine, resulted in increased alanine aminotransferase plasma levels and NGAL expression. This liver damage was at least in part complement-dependent, since it was attenuated in complement C3-/- mice and by injection of C5-blocking antibody. We evidenced C3 activation fragments' deposits on liver endothelium in mice with intravascular hemolysis or injected with heme as well as on cultured human endothelial cells (EC) exposed to heme. This process was mediated by TLR4 signaling, as revealed by pharmacological blockade and TLR4 deficiency in mice. Mechanistically, TLR4-dependent surface expression of P-selectin triggered an unconventional mechanism of complement activation by noncovalent anchoring of C3 activation fragments, including the typical fluid-phase C3(H2O), measured by surface plasmon resonance and flow cytometry. P-selectin blockade by an antibody prevented complement deposits and attenuated the liver stress response, measured by NGAL expression, in the hemolytic mice. In conclusion, these results revealed the critical impact of the triad TLR4/P-selectin/complement in the liver damage and its relevance for hemolytic diseases. We anticipate that blockade of TLR4, P-selectin, or the complement system could prevent liver injury in hemolytic diseases like sickle cell disease.
Collapse
|
28
|
Complement links platelets to innate immunity. Semin Immunol 2018; 37:43-52. [DOI: 10.1016/j.smim.2018.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
|
29
|
Boff D, Fagundes CT, Russo RC, Amaral FA. Innate Immunity and Inflammation: The Molecular Mechanisms Governing the Cross-Talk Between Innate Immune and Endothelial Cells. IMMUNOPHARMACOLOGY AND INFLAMMATION 2018:33-56. [DOI: 10.1007/978-3-319-77658-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|