1
|
Zhu Y, Liang D, Gu R, Liu S, Yang P, Zhang L, He W, Feng Y. Controllable fabrication of hierarchical porous anode for exoelectrogens internal colonization in microbial electrochemical system. BIORESOURCE TECHNOLOGY 2025; 426:132337. [PMID: 40044060 DOI: 10.1016/j.biortech.2025.132337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/07/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Efficient interfacial energy conversion and rapid charge transfer are crucial for application-oriented microbial electrochemical systems (MES) and depend on affordable high-performance anodes. Herein, hierarchically porous 3D anodes with controlled millimeter-scale macropores (1-2 mm) were fabricated via carbonization of phenolic foam embedded with expanded polystyrene (EPS) sacrificial templates. Optimizing EPS loading (4 wt%) and pore-sizes yielded anode L-4M, exhibiting appropriate hydrophilicity (contact angle: 60.0 ± 0.7°) and enhanced electrochemically active surface area (ECSA: 61 cm2) attributed to surface oxygen-containing groups and multiscale porosity. The L-4M achieved a remarkable maximum power density of 3800 ± 80 mW m-2, 2.1-fold higher than carbon-cloth anodes. Engineered macropores facilitated unprecedented microbial colonization depth (≥ 2.5 mm) and biomass density (1300 ± 36 μg cm-2) predominated by Geobacter sp. (75 % relative abundance). This millimeter-scale pore engineering strategy enhanced bio-accessible surface area, substrate diffusion, and electroactive biofilm development, offering a scalable approach for high-current-density MES.
Collapse
Affiliation(s)
- Yujie Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Ruize Gu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Shujuan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Pinpin Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China
| | - Lijuan Zhang
- School of Environmental and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
2
|
Huang W, Liu S, Zhang T, Wu H, Pu S. Bibliometric analysis and systematic review of electrochemical methods for environmental remediation. J Environ Sci (China) 2024; 144:113-136. [PMID: 38802224 DOI: 10.1016/j.jes.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 05/29/2024]
Abstract
Electrochemical methods are increasingly favored for remediating polluted environments due to their environmental compatibility and reagent-saving features. However, a comprehensive understanding of recent progress, mechanisms, and trends in these methods is currently lacking. Web of Science (WoS) databases were utilized for searching the primary data to understand the knowledge structure and research trends of publications on electrochemical methods and to unveil certain hotspots and future trends of electrochemical methods research. The original data were sampled from 9080 publications in those databases with the search deadline of June 1st, 2022. CiteSpace and VOSviewer software facilitated data visualization and analysis of document quantities, source journals, institutions, authors, and keywords. We discussed principles, influencing factors, and progress related to seven major electrochemical methods. Notably, publications on this subject have experienced significant growth since 2007. The most frequently-investigated areas in electrochemical methods included novel materials development, heavy metal remediation, organic pollutant degradation, and removal mechanism identification. "Advanced oxidation process" and "Nanocomposite" are currently trending topics. The major remediation mechanisms are adsorption, oxidation, and reduction. The efficiency of electrochemical systems is influenced by material properties, system configuration, electron transfer efficiency, and power density. Electro-Fenton exhibits significant advantages in achieving synergistic effects of anodic oxidation and electro-adsorption among the seven techniques. Future research should prioritize the improvement of electron transfer efficiency, the optimization of electrode materials, the exploration of emerging technology coupling, and the reduction in system operation and maintenance costs.
Collapse
Affiliation(s)
- Wenbin Huang
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China.
| | - Tao Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China
| | - Hao Wu
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
3
|
Agee A, Pace G, Yang V, Segalman R, Furst AL. Mixed Conducting Polymers Alter Electron Transfer Thermodynamics to Boost Current Generation from Electroactive Microbes. J Am Chem Soc 2024; 146:19728-19736. [PMID: 39001879 PMCID: PMC11276794 DOI: 10.1021/jacs.4c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Electroactive microbes that can release or take up electrons are essential components of nearly every ecological niche and are powerful tools for the development of alternative energy technologies. Small-molecule mediators are critical for this electron transfer but remain difficult to study and engineer because they perform concerted two-electron transfer in native systems but only individual, one-electron transfers in electrochemical studies. Here, we report that electrode modification with ion- and electron-conductive polymers yields biosimilar, concerted two-electron transfer from Shewanella oneidensis via flavin mediators. S. oneidensis biofilms on these polymers show significantly improved per-microbe current generation and morphologies that more closely resemble native systems, setting a new paradigm for the study and optimization of these electron transfer processes. The unprecedented concerted electron transfer was found to be due to altered mediator electron transfer thermodynamics, enabling biologically relevant studies of electroactive biofilms in the lab for the first time. These important findings pave the way for a complete understanding of the ecological role of electroactive microbes and their broad application in sustainable technologies.
Collapse
Affiliation(s)
- Alec Agee
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Gordon Pace
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Victoria Yang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Rachel Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Ariel L. Furst
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Xiang X, Bai J, Gu W, Peng S, Shih K. Mechanism and application of modified bioelectrochemical system anodes made of carbon nanomaterial for the removal of heavy metals from soil. CHEMOSPHERE 2023; 345:140431. [PMID: 37852385 DOI: 10.1016/j.chemosphere.2023.140431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Bioelectrochemical techniques are quick, efficient, and sustainable alternatives for treating heavy metal soils. The use of carbon nanomaterials in combination with electroactive microorganisms can create a conductive network that mediates long-distance electron transfer in an electrode system, thereby resolving the issue of low electron transfer efficiency in soil remediation. As a multifunctional soil heavy metal remediation technology, its application in organic remediation has matured, and numerous studies have demonstrated its potential for soil heavy metal remediation. This is a ground-breaking method for remediating soils polluted with high concentrations of heavy metals using soil microbial electrochemistry. This review summarizes the use of bioelectrochemical systems with modified anode materials for the remediation of soils with high heavy metal concentrations by discussing the mass-transfer mechanism of electrochemically active microorganisms in bioelectrochemical systems, focusing on the suitability of carbon nanomaterials and acidophilic bacteria. Finally, we discuss the emerging limitations of bioelectrochemical systems, and future research efforts to improve their performance and facilitate practical applications. The mass-transfer mechanism of electrochemically active microorganisms in bioelectrochemical systems emphasizes the suitability of carbon nanomaterials and acidophilic bacteria for remediating soils polluted with high concentrations of heavy metals. We conclude by discussing present and future research initiatives for bioelectrochemical systems to enhance their performance and facilitate practical applications. As a result, this study can close any gaps in the development of bioelectrochemical systems and guide their practical application in remediating heavy-metal-contaminated soils.
Collapse
Affiliation(s)
- Xue Xiang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jianfeng Bai
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Weihua Gu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Shengjuan Peng
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Kaimin Shih
- Department of Civil Engineering University of Hongkong, Pokfulam Road, Hongkong, China
| |
Collapse
|
5
|
Gao Y, Huang J, Zhang L, Zhu Y, Yang P, Xue L, Wang N, He W. A three-dimensional phenolic-based carbon anode for microbial electrochemical system with customized macroscopic pore structure to promote interior bacteria colonization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160131. [PMID: 36372162 DOI: 10.1016/j.scitotenv.2022.160131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Microbial electrochemical system (MES) is an emerging wastewater treatment technology that compensates the energy demands of containments removal by in situ converting the chemical energy of organic pollutants. As the structure for exoelectrogens and the reaction site of extracellular electron transfer (EET), the anode is essential for MES. The future commercial application of MES requires efficiency and large-scale fabrication available anode. In this study, a 3D anode with millimeter-scale pores (3D-MPA) was successfully constructed by sacrificial template method, with low-cost phenolic resin as carbon precursor and polymethyl methacrylate (PMMA) pellets as template. With customized and ordered pore of 1 mm, the 3D-MPAs allowed the microorganisms to colonize inside, improving anodic space utilization efficiency. Different carbonization temperature in tested range from 700 °C to 1000 °C regulated the micrometer-scale convex structures and surface roughness of 3D-MPAs, causing electrochemical performance changes. The 3D-MPA-900 obtained the largest electroactive surface area (102 ± 4.1 cm2) and smallest ohmic resistance (1.8 ± 0.09 Ω). Equipped with MES, 3D-MPA-900 reached the highest power density and current density (2590 ± 25 mW m-2 and 5.20 ± 0.07 A m-2). Among tested 3D-MPA, the excellent performance of 3D-MPA-900 might be attributed by its convex structures with suitable size and surface coverage. The surface roughness of 3D-MPA-900 enhanced the microorganism adherence, which then promoted EET on anode surface. Generally, phenolic-based 3D-MPA made of sacrificial-template method had controllable porous structure, large-scale fabrication availability, high chemical stability and excellent mechanical property, which could be promising for the commercial application of MES.
Collapse
Affiliation(s)
- Yaqian Gao
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jianjun Huang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lijuan Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yujie Zhu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
6
|
Jiang YJ, Hui S, Jiang LP, Zhu JJ. Functional Nanomaterial-Modified Anodes in Microbial Fuel Cells: Advances and Perspectives. Chemistry 2023; 29:e202202002. [PMID: 36161734 DOI: 10.1002/chem.202202002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 01/05/2023]
Abstract
Microbial fuel cell (MFC) is a promising approach that could utilize microorganisms to oxidize biodegradable pollutants in wastewater and generate electrical power simultaneously. Introducing advanced anode nanomaterials is generally considered as an effective way to enhance MFC performance by increasing bacterial adhesion and facilitating extracellular electron transfer (EET). This review focuses on the key advances of recent anode modification materials, as well as the current understanding of the microbial EET process occurring at the bacteria-electrode interface. Based on the difference in combination mode of the exoelectrogens and nanomaterials, anode surface modification, hybrid biofilm construction and single-bacterial surface modification strategies are elucidated exhaustively. The inherent mechanisms may help to break through the performance output bottleneck of MFCs by rational design of EET-related nanomaterials, and lead to the widespread application of microbial electrochemical systems.
Collapse
Affiliation(s)
- Yu-Jing Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Su Hui
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Zhang G, Liang D, Zhao Z, Qi J, Huang L. Enhanced performance of microbial fuel cell with electron mediators from tetracycline hydrochloride degradation. ENVIRONMENTAL RESEARCH 2022; 206:112605. [PMID: 34958780 DOI: 10.1016/j.envres.2021.112605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Tetracycline hydrochloride (TCH) is a typical antibiotic pollutant with high toxicity and persistence. The degradation of TCH and the generation of the associated electron mediator in a dual chamber microbial fuel cells (MFCs) were studied. The results of liquid chromatography revealed that TCH could be effectively removed (>93%) in MFCs mode. The maximum COD removal was 88.14 ± 1.47% in MFCs while it was 69.57 ± 1.36% in open circuit MFCs. According to cyclic voltammetry, the presence of the relevant redox peaks clearly suggested that the intermediates from TCH degradation could act as endogenous electron mediator. The highest power density of 120.02 ± 2.76 mW/m2 and the lowest internal resistance of 18.68 Ω were achieved in MFC with 2 mg/L of TCH. Microbial community analysis illustrated that Bacteroides, Comamonas, Clostridium_sensu_stricto, Desulfovibrio and Geobacter were enriched and played a dominant role in TCH degradation and power generation. Electrochemical active bacteria had certain tolerance to TCH and the inhibiting threshold value of TCH was below 5 mg/L. This study provided a new thinking that low concentration of TCH could produce electron mediators to improve the performance of MFC system.
Collapse
Affiliation(s)
- Guangyi Zhang
- Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Danxin Liang
- Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Zisheng Zhao
- Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China.
| | - Jingsa Qi
- Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Long Huang
- Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| |
Collapse
|
8
|
Dey N, Samuel GV, Raj DS, Gajalakshmi B. Nanomaterials as potential high performing electrode materials for microbial fuel cells. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02371-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zhu K, Xu Y, Yang X, Fu W, Dang W, Yuan J, Wang Z. Sludge Derived Carbon Modified Anode in Microbial Fuel Cell for Performance Improvement and Microbial Community Dynamics. MEMBRANES 2022; 12:120. [PMID: 35207042 PMCID: PMC8879649 DOI: 10.3390/membranes12020120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
The conversion of activated sludge into high value-added materials, such as sludge carbon (SC), has attracted increasing attention because of its potential for various applications. In this study, the effect of SC carbonized at temperatures of 600, 800, 1000, and 1200 °C on the anode performance of microbial fuel cells and its mechanism are discussed. A pyrolysis temperature of 1000 °C for the loaded electrode (SC1000/CC) generated a maximum areal power density of 2.165 ± 0.021 W·m-2 and a current density of 5.985 ± 0.015 A·m-2, which is 3.017- and 2.992-fold that of the CC anode. The addition of SC improves microbial activity, optimizes microbial community structure, promotes the expression of c-type cytochromes, and is conducive to the formation of electroactive biofilms. This study not only describes a technique for the preparation of high-performance and low-cost anodes, but also sheds some light on the rational utilization of waste resources such as aerobic activated sludge.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiwei Wang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (K.Z.); (Y.X.); (X.Y.); (W.F.); (W.D.); (J.Y.)
| |
Collapse
|
10
|
Sharif HMA, Farooq M, Hussain I, Ali M, Mujtaba M, Sultan M, Yang B. Recent innovations for scaling up microbial fuel cell systems: Significance of physicochemical factors for electrodes and membranes materials. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Amen MT, Yasin AS, Hegazy MI, Jamal MAHM, Hong ST, Barakat NAM. Rainwater-driven microbial fuel cells for power generation in remote areas. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210996. [PMID: 34849243 PMCID: PMC8611341 DOI: 10.1098/rsos.210996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/29/2021] [Indexed: 05/06/2023]
Abstract
The possibility of using rainwater as a sustainable anolyte in an air-cathode microbial fuel cell (MFC) is investigated in this study. The results indicate that the proposed MFC can work within a wide temperature range (from 0 to 30°C) and under aerobic or anaerobic conditions. However, the rainwater season has a distinct impact. Under anaerobic conditions, the summer rainwater achieves a promised open circuit potential (OCP) of 553 ± 2 mV without addition of nutrients at the ambient temperature, while addition of nutrients leads to an increase in the cell voltage to 763 ± 3 and 588 ± 2 mV at 30°C and ambient temperature, respectively. The maximum OCP for the winter rainwater (492 ± 1.5 mV) is obtained when the reactor is exposed to the air (aerobic conditions) at ambient temperature. Furthermore, the winter rainwater MFC generates a maximum power output of 7 ± 0.1 mWm-2 at a corresponding current density value of 44 ± 0.7 mAm-2 at 30°C. While, at the ambient temperature, the maximum output power is obtained with the summer rainwater (7.2 ± 0.1 mWm-2 at 26 ± 0.5 mAm-2). Moreover, investigation of the bacterial diversity indicates that Lactobacillus spp. is the dominant electroactive genus in the summer rainwater, while in the winter rainwater, Staphylococcus spp. is the main electroactive bacteria. The cyclic voltammetry analysis confirms that the electrons are delivered directly from the bacterial biofilm to the anode surface and without mediators. Overall, this study opens a new avenue for using a novel sustainable type of MFC derived from rainwater.
Collapse
Affiliation(s)
- Mohamed Taha Amen
- Bio-Nanosystem Engineering Department, Chonbuk National University, Jeonju 561-756, Republic of South Korea
- Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed S. Yasin
- Bio-Nanosystem Engineering Department, Chonbuk National University, Jeonju 561-756, Republic of South Korea
| | - Mohamed I. Hegazy
- Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohammad Abu Hena Mostafa Jamal
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, Korea
| | - Nasser A. M. Barakat
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| |
Collapse
|
12
|
McCuskey SR, Chatsirisupachai J, Zeglio E, Parlak O, Panoy P, Herland A, Bazan GC, Nguyen TQ. Current Progress of Interfacing Organic Semiconducting Materials with Bacteria. Chem Rev 2021; 122:4791-4825. [PMID: 34714064 DOI: 10.1021/acs.chemrev.1c00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbial bioelectronics require interfacing microorganisms with electrodes. The resulting abiotic/biotic platforms provide the basis of a range of technologies, including energy conversion and diagnostic assays. Organic semiconductors (OSCs) provide a unique strategy to modulate the interfaces between microbial systems and external electrodes, thereby improving the performance of these incipient technologies. In this review, we explore recent progress in the field on how OSCs, and related materials capable of charge transport, are being used within the context of microbial systems, and more specifically bacteria. We begin by examining the electrochemical communication modes in bacteria and the biological basis for charge transport. Different types of synthetic organic materials that have been designed and synthesized for interfacing and interrogating bacteria are discussed next, followed by the most commonly used characterization techniques for evaluating transport in microbial, synthetic, and hybrid systems. A range of applications is subsequently examined, including biological sensors and energy conversion systems. The review concludes by summarizing what has been accomplished so far and suggests future design approaches for OSC bioelectronics materials and technologies that hybridize characteristic properties of microbial and OSC systems.
Collapse
Affiliation(s)
- Samantha R McCuskey
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Jirat Chatsirisupachai
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Erica Zeglio
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden
| | - Onur Parlak
- Dermatology and Venereology Division, Department of Medicine(Solna), Karolinska Institute, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Patchareepond Panoy
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Anna Herland
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
Kaur R, Singh S, Chhabra VA, Marwaha A, Kim KH, Tripathi SK. A sustainable approach towards utilization of plastic waste for an efficient electrode in microbial fuel cell applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125992. [PMID: 34229373 DOI: 10.1016/j.jhazmat.2021.125992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFC) are a novel technique for power generation from wastewater. A number of approaches for the modification of physical as well as chemical properties of the electrodes can be employed to attain the maximum output power density and high power electricity. The use of an active organic linker, extracted from waste residue (plastic), for the synthesis of porous nanostructured materials would be beneficial in the fabrication of electrodes for MFC. Herein, terephthalic acid monomer (t) derived from plastic waste was successfully applied as an electrochemically active linking unit to form an iron-based metal-organic framework (Fe-t-MOF: MIL-53(Fe)). The synthesized Fe-t-MOF was further modified with conducting polymer (polyaniline (PANI)). The produced nanocomposite (Fe-t-MOF/PANI) was coated on stainless steel (SS) disk (as a current collector) for use as an electrode component of the MFC system. The power density, open circuit potential (OCP), and a limiting current density of the MFC are 680 mW/m2, 0.67 V, and 3500mA/m2, respectively. The technique opted here should help search a novel, efficient, sustainable, and cost-effective route for the modification of the plastic waste into an MFC electrode to achieve bioenergy production through wastewater treatment.
Collapse
Affiliation(s)
- Rajnish Kaur
- Department of Physics, Panjab University, Sector 14, Chandigarh 160014, India
| | - Shiv Singh
- Industrial Waste Utilization, Nano and Biomaterial division, Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, Madhya Pradesh 462064, India
| | - Varun A Chhabra
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Aanchal Marwaha
- Department of Physics, Panjab University, Sector 14, Chandigarh 160014, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - S K Tripathi
- Department of Physics, Panjab University, Sector 14, Chandigarh 160014, India
| |
Collapse
|
14
|
Gao X, Qiu S, Lin Z, Xie X, Yin W, Lu X. Carbon-Based Composites as Anodes for Microbial Fuel Cells: Recent Advances and Challenges. Chempluschem 2021; 86:1322-1341. [PMID: 34363342 DOI: 10.1002/cplu.202100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Owing to the low price, chemical stability and good conductivity, carbon-based materials have been extensively applied as the anode in microbial fuel cells (MFCs). In this review, apart from the charge storage mechanism and anode requirements, the major work focuses on five categories of carbon-based anode materials (traditional carbon, porous carbon, nano-carbon, metal/carbon composite and polymer/carbon composite). The relationship is demonstrated in depth between the physicochemical properties of the anode surface/interface/bulk (porosity, surface area, hydrophilicity, partical size, charge, roughness, etc.) and the bioelectrochemical performances (electron transfer, electrolyte diffusion, capacitance, toxicity, start-up time, current, power density, voltage, etc.). An outlook for future work is also proposed.
Collapse
Affiliation(s)
- Xingyuan Gao
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China.,MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Shuxian Qiu
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Ziting Lin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xiangjuan Xie
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Wei Yin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
15
|
Wang R, Li H, Sun J, Zhang L, Jiao J, Wang Q, Liu S. Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004051. [PMID: 33325567 DOI: 10.1002/adma.202004051] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Electrochemically active bacteria can transport their metabolically generated electrons to anodes, or accept electrons from cathodes to synthesize high-value chemicals and fuels, via a process known as extracellular electron transfer (EET). Harnessing of this microbial EET process has led to the development of microbial bio-electrochemical systems (BESs), which can achieve the interconversion of electrical and chemical energy and enable electricity generation, hydrogen production, electrosynthesis, wastewater treatment, desalination, water and soil remediation, and sensing. Here, the focus is on the current understanding of the microbial EET process occurring at both the bacteria-electrode interface and the biotic interface, as well as some attempts to improve the EET by using various nanomaterials. The behavior of nanomaterials in different EET routes and their influence on the performance of BESs are described. The inherent mechanisms will guide rational design of EET-related materials and lead to a better understanding of EET mechanisms.
Collapse
Affiliation(s)
- Ruiwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huidong Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinzhi Sun
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jia Jiao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingqing Wang
- School of Chemistry and Chemical Engineering, Micro- and Nanotechnology Research Center, Harbin Institute of Technology, Harbin, 150090, China
| | - Shaoqin Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
16
|
Jatoi AS, Akhter F, Mazari SA, Sabzoi N, Aziz S, Soomro SA, Mubarak NM, Baloch H, Memon AQ, Ahmed S. Advanced microbial fuel cell for waste water treatment-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5005-5019. [PMID: 33241504 DOI: 10.1007/s11356-020-11691-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Petroleum, coal, and natural gas reservoir were depleting continuously due to an increase in industrialization, which enforced study to identify alternative sources. The next option is the renewable resources which are most important for energy purpose coupled with environmental problem reduction. Microbial fuel cells (MFCs) have become a promising approach to generate cleaner and more sustainable electrical energy. The involvement of various disciplines had been contributing to enhancing the performance of the MFCs. This review covers the performance of MFC along with different wastewater as a substrate in terms of treatment efficiencies as well as for energy generation. Apart from this, effect of various parameters and use of different nanomaterials for performance of MFC were also studied. From the current study, it proves that the use of microbial fuel cell along with the use of nanomaterials could be the waste and energy-related problem-solving approach. MFC could be better in performances based on optimized process parameters for handling any wastewater from industrial process.
Collapse
Affiliation(s)
- Abdul Sattar Jatoi
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Pakistan.
| | - Faheem Akhter
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Shaukat Ali Mazari
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Pakistan.
| | | | - Shaheen Aziz
- Chemical Engineering Department, Mehran University of Engineering and Technology, Jamshoro, Pakistan
| | - Suhail Ahmed Soomro
- Chemical Engineering Department, Mehran University of Engineering and Technology, Jamshoro, Pakistan
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri Sarawak, Malaysia.
| | - Humair Baloch
- School of Engineering, RMIT University, Melbourne, 3000, Australia
| | - Abdul Qayoom Memon
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Pakistan
| | - Shoaib Ahmed
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Pakistan
| |
Collapse
|
17
|
Nanocluster-assisted protein-film voltammetry for direct electrochemical signal acquisition. Anal Bioanal Chem 2021; 413:1665-1673. [PMID: 33501552 DOI: 10.1007/s00216-020-03130-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Acquisition of the direct electrochemical response of protein is the cornerstone for the development of the third generation of electrochemical biosensors. In this work, we developed a nanocluster-assisted protein-film voltammetry technique (NCA-PFV) which can achieve the acquisition of the electrochemical signal and maintain the activity without affecting of the protein's structure. With this strategy, a lipid bilayer membrane is used to immobilize the membrane protein so as to maintain its natural state. Copper nanoclusters with a size smaller than most proteins are then used to function at sub-protein scale and to mediate the electron hopping from the electroactive center of the electrode. As a model, the direct electrochemical signal of cyclooxygenase (COX) is successfully obtained, with a pair of well-defined redox peaks located at -0.39 mV and -0.31 mV, which characterize the heme center of the enzyme. Its catalytic activity towards the substrate arachidonic acid (AA) is also retained. The detection range for AA is 10-1000 μM and the detection limit is 2.4 μM. Electrochemical monitoring of the regulation of the catalytic activity by an inhibitor DuP-697 is also achieved. This work provides a powerful tool for the fabrication of enzyme-based electrochemical biosensors, and is also of great significance for promoting the development and application of next-generation electrochemical biosensors.
Collapse
|
18
|
Li T, Zhou Q. The key role of Geobacter in regulating emissions and biogeochemical cycling of soil-derived greenhouse gases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115135. [PMID: 32650301 DOI: 10.1016/j.envpol.2020.115135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
In the past two decades, more and more attentions have been paid to soil-derived greenhouse gases (GHGs) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) because there are signs that they have rising negative impacts on the sustainability of the earth surface system. Farmlands, particularly paddy soils, have been regarded as the most important emitter of GHGs (nearly 17%) due to a large influx of fertilization and the abundance in animals, plants and microorganisms. Geobacter, as an electroactive microorganism widely occurred in soil, has been well studied on electron transport mechanisms and the direct interspecies electron transfer. These studies on Geobacter illustrate that it has the ability to be involved in the pathways of soil GHG emissions through redox reactions under anaerobic conditions. In this review, production mechanisms of soil-derived GHGs and the amount of these GHGs produced had been first summarized. The cycling process of CH4 and N2O was described from the view of microorganisms and discussed the co-culture relationships between Geobacter and other microorganisms. Furthermore, the role of Geobacter in the production of soil-derived GHGs is defined by biogeochemical cycling. The complete view on the effect of Geobacter on the emission of soil-derived GHGs has been shed light on, and appeals further investigation.
Collapse
Affiliation(s)
- Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
19
|
Rethinasabapathy M, Lee JH, Roh KC, Kang SM, Oh SY, Park B, Lee GW, Cha YL, Huh YS. Silver grass-derived activated carbon with coexisting micro-, meso- and macropores as excellent bioanodes for microbial colonization and power generation in sustainable microbial fuel cells. BIORESOURCE TECHNOLOGY 2020; 300:122646. [PMID: 31896046 DOI: 10.1016/j.biortech.2019.122646] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, highly biocompatible three-dimensional hierarchically porous activated carbon from the low-cost silver grass (Miscanthus sacchariflorus) has been fabricated through a facile carbonization approach and tested it as bioanode in microbial fuel cell (MFC) using Escherichia coli as biocatalyst. This silver grass-derived activated carbon (SGAC) exhibited an unprecedented specific surface area of 3027 m2 g-1 with the coexistence of several micro-, meso-, and macropores. The synergistic effect from pore structure (macropores - hosting E. coli to form biofilm and facilitates internal mass transfer; mesopores - favors fast electron transfer; and micropores - promotes nutrient transport to the biofilm) with very high surface area facilitates excellent extracellular electron transfer (EET) between the anode and biofilm which resulted in higher power output of 963 mW cm-2. Based on superior biocompatibility, low cost, environment-friendliness, and facile fabrication, the proposed SGAC bioanode could have a great potential for high-performance and cost-effective sustainable MFCs.
Collapse
Affiliation(s)
- Muruganantham Rethinasabapathy
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Jeong Han Lee
- Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 660-031, Republic of Korea
| | - Kwang Chul Roh
- Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 660-031, Republic of Korea
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, United States
| | - Seo Yeong Oh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Bumjun Park
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Go-Woon Lee
- Platform Technology Laboratory, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Daejeon 34129, Republic of Korea
| | - Young Lok Cha
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration (RDA), Moan-ro 199, Jeon-Nam 534-833, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea.
| |
Collapse
|
20
|
Abstract
The world energy production trumped by the exhaustive utilization of fossil fuels has highlighted the importance of searching for an alternative energy source that exhibits great potential. Ongoing efforts are being implemented to resolve the challenges regarding the preliminary processes before conversion to bioenergy such as pretreatment, enzymatic hydrolysis and cultivation of biomass. Nanotechnology has the ability to overcome the challenges associated with these biomass sources through their distinctive active sites for various reactions and processes. In this review, the potential of nanotechnology incorporated into these biomasses as an aid or addictive to enhance the efficiency of bioenergy generation has been reviewed. The fundamentals of nanomaterials along with their various bioenergy applications were discussed in-depth. Moreover, the optimization and enhancement of bioenergy production from lignocellulose, microalgae and wastewater using nanomaterials are comprehensively evaluated. The distinctive features of these nanomaterials contributing to better performance of biofuels, biodiesel, enzymes and microbial fuel cells are also critically reviewed. Subsequently, future trends and research needs are highlighted based on the current literature.
Collapse
|
21
|
Zhu W, Yao M, Gao H, Wen H, Zhao X, Zhang J, Bai H. Enhanced extracellular electron transfer between Shewanella putrefaciens and carbon felt electrode modified by bio-reduced graphene oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1089-1097. [PMID: 31466191 DOI: 10.1016/j.scitotenv.2019.07.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Extracellular electron transfer (EET) is a governing factor for the electrochemical performance of a bioelectrochemical system (BES) such as the microbial fuel cell (MFC). Herein, an in situ method to fabricate a bio-reduced graphene oxide (GO) (br-GO) modified carbon felt electrode to increase EET was developed. GO (0.5mgmL-1) was spiked into the anode chamber in a three-electrode BES and was transformed to br-GO with a self-assembled three-dimensional (3D) structure. The response of the br-GO modified electrode potential to the attached population of Shewanella putrefaciens increased from 0.071V to 0.517V (vs Ag/AgCl). Meanwhile, br-GO modification resulted a significant enhancement in the total amount of extracellular electrons transferred between the modified electrode and microbe. The process of br-GO modification lowered the charge transfer resistance of the electrode and enhanced the EET. The modified electrode was further employed as an anode in the MFC, and consequently, the power density of the MFC was significantly enhanced. The current study not only gives a simple and effective way for improving the EET with br-GO fabrication, but also provides a strategy to enhance the power density of the MFC.
Collapse
Affiliation(s)
- Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Min Yao
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haoxiang Gao
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hu Wen
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huiling Bai
- College of literature, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
22
|
Gul MM, Ahmad KS. Bioelectrochemical systems: Sustainable bio-energy powerhouses. Biosens Bioelectron 2019; 142:111576. [DOI: 10.1016/j.bios.2019.111576] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023]
|
23
|
Zhao Y, Hu Y, Hou J, Jia Z, Zhong D, Zhou S, Huo D, Yang M, Hou C. Electrochemical biointerface based on electrodeposition AuNPs on 3D graphene aerogel: Direct electron transfer of Cytochrome c and hydrogen peroxide sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Ultrafine Sb nanoparticles embedded in nitrogen-doped carbon nanofibers as ultralong cycle durability and high-rate anode materials for reversible sodium storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Zou L, Wu X, Huang Y, Ni H, Long ZE. Promoting Shewanella Bidirectional Extracellular Electron Transfer for Bioelectrocatalysis by Electropolymerized Riboflavin Interface on Carbon Electrode. Front Microbiol 2019; 9:3293. [PMID: 30697199 PMCID: PMC6340934 DOI: 10.3389/fmicb.2018.03293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
The extracellular electron transfer (EET) that connects the intracellular metabolism of electroactive microorganisms to external electron donors/acceptors, is the foundation to develop diverse microbial electrochemical technologies. For a particular microbial electrochemical device, the surface chemical property of an employed electrode material plays a crucial role in the EET process owing to the direct and intimate biotic-abiotic interaction. The functional modification of an electrode surface with redox mediators has been proposed as an effectual approach to promote EET, but the underlying mechanism remains unclear. In this work, we investigated the enhancement of electrochemically polymerized riboflavin interface on the bidirectional EET of Shewanella putrefaciens CN32 for boosting bioelectrocatalytic ability. An optimal polyriboflavin functionalized carbon cloth electrode achieved about 4.3-fold output power density (∼707 mW/m2) in microbial fuel cells and 3.7-fold cathodic current density (∼0.78 A/m2) for fumarate reduction in three-electrode cells compared to the control, showing great increases in both outward and inward EET rates. Likewise, the improvement was observed for polyriboflavin-functionalized graphene electrodes. Through comparison between wild-type strain and outer-membrane cytochrome (MtrC/UndA) mutant, the significant improvements were suggested to be attributed to the fast interfacial electron exchange between the polyriboflavin interface with flexible electrochemical activity and good biocompatibility and the outer-membrane cytochromes of the Shewanella strain. This work not only provides an effective approach to boost microbial electrocatalysis for energy conversion, but also offers a new demonstration of broadening the applications of riboflavin-functionalized interface since the widespread contribution of riboflavin in various microbial EET pathways together with the facile electropolymerization approach.
Collapse
Affiliation(s)
| | | | | | | | - Zhong-er Long
- College of Life Science, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
26
|
Abbas SZ, Rafatullah M, Khan MA, Siddiqui MR. Bioremediation and Electricity Generation by Using Open and Closed Sediment Microbial Fuel Cells. Front Microbiol 2019; 9:3348. [PMID: 30692985 PMCID: PMC6339898 DOI: 10.3389/fmicb.2018.03348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/31/2018] [Indexed: 11/14/2022] Open
Abstract
The industrial contamination of marine sediments with mercury, silver, and zinc in Penang, Malaysia was studied with bio-remediation coupled with power generation using membrane less open (aerated) and closed (non-aerated) sediment microbial fuel cells (SMFCs). The prototype for this SMFC is very similar to a natural aquatic environment because it is not stimulated externally and an oxygen sparger is inserted in the cathode chamber to create the aerobic environment in the open SMFC and no oxygen supplied in the closed SMFC. The open and closed SMFCs were showed the maximum voltage generation 300.5 mV (77.75 mW/m2) and 202.7 mV (45.04 (mW/m2), respectively. The cyclic voltammetry showed the oxidation peak in open SMFCs at +1.9 μA and reduction peak at -0.3 μA but in closed SMFCs oxidation and reduction peaks were noted at +1.5 μA and -1.0 μA, respectively. The overall impedance (anode, cathode and solution) of closed SMFCs was higher than open SMFCs. The charge transfer impedance showed that the rates of substrate oxidation and reduction were very low in the closed SMFCs than open SMFCs. The Nyquist arc indicated that O2 act as electron acceptor in the open SMFCs and CO2 in the closed SMFCs. The highest remediation efficiency of toxic metals [Hg (II) ions, Zn (II) ions, and Ag (I) ions] in the open SMFCs were 95.03%, 86.69%, and 83.65% in closed SMFCs were 69.53%, 66.57%, and 65.33%, respectively, observed during 60–80 days. The scanning electron microscope and 16S rRNA analysis showed diverse exoelectrogenic community in the open SMFCs and closed SMFCs. The results demonstrated that open SMFCs could be employed for the power generation and bioremediation of pollutants.
Collapse
Affiliation(s)
- Syed Zaghum Abbas
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Moonis Ali Khan
- Chemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Zou L, Huang YH, Long ZE, Qiao Y. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing. World J Microbiol Biotechnol 2018; 35:9. [PMID: 30569420 DOI: 10.1007/s11274-018-2576-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022]
Abstract
Microbial electrochemical system (MES) has attracted ever-growing interest as a promising platform for renewable energy conversion and bioelectrochemical remediation. Shewanella species, the dissimilatory metal reduction model bacteria with versatile extracellular electron transfer (EET) strategies, are the well-received microorganisms in diverse MES devices for various practical applications as well as microbial EET mechanism investigation. Meanwhile, the available genomic information and the unceasing established gene-editing toolbox offer an unprecedented opportunity to boost the applications of Shewanella species in MES. This review thoroughly summarizes the status quo of the applications of Shewanella species in microbial fuel cells for bioelectricity generation, microbial electrosynthesis for biotransformation of valuable chemicals and bioremediation of environment-hazardous pollutants with synoptical discussion on their EET mechanism. Recent advances in rational design and genetic engineering of Shewanella strains for either promoting the MES performance or broadening their applications are surveyed. Moreover, some emerging applications beyond electricity generation, such as biosensing and biocomputing, are also documented. The challenges and perspectives for Shewanella-based MES are also discussed elaborately for the sake of not only discovering new scientific lights on microbial extracellular respiratory but also propelling practical applications.
Collapse
Affiliation(s)
- Long Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Yun-Hong Huang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhong-Er Long
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yan Qiao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
28
|
Zou L, Qiao Y, Li CM. Boosting Microbial Electrocatalytic Kinetics for High Power Density: Insights into Synthetic Biology and Advanced Nanoscience. ELECTROCHEM ENERGY R 2018. [DOI: 10.1007/s41918-018-0020-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability. ENERGIES 2018. [DOI: 10.3390/en11071822] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microbial electrochemical technologies provide sustainable wastewater treatment and energy production. Despite significant improvements in the power output of microbial fuel cells (MFCs), this technology is still far from practical applications. Extracting electrical energy and harvesting valuable products by electroactive bacteria (EAB) in bioelectrochemical systems (BESs) has emerged as an innovative approach to address energy and environmental challenges. Thus, maximizing power output and resource recovery is highly desirable for sustainable systems. Insights into the electrode-microbe interactions may help to optimize the performance of BESs for envisioned applications, and further validation by bioelectrochemical techniques is a prerequisite to completely understand the electro-microbiology. This review summarizes various extracellular electron transfer mechanisms involved in BESs. The significant role of characterization techniques in the advancement of the electro-microbiology field is discussed. Finally, diverse applications of BESs, such as resource recovery, and contributions to the pursuit of a more sustainable society are also highlighted.
Collapse
|
30
|
Polyaniline/Carbon Nanotubes Composite Modified Anode via Graft Polymerization and Self-Assembling for Microbial Fuel Cells. Polymers (Basel) 2018; 10:polym10070759. [PMID: 30960684 PMCID: PMC6403964 DOI: 10.3390/polym10070759] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial fuel cells (MFCs) are promising devices for sustainable energy production, wastewater treatment and biosensors. Anode materials directly interact with electricigens and accept electrons between cells, playing an important role in determining the performance of MFCs. In this study, a novel carbon nanotubes (CNTs) and polyaniline (PANI) nanocomposite film modified Indium-tin oxide (ITO) anode was fabricated through graft polymerization of PANI after the modification of γ-aminopropyltriethoxysilane (APTES) on ITO substrate, which was followed by layer-by-layer (LBL) self-assembling of CNTs and PANI alternatively on its surface. (CNTs/PANI)n/APTES/ITO electrode with low charge transfer resistance showed better electrochemical behavior compared to the bare ITO electrode. Twelve layers of CNTs/PANI decorated ITO electrode with an optimal nanoporous network exhibited superior biocatalytic properties with a maximal current density of 6.98 µA/cm², which is 26-fold higher than that of conventional ITO electrode in Shewanella loihica PV-4 bioelectrochemical system. MFCs with (CNTs/PANI)12/APTES/ITO as the anode harvested a maximum output power density of 34.51 mW/m², which is 7.5-fold higher than that of the unmodified ITO electrode. These results demonstrate that (CNTs/PANI)12/APTES/ITO electrode has superior electrochemical and electrocatalytic properties compared to the bare ITO electrode, while the cellular toxicity of CNTs has an effect on the performance of MFC with (CNTs/PANI)n/APTES/ITO electrode.
Collapse
|
31
|
Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells. Enzyme Microb Technol 2018; 115:23-28. [PMID: 29859599 DOI: 10.1016/j.enzmictec.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/17/2018] [Accepted: 04/06/2018] [Indexed: 01/30/2023]
Abstract
The extracellular electron transfer (EET) process of Shewanella species is believed to be indispensable for their anaerobic respiration with an electrode. However, the function of outer membrane c-type cytochromes (OM c-Cyts, the primary components of the EET pathway) is still controversial. In this study, we investigated the effect of two OM c-Cyts (MtrC and UndA) of Shewanella putrefaciens CN32 with respect to electricity production and anodic EET efficiency. Deletion of the mtrC gene severely prolonged the microbial fuel cell (MFC) start-up time and decreased electricity production due to depressed flavin-mediated electron transfer, whereas deletion of the undA gene did not have a significant impact. Strikingly, the depression of EET by the deletion of mtrC could be partially relieved by acclimation, which might be due to an increase in the transmembrane transport of electron shuttles and/or the activation of other redox proteins. These results suggested that MtrC may be the primary reductase of flavins to ensure fast indirect EET, which plays a crucial role in MFC electricity generation.
Collapse
|
32
|
Tang W, Wu XS, Qiao Y, Wang RJ, Luo X. Tailoring of pore structure in mesoporous carbon for favourable flavin mediated interfacial electron transfer in microbial fuel cells. RSC Adv 2018; 8:9597-9602. [PMID: 35540814 PMCID: PMC9078639 DOI: 10.1039/c8ra00436f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/01/2018] [Indexed: 11/25/2022] Open
Abstract
Mesoporous carbon (MC) is supposed to be a good candidate for microbial fuel cell (MFC) anodes as it possesses a large specific area for the redox reaction of the electron shuttles and should deliver high power density. However, the power generation performance of MC anodes is often un-satisfying. It seems that a large portion of the pore surface is not available for anodic redox reaction but the reason is not clear. Here, three MCs with different pore sizes and pore shapes were fabricated and used to explore the effect of the pore structure on the bioelectrocatalysis in Shewanella putrefaciens CN32 MFCs. It is interesting that MC with 40-60 nm spheric pores (MC-III) possesses superior bio-electrocatalytic performance to the CMK-3 (MC-I with 3 nm channel like pores) and the one with 14 nm spheric pores (MC-II) although the specific surface area of MC-III is lower than MC-II and MC-I. The reason might be that the MC-III provides a more favorable pore structure than the other two MCs for flavin based redox reaction at the interface between the biofilm and the electrode. As a result, the MC-III anode delivered the highest power density at around 1700 mW m-2, which is 1.6 fold higher than that of the MC-I anode. A possible mechanism for the pore shape/size dependent interfacial electron transfer process has also been proposed. This work reveals that spheric mesopores with large pore width could be more favorable than the narrow channel-like pores for flavin based interfacial electron transfer in biofilm anodes, which will provide some insights for the design of the mesoporous anode in MFCs.
Collapse
Affiliation(s)
- Wei Tang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies Chongqing 400715 P. R. China
| | - Xiao-Shuai Wu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies Chongqing 400715 P. R. China
| | - Yan Qiao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies Chongqing 400715 P. R. China
| | - Rui-Jie Wang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies Chongqing 400715 P. R. China
| | - Xian Luo
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies Chongqing 400715 P. R. China
| |
Collapse
|
33
|
Chen Q, Pu W, Hou H, Hu J, Liu B, Li J, Cheng K, Huang L, Yuan X, Yang C, Yang J. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells. BIORESOURCE TECHNOLOGY 2018; 249:567-573. [PMID: 29091839 DOI: 10.1016/j.biortech.2017.09.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Microbial fuel cells (MFCs) are promising biotechnologies tool to harvest electricity by decomposing organic matter in waste water, and the anode material is a critical factor in determining the performance of MFCs. In this study, chestnut shell is proposed as a novel anode material with mesoporous and microporous structure prepared via a simple carbonization procedure followed by an activation process. The chemical activation process successfully modified the macroporous structure, created more mesoporous and microporous structure and decreased the O-content and pyridinic/pyrrolic N groups on the biomass anode, which were beneficial for improving charge transfer efficiency between the anode surface and microbial biofilm. The MFC with activated biomass anode achieved a maximum power density (23.6 W m-3) 2.3 times higher than carbon cloth anode (10.4 W m-3). This study introduces a promising and feasible strategy for the fabrication of high performance anodes for MFCs derived from cost-effective, sustainable natural materials.
Collapse
Affiliation(s)
- Qin Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Wenhong Pu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Jianfeng Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Kai Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Long Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Xiqing Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Changzhu Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|