1
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
2
|
Xie Z, Wu Y, Zhao Y, Wei M, Jiang Q, Yang X, Xun W. Activating MoS
2
Basal Plane via Non‐noble Metal Doping For Enhanced Hydrogen Production. ChemistrySelect 2023. [DOI: 10.1002/slct.202204608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhongqi Xie
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Yue Wu
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Ya Zhao
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Mengyuan Wei
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Qing‐Song Jiang
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
- Jiangsu Engineering Laboratory for Lake Environment Remote Sensing Technologies Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Xiao Yang
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
- Jiangsu Engineering Laboratory for Lake Environment Remote Sensing Technologies Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Wei Xun
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
- Jiangsu Engineering Laboratory for Lake Environment Remote Sensing Technologies Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| |
Collapse
|
3
|
Lian T, Li X, Wang Y, Zhu S, Yang X, Liu Z, Ye C, Liu J, Li Y, Su B, Chen L. Boosting Highly Active Exposed Mo Atoms by Fine-Tuning S-Vacancies of MoS 2-Based Materials for Efficient Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30746-30759. [PMID: 35767388 DOI: 10.1021/acsami.2c05444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Guided by the theoretical calculation, achieving an efficient hydrogen evolution reaction (HER) by S-vacancy engineering toward MoS2-based materials is quite challenging due to the contradictory relationship between the adsorption free energy of hydrogen atoms (ΔGH) of the exposed Mo atoms (EMAs) and the number of EMAs per unit area (NEMAs). Herein, we demonstrate a novel one-pot incorporating-assisted compositing strategy to realize fine-tuning the concentration of S-vacancies (CS-vacancies) of MoS2-based materials to boost highly active EMAs for efficient HER. In our strategy, S-vacancies are modulated into basal planes of MoS2 via decreasing the formation energy of S-vacancies by oxygen incorporation; moreover, CS-vacancies of the basal planes is precisely regulated by simply controlling the molar amount of the Co precursor based on the electron injection effect. At low or excessively high CS-vacancies, the as-synthesized electrocatalysts lack "highly active EMAs" in quantity or nature. The balance between the intrinsic activity of EMAs and NEMAs is realized for boosting EMAs with high catalytic performance. The optimal electrocatalysts exhibit excellent activity and stability at fine-tuning CS-vacancies to 9.61%. Our results will pave a novel strategy for unlocking the potential of an inert basal plane in MoS2 for high-performance HER.
Collapse
Affiliation(s)
- Tian Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoyun Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yilong Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Shaoju Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoyu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhan Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Cuifang Ye
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinping Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Baolian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Lihua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
4
|
Wang C, Luo Y, Liu X, Cui Z, Zheng Y, Liang Y, Li Z, Zhu S, Lei J, Feng X, Wu S. The enhanced photocatalytic sterilization of MOF-Based nanohybrid for rapid and portable therapy of bacteria-infected open wounds. Bioact Mater 2022; 13:200-211. [PMID: 35224302 PMCID: PMC8843951 DOI: 10.1016/j.bioactmat.2021.10.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Open wounds are prone to infection and difficult to heal, which even threatens the life of patients because bacterial infections can induce other lethal complications without prompt treatment. The commonly used antibiotics treatment for bacterial infections has been reported to cause globally bacterial resistance and even the occurrence of superbacteria. The highly effective and antibiotic-independent therapeutic strategies are urgently needed for treating various kinds of bacteria-infected diseases. In this work, we synthesized an eco-friendly nanohybrid material (ZnDMZ) consisting of a kind of biodegradable metal organic framework (MOF, ZIF-8) combined with Zn-doped MoS2 (Zn–MoS2) nanosheets, which exhibited great ability to kill bacteria and promote the healing of bacteria-infected wounds under 660 nm light irradiation. The underlying mechanism is that besides the local hyperthermia, the nanohybrid material exhibits enhanced photocatalytic performance than single component in it, i.e., it can also be excited by 660 nm light to produce more oxygen radical species (ROS) due to the following factors. On one hand, the Zn doping can reduce the work function and the band gap of MoS2, which promotes the movement of photoexcited electrons to the surface of the material. On the other hand, the combination between Zn–MoS2 and MOF induces the formation of a built-in electric field due to their work function difference, thus accelerating the separation of photoexcited electron-hole pairs. Because of the synergy of photocatalytic effect, photothermal effect and the released Zn ions, the synthesized ZnDMZ possessed a highly effective antibacterial efficacy of 99.9% against Staphylococcus aureus under 660 nm light irradiation for 20 min without cytotoxicity. In vivo tests showed that this nanohybrid material promoted the wound healing due to the released Zn ions. This nanohybrid will be promising for rapid and portable treatment of bacteria-infected open wounds in pathogenic bacteria contaminated environments. MOF-based hybrid can promote the healing of bacteria-infected wounds with excellent biosafety. Zn doping induced the reduction of work function and band gap of MoS2. Formation of a built-in electric field at the interface can accelerate the separation of carries at the interface. MOF-based hybrids can effectively adsorb oxygen and produce more ROS.
Collapse
Affiliation(s)
- Chaofeng Wang
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Yue Luo
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin 300401, China
- Corresponding author.
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, PR China
| | - Yufeng Zheng
- School of Materials Science & Engineering, State Key Laboratory for Turbulence and Complex System, Peking University, Beijing 100871, China
| | - Yanqin Liang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, PR China
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, PR China
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, PR China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, PR China
- Corresponding author. Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
5
|
Xue Y, Shao P, Lin M, Yuan Y, Shi W, Cui F. Tailoring S-vacancy concentration changes the type of the defect and photocatalytic activity in ZFS. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128215. [PMID: 35033917 DOI: 10.1016/j.jhazmat.2022.128215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Defect engineering is crucial in the development of semiconductor catalyst activity. However, the influence of defect/vacancy density and states on catalysis remains vague. Thus, the optimized sulfur vacancy (SV) state is achieved among Fe-ZnS models (ZFS) via a chemical etching strategy for photocatalytic degradation (PD). As the SV concentration (ρSV) increases, the predominant state of vacancies changes from isolated defects-a state to a combination of a state and vacancy clusters-e state, as verified by positron annihilation and X-ray absorption fine structure spectra. However, the two types of defect states activated the intrinsic activity of the crystal via radically different mechanisms and exerted different degrees of influence on PD activity, as revealed by first-principles calculations and quantitative structure-activity relationship. Our results suggest that the SV activity is strongly influenced by its concentration in the ZFS crystal, while the vacancy concentration is not a control parameter for the PD activity, but a defect form. The underlying essence of atomic defects behavior affecting crystal catalytic activity at the atomic level is also revealed in this paper. Uncovering these structural relationships provide a theoretical basis for designing effective catalysts.
Collapse
Affiliation(s)
- Yanei Xue
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Mingli Lin
- China Academy of Urban Planning and Design, Beijing 100000, PR China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
6
|
Wang Z, Wu F. Emerging Single-Atom Catalysts/Nanozymes for Catalytic Biomedical Applications. Adv Healthc Mater 2022; 11:e2101682. [PMID: 34729955 DOI: 10.1002/adhm.202101682] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Indexed: 12/29/2022]
Abstract
Single-atom catalysts (SACs) are a type of atomically dispersed nanozymes with the highest atom utilization, which employ low-coordinated single atoms as the catalytically active sites. SACs not only inherit the merits of traditional nanozymes, but also hold high catalytic activity and superb catalytic selectivity, which ensure their tremendous application potential in environmental remediation, energy storage and conversion, chemical industry, nanomedicine, etc. Nevertheless, undesired aggregation effect of single atoms during preactivation and reaction processes is significantly enhanced owing to the high surface free energy of single atoms. In this case, appropriate substrates are requisite to prevent the aggregation event through the powerful interactions between the single atoms and the substrates, thereby stabilizing the high catalytic activity of the catalysts. In this review, the synthetic methods and characterization approaches of SACs are first described. Then the application cases of SACs in nanomedicine are summarized. Finally, the current challenges and future opportunities of the SACs in nanomedicine are outlined. It is hoped that this review may have implications for furthering the development of new SACs with improved biophysicochemical properties and broadened biomedical applications.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu‐Gen Wu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University) Ministry of Education 22 Shuangyong Road Nanning 530022 P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor 22 Shuangyong Road Nanning 530022 P. R. China
| |
Collapse
|
7
|
Aggarwal P, Sarkar D, Awasthi K, Menezes PW. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Feng A, Ding S, Liu P, Zu Y, Han F, Li X, Liu L, Chen Y. N, P co-doping triggered phase transition of MoS 2 with enlarged interlayer spacing for efficient hydrogen evolution. NEW J CHEM 2022. [DOI: 10.1039/d2nj02551e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Molybdenum disulfide (MoS2)-based transition-metal chalcogenides are considered to be cost-efficient, environmentally-friendly, and stable materials in the application of electrocatalytic hydrogen production.
Collapse
Affiliation(s)
- Ailing Feng
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Shijiu Ding
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Peitao Liu
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Yanqing Zu
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Fengbo Han
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Xiaodong Li
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Liang Liu
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Yanan Chen
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| |
Collapse
|
9
|
Rui Y, Zhang S, Shi X, Zhang X, Wang R, Li X. Chemically Activating Tungsten Disulfide via Structural and Electronic Engineering Strategy for Upgrading the Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49793-49801. [PMID: 34636531 DOI: 10.1021/acsami.1c10714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Both improving the intrinsic activity and activating basal plane sites of the layered metal dichalcogenides are desirable to enhance their electrocatalytic performance for energy storage and conversion. Herein, we present palladium (Pd)-doped tungsten disulfide (WS2) epitaxially sheathed around linear tungsten oxide for the hydrogen evolution reaction (HER). The Pd doping is evidenced to tune the electronic structure of WS2 for activating basal sites of WS2, while the unique core-shell structure facilitates charge transfer. The as-prepared Pd-WS2/W3O with 5.65 wt % Pd content exhibits a small overpotential of only 54 mV at -10 mA cm-2 and superior stability in the acidic electrolyte, which are superior to that of the 5 wt % Pt/C benchmark and are unprecedented in the reported WS2-based electrocatalysts. Theoretical results have revealed that Pd substituting for W in coordination with four S atoms is thermodynamically stable, and the in-plane S atoms adjacent to the doped Pd represent new catalytic active centers for promoting hydrogen adsorption. This work provides a new multiscale structural and electronic engineering strategy for improving the catalytic performance of transition-metal dichalcogenides.
Collapse
Affiliation(s)
- Yuan Rui
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
- China State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shen Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Xuerong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China
| | - Xing Zhang
- China State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ruihu Wang
- China State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiaoju Li
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| |
Collapse
|
10
|
Xu J, Zhao Z, Wei W, Chang G, Xie Z, Guo W, Liu D, Qu D, Tang H, Li J. Tuning the Intrinsic Activity and Electrochemical Surface Area of MoS 2 via Tiny Zn Doping: Toward an Efficient Hydrogen Evolution Reaction (HER) Catalyst. Chemistry 2021; 27:15992-15999. [PMID: 34431564 DOI: 10.1002/chem.202102803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/09/2022]
Abstract
Molybdenum sulfide (MoS2 ) is considered as an alternative material for commercial platinum catalysts for electrocatalytic hydrogen evolution reaction (HER). Improving the apparent HER activity of MoS2 to a level comparable to that of Pt is an essential premise for the commercial use of MoS2 . In this work, a Zn-doping strategy is proposed to enhance the HER performance of MoS2 . It is shown that tiny Zn doping into MoS2 leads to the enhancement of the electrochemical surface area, increases in proportion of HER active 1T phase in the material and formation of catalytic sites of higher intrinsic activity. These benefits result in a high-performance HER electrocatalyst with a low overpotential of 190 mV(@10 mA cm-2 ) and a low Tafel slope of 58 mV dec-1 . The origin for the excellent electrochemical performance of the doped MoS2 is rationalized with both experimental and theoretical investigations.
Collapse
Affiliation(s)
- Jun Xu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China.,Research Center for Materials Genome Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zelin Zhao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Wei Wei
- International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zhizhong Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Wei Guo
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China.,Hubei provincial key laboratory of fuel cell, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Dan Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Deyu Qu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Haolin Tang
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China.,Hubei provincial key laboratory of fuel cell, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Junsheng Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China.,Hubei provincial key laboratory of fuel cell, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
11
|
Xue Y, Shao P, Yuan Y, Shi W, Cui F. Activating the Basal Plane of 2H-MoS 2 by Doping Phosphor for Enhancement in the Photocatalytic Degradation of Organic Contaminants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38586-38594. [PMID: 34342423 DOI: 10.1021/acsami.1c08824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The 2H phases of MoS2 (2H-MoS2) monolayers present a wealth of new opportunities in photocatalysis owing to their photoinduced catalyzing ability and excellent charge carrier mobility. However, the complete release of their catalytic activities is restricted by their inert basal planes. Although the inert base planes of 2H-MoS2 are known to be activated by atomic doping, the operational principle of the exotic atoms remains vague. In this study, the unutilized inert base sites of MoS2 were activated via an oxygen-aided P-substituted method (denoted as POMS). Molecular structural tests and analyses of POMS indicated that the inert MoS2 substrate is activated when the inerratic crystal phases transform to amorphous phases in the P-doping process. The fully activated inert base planes provide sufficient reaction sites for photo-oxidized water contaminants. The designed POMS presented superior activity in organic degradation and completely removed sulfamethoxazole within 20 min. Uncovering these operational principles provides a theoretical basis for designing effective catalysts.
Collapse
Affiliation(s)
- Yanei Xue
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, P. R. China
| | - Fuyi Cui
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
12
|
Wang YL, Huang Q, Sun GQ, Li XY, Chen LH, Su BL, Liu JP. Synergistic zinc doping and defect engineering toward MoS 2 nanosheet arrays for highly efficient electrocatalytic hydrogen evolution. Dalton Trans 2021; 50:5770-5775. [PMID: 33876147 DOI: 10.1039/d0dt04207b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Herein, we have demonstrated synergistic zinc doping and defect engineering toward MoS2 nanosheet arrays assembled on carbon cloth (CC) by a one-pot hydrothermal approach for the first time, which are employed directly as a cathode for the hydrogen evolution reaction (HER). In our strategy, simultaneously doping sufficient Zn atoms and introducing a defect-rich structure into a MoS2 nanosheet can synergistically increase active sites. Additionally, the assembly of such nanosheets on CC can achieve lower charge-transfer resistance for the highly efficient HER.
Collapse
Affiliation(s)
- Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| | - Qing Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| | - Guo-Qi Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| | - Xiao-Yun Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| | - Li-Hua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jin-Ping Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China. and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China and Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
13
|
Qian H, Huang N, Zheng J, An Z, Yin X, Liu Y, Yang W, Chen Y. A ternary hybrid of Zn-doped MoS 2-RGO for highly effective electrocatalytic hydrogen evolution. J Colloid Interface Sci 2021; 599:100-108. [PMID: 33933784 DOI: 10.1016/j.jcis.2021.04.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Modification of MoS2-based catalysts is effective in solving the overdependence of hydrogen evolution reactions (HERs) on noble metal catalysts. In this work, a Zn-doped molybdenum disulfide-reduced graphene oxide (Zn-MoS2-RGO) hybrid was synthesized in one step employing a hydrothermal method. By substituting the position of Mo, uniform doping with Zn improved the catalytic activity of MoS2 for HER. The interlayer spacing of MoS2 increased from 0.65 to 0.75 nm, demonstrating RGO effectively interpolate into MoS2 nanosheets. This prevented aggregation and exposed more edge active sites of MoS2. According to density functional theory (DFT) calculations, the layered structure of the MoS2 nanosheets doped with Zn and intercalated with RGO promoted charge transfer and resulted in outstanding hydrogen evolution activity. Compared with MoS2 (6.86 eV), the Zn-MoS2-RGO hybrid (5.47 eV) with a considerably lower energy level value exhibited excellent electrocatalytic performance. Under optimal conditions, at a potential of -0.3 V vs. RHE, the current density reached -169 mA cm-2 in a 0.5 M H2SO4 solution, 4.78 μmol of H2 was produced in 6 h, and the Faraday efficiency reached 92%. The results obtained herein indicated that Zn-MoS2-RGO was a promising candidate for application in electrocatalytic HER.
Collapse
Affiliation(s)
- Haixia Qian
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Nanjun Huang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Jinhong Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Zhenchao An
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Xiaoshuang Yin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Ying Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Yun Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China.
| |
Collapse
|
14
|
Xu L, Zhang Y, Feng L, Li X, Cui Y, An Q. Active Basal Plane Catalytic Activity via Interfacial Engineering for a Finely Tunable Conducting Polymer/MoS 2 Hydrogen Evolution Reaction Multilayer Structure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:734-744. [PMID: 33390014 DOI: 10.1021/acsami.0c20176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fixation of the catalyst interface is an important consideration for the design of practical applications. However, the electronic structure of MoS2 is sensitive to its embedding environment, and the catalytic performance of MoS2 catalysts may be altered significantly by the type of binding agents and interfacial structure. Interfacial engineering is an effective method for designing efficient catalysts, arising from the close contact between different components, which facilitates charge transfer and strong electronic interactions. Here, we have developed a layer-by-layer (LbL) strategy for the preparation of interfacial MoS2-based catalyst structures with two types of conducting polymers on various substrates. We demonstrate how the assembled partners in the LbL structure can significantly impact the electronic structures in MoS2. As the number of bilayers grows, using polypyrrole as a binder remarkably increases the catalytic efficacy as compared to using polyaniline. On the one hand, the ratio of S22- (or S2-), which is related to the remaining active hydrogen evolution reaction (HER) species, is further increased. On the other hand, density functional theory calculations indicate that the interfacial charge transport from the conducting polymers to MoS2 may boost the HER activity of the interfacial structure of the conducting polymer/MoS2 by decreasing the adsorption free energy of the intermediate H* at the S sites in the basal plane of MoS2. The optimized catalytic efficacy of the (conducting polymer/MoS2)n assembly peaks is obtained with 16 assembly cycles. In preparing interfacial catalytic structures, the LbL-based strategy exhibits several key advantages, including the flexibility of choosing assembly partners, the ability to fine-tune the structures with precision at the nanometer scale, and planar homogeneity at the centimeter scale. We expect that this LbL-based catalyst immobilization strategy will contribute to the fundamental understanding of the scalability and control of highly efficient electrocatalysts at the interface for practical applications.
Collapse
Affiliation(s)
- Linan Xu
- State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
- Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Yihe Zhang
- State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Lili Feng
- Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Xin Li
- Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Yanying Cui
- Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Qi An
- State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
15
|
Vandalon V, Verheijen MA, Kessels WMM, Bol AA. Atomic Layer Deposition of Al-Doped MoS 2: Synthesizing a p-type 2D Semiconductor with Tunable Carrier Density. ACS APPLIED NANO MATERIALS 2020; 3:10200-10208. [PMID: 33134882 PMCID: PMC7590523 DOI: 10.1021/acsanm.0c02167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 05/29/2023]
Abstract
Extrinsically doped two-dimensional (2D) semiconductors are essential for the fabrication of high-performance nanoelectronics among many other applications. Herein, we present a facile synthesis method for Al-doped MoS2 via plasma-enhanced atomic layer deposition (ALD), resulting in a particularly sought-after p-type 2D material. Precise and accurate control over the carrier concentration was achieved over a wide range (1017 up to 1021 cm-3) while retaining good crystallinity, mobility, and stoichiometry. This ALD-based approach also affords excellent control over the doping profile, as demonstrated by a combined transmission electron microscopy and energy-dispersive X-ray spectroscopy study. Sharp transitions in the Al concentration were realized and both doped and undoped materials had the characteristic 2D-layered nature. The fine control over the doping concentration, combined with the conformality and uniformity, and subnanometer thickness control inherent to ALD should ensure compatibility with large-scale fabrication. This makes Al:MoS2 ALD of interest not only for nanoelectronics but also for photovoltaics and transition-metal dichalcogenide-based catalysts.
Collapse
Affiliation(s)
- Vincent Vandalon
- Applied
Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Marcel A. Verheijen
- Applied
Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Eurofins
Material Science Netherlands BV, 5656AE Eindhoven, The Netherlands
| | | | - Ageeth A. Bol
- Applied
Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
16
|
Giuffredi G, Mezzetti A, Perego A, Mazzolini P, Prato M, Fumagalli F, Lin YC, Liu C, Ivanov IN, Belianinov A, Colombo M, Divitini G, Ducati C, Duscher G, Puretzky AA, Geohegan DB, Di Fonzo F. Non-Equilibrium Synthesis of Highly Active Nanostructured, Oxygen-Incorporated Amorphous Molybdenum Sulfide HER Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004047. [PMID: 33090682 DOI: 10.1002/smll.202004047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum sulfide emerged as promising hydrogen evolution reaction (HER) electrocatalyst thanks to its high intrinsic activity, however its limited active sites exposure and low conductivity hamper its performance. To address these drawbacks, the non-equilibrium nature of pulsed laser deposition (PLD) is exploited to synthesize self-supported hierarchical nanoarchitectures by gas phase nucleation and sequential attachment of defective molybdenum sulfide clusters. The physics of the process are studied by in situ diagnostics and correlated to the properties of the resulting electrocatalyst. The as-synthesized architectures have a disordered nanocrystalline structure, with nanodomains of bent, defective S-Mo-S layers embedded in an amorphous matrix, with excess sulfur and segregated molybdenum particles. Oxygen incorporation in this structure fosters the creation of amorphous oxide/oxysulfide nanophases with high electrical conductivity, enabling fast electron transfer to the active sites. The combined effect of the nanocrystalline pristine structure and the surface oxidation enhances the performance leading to small overpotentials, very fast kinetics (35.1 mV dec-1 Tafel slope) and remarkable long-term stability for continuous operation up to -1 A cm-2. This work shows possible new avenues in catalytic design arising from a non-equilibrium technique as PLD and the importance of structural and chemical control to improve the HER performance of MoS-based catalysts.
Collapse
Affiliation(s)
- Giorgio Giuffredi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
- Department of Energy, Politecnico di Milano, Via Lambruschini 4, Milano, 20156, Italy
| | - Alessandro Mezzetti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Andrea Perego
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
- Department of Energy, Politecnico di Milano, Via Lambruschini 4, Milano, 20156, Italy
| | - Piero Mazzolini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Francesco Fumagalli
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Yu-Chuan Lin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Chenze Liu
- Department of Material Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ilia N Ivanov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alex Belianinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Massimo Colombo
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16130, Italy
| | - Giorgio Divitini
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Caterina Ducati
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Gerd Duscher
- Department of Material Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David B Geohegan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Fabio Di Fonzo
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| |
Collapse
|
17
|
Kuo DH, Abdullah H, Gultom NS, Hu JY. Ag-Decorated MoS x Laminar-Film Electrocatalyst Made with Simple and Scalable Magnetron Sputtering Technique for Hydrogen Evolution: A Defect Model to Explain the Enhanced Electron Transport. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35011-35021. [PMID: 32705863 DOI: 10.1021/acsami.0c09358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The active edge site, surface defect, and noble-metal nanoparticle have been engineered to improve the electrocatalytic activity of earth-abundant and layered MoS2, but there was no single and facile process to achieve all yet. Here, basal-plane-defected Ag/MoSx lamellae with different Ag contents were deposited by one-step, single-cermet target (ceramic + metal) magnetron sputtering for the electrocatalytic hydrogen evolution reaction (HER). Ag/MoSx (10 vol %) showed a current density of 10 mA/cm2 at an overpotential of 120 mV with a Tafel slope of 42 mV/dec in a 0.5 M H2SO4 solution. The HER performance of Ag-MoSx lamellae was higher than that of the Ag-free one due to the activated basal antisite defects and the decorated Ag for enhancing electron transport. The green magnetron sputtering technique together with the target design has achieved Ag/MoSx lamellae with the film grown using the advantages of active edge-up lamella, S vacancy-type basal sites, and electron transport-enhanced Ag interconnect for enhancing hydrogen evolution.
Collapse
Affiliation(s)
- Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Hairus Abdullah
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Noto Susanto Gultom
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Jia-Yu Hu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan
| |
Collapse
|
18
|
Liu M, Hybertsen MS, Wu Q. A Physical Model for Understanding the Activation of MoS
2
Basal‐Plane Sulfur Atoms for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2020; 59:14835-14841. [DOI: 10.1002/anie.202003091] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/28/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Mingjie Liu
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Mark S. Hybertsen
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Qin Wu
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| |
Collapse
|
19
|
Liu M, Hybertsen MS, Wu Q. A Physical Model for Understanding the Activation of MoS
2
Basal‐Plane Sulfur Atoms for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingjie Liu
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Mark S. Hybertsen
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Qin Wu
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| |
Collapse
|
20
|
Zhang T, Zhu H, Guo C, Cao S, Wu CML, Wang Z, Lu X. Theoretical investigation on the hydrogen evolution reaction mechanism at MoS2 heterostructures: the essential role of the 1T/2H phase interface. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01901d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DFT calculations have been performed to study the HER mechanism at 1T/2H MoS2 heterostructures. The HER activity along the 1T/2H phase interface is comparable with those at the Mo-edge of 2H MoS2 and the basal plane of 1T MoS2.
Collapse
Affiliation(s)
- Tian Zhang
- School of Materials Science and Engineering
- China University of Petroleum
- Qingdao
- P. R. China
| | - Houyu Zhu
- School of Materials Science and Engineering
- China University of Petroleum
- Qingdao
- P. R. China
| | - Chen Guo
- Department of Materials Science and Engineering
- City University of Hong Kong
- P. R. China
| | - Shoufu Cao
- School of Materials Science and Engineering
- China University of Petroleum
- Qingdao
- P. R. China
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering
- City University of Hong Kong
- P. R. China
| | - Zhaojie Wang
- School of Materials Science and Engineering
- China University of Petroleum
- Qingdao
- P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering
- China University of Petroleum
- Qingdao
- P. R. China
| |
Collapse
|
21
|
Aliaga J, Vera P, Araya J, Ballesteros L, Urzúa J, Farías M, Paraguay-Delgado F, Alonso-Núñez G, González G, Benavente E. Electrochemical Hydrogen Evolution over Hydrothermally Synthesized Re-Doped MoS 2 Flower-Like Microspheres. Molecules 2019; 24:molecules24244631. [PMID: 31861235 PMCID: PMC6943669 DOI: 10.3390/molecules24244631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
In this research, we report a simple hydrothermal synthesis to prepare rhenium (Re)- doped MoS2 flower-like microspheres and the tuning of their structural, electronic, and electrocatalytic properties by modulating the insertion of Re. The obtained compounds were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Structural, morphological, and chemical analyses confirmed the synthesis of poorly crystalline Re-doped MoS2 flower-like microspheres composed of few stacked layers. They exhibit enhanced hydrogen evolution reaction (HER) performance with low overpotential of 210 mV at current density of 10 mA/cm2, with a small Tafel slope of 78 mV/dec. The enhanced catalytic HER performance can be ascribed to activation of MoS2 basal planes and by reduction in charge transfer resistance during HER upon doping.
Collapse
Affiliation(s)
- Juan Aliaga
- Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago, Chile;
- Correspondence: (J.A.); (E.B.)
| | - Pablo Vera
- Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago, Chile;
| | - Juan Araya
- Centro de Investigaciones Costeras de la Universidad de Atacama (CIC-UDA), Universidad de Atacama, Copayapu 485, Copiapó, Chile;
| | - Luis Ballesteros
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Chile;
| | - Julio Urzúa
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile;
| | - Mario Farías
- Centro de Nanociencia y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada C. P. 22860, Mexico; (M.F.); (G.A.-N.)
| | - Francisco Paraguay-Delgado
- Departamento de Física de Materiales, Centro de Investigación Materiales Avanzados S.C., Miguel de Cervantes 120, CP 31136, Chihuahua, Mexico;
| | - Gabriel Alonso-Núñez
- Centro de Nanociencia y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada C. P. 22860, Mexico; (M.F.); (G.A.-N.)
| | - Guillermo González
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile;
| | - Eglantina Benavente
- Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago, Chile;
- Correspondence: (J.A.); (E.B.)
| |
Collapse
|
22
|
Zhang B, Fan T, Xie N, Nie G, Zhang H. Versatile Applications of Metal Single-Atom @ 2D Material Nanoplatforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901787. [PMID: 31728296 PMCID: PMC6839646 DOI: 10.1002/advs.201901787] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Indexed: 05/22/2023]
Abstract
Recently, emerging 2D material-supported metal single-atom catalysts (SACs) are receiving enormous attention in heterogeneous catalysis. Due to their well-defined, precisely located metal centers, unique metal-support interaction and identical coordination environment, these catalysts serve as excellent models for understanding the fundamental issues in catalysis as well as exhibiting intriguing practical applications. Understanding the correlations between metal-support combinations and the catalytic performance at the atomic level can be achieved on the SACs@2D materials nanoplatforms. Herein, recent advances of metal SACs on various types of 2D materials are reviewed, especially their exciting applications in the fields of chemicals, energy, and the environment. Based on the summary and perspectives, this work should contribute to the rational design of perfect metal SACs with versatile properties.
Collapse
Affiliation(s)
- Bin Zhang
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- Institute of Translation MedicineShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Taojian Fan
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Ni Xie
- Institute of Translation MedicineShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Guohui Nie
- Institute of Translation MedicineShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Han Zhang
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
23
|
Wu W, Niu C, Wei C, Jia Y, Li C, Xu Q. Activation of MoS2
Basal Planes for Hydrogen Evolution by Zinc. Angew Chem Int Ed Engl 2019; 58:2029-2033. [DOI: 10.1002/anie.201812475] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Wenzhuo Wu
- College of Materials Science and Engineering; Zhengzhou University; Zhengzhou 450052 China
| | - Chunyao Niu
- International Laboratory for Quantum Functional Materials of Henan; School of Physics and Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| | - Cong Wei
- College of Materials Science and Engineering; Zhengzhou University; Zhengzhou 450052 China
| | - Yu Jia
- International Laboratory for Quantum Functional Materials of Henan; School of Physics and Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| | - Chong Li
- International Laboratory for Quantum Functional Materials of Henan; School of Physics and Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| | - Qun Xu
- College of Materials Science and Engineering; Zhengzhou University; Zhengzhou 450052 China
| |
Collapse
|
24
|
Wu W, Niu C, Wei C, Jia Y, Li C, Xu Q. Activation of MoS2
Basal Planes for Hydrogen Evolution by Zinc. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812475] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenzhuo Wu
- College of Materials Science and Engineering; Zhengzhou University; Zhengzhou 450052 China
| | - Chunyao Niu
- International Laboratory for Quantum Functional Materials of Henan; School of Physics and Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| | - Cong Wei
- College of Materials Science and Engineering; Zhengzhou University; Zhengzhou 450052 China
| | - Yu Jia
- International Laboratory for Quantum Functional Materials of Henan; School of Physics and Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| | - Chong Li
- International Laboratory for Quantum Functional Materials of Henan; School of Physics and Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| | - Qun Xu
- College of Materials Science and Engineering; Zhengzhou University; Zhengzhou 450052 China
| |
Collapse
|
25
|
Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chem Rev 2018; 119:1806-1854. [PMID: 30575386 DOI: 10.1021/acs.chemrev.8b00501] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional materials and single-atom catalysts are two frontier research fields in catalysis. A new category of catalysts with the integration of both aspects has been rapidly developed in recent years, and significant advantages were established to make it an independent research field. In this Review, we will focus on the concept of two-dimensional materials confining single atoms for catalysis. The new electronic states via the integration lead to their mutual benefits in activity, that is, two-dimensional materials with unique geometric and electronic structures can modulate the catalytic performance of the confined single atoms, and in other cases the confined single atoms can in turn affect the intrinsic activity of two-dimensional materials. Three typical two-dimensional materials are mainly involved here, i.e., graphene, g-C3N4, and MoS2, and the confined single atoms include both metal and nonmetal atoms. First, we systematically introduce and discuss the classic synthesis methods, advanced characterization techniques, and various catalytic applications toward two-dimensional materials confining single-atom catalysts. Finally, the opportunities and challenges in this emerging field are featured on the basis of its current development.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Jun Mao
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Xianguang Meng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China
| |
Collapse
|
26
|
Han JH, Kwak M, Kim Y, Cheon J. Recent Advances in the Solution-Based Preparation of Two-Dimensional Layered Transition Metal Chalcogenide Nanostructures. Chem Rev 2018; 118:6151-6188. [PMID: 29926729 DOI: 10.1021/acs.chemrev.8b00264] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The precise control in size/thickness, composition, crystal phases, doping, defects, and surface properties of two-dimensional (2D) layered transition metal chalcogenide (TMC) is important for the investigation of interwoven relationship between structures, functions, and practical applications. Of the multiple synthetic routes, solution-based top-down and bottom-up chemical methods have been uniquely important for their potential to control the size and composition at the molecular level in addition to their scalability, competitive production cost, and solution processability. Here, we introduce an overview of the recent advances in the solution-based preparation routes of 2D layered TMC nanostructures along with important scientific developments.
Collapse
Affiliation(s)
- Jae Hyo Han
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| | - Minkyoung Kwak
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| | - Youngsoo Kim
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| |
Collapse
|