1
|
Lee E, Jeong S, Jeong Y, Kim B, Lee K. Nanoscale-Confined Synthesis of 2D Metal Compounds for Electrochemical Applications. SMALL METHODS 2025; 9:e2301782. [PMID: 38775629 DOI: 10.1002/smtd.202301782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/18/2024] [Indexed: 02/22/2025]
Abstract
2D metal compounds, such as transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), and MXenes, are emerging as important electrocatalyst materials in the transition to a sustainable energy future. Aided by their high surface area, electrical conductivity, and tunable electronic properties, these materials have provided a crucial research thrust in enhancing the efficiency of green hydrogen production, fuel cells, and carbon reduction processes. Most importantly, the synthesis of nanostructured 2D compounds, while challenging, is the key to optimizing their catalytic performance. Recent advancements in this field have highlighted the potential of 2D metal compounds in revolutionizing energy conversion technologies, which entails the discovery of new material compositions, the development of novel synthetic routes, and the integration of these materials into practical energy conversion systems. This review presents an overview of the distinctive characteristics of nanoscale-confined 2D metal compounds, the challenges encountered in their synthesis, and electrochemical applications.
Collapse
Affiliation(s)
- Eunsoo Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sangyeon Jeong
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yujin Jeong
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Byeongyoon Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Lu M, Sun J, Li R, Zhang J, Bai H, Zhang L. Construction of 0-dimensional silver quantum dot/MoSe 2@MXene/3-dimensional porous copper foam composite electrodes with heterogeneous interfaces for synergistic electrocatalytic degradation of antibiotics. J Colloid Interface Sci 2025; 679:503-518. [PMID: 39467362 DOI: 10.1016/j.jcis.2024.10.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
This study proposes a novel and efficient Ag quantum dots (QDs)/MoSe2@two-dimensional transition metal carbide/nitride (MXene)/copper foam (CF) composite electrode to address the challenge of electrocatalytic degradation of antibiotics in water. The electrode formed a unique electron donor-acceptor system by loading Ag QDs and heterostructured nanosheets on CF, significantly facilitating charge transfer and segregation at the interface. The catalytically active sites at the edges and defective locations of MoSe2 in conjunction with the two-dimensional MXene structure, which formed an efficient electron transfer channel, promoted the electron transfer from the interior to the surface and accelerated the hydrogen adsorption and reduction reactions. Moreover, the charge redistribution at the interface of Ag QDs and MoSe2@MXene formed interfacial dipoles, increasing the active sites on the catalyst surface and promoting the generation of cathodic atomic hydrogen (H*). Under optimal conditions, the degradation rate of tigecycline (TGC) reached as high as 90.1 % ± 2.4 % within 60 min. The anode-generated OH and HClO, along with the cathode-generated H, further promoted the degradation of TGC through co-catalysis. The degradation pathways were analyzed using density-functional theory (DFT) calculations and liquid chromatography-mass spectrometry (LC-MS) techniques. Moreover, toxicity analysis of the degradation products was carried out to ensure the safety of the treated wastewater discharge. A reflux continuous effluent reactor was also designed to achieve high degradation efficiency and low energy consumption after stable operation, laying the foundation for industrial applications. This technology provides new ideas for the design of green, efficient, stable, and low-consumption electrocatalytic reactors and contributes to a sustainable future environment.
Collapse
Affiliation(s)
- Muchen Lu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jie Sun
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Ruoyi Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jian Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Haina Bai
- School of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
3
|
Kokulnathan T, Honnappa B, Wang TJ, Matheswaran Arun Kumar K, Sekar K. Deep eutectic Solvents-Assisted synthesis of NiFe-LDHs/Mo 2Ti 2C 3: A bifunctional electrocatalyst for overall electrochemical water splitting in alkaline media. J Colloid Interface Sci 2025; 678:1036-1048. [PMID: 39276513 DOI: 10.1016/j.jcis.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
The development of efficient and stable electrocatalysts is crucial for the advancement of green and clean hydrogen energy technologies. In this work, we synthesized a nanocomposite of nickel-iron layered double hydroxide/molybdenum titanium carbide (NiFe-LDHs/Mo2Ti2C3) using a deep eutectic solvent (DESs) by the solvothermal method. The formation of NiFe-LDHs/Mo2Ti2C3 nanocomposite was confirmed by various electron microscopic and spectroscopic techniques. The synthesized nanocomposite was investigated as a bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under the alkaline condition. The NiFe-LDHs/Mo2Ti2C3-based electrodes exhibit small overpotentials of 204 and 306 mV for HER and OER at a current density of 10 mA cm-2. The anchor of NiFe-LDHs on the surface of Mo2Ti2C3 induces an interfacial synergistic effect, leading to a significantly improvement in electrochemical performance. Remarkably, the proposed NiFe-LDHs/Mo2Ti2C3 modified electrode demonstrates superior performance compared to many recently reported LDHs and MXenes-based electrocatalysts in an alkaline environment. Furthermore, a symmetrical two-electrode water splitting setup employing the NiFe-LDHs/Mo2Ti2C3 electrocatalyst requires an electrolysis voltage of 1.65 V to achieve a current density of 10 mA cm-2. The findings provide a new perspective on the rational design and synthesis of multifunctional electrocatalysts for electrochemical applications.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Brahmari Honnappa
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| | | | - Karthikeyan Sekar
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
4
|
Sheng J, Kang J, Jiang P, Meinander K, Hong X, Jiang H, Nonappa, Ikkala O, Komsa H, Peng B, Lv Z. Guided Heterostructure Growth of CoFe LDH on Ti 3C 2T x MXene for Durably High Oxygen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404927. [PMID: 39252634 PMCID: PMC11753486 DOI: 10.1002/smll.202404927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Heterostructures of layered double hydroxides (LDHs) and MXenes have shown great promise for oxygen evolution reaction (OER) catalysts, owing to their complementary physical properties. Coupling LDHs with MXenes can potentially enhance their conductivity, stability, and OER activity. In this work, a scalable and straightforward in situ guided growth of CoFeLDH on Ti3C2Tx is introduced, where the surface chemistry of Ti3C2Tx dominates the resulting heterostructures, allowing tunable crystal domain sizes of LDHs. Combined simulation results of Monte Carlo and density functional theory (DFT) validate this guided growth mechanism. Through this way, the optimized heterostructures allow the highest OER activity of the overpotential = 301 mV and Tafel slope = 43 mV dec-1 at 10 mA cm-2, and a considerably durable stability of 0.1% decay over 200 h use, remarkably outperforming all reported LDHs-MXenes materials. DFT calculations indicate that the charge transfer in heterostructures can decrease the rate-limiting energy barrier for OER, facilitating OER activity. The combined experimental and theoretical efforts identify the participation role of MXene in heterostructures for OER reactions, providing insights into designing advanced heterostructures for robust OER electrocatalysis.
Collapse
Affiliation(s)
- Jiali Sheng
- Department of Applied PhysicsAalto UniversityESPOOFIN‐02150Finland
| | - Jiahui Kang
- Department of Applied PhysicsAalto UniversityESPOOFIN‐02150Finland
| | - Pan Jiang
- Department of Applied PhysicsAalto UniversityESPOOFIN‐02150Finland
- Research Institute of Wood IndustryChinese Academy of ForestryXiangshan RoadBeijing100091China
| | | | - Xiaodan Hong
- Department of Applied PhysicsAalto UniversityESPOOFIN‐02150Finland
| | - Hua Jiang
- Department of Applied PhysicsAalto UniversityESPOOFIN‐02150Finland
| | - Nonappa
- Faculty of Engineering and Natural SciencesTampere UniversityTampereFI‐33101Finland
| | - Olli Ikkala
- Department of Applied PhysicsAalto UniversityESPOOFIN‐02150Finland
| | - Hannu‐Pekka Komsa
- Microelectronics Research UnitFaculty of Information Technology and Electrical EngineeringUniversity of OuluOuluFIN‐90014Finland
| | - Bo Peng
- Department of Applied PhysicsAalto UniversityESPOOFIN‐02150Finland
- Department of Materials ScienceAdvanced Coating Research Center of Ministry of Education of ChinaFudan UniversityShanghai200433China
| | - Zhong‐Peng Lv
- Department of Applied PhysicsAalto UniversityESPOOFIN‐02150Finland
| |
Collapse
|
5
|
Gupta RK, Maurya PK, Mishra AK. Advancements in Rechargeable Zn-Air Batteries with Transition-Metal Dichalcogenides as Bifunctional Electrocatalyst. Chempluschem 2024; 89:e202400278. [PMID: 38963318 DOI: 10.1002/cplu.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
This review covers recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zinc-air batteries (ZABs), emphasizing their suitable surface area, electrocatalytic active sites, stability in acidic/basic environments, and tunable electronic properties. It discusses strategies like defect engineering, doping, interface, and structural modifications of TMDs nanostructures for enhancing the performances of ZABs. Zinc-air batteries are promising energy storage devices owing to their high energy density, low cost, and environmental friendliness. However, the development of durable and efficient bifunctional electrocatalysts is a major concern for Zn-air batteries. In this review, we summarize the recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zn-air batteries. We discuss the advantages of TMDs, such as high activity, good stability, and tunable electronic structure, as well as the challenges, such as low conductivity, poor durability, and limited active sites. We also highlight the strategies for fine-tuning the properties of TMDs, such as defect engineering, doping, hybridization, and structural engineering, to enhance their catalytic performance and stability. We provide a comprehensive and in-depth analysis of the applications of TMDs in Zn-air batteries, demonstrating their potential as low-cost, abundant, and environmentally friendly alternatives to noble metal catalysts. We also suggest future directions like exploring new TMDs materials and compositions, developing novel synthesis and modification techniques, investigating the interfacial interactions and charge transfer processes, and integrating TMDs with other functional materials. This review aims to illuminate the path forward for the development of efficient and durable Zn-air batteries, aligning with the broader objectives of sustainable energy solutions.
Collapse
Affiliation(s)
- Rohit Kumar Gupta
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Prince Kumar Maurya
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ashish Kumar Mishra
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
6
|
Pandey S, Oh Y, Ghimire M, Son JW, Lee M, Jun Y. Value addition of MXenes as photo-/electrocatalysts in water splitting for sustainable hydrogen production. Chem Commun (Camb) 2024; 60:8789-8805. [PMID: 39081173 DOI: 10.1039/d4cc01811g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The energy transition from fossil fuel-based to renewable energy is a global agenda. At present, a major concern in the green hydrogen economy is the demand for clean fuels and non-noble materials to produce hydrogen through water splitting. Researchers are focusing on addressing this concern with the help of the development of appropriate non-noble-based photo-/electrocatalytic materials. A new class of two-dimensional materials, MXenes, have recently shown tremendous potential for water splitting to produce H2via a photoelectrochemical process. The unique properties of emerging 2D MXene materials, such as hydrophilic surface functionalities, higher surface-to-volume ratios, and inherent flexibility, present these materials as appropriate photo-/electrocatalytic materials. Unique value addition and innovative strategies such as the introduction of end-group modification, heterojunctions, and nanostructure engineering have shown the potential of MXene materials as emerging photo-/electrocatalysts for water splitting. When integrated with conventional noble metal catalysts, MXene-based catalysts demonstrated a lower overpotential for hydrogen and oxygen evolution reactions and a remarkable boost in performance for enhanced H2 production rates surpassing those of pristine noble metal-based catalysts. These promote future perspectives for the utilization of chemically synthesized MXenes as alternative photo-/electrocatalysts. Future research direction should focus on MXene synthesis and utilization for surface modification, composite formation, stabilization, and optimization in synthesis methods and post-synthesis treatments. This review highlights the progress in the understanding of fundamental mechanisms and issues associated with water splitting, influencing factors of MXenes, their value addition role, and application strategies for water splitting, including performance, challenges, and outlook of MXene-based photo-/electrocatalysts, in the last five years.
Collapse
Affiliation(s)
- Sudeshana Pandey
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yongsuk Oh
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Mukesh Ghimire
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ji-Won Son
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
- Energy Materials Research Center, Clean Energy Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minoh Lee
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yongseok Jun
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
- Energy Materials Research Center, Clean Energy Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Ghosh K, Roy SS, Giri PK. Fast Reduction of 4-Nitrophenol and Photoelectrochemical Hydrogen Production by Self-Reduced Bi/Ti 3C 2T x/Bi 2S 3 Nanocomposite: A Combined Experimental and Theoretical Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42007-42020. [PMID: 39088748 DOI: 10.1021/acsami.4c04167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The distinctive properties of 2D MXenes have garnered significant interest across various fields, including wastewater treatment and photo/electro-catalysis. The integration of inexpensive semiconductor nanostructures with 2D MXenes offers a promising strategy for applications such as wastewater treatment and photoelectrochemical hydrogen production. In this study, we employed an in situ hydrothermal method to immobilize 1D Bi2S3 nanorods and self-reduced metallic bismuth nanoparticles (Bi NPs) onto Ti3C2Tx MXene nanosheets, resulting in the formation of a Bi/Bi2S3/Ti3C2Tx (0D/1D/2D) composite catalyst, which demonstrates an outstanding efficacy in both the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and photoelectrochemical hydrogen production. Remarkably, a 4-NP reduction efficiency of 100% was achieved only in 4 min with a reduction rate of 1.14 min-1, which is outstanding, and it is ∼3.8 times faster than pristine Bi2S3 nanorods (0.3 min-1). Furthermore, the photoelectrochemical assessment reveals that the Bi/Bi2S3/Ti3C2Tx catalyst displays remarkable hydrogen evolution reaction (HER) efficiency in an alkaline electrolyte. It exhibits a significantly lower overpotential and Tafel slope of 73 mV and 84 mV/dec, respectively, compared to pristine Bi2S3 nanorods, which are found to be 129 mV and 145 mV/dec under light illumination. The superior reduction performance of 4-NP and charge transfer mechanism is further investigated through density functional theory (DFT) calculations, alongside validation using various microscopic and spectroscopic techniques. Interestingly, the DFT analysis revealed modifications in the partial density of states of Bi2S3 within the band gap region due to the successful anchoring of Ti3C2Tx nanosheets and metallic Bi NPs, facilitating efficient charge transport and separation across the local junctions. Ultraviolet photoelectron spectroscopy provided insights into band alignment and interfacial charge transfer across the Bi/Bi2S3/Ti3C2Tx junction on a microscopic scale. This work is significant for the development of MXene-based hybrid catalysts, and it provides a deeper understanding of the reduction mechanism of organic pollutants and superior charge transport in the hybrid system for photoelectrochemical hydrogen production.
Collapse
Affiliation(s)
- Koushik Ghosh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sanjoy Sur Roy
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
8
|
Kaleem Shabbir M, Arif F, Asghar H, Irum Memon S, Khanum U, Akhtar J, Ali A, Ramzan Z, Aziz A, Memon AA, Hussain Thebo K. Two-Dimensional MXene-Based Electrocatalysts: Challenges and Opportunities. CHEM REC 2024; 24:e202400047. [PMID: 39042918 DOI: 10.1002/tcr.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/22/2024] [Indexed: 07/25/2024]
Abstract
MXene, regarded as cutting-edge two-dimensional (2D) materials, have been widely explored in various applications due to their remarkable flexibility, high specific surface area, good mechanical strength, and interesting electrical conductivity. Recently, 2D MXene has served as a ideal platform for the design and development of electrocatalysts with high activity, selectivity, and stability. This review article provides a detailed description of the structural engineering of MXene-based electrocatalysts and summarizes the uses of 2D MXene in hydrogen evolution reactions, nitrogen reduction reactions, oxygen evolution reactions, oxygen reduction reactions, and methanol/ethanol oxidation. Then, key issues and prospects for 2D MXene as a next-generation platform in fundamental research and real-world electrocatalysis applications are discussed. Emphasis will be given to material design and enhancement techniques. Finally, future research directions are suggested to improve the efficiency of MXene-based electrocatalysts.
Collapse
Affiliation(s)
- Muhammad Kaleem Shabbir
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Department of Chemistry, University of Kotli, Kotli, AJK 11100, Pakistan
| | - Fozia Arif
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Government Graduate College for Women Jhelum, Jhelum, 49600, Pakistan
| | - Haleema Asghar
- Government Graduate College for Women Jhelum, Jhelum, 49600, Pakistan
| | - Sanam Irum Memon
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro
| | - Urooj Khanum
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Akbar Ali
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zeeshan Ramzan
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Aliya Aziz
- Department of Chemistry, University of Kotli, Kotli, AJK 11100, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Khalid Hussain Thebo
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Wenhua Road, China
| |
Collapse
|
9
|
Long Y, Li Q, Zhang Z, Zeng Q, Liu D, Zhao L, Liu Y, Li Y, Zhang Y, Ji K, Zhou Z, Han X, Wang J. Coupling MoSe 2 with Non-Stoichiometry Ni 0.85 Se in Carbon Hollow Nanoflowers for Efficient Electrocatalytic Synergistic Effect on Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304882. [PMID: 37890468 DOI: 10.1002/smll.202304882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Li-O2 batteries could deliver ultra-high theoretical energy density compared to current Li-ion batteries counterpart. The slow cathode reaction kinetics in Li-O2 batteries, however, limits their electrocatalytic performance. To this end, MoSe2 and Ni0.85 Se nanoflakes were decorated in carbon hollow nanoflowers, which were served as the cathode catalysts for Li-O2 batteries. The hexagonal Ni0.85 Se and MoSe2 show good structural compatibility with the same space group, resulting in a stable heterogeneous structure. The synergistic interaction of the unsaturated atoms and the built-in electric fields on the heterogeneous structure exposes abundant catalytically active sites, accelerating ion and charge transport and imparting superior electrochemical activity, including high specific capacities and stable cycling performance. More importantly, the lattice distances of the Ni0.85 Se (101) plane and MoSe2 (100) plane at the heterogeneous interfaces are highly matched to that of Li2 O2 (100) plane, facilitating epitaxial growth of Li2 O2 , as well as the formation and decomposition of discharge products during the cycles. This strategy of employing nonstoichiometric compounds to build heterojunctions and improve Li-O2 battery performance is expected to be applied to other energy storage or conversion systems.
Collapse
Affiliation(s)
- Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Qiang Li
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
| | - Zidong Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Qingxi Zeng
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
| | - Dong Liu
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan, 250061, China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yebing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518063, China
| |
Collapse
|
10
|
Hussain I, Amara U, Bibi F, Hanan A, Lakhan MN, Soomro IA, Khan A, Shaheen I, Sajjad U, Mohana Rani G, Javed MS, Khan K, Hanif MB, Assiri MA, Sahoo S, Al Zoubi W, Mohapatra D, Zhang K. Mo-based MXenes: Synthesis, properties, and applications. Adv Colloid Interface Sci 2024; 324:103077. [PMID: 38219341 DOI: 10.1016/j.cis.2023.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/09/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Ti-MXene allows a range of possibilities to tune their compositional stoichiometry due to their electronic and electrochemical properties. Other than conventionally explored Ti-MXene, there have been ample opportunities for the non-Ti-based MXenes, especially the emerging Mo-based MXenes. Mo-MXenes are established to be remarkable with optoelectronic and electrochemical properties, tuned energy, catalysis, and sensing applications. In this timely review, we systematically discuss the various organized synthesis procedures, associated experimental tunning parameters, physiochemical properties, structural evaluation, stability challenges, key findings, and a wide range of applications of emerging Mo-MXene over Ti-MXenes. We also critically examined the precise control of Mo-MXenes to cater to advanced applications by comprehensively evaluating the summary of recent studies using artificial intelligence and machine learning tools. The critical future perspectives, significant challenges, and possible outlooks for successfully developing and using Mo-MXenes for various practical applications are highlighted.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong.
| | - Umay Amara
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong
| | - Faiza Bibi
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Irfan Ali Soomro
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Amjad Khan
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, South Korea
| | - Irum Shaheen
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla 34956, Istanbul, Turkey
| | - Uzair Sajjad
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei 10607, Taiwan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovakia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong.
| |
Collapse
|
11
|
Wang K, Zhou Y, Cheng L, Li D, Hu Z, Chen S, Wu C, Song L, Ge B. Engineering Phase Transition from 2H to 1T in MoSe 2 by W Cluster Doping toward Lithium-Ion Battery. Inorg Chem 2023; 62:21257-21264. [PMID: 38069815 DOI: 10.1021/acs.inorgchem.3c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Phase engineering synthesis strategy is extremely challenging to achieve stable metallic phase molybdenum diselenide for a better physicochemical property than the thermodynamically stable semiconducting phase. Herein, we introduce tungsten atom clusters into the MoSe2 layered structure, realizing the phase transition from the 2H semiconductor to 1T metallic phase at a high temperature. The combination of synchrotron radiation X-ray absorption spectroscopy, Cs-corrected transmission electron microscopy, and theoretical calculation demonstrates that the aggregation doping of W atoms is the factor of MoSe2 structure transformation. When utilizing this distinct structure as an anode component, it demonstrates outstanding rate capability and durability. After 500 cycles, this results in a specific capacity of 1007.4 mAh g-1 at 500 mA g-1. These discoveries could open the door for the future development of high-performance anodes for ion battery applications.
Collapse
Affiliation(s)
- Ke Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yu Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Lixun Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Dongdong Li
- Institute of Amorphous Matter Science, School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhihao Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shuangming Chen
- National Synchrotron Radiation Lab, University of Science and Technology of China, Hefei, Anhui 230009, China
| | - Chuanqiang Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Li Song
- National Synchrotron Radiation Lab, University of Science and Technology of China, Hefei, Anhui 230009, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
12
|
Hu H, Zheng Y, Zhu Y, Qian L, Yuan Z, Dai Y, Zhang T, Yang D, Qiu F. Constructing a Functionalized Electrocatalyst of a Transition Metal Chalcogenide on Accordion-Like MXene to Boost the Hydrogen Evolution Reaction. Inorg Chem 2023. [PMID: 38019575 DOI: 10.1021/acs.inorgchem.3c03206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
MXenes exhibit unique layered structures and excellent electrical conductivity, and their multiple surface termination groups are favorable for hosting impressive performance for electrochemical reactions. Therefore, a two-dimensional (2D) layered MXene-based catalyst may become a novel high-efficiency electrocatalyst to replace traditional noble metal electrocatalysts. In this work, a transition metal chalcogenide (MoS2/CuS) and MXene are combined to prepare a 2D electrocatalyst (MoS2/CuS/MXene) for the hydrogen evolution reaction (HER). MXene exhibited a large specific surface area in the shape of an accordion, which was very beneficial for the growth of nanomaterials. CuS/MXene promoted electron transfer and improved the exposed active site for HER. The exposed MoS2 edges exhibited a high chemical adsorption capacity, which is conducive to HER. Electrochemical tests reveal that the MoS2/CuS/MXene electrocatalyst can reduce the charge transfer resistance toward the HER and increase active sites for HER, leading to enhancing the catalytic performance. The MoS2/CuS/MXene electrocatalyst affords an efficient HER with a low overpotential (115 mV@10 mA cm-2). This work offers a new idea to create layered transition metal chalcogenide- and MXene-based electrocatalysts for HER.
Collapse
Affiliation(s)
- Huiting Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yunhua Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Long Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ziyu Yuan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yuting Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
13
|
Hu Z, Li Y, Li A, Wang HH, Wang XF. Dye-sensitized solar cells based on highly catalytic CNTs/Ti 3C 2T x MXenes composite counter electrode. RSC Adv 2023; 13:34808-34816. [PMID: 38035243 PMCID: PMC10685336 DOI: 10.1039/d3ra06814e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Establishing stable and efficient Pt-free counter electrodes (CEs) is an important challenge for dye-sensitized solar cells (DSSCs). Ti3C2Tx MXene, with its high catalytic activity and conductivity, has gained attention as a CE in DSSCs. The focus of this paper is on the preparation of Ti3C2Tx decorated carbon nanotubes (CNTs) composite electrode materials (CNTs/Ti3C2Tx), and testing their performance as CEs in DSSCs. Through a series of electrochemical tests, a CNTs/Ti3C2Tx CE exhibits good electrocatalytic activity toward iodine-based electrolytes with low charge transfer resistance, which is close to the performance of a Pt CE. The photoelectric conversion efficiency (PCE) of the CNTs/Ti3C2Tx (1.0 wt%) CE-based DSSCs reaches 5.83%, which is much higher than that of the CNTs CE (3.70%), and approximates that of the Pt CE (6.61%). We attribute the improved performance to the synergistic effect of the excellent conductivity and unique two-dimensional chemical structure of Ti3C2Tx MXene. Moreover, the photostability test of continuous light exposure shows that the CNTs/Ti3C2Tx-1.0 wt% (C/T-1.0 wt%) CE exhibits good stability to the electrolyte. Therefore, CNTs/Ti3C2Tx composites can be used as an efficient Pt-free CE for DSSCs in the future.
Collapse
Affiliation(s)
- Zishan Hu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University Changchun 130012 P. R. China
| | - Yuanlin Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University Changchun 130012 P. R. China
| | - Aijun Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University Changchun 130012 P. R. China
| | - Hai-Hua Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University Changchun 130012 P. R. China
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
14
|
Zhang Y, Nie K, Yi L, Li B, Yuan Y, Liu Z, Huang W. Recent Advances in Engineering of 2D Materials-Based Heterostructures for Electrochemical Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302301. [PMID: 37743245 PMCID: PMC10625098 DOI: 10.1002/advs.202302301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Indexed: 09/26/2023]
Abstract
2D materials, such as graphene, transition metal dichalcogenides, black phosphorus, layered double hydroxides, and MXene, have exhibited broad application prospects in electrochemical energy conversion due to their unique structures and electronic properties. Recently, the engineering of heterostructures based on 2D materials, including 2D/0D, 2D/1D, 2D/2D, and 2D/3D, has shown the potential to produce synergistic and heterointerface effects, overcoming the inherent restrictions of 2D materials and thus elevating the electrocatalytic performance to the next level. In this review, recent studies are systematically summarized on heterostructures based on 2D materials for advanced electrochemical energy conversion, including water splitting, CO2 reduction reaction, N2 reduction reaction, etc. Additionally, preparation methods are introduced and novel properties of various types of heterostructures based on 2D materials are discussed. Furthermore, the reaction principles and intrinsic mechanisms behind the excellent performance of these heterostructures are evaluated. Finally, insights are provided into the challenges and perspectives regarding the future engineering of heterostructures based on 2D materials for further advancements in electrochemical energy conversion.
Collapse
Affiliation(s)
- Yujia Zhang
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Kunkun Nie
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Lixin Yi
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Binjie Li
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Yanling Yuan
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Zhengqing Liu
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Wei Huang
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| |
Collapse
|
15
|
Xiao L, Yang Q, Zhu X, Wei Y, Wang J. Synergetic Effect and Phase Engineering by Formation of Ti 3C 2T x Modified 2H/1T-MoSe 2 Composites for Enhanced HER. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6991. [PMID: 37959588 PMCID: PMC10649555 DOI: 10.3390/ma16216991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
The typical semi conductivity and few active sites of hydrogen evolution of 2H MoSe2 severely restrict its electrocatalytic hydrogen evolution performance. At the same time, the 1T MoSe2 has metal conductivity and plentiful hydrogen evolution sites, making it feasible to optimize the electrocatalytic hydrogen evolution behavior of MoSe2 using phase engineering. In this study, we, through a simple one-step hydrothermal method, composed 1T/2H MoSe2, and then used newly emerging transition metal carbides with several atomic-layer thicknesses Ti3C2Tx to improve the conductivity of a MoSe2-based electrocatalyst. Finally, MoSe2@Ti3C2Tx was successfully synthesized, according to the control of the additional amount of Ti3C2Tx, to form a proper MoSe2/ Ti3C2Tx heterostructure with a better electrochemical HER performance. As obtained MoSe2@4 mg-Ti3C2Tx achieved a low overpotential, a small Tafel slope and this work offers additional insight into broadened MoSe2 and MXenes-based catalyst's electrochemical application.
Collapse
Affiliation(s)
- Lei Xiao
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China;
| | - Qichao Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Q.Y.); (X.Z.)
| | - Xiangyang Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Q.Y.); (X.Z.)
| | - Yang Wei
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Jing Wang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
16
|
Cai J, Zhang X, Wang T, Shi Y, Lin S. Synthesis of a carbon-wrapped microsphere MoO 2/Mo 2C heterojunction as an efficient electrocatalyst for the oxygen reduction reaction and the hydrogen evolution reaction. Dalton Trans 2023; 52:13991-14002. [PMID: 37740289 DOI: 10.1039/d3dt02537c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The development of non-noble metal catalysts for the optimization of conversion and storage devices is an important research topic. Hence, the microsphere MoO2/Mo2C/C heterojunction composites, which play an important role in the oxygen reduction reaction (ORR) and the hydrogen evolution reaction (HER), were synthesized using the solvothermal-sintering method. The results revealed that the as-prepared composite exhibited better ORR and HER catalytic performances than those of MoO2/Mo2C and Vulcan XC-72R (carbon black), and approaching that of commercial Pt/C. At the same time, it has a superior methanol tolerance and electrochemical stability than that of the commercial Pt/C. The excellent performance may be attributed to the synergistic effect of the MoO2/Mo2C heterostructure, highly conductive Vulcan XC-72R, and oxygen vacancies (Ov). This research offers new insights into the design and synthesis of cost-effective, environmentally friendly heterojunction composite catalysts used as a high-performance cathode material in fuel cells and water splitting.
Collapse
Affiliation(s)
- Jiannan Cai
- Fujian Polytechnic Normal University, Fuzhou 350300, China.
| | - Xiaofeng Zhang
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, China
| | - Ting Wang
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, China
| | - Yuande Shi
- Fujian Polytechnic Normal University, Fuzhou 350300, China.
| | - Shen Lin
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, China
| |
Collapse
|
17
|
Wen J, Cai Q, Xiong R, Cui Z, Zhang Y, He Z, Liu J, Lin M, Wen C, Wu B, Sa B. Promising M 2CO 2/MoX 2 (M = Hf, Zr; X = S, Se, Te) Heterostructures for Multifunctional Solar Energy Applications. Molecules 2023; 28:molecules28083525. [PMID: 37110759 PMCID: PMC10146659 DOI: 10.3390/molecules28083525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Two-dimensional van der Waals (vdW) heterostructures are potential candidates for clean energy conversion materials to address the global energy crisis and environmental issues. In this work, we have comprehensively studied the geometrical, electronic, and optical properties of M2CO2/MoX2 (M = Hf, Zr; X = S, Se, Te) vdW heterostructures, as well as their applications in the fields of photocatalytic and photovoltaic using density functional theory calculations. The lattice dynamic and thermal stabilities of designed M2CO2/MoX2 heterostructures are confirmed. Interestingly, all the M2CO2/MoX2 heterostructures exhibit intrinsic type-II band structure features, which effectively inhibit the electron-hole pair recombination and enhance the photocatalytic performance. Furthermore, the internal built-in electric field and high anisotropic carrier mobility can separate the photo-generated carriers efficiently. It is noted that M2CO2/MoX2 heterostructures exhibit suitable band gaps in comparison to the M2CO2 and MoX2 monolayers, which enhance the optical-harvesting abilities in the visible and ultraviolet light zones. Zr2CO2/MoSe2 and Hf2CO2/MoSe2 heterostructures possess suitable band edge positions to provide the competent driving force for water splitting as photocatalysts. In addition, Hf2CO2/MoS2 and Zr2CO2/MoS2 heterostructures deliver a power conversion efficiency of 19.75% and 17.13% for solar cell applications, respectively. These results pave the way for exploring efficient MXenes/TMDCs vdW heterostructures as photocatalytic and photovoltaic materials.
Collapse
Affiliation(s)
- Jiansen Wen
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| | - Qi Cai
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| | - Rui Xiong
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| | - Zhou Cui
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| | - Yinggan Zhang
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhihan He
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| | - Junchao Liu
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| | - Maohua Lin
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Cuilian Wen
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| | - Bo Wu
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| | - Baisheng Sa
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| |
Collapse
|
18
|
Zhou Y, Wu Y, Guo D, Li J, Li Y, Yang X, Fu S, Sui G, Chai DF. Novel Strain Engineering Combined with a Microscopic Pore Synergistic Modulated Strategy for Designing Lattice Tensile-Strained Porous V 2C-MXene for High-Performance Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15797-15809. [PMID: 36930051 DOI: 10.1021/acsami.2c19729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition metal carbon/nitride (MXene) holds immense potential as an innovative electrocatalyst for enhancing the overall water splitting properties. Nevertheless, the re-stacking nature induced by van der Waals force remains a significant challenge. In this work, the lattice tensile-strained porous V2C-MXene (named as TS(24)-P(50)-V2C) is successfully constructed via the rapid spray freezing method and the following hydrothermal treatment. Besides, the influence of lattice strain degree and microscopic pores on the catalytic ability is reviewed and explored systematically. The lattice tensile strain within V2C-MXene could widen the interlayer spacing and accelerate the ion transfer. The microscopic pores could change the ion transmission path and shorten the migration distance. As a consequence, the obtained TS(24)-P(50)-V2C shows extraordinary hydrogen evolution reaction and oxygen evolution reaction activity with the overpotential of 154 and 269 mV, respectively, at the current density of 10 mA/cm2, which is quite remarkable compared to the MXene-based electrocatalysts. Moreover, the overall water splitting device assembled using TS(24)-P(50)-V2C as both anode and cathode demonstrates a low cell voltage requirement of 1.57 V to obtain 10 mA/cm2. Overall, the implementation of this work could offer an exciting avenue to overcome the re-stacking issue of V2C-MXene, affording a high-efficiency electrocatalyst with superior catalytic activity and desirable reaction kinetics.
Collapse
Affiliation(s)
- Yu Zhou
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yousen Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Yue Li
- School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao 266101, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
19
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
20
|
Yu H, Dai M, Zhang J, Chen W, Jin Q, Wang S, He Z. Interface Engineering in 2D/2D Heterogeneous Photocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205767. [PMID: 36478659 DOI: 10.1002/smll.202205767] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Assembling different 2D nanomaterials into heterostructures with strong interfacial interactions presents a promising approach for novel artificial photocatalytic materials. Chemically implementing the 2D nanomaterials' construction/stacking modes to regulate different interfaces can extend their functionalities and achieve good performance. Herein, based on different fundamental principles and photochemical processes, multiple construction modes (e.g., face-to-face, edge-to-face, interface-to-face, edge-to-edge) are overviewed systematically with emphasis on the relationships between their interfacial characteristics (e.g., point, linear, planar), synthetic strategies (e.g., in situ growth, ex situ assembly), and enhanced applications to achieve precise regulation. Meanwhile, recent efforts for enhancing photocatalytic performances of 2D/2D heterostructures are summarized from the critical factors of enhancing visible light absorption, accelerating charge transfer/separation, and introducing novel active sites. Notably, the crucial roles of surface defects, cocatalysts, and surface modification for photocatalytic performance optimization of 2D/2D heterostructures are also discussed based on the synergistic effect of optimization engineering and heterogeneous interfaces. Finally, perspectives and challenges are proposed to emphasize future opportunities for expanding 2D/2D heterostructures for photocatalysis.
Collapse
Affiliation(s)
- Huijun Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Meng Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Wenhan Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Qiu Jin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zuoli He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
21
|
Nayem SA, Islam S, Aziz MA, Ahammad AS. Mechanistic insight into hydrothermally prepared molybdenum-based electrocatalyst for overall water splitting. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
22
|
He X, Zhu Q, Li J, Lin L. Defect-Rich MoS2/CoS2 Supported on In Situ Formed Graphene Layers for Efficient Overall Water Splitting. Catal Letters 2023. [DOI: 10.1007/s10562-023-04275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Hayat A, Sohail M, Qadeer A, Taha TA, Hussain M, Ullah S, Al-Sehemi AG, Algarni H, Amin MA, Aqeel Sarwar M, Nawawi WI, Palamanit A, Orooji Y, Ajmal Z. Recent Advancement in Rational Design Modulation of MXene: A Voyage from Environmental Remediation to Energy Conversion and Storage. CHEM REC 2022; 22:e202200097. [PMID: 36103617 DOI: 10.1002/tcr.202200097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Use of MXenes (Ti3 C2 Tx ), which belongs to the family of two-dimensional transition metal nitrides and carbides by encompassing unique combination of metallic conductivity and hydrophilicity, is receiving tremendous attention, since its discovery as energy material in 2011. Owing to its precursor selective chemical etching, and unique intrinsic characteristics, the MXene surface properties are further classified into highly chemically active compound, which further produced different surface functional groups i. e., oxygen, fluorine or hydroxyl groups. However, the role of surface functional groups doesn't not only have a significant impact onto its electrochemical and hydrophilic characteristics (i. e., ion adsorption/diffusion), but also imparting a noteworthy effect onto its conductivity, work function, electronic structure and properties. Henceforth, such kind of inherent chemical nature, robust electrochemistry and high hydrophilicity ultimately increasing the MXene application as a most propitious material for overall environment-remediation, electrocatalytic sensors, energy conversion and storage application. Moreover, it is well documented that the role of MXenes in all kinds of research fields is still on a progress stage for their further improvement, which is not sufficiently summarized in literature till now. The present review article is intended to critically discuss the different chemical aptitudes and the diversity of MXenes and its derivates (i. e., hybrid composites) in all aforesaid application with special emphasis onto the improvement of its surface characteristics for the multidimensional application. However, this review article is anticipated to endorse MXenes and its derivates hybrid configuration, which is discussed in detail for emerging environmental decontamination, electrochemical use, and pollutant detection via electrocatalytic sensors, photocatalysis, along with membrane distillation and the adsorption application. Finally, it is expected, that this review article will open up new window for the effective use of MXene in a broad range of environmental remediation, energy conversion and storage application as a novel, robust, multidimensional and more proficient materials.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang PR, China.,College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - A Qadeer
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, 10012, Beijing, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - Majid Hussain
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Sami Ullah
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Muhammad Aqeel Sarwar
- Land Resource research Institute and Crop Science Center, National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, 02600, Arau Perlis, Malaysia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, PR China
| |
Collapse
|
24
|
High-performance solid-state asymmetric supercapacitor based on Ti3C2Tx MXene/VS2 cathode and Fe3O4@rGO hydrogel anode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Towards high-performance electrocatalysts: Activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Xiao S, Zheng Y, Wu X, Zhou M, Rong X, Wang L, Tang Y, Liu X, Qiu L, Cheng C. Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203281. [PMID: 35989101 DOI: 10.1002/smll.202203281] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Owing to their rich surface chemistry, high conductivity, tunable bandgap, and thermal stability, structured 2D transition-metal carbides, nitrides, and carbonitrides (MXenes) with modulated atomic environments have emerged as efficient electrochemical energy conversion systems in the past decade. Herein, the most recent advances in the engineering of tunable structured MXenes as a powerful new platform for electrocatalytic energy conversion are comprehensively summarized. First, the state-of-the-art synthetic and processing methods, tunable nanostructures, electronic properties, and modulation principles of engineering MXene-derived nanoarchitectures are focused on. The current breakthroughs in the design of catalytic centers, atomic environments, and the corresponding structure-performance correlations, including termination engineering, heteroatom doping, defect engineering, heterojunctions, and alloying, are discussed. Furthermore, representative electrocatalytic applications of structured MXenes in energy conversion systems are also summarized. Finally, the challenges in and prospects for constructing MXene-based electrocatalytic materials are also discussed. This review provides a leading-edge understanding of the engineering of various MXene-based electrocatalysts and offers theoretical and experimental guidance for prospective studies, thereby promoting the practical applications of tunable structured MXenes in electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Sutong Xiao
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yijuan Zheng
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiao Rong
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yuanjiao Tang
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xikui Liu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Qiu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
27
|
Peera SG, Koutavarapu R, Chao L, Singh L, Murugadoss G, Rajeshkhanna G. 2D MXene Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction (HER): A Review. MICROMACHINES 2022; 13:1499. [PMID: 36144122 PMCID: PMC9500977 DOI: 10.3390/mi13091499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 05/27/2023]
Abstract
MXenes, a novel family of 2D transition metal carbide, nitride and carbonitride materials, have been gaining tremendous interest in recent days as potential electrocatalysts for various electrochemical reactions, including hydrogen evolution reaction (HER). MXenes are characterized by their etchable metal layers, excellent structural stability, versatility for heteroatoms doping, excellent electronic conductivity, unique surface functional groups and admirable surface area, suitable for the role of electrocatalyst/support in electrochemical reactions, such as HER. In this review article, we summarized recent developments in MXene-based electrocatalysts synthesis and HER performance in terms of the theoretical and experimental point of view. We systematically evaluated the superiority of the MXene-based catalysts over traditional Pt/C catalysts in terms of HER kinetics, Tafel slope, overpotential and stability, both in acidic and alkaline electrolytic environments. We also pointed out the motives behind the electro catalytic enhancements, the effect of synthesis conditions, heteroatom doping, the effect of surface terminations on the electrocatalytic active sites of various MXenes families. At the end, various possible approaches were recommended for a deeper understanding of the active sites and catalytic improvement of MXenes catalysts for HER.
Collapse
Affiliation(s)
- Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Dalseo-gu, Daegu 42601, Korea
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Liu Chao
- Engineering Research Center for Hydrogen Energy Materials and Devices, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi 175001, Himachal Pradesh, India
- Department of Civil Engineering, Center for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamilnadu, India
| | - Gaddam Rajeshkhanna
- Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| |
Collapse
|
28
|
Surface plasma–induced tunable nitrogen doping through precursors provides 1T-2H MoSe2/graphene sheet composites as electrocatalysts for the hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Li J, Zhang C, Zhang C, Ma H, Guo Z, Zhong C, Xu M, Wang X, Wang Y, Ma H, Qiu J. Green Electrosynthesis of 5,5'-Azotetrazolate Energetic Materials Plus Energy-Efficient Hydrogen Production Using Ruthenium Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203900. [PMID: 35724969 DOI: 10.1002/adma.202203900] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Water electrolysis involves two parallel reactions, that is, oxygen evolution (OER) and hydrogen evolution (HER), in which sluggish OER is a significant limiting step that results in high energy consumption. Coupling the thermodynamically favorable electrooxidation of organic alternatives to value-added fine chemicals HER is a promising approach for the simultaneous cost-effective production of value-added chemicals and hydrogen. Here, a new coupling system for the green electrochemical synthesis of organic energetic materials (EMs) plus hydrogen production using single-atom catalysts is introduced. The catalysts are prepared by the facile galvanostatic deposition of ruthenium single atoms on the molybdenum selenide and reveal a low HER overpotential of 38.9 mV at -10 mA cm-2 in an alkaline medium. Importantly, the cell voltage of water electrolysis can be significantly reduced to only 1.35 V at a current of 10 mA cm-2 by coupling water splitting with the electrooxidation of 5-amino-1H-tetrazole to synthesize 5,5'-azotetrazolate energetic material. These materials are traditionally synthesized under harsh conditions involving a strong oxidizing agent, high-temperature conditions, and difficult separation of by-products. This study provides a green and efficient method of synthesizing organic EMs while simultaneously producing hydrogen.
Collapse
Affiliation(s)
- Jiachen Li
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Cong Zhang
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Chi Zhang
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Huijun Ma
- National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, 710127, China
| | - Zhaoqi Guo
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Chenglin Zhong
- College of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuanjun Wang
- High-Tech Institute of Xi'an, Xi'an, 710025, China
| | - Yaoyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
30
|
Hao L, He H, Xu C, Zhang M, Feng H, Yang L, Jiang Q, Huang H. Ultrafine cobalt selenide nanowires tangled with MXene nanosheets as highly efficient electrocatalysts toward the hydrogen evolution reaction. Dalton Trans 2022; 51:7135-7141. [PMID: 35466966 DOI: 10.1039/d2dt00238h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydrogen energy has attracted sustainable attention in the exploitation and application of advanced power-generator devices, and electrocatalysts for the hydrogen evolution reaction (HER) have been regarded as one of the core components in the current electrochemical hydrogen production systems. In this work, a facile and cost-effective bottom-up strategy is developed for the construction of 1D ultrafine cobalt selenide nanowires tangled with 2D Ti3C2Tx MXene nanosheets (CoSe NW/Ti3C2Tx) through an in situ stereo-assembly process. Such an architectural design endows the hybrid system not only with a large accessible surface for the rapid transportation of reactants, but also with numerous exposed CoSe edge sites, thereby generating substantial synergic coupling effects. The as-derived CoSe NW/Ti3C2Tx hybrid demonstrates competitive electrocatalytic properties toward the HER with a small onset potential of 84 mV, a low Tafel slope of 56 mV dec-1 and exceptional cycling performance, which are superior to those of bare CoSe and Ti3C2Tx materials. It is believed this promising nanoarchitecture may provide new possibilities for the design and construction of precious-metal-free electrocatalysts with high efficiency and great stability in the energy-conversion field.
Collapse
Affiliation(s)
- Linlin Hao
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Chenyu Xu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Mingqiang Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Haoxuan Feng
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| |
Collapse
|
31
|
Xue Y, Xu Y, Yan Q, Zhu K, Ye K, Yan J, Wang Q, Cao D, Wang G. Coupling of Ru nanoclusters decorated mixed-phase (1T and 2H) MoSe 2 on biomass-derived carbon substrate for advanced hydrogen evolution reaction. J Colloid Interface Sci 2022; 617:594-603. [PMID: 35303643 DOI: 10.1016/j.jcis.2022.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
The development of efficient catalysts for hydrogen evolution reaction (HER) from water splitting is one of the most promising strategies to achieve the goal of peak carbon dioxide emissions and carbon neutrality. Herein, Ru nanoclusters decorated MoSe2 nanosheets supported on a Crepis tectorum fluff biomass-derived hollow carbon tube (Ru-MoSe2/CMT) are prepared as the HER catalysts in both alkaline and acidic conditions. The Ru modification induces the transformation of MoSe2 from 2H phase to 1T phase. Benefiting from the strong water dissociation ability of Ru, Ru-MoSe2/CMT exhibits a low overpotential of 70 mV with a Tafel slope of 39 mV dec-1 in 1 M KOH. Furthermore, the assembled Ru-MoSe2/CMT || RuO2 system with a low cell voltage of 1.54 V at 10 mA cm-2 exhibits outstanding overall water splitting performance superior to Pt/C || RuO2 system. The Ru-MoSe2/CMT || RuO2 system also achieves the excellent stability of up to 30 h in 1 M KOH. The synergy effect between Ru and MoSe2, as well as the improved electron transfer kinetics provided by the biomass-derived carbon substrate together contribute to the excellent HER activity of Ru-MoSe2/CMT.
Collapse
Affiliation(s)
- Yanqin Xue
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yanyan Xu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Qing Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, P. R. China; School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ke Ye
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Jun Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Qian Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| |
Collapse
|
32
|
Ponnada S, Kiai MS, Gorle DB, Venkatachalam R, Saini B, Murugavel K, Nowduri A, Singhal R, Marken F, Kulandainathan AM, Nanda KK, Sharma RK, Bose RSC. Recent Status and Challenges in Multifunctional Electrocatalysis Based on 2D MXenes. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00428c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to their chemical and electrical characteristics, such as metallic conductivity, redox-activity in transition metals, high hydrophilicity, and adjustable surface properties, MXenes are emerging as important contributors to oxygen reduction...
Collapse
|
33
|
Zhan W, Li N, Zuo S, Guo Z, Qiang C, Li Z, Ma J. Synergistic phase and crystallinity engineering in cubic RuSe2 catalysts towards efficient hydrogen evolution reaction. CrystEngComm 2022. [DOI: 10.1039/d1ce01378e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, cubic RuSe2 electrocatalysts with different 1T phase ratios (ranging from 20.53% to 64.97%) and crystallinities (ranging from 1.72% to 89.10%) were developed by a fast and efficient microwave-assisted synthesis method.
Collapse
Affiliation(s)
- Wei Zhan
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Nan Li
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Shixiang Zuo
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhimin Guo
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Chenghong Qiang
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhengping Li
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Jiangquan Ma
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
34
|
Qiao J, Kong L, Xu S, Lin K, He W, Ni M, Ruan Q, Zhang P, Liu Y, Zhang W, Pan L, Sun Z. Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. ENERGY STORAGE MATERIALS 2021; 43:509-530. [DOI: 10.1016/j.ensm.2021.09.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
35
|
Ling M, Jiang B, Cao X, Wu T, Cheng Y, Zeng P, Zhang L, Cheong WM, Wu K, Huang A, Wei X. Phase‐Controllable Synthesis of Multifunctional 1T‐MoSe
2
Nanostructures: Applications in Lithium‐Ion Batteries, Electrocatalytic Hydrogen Evolution, and the Hydrogenation Reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202101146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Min Ling
- College of Chemistry and Materials Science Key Laboratory of Functional Molecular Solids the Ministry of Education Anhui Normal University Wuhu 241002 China
| | - Binbin Jiang
- Institute of Clean Energy and Advanced Nanocatalysis (iClean) Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization School of Chemistry and Chemical Engineering Anhui University of Technology Maanshan 243002 China
- School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246001 China
| | - Xi Cao
- College of Chemistry and Materials Science Key Laboratory of Functional Molecular Solids the Ministry of Education Anhui Normal University Wuhu 241002 China
| | - Tao Wu
- College of Chemistry and Materials Science Key Laboratory of Functional Molecular Solids the Ministry of Education Anhui Normal University Wuhu 241002 China
| | - Yuansheng Cheng
- Institute of Clean Energy and Advanced Nanocatalysis (iClean) Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization School of Chemistry and Chemical Engineering Anhui University of Technology Maanshan 243002 China
| | - Peiyuan Zeng
- College of Chemistry and Materials Science Key Laboratory of Functional Molecular Solids the Ministry of Education Anhui Normal University Wuhu 241002 China
| | - Liang Zhang
- College of Chemistry and Materials Science Key Laboratory of Functional Molecular Solids the Ministry of Education Anhui Normal University Wuhu 241002 China
| | - Weng‐Chon Max Cheong
- Department of Physics and Chemistry Faculty of Science and Technology University of Macau Macao SAR 999078 China
| | - Konglin Wu
- College of Chemistry and Materials Science Key Laboratory of Functional Molecular Solids the Ministry of Education Anhui Normal University Wuhu 241002 China
- Institute of Clean Energy and Advanced Nanocatalysis (iClean) Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization School of Chemistry and Chemical Engineering Anhui University of Technology Maanshan 243002 China
| | - Aijian Huang
- School of Electronics Science and Engineering University of Electronic Science and Technology of China Chengdu 610054 China
| | - Xianwen Wei
- College of Chemistry and Materials Science Key Laboratory of Functional Molecular Solids the Ministry of Education Anhui Normal University Wuhu 241002 China
- Institute of Clean Energy and Advanced Nanocatalysis (iClean) Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization School of Chemistry and Chemical Engineering Anhui University of Technology Maanshan 243002 China
| |
Collapse
|
36
|
Incorporating Nb into MoSe
2
Nanoflowers for Overall Electrocatalytic Water Splitting. Isr J Chem 2021. [DOI: 10.1002/ijch.202100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Wang W, Huai L, Wu S, Shan J, Zhu J, Liu Z, Yue L, Li Y. Ultrahigh-Volumetric-Energy-Density Lithium-Sulfur Batteries with Lean Electrolyte Enabled by Cobalt-Doped MoSe 2/Ti 3C 2T x MXene Bifunctional Catalyst. ACS NANO 2021; 15:11619-11633. [PMID: 34247479 DOI: 10.1021/acsnano.1c02047] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is a significant challenge to design a dense high-sulfur-loaded cathode and meanwhile to acquire fast sulfur redox kinetics and suppress the heavy shuttling in the lean electrolyte, thus to acquire a high volumetric energy density without sacrificing gravimetric performance for realistic Li-S batteries (LSBs). Herein, we develop a cation-doping strategy to tailor the electronic structure and catalytic activity of MoSe2 that in situ hybridized with conductive Ti3C2Tx MXene, thus obtaining a Co-MoSe2/MXene bifunctional catalyst as a high-efficient sulfur host. Combining a smart design of the dense sulfur structure, the as-fabricated highly dense S/Co-MoSe2/MXene monolith cathode (density: 1.88 g cm-3, conductivity: 230 S m-1) achieves a high reversible specific capacity of 1454 mAh g-1 and an ultrahigh volumetric energy density of 3659 Wh L-1 at a routine electrolyte and a high areal capacity of ∼8.0 mAh cm-2 under an extremely lean electrolyte of 3.5 μL mgs-1 at 0.1 C. Experimental and DFT theoretical results uncover that introducing Co element into the MoSe2 plane can form a shorter Co-Se bond, impel the Mo 3d band to approach the Fermi level, and provide strong interactions between polysulfides and Co-MoSe2, thereby enhancing its intrinsic electronic conductivity and catalytic activity for fast redox kinetics and uniform Li2S nucleation in a dense high-sulfur-loaded cathode. This deep work provides a good strategy for constructing high-volumetric-energy-density, high-areal-capacity LSBs with lean electrolytes.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Liyuan Huai
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shangyou Wu
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Jiongwei Shan
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Junlu Zhu
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Zhonggang Liu
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Liguo Yue
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yunyong Li
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
38
|
Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Li N, Fan J. Computational insights into modulating the performance of MXene based electrode materials for rechargeable batteries. NANOTECHNOLOGY 2021; 32:252001. [PMID: 33636713 DOI: 10.1088/1361-6528/abea37] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
MXene, a still-growing large family of two-dimensional (2D) materials, has aroused enormous attention in the scientific community. Owing to their high specific surface area, good electronic conductivity, stability, and hydrophilicity, MXene has found a wide application involving electromagnetic interference shielding, sensors, catalysis, and energy storage, etc. In the field of energy storage, MXenes are promising electrode materials for various metal-ion batteries and they are also effective anchoring materials for Li-S batteries. One of the most unique features of MXene is its abundant compositions, which renders us large room to modulate its properties. Besides, other effective approaches applicable to traditional 2D materials can also be used to optimize the performance of MXene. Theoretical calculations have played a significant role in predicting and screening high-performance MXene based electrode materials. So far, theoretical researchers have made much progress in optimizing the performance of MXene as electrode materials for various rechargeable batteries. In the present review, started by a brief introduction of the involved mechanism and basic calculation methods, we comprehensively overview the latest theoretical studies of modulating the performance of MXene based electrode materials for rechargeable batteries.
Collapse
Affiliation(s)
- Na Li
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Jun Fan
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
- Center for Advance Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
40
|
Abstract
Of all the available resources given to mankind, the sunlight is perhaps the most abundant renewable energy resource, providing more than enough energy on earth to satisfy all the needs of humanity for several hundred years. Therefore, it is transient and sporadic that poses issues with how the energy can be harvested and processed when the sun does not shine. Scientists assume that electro/photoelectrochemical devices used for water splitting into hydrogen and oxygen may have one solution to solve this hindrance. Water electrolysis-generated hydrogen is an optimal energy carrier to store these forms of energy on scalable levels because the energy density is high, and no air pollution or toxic gas is released into the environment after combustion. However, in order to adopt these devices for readily use, they have to be low-cost for manufacturing and operation. It is thus crucial to develop electrocatalysts for water splitting based on low-cost and land-rich elements. In this review, I will summarize current advances in the synthesis of low-cost earth-abundant electrocatalysts for overall water splitting, with a particular focus on how to be linked with photoelectrocatalytic water splitting devices. The major obstacles that persist in designing these devices. The potential future developments in the production of efficient electrocatalysts for water electrolysis are also described.
Collapse
|
41
|
Gbadamasi S, Mohiuddin M, Krishnamurthi V, Verma R, Khan MW, Pathak S, Kalantar-Zadeh K, Mahmood N. Interface chemistry of two-dimensional heterostructures - fundamentals to applications. Chem Soc Rev 2021; 50:4684-4729. [PMID: 33621294 DOI: 10.1039/d0cs01070g] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two-dimensional heterostructures (2D HSs) have emerged as a new class of materials where dissimilar 2D materials are combined to synergise their advantages and alleviate shortcomings. Such a combination of dissimilar components into 2D HSs offers fascinating properties and intriguing functionalities attributed to the newly formed heterointerface of constituent components. Understanding the nature of the surface and the complex heterointerface of HSs at the atomic level is crucial for realising the desired properties, designing innovative 2D HSs, and ultimately unlocking their full potential for practical applications. Therefore, this review provides the recent progress in the field of 2D HSs with a focus on the discussion of the fundamentals and the chemistry of heterointerfaces based on van der Waals (vdW) and covalent interactions. It also explains the challenges associated with the scalable synthesis and introduces possible methodologies to produce large quantities with good control over the heterointerface. Subsequently, it highlights the specialised characterisation techniques to reveal the heterointerface formation, chemistry and nature. Afterwards, we give an overview of the role of 2D HSs in various emerging applications, particularly in high-power batteries, bifunctional catalysts, electronics, and sensors. In the end, we present conclusions with the possible solutions to the associated challenges with the heterointerfaces and potential opportunities that can be adopted for innovative applications.
Collapse
|
42
|
Wang S, Wang Y, Zhuang Y, Lian W, Ren H, Liu Y, Zhang T, Kong LB. Synthesis of palygorskite supported spherical ZnS nanocomposites with enhanced photocatalytic activity. CrystEngComm 2021. [DOI: 10.1039/d1ce00486g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The acquired nanocomposites exhibited a significant enhancement in photoactivity for the degradation of rhodamine B under simulated sunlight irradiation.
Collapse
Affiliation(s)
- Sheng Wang
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan 232001
- China
| | - Yan Wang
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan 232001
- China
| | - Yu Zhuang
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan 232001
- China
| | - Wei Lian
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan 232001
- China
| | - Hengdong Ren
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan 232001
- China
| | - Yin Liu
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan 232001
- China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines
| | - Tianshu Zhang
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan 232001
- China
| | - Ling Bing Kong
- College of New Materials and New Energies
- Shenzhen Technology University
- Shenzhen 518118
- China
| |
Collapse
|
43
|
Anchoring MoSe2 nanosheets on N-doped carbon nanotubes as high performance anodes for potassium-ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136983] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Liu S, Mu X, Ji P, Lv Y, Wang L, Zhou Q, Chen C, Mu S. Constructing a Rod‐like CoFeP@Ru Heterostructure with Additive Active Sites for Water Splitting. ChemCatChem 2020. [DOI: 10.1002/cctc.202000911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Suli Liu
- Key Laboratory of Advanced Functional Materials of Nanjing Nanjing Xiaozhuang University Nanjing 211171 P.R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China
| | - Xueqin Mu
- Key Laboratory of Advanced Functional Materials of Nanjing Nanjing Xiaozhuang University Nanjing 211171 P.R. China
| | - Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu Hydrogen Valley Foshan 528200 P.R. China
| | - Yun Lv
- Key Laboratory of Advanced Functional Materials of Nanjing Nanjing Xiaozhuang University Nanjing 211171 P.R. China
| | - Lei Wang
- Key Laboratory of Advanced Functional Materials of Nanjing Nanjing Xiaozhuang University Nanjing 211171 P.R. China
| | - Quan Zhou
- Key Laboratory of Advanced Functional Materials of Nanjing Nanjing Xiaozhuang University Nanjing 211171 P.R. China
| | - Changyun Chen
- Key Laboratory of Advanced Functional Materials of Nanjing Nanjing Xiaozhuang University Nanjing 211171 P.R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu Hydrogen Valley Foshan 528200 P.R. China
| |
Collapse
|
45
|
Lim KRG, Handoko AD, Nemani SK, Wyatt B, Jiang HY, Tang J, Anasori B, Seh ZW. Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion. ACS NANO 2020; 14:10834-10864. [PMID: 32790329 DOI: 10.1021/acsnano.0c05482] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electro-, photo-, and photoelectrocatalysis play a critical role toward the realization of a sustainable energy economy. They facilitate numerous redox reactions in energy storage and conversion systems, enabling the production of chemical feedstock and clean fuels from abundant resources like water, carbon dioxide, and nitrogen. One major obstacle for their large-scale implementation is the scarcity of cost-effective, durable, and efficient catalysts. A family of two-dimensional transition metal carbides, nitrides, and carbonitrides (MXenes) has recently emerged as promising earth-abundant candidates for large-area catalytic energy storage and conversion due to their unique properties of hydrophilicity, high metallic conductivity, and ease of production by solution processing. To take full advantage of these desirable properties, MXenes have been combined with other materials to form MXene hybrids with significantly enhanced catalytic performances beyond the sum of their individual components. MXene hybridization tunes the electronic structure toward optimal binding of redox active species to improve intrinsic activity while increasing the density and accessibility of active sites. This review outlines recent strategies in the design of MXene hybrids for industrially relevant electrocatalytic, photocatalytic, and photoelectrocatalytic applications such as water splitting, metal-air/sulfur batteries, carbon dioxide reduction, and nitrogen reduction. By clarifying the roles of individual material components in the MXene hybrids, we provide design strategies to synergistically couple MXenes with associated materials for highly efficient and durable catalytic applications. We conclude by highlighting key gaps in the current understanding of MXene hybrids to guide future MXene hybrid designs in catalytic energy storage and conversion applications.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Albertus D Handoko
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Srinivasa Kartik Nemani
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Brian Wyatt
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Hai-Ying Jiang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Babak Anasori
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| |
Collapse
|
46
|
Tu X, Gao F, Ma X, Zou J, Yu Y, Li M, Qu F, Huang X, Lu L. Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122776. [PMID: 32334288 DOI: 10.1016/j.jhazmat.2020.122776] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/05/2020] [Accepted: 04/16/2020] [Indexed: 05/19/2023]
Abstract
Pesticides play an important role in agricultural fields, but the pesticide residues pose strong hazardous to human health, thus designing sensitive and fast method for pesticides monitor is highly urgent. Herein, nanoarchitecture of Mxene/carbon nanohorns/β-cyclodextrin-Metal-organic frameworks (MXene/CNHs/β-CD-MOFs) was exploited as electrochemical sensing platform for carbendazim (CBZ) pesticide determination. β-CD-MOFs combined the properties of host-guest recognition of β-CD and porous structure, high porosity and pore volume of MOFs, enabling high adsorption capacity for CBZ. MXene/CNHs possessed large specific surface area, plenty of available active sites, high conductivity, which afforded more mass transport channels and enhances the mass transfer capacity and catalysis for CBZ. With the synergistic effect of MXene/CNHs and β-CD-MOFs, the MXene/CNHs/β-CD-MOFs electrode extended a wide linear range from 3.0 nM to 10.0 μM and a low limit of detection (LOD) of 1.0 nM (S/N = 3). Additionally, the prepared sensor also demonstrated high selectivity, reproducibility and long-term stability, and satisfactory applicability in tomato samples.
Collapse
Affiliation(s)
- Xiaolong Tu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Feng Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xue Ma
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Jin Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yongfang Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Minfang Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China.
| | - Xigen Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
47
|
Zong H, Yu K, Zhu Z. Heterostructure nanohybrids of Ni-doped MoSe2 coupled with Ti2NTx toward efficient overall water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136598] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Li X, Zhao L, Yu J, Liu X, Zhang X, Liu H, Zhou W. Water Splitting: From Electrode to Green Energy System. NANO-MICRO LETTERS 2020; 12:131. [PMID: 34138146 PMCID: PMC7770753 DOI: 10.1007/s40820-020-00469-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/21/2020] [Indexed: 05/19/2023]
Abstract
Hydrogen (H2) production is a latent feasibility of renewable clean energy. The industrial H2 production is obtained from reforming of natural gas, which consumes a large amount of nonrenewable energy and simultaneously produces greenhouse gas carbon dioxide. Electrochemical water splitting is a promising approach for the H2 production, which is sustainable and pollution-free. Therefore, developing efficient and economic technologies for electrochemical water splitting has been an important goal for researchers around the world. The utilization of green energy systems to reduce overall energy consumption is more important for H2 production. Harvesting and converting energy from the environment by different green energy systems for water splitting can efficiently decrease the external power consumption. A variety of green energy systems for efficient producing H2, such as two-electrode electrolysis of water, water splitting driven by photoelectrode devices, solar cells, thermoelectric devices, triboelectric nanogenerator, pyroelectric device or electrochemical water-gas shift device, have been developed recently. In this review, some notable progress made in the different green energy cells for water splitting is discussed in detail. We hoped this review can guide people to pay more attention to the development of green energy system to generate pollution-free H2 energy, which will realize the whole process of H2 production with low cost, pollution-free and energy sustainability conversion.
Collapse
Affiliation(s)
- Xiao Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Lili Zhao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Jiayuan Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
49
|
Xia L, Song H, Li X, Zhang X, Gao B, Zheng Y, Huo K, Chu PK. Hierarchical 0D-2D Co/Mo Selenides as Superior Bifunctional Electrocatalysts for Overall Water Splitting. Front Chem 2020; 8:382. [PMID: 32509725 PMCID: PMC7248173 DOI: 10.3389/fchem.2020.00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Development of efficient electrocatalysts combining the features of low cost and high performance for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) still remains a critical challenge. Here, we proposed a facile strategy to construct in situ a novel hierarchical heterostructure composed of 0D−2D CoSe2/MoSe2 by the selenization of CoMoO4 nanosheets grafted on a carbon cloth (CC). In such integrated structure, CoSe2 nanoparticles dispersed well and tightly bonded with MoSe2 nanosheets, which can not only enhance kinetics due to the synergetic effects, thus promoting the electrocatalytic activity, but also effectively improve the structural stability. Benefiting from its unique architecture, the designed CoSe2/MoSe2 catalyst exhibits superior OER and HER performance. Specifically, a small overpotential of 280 mV is acquired at a current density of 10 mA·cm−2 for OER with a small Tafel slope of 86.8 mV·dec−1, and the overpotential is 90 mV at a current density of 10 mA·cm−2 for HER with a Tafel slope of 84.8 mV·dec−1 in 1 M KOH. Furthermore, the symmetrical electrolyzer assembled with the CoSe2/MoSe2 catalysts depicts a small cell voltage of 1.63 V at 10 mA·cm−2 toward overall water splitting.
Collapse
Affiliation(s)
- Lu Xia
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China.,The College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Hao Song
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China
| | - Xingxing Li
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China
| | - Xuming Zhang
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China.,Departments of Physics, Materials Science and Engineering, and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yang Zheng
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China
| | - Paul K Chu
- Departments of Physics, Materials Science and Engineering, and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Liu D, Wang D, Jing X, Zhao X, Xi D, Dang D, Meng L. Continuous phase regulation of MoSe2 from 2H to 1T for the optimization of peroxidase-like catalysis. J Mater Chem B 2020; 8:6451-6458. [DOI: 10.1039/d0tb00115e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Simultaneous and synergistic modulation of the crystal phase and disorder in MoSe2 to dramatically enhance their peroxidase-like activity.
Collapse
Affiliation(s)
- Daomeng Liu
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Daquan Wang
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xunan Jing
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiaoping Zhao
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Duo Xi
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Dongfeng Dang
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Lingjie Meng
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|