1
|
Guo H, Wang H, Ma F, Lan J, Yu Y, Yuan H, Yang X. Realizing Ultrahigh Cycle Life Anode for Sodium-Ion Batteries through Heterostructure Design and Introducing Electro Active Polymer Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54028-54037. [PMID: 39348096 DOI: 10.1021/acsami.4c13139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bi2S3 has attracted increasing attention in sodium-ion batteries (SIBs) for its high theoretical capacity and low discharge platform. However, the sodium storage performance of Bi2S3 is limited by poor electrical conductivity and volume expansion during cycling. Herein, we report a special polypyrrole (PPy)-coated MoS2/Bi2S3 (MBS@PPy) heterostructure composite obtained by hydrothermal reaction as an anode material for SIB. As a result, the MBS@PPy composites demonstrate exceptional electrochemical performance in SIB, exhibiting a high capacity of 361.1 mA h g-1 at 10 A g-1 and showcasing remarkable rate performance. Even under a high current density of 35 A g-1, the specific capacity remains stable at 280 mA h g-1 after 2,000 cycles. Furthermore, a successfully assembled Na3V2(PO4)3//MBS@PPy sodium-ion full cell can achieve an impressive specific capacity of approximately 400 mA h g-1 after 300 cycles at 0.5 A g-1. In MBS@PPy composites, the polypyridine coating not only improves the interfacial conductivity of nanorods but also effectively inhibits the agglomeration between nanorods due to large volume changes. The MoS2 heterostructure further inhibits the coarsening of the internal structure, improves electron transport and reaction kinetics, and increases the rate capability of the material. This work provides an effective strategy to develop energy storage materials with superior electrochemical properties.
Collapse
Affiliation(s)
- Huanhuan Guo
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Haihong Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - FengXin Ma
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Jinle Lan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Yunhua Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Haocheng Yuan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| |
Collapse
|
2
|
Zhang D, Liu L, Zhang S, Cui J, Wang M, Wang Q, Dong H, Su Y, Ding S. SnO 2/SnS heterojunction anchoring on CMK-3 mesoporous network improves the reversibility of conversion reaction for lithium/sodium ions storage. NANOTECHNOLOGY 2024; 35:125705. [PMID: 38055979 DOI: 10.1088/1361-6528/ad12e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tin oxide-based (SnO2) materials show high theoretical capacity for lithium and sodium storage benefiting from a double-reaction mechanism of conversion and alloying reactions. However, due to the limitation of the reaction thermodynamics and kinetics, the conversion reaction process of SnO2usually shows irreversibility, resulting in serious capacity decay and hindering the further application of the SnO2anode. Herein, SnO2/SnS heterojunction was anchored on the surface and inside of CMK-3 byinsitusynthesis method, forming a stable 3D structural material (SnO2/SnS@CMK-3). The electrochemical properties of SnO2/SnS@CMK-3 composite show high capacity and reversible conversion reaction, which was attributed to the synergistic effect of CMK-3 and SnO2/SnS heterojunction. To further investigate the influence of the heterojunction on the reversibility of the conversion reaction, the Gibbs free energy (ΔG) was calculated using density functional theory. The results show that SnO2/SnS heterojunction has a closer to zero ΔGfor lithium/sodium ion batteries compared to SnO2, indicating that the heterojunction enhances the reversibility of the conversion reaction in chemical reaction thermodynamics. Our work provides insights into the reversibility of the conversion reaction of SnO2-based materials, which is essential for improving their electrochemical performance.
Collapse
Affiliation(s)
- Dongyang Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Limin Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shishi Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jia Cui
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingyue Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qingchuan Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Haijian Dong
- Xi'an Xidian Capacitor Co., Ltd, Xi'an 710082, People's Republic of China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
3
|
Fu H, Wen Q, Li PY, Wang ZY, He ZJ, Yan C, Mao J, Dai K, Zhang XH, Zheng JC. Recent Advances on Heterojunction-Type Anode Materials for Lithium-/Sodium-Ion Batteries. SMALL METHODS 2022; 6:e2201025. [PMID: 36333217 DOI: 10.1002/smtd.202201025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Rechargeable batteries are key in the field of electrochemical energy storage, and the development of advanced electrode materials is essential to meet the increasing demand of electrochemical energy storage devices with higher density of energy and power. Anode materials are the key components of batteries. However, the anode materials still suffer from several challenges such as low rate capability and poor cycling stability, limiting the development of high-energy and high-power batteries. In recent years, heterojunctions have received increasing attention from researchers as an emerging material, because the constructed heterostructures can significantly improve the rate capability and cycling stability of the materials. Although many research progress has been made in this field, it still lacks review articles that summarize this field in detail. Herein, this review presents the recent research progress of heterojunction-type anode materials, focusing on the application of various types of heterojunctions in lithium/sodium-ion batteries. Finally, the heterojunctions introduced in this review are summarized, and their future development is anticipated.
Collapse
Affiliation(s)
- Hao Fu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| | - Qing Wen
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| | - Pei-Yao Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| | - Zhen-Yu Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| | - Zhen-Jiang He
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| | - Cheng Yan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Jing Mao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kehua Dai
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Xia-Hui Zhang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jun-Chao Zheng
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
4
|
Jin S, Gu F, Wang J, Ma X, Qian C, Lan Y, Han Q, Li J, Wang X, Zhang R, Qiao W, Ling L, Jin M. Elaborate interface design of SnS2/SnO2@C/rGO nanocomposite as a high-performance anode for lithium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Zi Y, Zhu J, Hu L, Wang M, Huang W. Nanoengineering of Tin Monosulfide (SnS)‐Based Structures for Emerging Applications. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- You Zi
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Jun Zhu
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Lanping Hu
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| |
Collapse
|
6
|
Xue L, Chen F, Zhang Z, Gao Y, Chen D. Fast charge transfer kinetics enabled by carbon‐coated, heterostructured SnO2/SnSx arrays for robust, flexible lithium‐ion batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202101327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lichun Xue
- Jinan University Department of Chemistry CHINA
| | | | | | - Yang Gao
- Hunan University college of materials science and engineering CHINA
| | - Dengjie Chen
- Jinan University Department of Chemistry No. 601, Huangpu Avenue West 510632 Guangzhou CHINA
| |
Collapse
|
7
|
Zhuang H, Han M, Ma W, Ou Y, Jiang Y, Li W, Liu X, Zhao B, Zhang J. Sandwich-structured graphene hollow spheres limited Mn 2SnO 4/SnO 2 heterostructures as anode materials for high-performance lithium-ion batteries. J Colloid Interface Sci 2021; 586:1-10. [PMID: 33129515 DOI: 10.1016/j.jcis.2020.10.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/26/2022]
Abstract
Sn-based metal oxides and composites have been widely investigated as candidate anodes for lithium-ion batteries. However, continuous capacity fade caused by serious volumetric expansion and crystal pulverization is often noticed during lithiation and alloying processes. In this study, we design a novel heterogeneous structural composite by constructing sandwich-structured graphene hollow spheres limited Mn2SnO4/SnO2 heterostructures (Mn2SnO4/SnO2@SG), of which infiltration of Mn source promotes the dissolution-redeposition of SnO2 in hollow-spherical graphene (SnO2@SG) and their in-situ transformation into Mn2SnO4; and the uniform distributed Mn2SnO4 and SnO2 nanoparticles are adjacent each other to form heterostructure within the sandwiched graphene hollow spheres. By comparing with the single metal oxide SnO2@SG material, the influence of the microstructure, chemical composition, element valence state and electrochemical properties of the heterostructured Mn2SnO4/SnO2@SG is investigated. The results show that the construction of Mn2SnO4/SnO2 heterostructure dramatically improves electronic/ionic transport kinetics and increases lithium storage reversibility, therefore leading to distinctly superior rate capability (823.8 mAh g-1 at 5 C) and cycling capacity. An ultra-high discharge capacity of 1180.4 mA h g-1 is maintained up to 100 cycles at 100 mA g-1. The promising electrochemical performances can be attributed to the sandwiched-structure hollow graphene spherical skeleton and the formation of unique Mn2SnO4/SnO2 heterostructures.
Collapse
Affiliation(s)
- Hua Zhuang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Mingrui Han
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, China
| | - Wencheng Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanghao Ou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Wenrong Li
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaoyu Liu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Bing Zhao
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, China; Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Qin Y, Zhang Y, Wang J, Zhang J, Zhai Y, Wang H, Li D. Heterogeneous Structured Bi 2S 3/MoS 2@NC Nanoclusters: Exploring the Superior Rate Performance in Sodium/Potassium Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42902-42910. [PMID: 32845605 DOI: 10.1021/acsami.0c13070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bismuth-based materials have attracted increasing attention in the research field of sodium/potassium-ion batteries owing to the high theoretical capacity. Unfortunately, the large volume variation and poor electrical conductivity limit their electrochemical performance and applications. Herein, we report a composite of heterostructured Bi2S3/MoS2 encapsulated in nitrogen-doped carbon shell (BMS@NC) obtained by a solvothermal reaction as a novel anode material for sodium/potassium-ion batteries. The coating of the carbon layer could effectively relieve structural strains stemmed from the large volume change and improve electrical conductivity. More importantly, by skillfully constructing the heterostructure, an internal electric field formed on the heterointerface provides a rapid diffusion of ion and charge. As a consequence, the BMS@NC composite showed an excellent electrochemical performance for both sodium-ion batteries (a capacity of 381.5 mA h g-1 achieved at a current density of 5.0 A g-1 and 412 mA h g-1 at 0.5 A g-1 after 400 cycles) and potassium-ion batteries (a high specific capacity of 382.8 mA h g-1 achieved after 100 cycles at 0.1 A g-1). The design of the Bi2S3/MoS2 heterostructure provides an effective strategy to develop energy storage materials with good electrochemical properties.
Collapse
Affiliation(s)
- Yanchao Qin
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yan Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jinbao Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongqing Zhai
- College of Chemistry & Environment Science, Hebei University, Baoding 071002, PR China
| | - Hongqiang Wang
- College of Chemistry & Environment Science, Hebei University, Baoding 071002, PR China
| | - Dan Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
9
|
Lithium fluoride as an efficient additive for improved electrochemical performance of Li-S batteries. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Yin W, Chai W, Wang K, Ye W, Rui Y, Tang B. A highly Meso@Microporous carbon-supported Antimony sulfide nanoparticles coated by conductive polymer for high-performance lithium and sodium ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134699] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Zoller F, Böhm D, Bein T, Fattakhova‐Rohlfing D. Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithium-Ion Batteries and Beyond. CHEMSUSCHEM 2019; 12:4140-4159. [PMID: 31309710 PMCID: PMC6790706 DOI: 10.1002/cssc.201901487] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/14/2019] [Indexed: 05/05/2023]
Abstract
Herein, recent progress in the field of tin oxide (SnO2 )-based nanosized and nanostructured materials as conversion and alloying/dealloying-type anodes in lithium-ion batteries and beyond (sodium- and potassium-ion batteries) is briefly discussed. The first section addresses the importance of the initial SnO2 micro- and nanostructure on the conversion and alloying/dealloying reaction upon lithiation and its impact on the microstructure and cyclability of the anodes. A further section is dedicated to recent advances in the fabrication of diverse 0D to 3D nanostructures to overcome stability issues induced by large volume changes during cycling. Additionally, the role of doping on conductivity and synergistic effects of redox-active and -inactive dopants on the reversible lithium-storage capacity and rate capability are discussed. Furthermore, the synthesis and electrochemical properties of nanostructured SnO2 /C composites are reviewed. The broad research spectrum of SnO2 anode materials is finally reflected in a brief overview of recent work published on Na- and K-ion batteries.
Collapse
Affiliation(s)
- Florian Zoller
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität München (LMU Munich)Butenandtstrasse 5-13 (E)81377MunichGermany
- Faculty of Engineering and Center for Nanointegration, Duisburg-Essen (CENIDE)Universität Duisburg-Essen (UDE)Lotharstraße 147057DuisburgGermany
| | - Daniel Böhm
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität München (LMU Munich)Butenandtstrasse 5-13 (E)81377MunichGermany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität München (LMU Munich)Butenandtstrasse 5-13 (E)81377MunichGermany
| | - Dina Fattakhova‐Rohlfing
- Institute of Energy and Climate Research (IEK-1), Materials Synthesis and ProcessingForschungszentrum Jülich GmbHWilhelm-Johnen-Strasse52425JülichGermany
- Faculty of Engineering and Center for Nanointegration, Duisburg-Essen (CENIDE)Universität Duisburg-Essen (UDE)Lotharstraße 147057DuisburgGermany
| |
Collapse
|