1
|
Cui F, García-López V, Wang Z, Luo Z, He D, Feng X, Dong R, Wang X. Two-Dimensional Organic-Inorganic van der Waals Hybrids. Chem Rev 2025; 125:445-520. [PMID: 39692750 DOI: 10.1021/acs.chemrev.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Two-dimensional organic-inorganic (2DOI) van der Waals hybrids (vdWhs) have emerged as a groundbreaking subclass of layer-stacked (opto-)electronic materials. The development of 2DOI-vdWhs via systematically integrating inorganic 2D layers with organic 2D crystals at the molecular/atomic scale extends the capabilities of traditional 2D inorganic vdWhs, thanks to their high synthetic flexibility and structural tunability. Constructing an organic-inorganic hybrid interface with atomic precision will unlock new opportunities for generating unique interfacial (opto-)electronic transport properties by combining the strengths of organic and inorganic layers, thus allowing us to satisfy the growing demand for multifunctional applications. Here, this review provides a comprehensive overview of the latest advancements in the chemical synthesis, structural characterization, and numerous applications of 2DOI-vdWhs. Firstly, we introduce the chemistry and the physical properties of the recently rising organic 2D crystals (O2DCs), which feature crystalline 2D nanostructures comprising carbon-rich repeated units linked by covalent/noncovalent bonds and exhibit strong in-plane extended π-conjugation and weak interlayer vdWs interaction. Simultaneously, representative inorganic 2D crystals (I2DCs) are briefly summarized. After that, the synthetic strategies will be systematically summarized, including synthesizing single-component O2DCs with dimensional control and their vdWhs with I2DCs. With these synthetic approaches, the control in the dimension, the stacking modes, and the composition of the 2DOI-vdWhs will be highlighted. Subsequently, a special focus will be given on the discussion of the optical and electronic properties of the single-component 2D materials and their vdWhs, which will be closely relevant to their structures, so that we can establish a general structure-property relationship of 2DOI-vdWhs. In addition to these physical properties, the (opto-)electronic devices such as transistors, photodetectors, sensors, spintronics, and neuromorphic devices as well as energy devices will be discussed. Finally, we provide an outlook to discuss the key challenges for the 2DOI-vdWhs and their future development. This review aims to provide a foundational understanding and inspire further innovation in the development of next-generation 2DOI-vdWhs with transformative technological potential.
Collapse
Affiliation(s)
- Fucai Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Víctor García-López
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Daowei He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| | - Xinran Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- School of Integrated Circuits, Nanjing University, Suzhou 215163, China
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Interdisciplinary Research Center for Future Intelligent Chips (Chip-X), Nanjing University, Suzhou 215163, China
- Suzhou Laboratory, Suzhou 215163, China
| |
Collapse
|
2
|
Yue F, Xiang M, Zheng J, Zhu J, Wei J, Yang P, Shi H, Dong Q, Ding W, Chen C, Yang Y, Zhang CJ, Zhang H, Zhu Q. One-step gas-phase syntheses of few-layered single-phase Ti 2NCl 2 and Ti 2CCl 2 MXenes with high stabilities. Nat Commun 2024; 15:10334. [PMID: 39609424 PMCID: PMC11605084 DOI: 10.1038/s41467-024-54815-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
With the iteration of etching techniques, MXenes have exhibited astounding accomplishments. Nevertheless, intricate procedures, expensive precursors, and degradation present obstacles for practical application. Although chemical vapor deposition has been developed as a solution, direct syntheses of few-layered single-phase MXenes remain an open challenge, especially for Ti2NCl2. Here, we propose a one-step gas-phase synthetic method to fabricate few-layered single-phase Ti2NCl2 and Ti2CCl2. Design of the activation section and segregation from the synthetic zone are the key factors. The reaction paths, synthetic mechanism, and degradation behavior are revealed. Due to the low proportion of Ti vacancies, the time constant of the Ti2CCl2 solution is 73 times longer than that of Ti2CClx. Furthermore, the specific capacity for Li+ storage with Ti2NCl2 is 1.37 times greater than that of Ti2CCl2. The one-step gas-phase method will accelerate practical application of MXenes.
Collapse
Affiliation(s)
- Fen Yue
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoqiao Xiang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zheng
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiuyi Zhu
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiake Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Puheng Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hebang Shi
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghua Dong
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Ding
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenchen Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yafeng Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanfang John Zhang
- College of Materials Science & Engineering, Sichuan University, Chengdu, 610065, China
| | - Huigang Zhang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingshan Zhu
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
3
|
Tahir B, Alraeesi A, Tahir M. Metal-organic framework (MOF) integrated Ti 3C 2 MXene composites for CO 2 reduction and hydrogen production applications: a review on recent advances and future perspectives. Front Chem 2024; 12:1448700. [PMID: 39411265 PMCID: PMC11473348 DOI: 10.3389/fchem.2024.1448700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Titanium carbide (Ti3C2) MXenes due to their structural and optical characteristics rapidly emerged as the preferred material, particularly in catalysis and energy applications. On the other hand, because of its enormous surface/volume ratio and porosity, Metal-organic Frameworks (MOFs) show promise in several areas, including catalysis, delivery, and storage. The potential to increase the applicability of these magic compounds might be achieved by taking advantage of the inherent flexibility in design and synthesis, and optical characteristics of MXenes. Thus, coupling MOF with Ti3C2 MXenes to construct hybrid composites is considered promising in a variety of applications, including energy conversion and storage. This paper presents a systematic discussion of current developments in Ti3C2 MXenes/MOF composites for photocatalytic reduction of CO2, and production of hydrogen through water splitting. Initially, the overview and characteristics of MXenes and MOFs are independently discussed and then a detailed investigation of efficiency enhancement is examined. Different strategies such as engineering aspects, construction of binary and ternary composites and their efficiency enhancement mechanism are deliberated. Finally, different strategies to explore further in various other applications are suggested. Although Ti3C2 MXenes/MOF composites have not yet been thoroughly investigated, they are potential photocatalysts for the production of solar fuel and ought to be looked into further for a range of applications.
Collapse
Affiliation(s)
- Beenish Tahir
- Chemical and Petroleum Engineering Department, UAE University, Al Ain, United Arab Emirates
| | - Abdulrahman Alraeesi
- Chemical and Petroleum Engineering Department, UAE University, Al Ain, United Arab Emirates
- National Water and Energy Research Center, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Afzal S, Rehman AU, Najam T, Hossain I, Abdelmotaleb MAI, Riaz S, Karim MR, Shah SSA, Nazir MA. Recent advances of MXene@MOF composites for catalytic water splitting and wastewater treatment approaches. CHEMOSPHERE 2024; 364:143194. [PMID: 39209044 DOI: 10.1016/j.chemosphere.2024.143194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
MXenes are a group of 2D material which have been derived from the layered transition metal nitrides and carbides and have the characteristics like electrical conductivity, high surface area and variable surface chemical composition. Self-assembly of clusters/metal ions and organic linkers forms metal organic framework (MOF). Their advantages of ultrahigh porosity, highly exposed active sites and many pore architectures have garnered them a lot of attention. But poor conductivity and instability plague several conventional MOF. To address the issue, MOF can be linked with MXenes that have rich surface functional groups and excellent electrical conductivity. In this review, different etching methods for exfoliation of MXene along with the synthesis methods of MXene/MOF composites are reviewed, including hydrothermal method, solvothermal method, in-situ growth method, and self-assembly method. Moreover, application of these MXene/MOF composites for catalytic water splitting and wastewater treatment were also discussed in details. In addition to increasing a single MOF conductivity and stability, MXenes can add a variety of new features, such the template effect. Due to these benefits, MXene/MOF composites can be effectively used in several applications, including photocatalytic/electrocatalytic water splitting, adsorption and degradation of pollutants from wastewater. Finally, the authors explored the current challenges and the future opportunities to improve the efficiency of MXene/MOF composites.
Collapse
Affiliation(s)
- Samreen Afzal
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tayyaba Najam
- Research and Development Division, SciTech International Pvt Ltd, G-10/1 Islamabad, Pakistan
| | - Ismail Hossain
- Department of Nuclear and Renewable Energy, Ural Federal University, Yekaterinburg, 620002, Russia
| | - Mostafa A I Abdelmotaleb
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Sundas Riaz
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Md Rezaul Karim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
5
|
Liu B, Zhao P, Wu Z, Liu C, Jing H, Song J, Lu K, Lei W, Hao Q. Prussian blue analogue-derived CoP nanocubes supported on MXene toward an efficient bifunctional electrode with enhanced overall water splitting. J Colloid Interface Sci 2024; 661:709-719. [PMID: 38320407 DOI: 10.1016/j.jcis.2024.01.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
The exploration of bifunctional catalyst with economic, durable, and efficient performance plays a crucial role to boost both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in overall water splitting. Herein, we report a feasible strategy to design effective heterostructure between CoP and Ti3C2Tx MXene (denoted as CoP/Ti3C2Tx). This approach allows for the growth of CoP nanoparticles with uniform size of 5 nm on the Ti3C2Tx MXene, further enhancing the water electrolysis efficiency. The CoP/Ti3C2Tx bifunctional catalyst demonstrates an exceptional HER activity with a satisfactory overpotential of 103 mV at 10 mA cm-2, and also can drive 10 mA cm-2 for OER with the overpotential of 312 mV in 1.0 M KOH. Moreover, the CoP/Ti3C2Tx-based electrolyzer exhibits high electrochemical stability for 24 h with a low required voltage of 1.66 V at 10 mA cm-2. The density functional theory (DFT) calculations reveal that the introduction of Ti3C2Tx MXene significantly adjusts d-band center towards Fermi level and expand total density of states, resulting in great electrical conductivity, enhanced water adsorption, and activation. This study provides an available mode for effective design and construction of non-noble-metal-based dual-functional catalyst toward practical energy conversion.
Collapse
Affiliation(s)
- Boyuan Liu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Peng Zhao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Zongdeng Wu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| | - Cai Liu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Haiyan Jing
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Juanjuan Song
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Keren Lu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Wu Lei
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Qingli Hao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
6
|
Lv Z, Zhang H, Liu C, Li S, Song J, He J. Oxygen-Bridged Cobalt-Chromium Atomic Pair in MOF-Derived Cobalt Phosphide Networks as Efficient Active Sites Enabling Synergistic Electrocatalytic Water Splitting in Alkaline Media. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306678. [PMID: 37997194 PMCID: PMC10797420 DOI: 10.1002/advs.202306678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Electrochemical water splitting offers a most promising pathway for "green hydrogen" generation. Even so, it remains a struggle to improve the electrocatalytic performance of non-noble metal catalysts, especially bifunctional electrocatalysts. Herein, aiming to accelerate the hydrogen and oxygen evolution reactions, an oxygen-bridged cobalt-chromium (Co-O-Cr) dual-sites catalyst anchored on cobalt phosphide synthesized through MOF-mediation are proposed. By utilizing the filling characteristics of 3d orbitals and modulated local electronic structure of the catalytic active site, the well-designed catalyst requires only an external voltage of 1.53 V to deliver the current density of 20 mA cm-2 during the process of water splitting apart from the superb HER and OER activity with a low overpotential of 87 and 203 mV at a current density of 10 mA cm-2 , respectively. Moreover, density functional theory (DFT) calculations are utilized to unravel mechanistic investigations, including the accelerated adsorption and dissociation process of H2 O on the Co-O-Cr moiety surface, the down-shifted d-band center, a lowered energy barrier for the OER and so on. This work offers a design direction for optimizing catalytic activity toward energy conversion.
Collapse
Affiliation(s)
- Zepeng Lv
- Zhongyuan critical metals laboratoryZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Huakui Zhang
- Henan province industrial technology research institute of resources and materialsZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Chenhui Liu
- Henan province industrial technology research institute of resources and materialsZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Shaolong Li
- Henan province industrial technology research institute of resources and materialsZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Jianxun Song
- Zhongyuan critical metals laboratoryZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Jilin He
- Zhongyuan critical metals laboratoryZhengzhou UniversityZhengzhouHenan450001P. R. China
| |
Collapse
|
7
|
Cao X, Gao Y, Li Y, Weragoda DM, Tian G, Zhang W, Zhang Z, Zhao X, Chen B. Research progress on MOFs and their derivatives as promising and efficient electrode materials for electrocatalytic hydrogen production from water. RSC Adv 2023; 13:24393-24411. [PMID: 37583672 PMCID: PMC10424057 DOI: 10.1039/d3ra04110g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Hydrogen energy is considered to be the most potential "ultimate energy source" due to its high combustion calorific value, cleanliness, and pollution-free characteristics. Furthermore, the production of hydrogen via the electrolysis of water has the advantages of simplicity, high efficiency, environmentally safe, and high-purity hydrogen. However, it is also associated with issues such as high-power consumption for the reaction and limited large-scale application of noble metal catalysts. Metal-organic frameworks (MOFs) are porous composite materials composed of metal ions and organic functional groups through orderly coordination with large specific surface areas and large porosity. Herein, we focus on the research status of MOFs and their transition metal derivatives for electrocatalytic water splitting to produce hydrogen and briefly describe the reaction mechanism and evaluation parameters of the electrocatalytic hydrogen evolution and oxygen evolution reactions. Furthermore, the relationship between the catalytic behavior and catalytic activity of different MOF-based catalysts and their morphology, elemental composition, and synthetic strategy is analyzed and discussed. The reasons for the excellent activity and poor stability of the original MOF materials for the electrolysis of water reaction are shown through analysis, and using various means to improve the catalytic activity by changing the electronic structure, active sites, and charge transfer rate, MOF-based catalysts were obtained. Finally, we present perspectives on the future development of MOFs for the electrocatalytic decomposition of water.
Collapse
Affiliation(s)
- Xuankai Cao
- Shandong Technology Innovation Center of Carbon Neutrality, School of Thermal Engineering, Shandong Jianzhu University Jinan 250013 China +8613864154887
| | - Yan Gao
- Shandong Technology Innovation Center of Carbon Neutrality, School of Thermal Engineering, Shandong Jianzhu University Jinan 250013 China +8613864154887
- Shandong Province Jinan Ecological and Environmental Monitoring Center Jinan 250101 China
- School of Mechanical Engineering Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Yanteng Li
- Shandong Technology Innovation Center of Carbon Neutrality, School of Thermal Engineering, Shandong Jianzhu University Jinan 250013 China +8613864154887
| | - Delika M Weragoda
- School of Mechanical Engineering Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Guohong Tian
- School of Mechanical Engineering Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Wenke Zhang
- Shandong Technology Innovation Center of Carbon Neutrality, School of Thermal Engineering, Shandong Jianzhu University Jinan 250013 China +8613864154887
| | - Zhanchao Zhang
- Shandong Province Jinan Ecological and Environmental Monitoring Center Jinan 250101 China
| | - Xudong Zhao
- Energy and Environmental Institute, University of Hull Hull HU6 7RX UK
| | - Baoming Chen
- Shandong Technology Innovation Center of Carbon Neutrality, School of Thermal Engineering, Shandong Jianzhu University Jinan 250013 China +8613864154887
| |
Collapse
|
8
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Huang P, Han WQ. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. NANO-MICRO LETTERS 2023; 15:68. [PMID: 36918453 PMCID: PMC10014646 DOI: 10.1007/s40820-023-01039-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/05/2023] [Indexed: 05/31/2023]
Abstract
Since the discovery in 2011, MXenes have become the rising star in the field of two-dimensional materials. Benefiting from the metallic-level conductivity, large and adjustable gallery spacing, low ion diffusion barrier, rich surface chemistry, superior mechanical strength, MXenes exhibit great application prospects in energy storage and conversion, sensors, optoelectronics, electromagnetic interference shielding and biomedicine. Nevertheless, two issues seriously deteriorate the further development of MXenes. One is the high experimental risk of common preparation methods such as HF etching, and the other is the difficulty in obtaining MXenes with controllable surface groups. Recently, Lewis acidic etching, as a brand-new preparation strategy for MXenes, has attracted intensive attention due to its high safety and the ability to endow MXenes with uniform terminations. However, a comprehensive review of Lewis acidic etching method has not been reported yet. Herein, we first introduce the Lewis acidic etching from the following four aspects: etching mechanism, terminations regulation, in-situ formed metals and delamination of multi-layered MXenes. Further, the applications of MXenes and MXene-based hybrids obtained by Lewis acidic etching route in energy storage and conversion, sensors and microwave absorption are carefully summarized. Finally, some challenges and opportunities of Lewis acidic etching strategy are also presented.
Collapse
Affiliation(s)
- Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
10
|
Shuai TY, Zhan QN, Xu HM, Huang CJ, Zhang ZJ, Li GR. Recent advances in the synthesis and electrocatalytic application of MXene materials. Chem Commun (Camb) 2023; 59:3968-3999. [PMID: 36883557 DOI: 10.1039/d2cc06418a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
MXenes are a class of two-dimensional materials with a graphene-like structure, which have excellent optical, biological, thermodynamic, electrical and magnetic properties. Due to the diversity resulting from the combination of transition metals and C/N, the MXene family has expanded to more than 30 members and been applied in many fields with broad application prospects. Among their applications, electrocatalytic applications have achieved many breakthroughs. Therefore, in this review, we summarize the reports on the preparation of MXenes and their application in electrocatalysis published in the last five years and describe the two main methods for the preparation of MXenes, i.e., bottom-up and top to bottom synthesis. Different methods may change the structure or surface termination of MXenes, and accordingly affect their electrocatalytic performance. Furthermore, we highlight the application of MXenes in the electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and multi-functionalization. It can be concluded that the electrocatalytic properties of MXenes can be modified by changing the type of functional groups or doping. Also, MXenes can be compounded with other materials to produce electronic coupling and improve the catalytic activity and stability of the resulting composites. In addition, Mo2C and Ti3C2 are two types of MXene materials that have been widely studied in the field of electrocatalysis. At present, research on the synthesis of MXenes is focused on carbides, whereas research on nitrides is rare, and there are no synthesis methods meeting the requirements of green, safety, high efficiency and industrialization simultaneously. Therefore, it is very important to explore environmentally friendly industrial production routes and devote more research efforts to the synthesis of MXene nitrides.
Collapse
Affiliation(s)
- Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Xiang Y, Yan H, Peng F, Ke W, Faheem A, Li M, Hu Y. Microorganisms@ aMIL-125 (Ti): An Amorphous Metal-Organic Framework Induced by Microorganisms and Their Applications. ACS OMEGA 2023; 8:2164-2172. [PMID: 36687038 PMCID: PMC9850781 DOI: 10.1021/acsomega.2c06329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Amorphous metal-organic framework (aMOF)-based materials have attracted considerable attention as an emerging class of nanomaterials. Herein, novel microorganisms@aMIL-125 (Ti) composites including yeast@aMIL-125 (Ti), PCC 6803@aMIL-125 (Ti), and Escherichia coli@aMIL-125 (Ti) composites were respectively synthesized by self-assembling aMOFs on the microorganisms' surface. The functional groups on the microorganisms' surface induced structural defects and participated in the formation of aMIL-125 (Ti) composites. Finally, the application of microorganisms@aMIL-125 (Ti) composites for the removal of glyphosate from aqueous solution was selected as a model reaction to illustrate their potential for environmental protection. The present method is not only economical but also has other advantages including ease of operation, environmentally friendly assay, and high adsorption. The maximum adsorption capacity of aMIL-125 (Ti) was 1096.25 mg g-1, which was 1.74 times that of crystalline MIL-125 (Ti). Therefore, the microorganisms@aMOFs composites will have broad application prospects in energy storage, drug delivery, catalysis, adsorbing toxic substances, sensing, encapsulating and delivering enzymes, and in other fields.
Collapse
Affiliation(s)
- Yuqiang Xiang
- State
Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei
Hongshan Laboratory, Wuhan 430070, China
- College
of Life Science and Technology, Huazhong
Agricultural University, Wuhan 430070, China
- College
of Veterinary Medicine, Henan Agricultural
University, Zhengzhou 450002, China
| | - Huaduo Yan
- College
of Food and Biological Engineering, Henan
University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Fei Peng
- State
Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei
Hongshan Laboratory, Wuhan 430070, China
- College
of Life Science and Technology, Huazhong
Agricultural University, Wuhan 430070, China
| | - Weikang Ke
- State
Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei
Hongshan Laboratory, Wuhan 430070, China
- College
of Life Science and Technology, Huazhong
Agricultural University, Wuhan 430070, China
| | - Aroosha Faheem
- State
Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei
Hongshan Laboratory, Wuhan 430070, China
- College
of Life Science and Technology, Huazhong
Agricultural University, Wuhan 430070, China
| | - Mingshun Li
- State
Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei
Hongshan Laboratory, Wuhan 430070, China
- College
of Life Science and Technology, Huazhong
Agricultural University, Wuhan 430070, China
| | - Yonggang Hu
- State
Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei
Hongshan Laboratory, Wuhan 430070, China
- College
of Life Science and Technology, Huazhong
Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Chen J, Luo X, Zhang H, Liang X, Xiao K, Ouyang T, Dan M, Liu ZQ. Constructing superhydrophilic CoRu-LDH/PANI nanowires with optimized electronic structure for hydrogen evolution reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Peera SG, Koutavarapu R, Chao L, Singh L, Murugadoss G, Rajeshkhanna G. 2D MXene Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction (HER): A Review. MICROMACHINES 2022; 13:1499. [PMID: 36144122 PMCID: PMC9500977 DOI: 10.3390/mi13091499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 05/27/2023]
Abstract
MXenes, a novel family of 2D transition metal carbide, nitride and carbonitride materials, have been gaining tremendous interest in recent days as potential electrocatalysts for various electrochemical reactions, including hydrogen evolution reaction (HER). MXenes are characterized by their etchable metal layers, excellent structural stability, versatility for heteroatoms doping, excellent electronic conductivity, unique surface functional groups and admirable surface area, suitable for the role of electrocatalyst/support in electrochemical reactions, such as HER. In this review article, we summarized recent developments in MXene-based electrocatalysts synthesis and HER performance in terms of the theoretical and experimental point of view. We systematically evaluated the superiority of the MXene-based catalysts over traditional Pt/C catalysts in terms of HER kinetics, Tafel slope, overpotential and stability, both in acidic and alkaline electrolytic environments. We also pointed out the motives behind the electro catalytic enhancements, the effect of synthesis conditions, heteroatom doping, the effect of surface terminations on the electrocatalytic active sites of various MXenes families. At the end, various possible approaches were recommended for a deeper understanding of the active sites and catalytic improvement of MXenes catalysts for HER.
Collapse
Affiliation(s)
- Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Dalseo-gu, Daegu 42601, Korea
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Liu Chao
- Engineering Research Center for Hydrogen Energy Materials and Devices, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi 175001, Himachal Pradesh, India
- Department of Civil Engineering, Center for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamilnadu, India
| | - Gaddam Rajeshkhanna
- Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| |
Collapse
|
14
|
Hussain S, Vikraman D, Nazir G, Mehran MT, Shahzad F, Batoo KM, Kim HS, Jung J. Development of Binder-Free Three-Dimensional Honeycomb-like Porous Ternary Layered Double Hydroxide-Embedded MXene Sheets for Bi-Functional Overall Water Splitting Reactions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2886. [PMID: 36014753 PMCID: PMC9412967 DOI: 10.3390/nano12162886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, a honeycomb-like porous-structured nickel-iron-cobalt layered double hydroxide/Ti3C2Tx (NiFeCo-LDH@MXene) composite was successfully fabricated on a three-dimensional nickel foam using a simple hydrothermal approach. Owing to their distinguishable characteristics, the fabricated honeycomb porous-structured NiFeCo-LDH@MXene composites exhibited outstanding bifunctional electrocatalytic activity for pair hydrogen and oxygen evolution reactions in alkaline medium. The developed NiFeCo-LDH@MXene electrocatalyst required low overpotentials of 130 and 34 mV to attain a current density of 10 mA cm-2 for OER and HER, respectively. Furthermore, an assembled NiFeCo-LDH@MXene‖NiFeCo-LDH@MXene device exhibited a cell voltage of 1.41 V for overall water splitting with a robust firmness for over 24 h to reach 10 mA cm-2 current density, signifying outstanding performance for water splitting reactions. These results demonstrated the promising potential of the designed 3D porous NiFeCo-LDH@MXene sheets as outstanding candidates to replace future green energy conversion devices.
Collapse
Affiliation(s)
- Sajjad Hussain
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Muhammad Taqi Mehran
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - Jongwan Jung
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
15
|
Bai X, Guan J. MXenes for electrocatalysis applications: Modification and hybridization. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64030-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Wang R, Li M, Sun K, Zhang Y, Li J, Bao W. Element-Doped Mxenes: Mechanism, Synthesis, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201740. [PMID: 35532321 DOI: 10.1002/smll.202201740] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Heteroatom doping can endow MXenes with various new or improved electromagnetic, physicochemical, optical, and structural properties. This greatly extends the arsenal of MXenes materials and their potential for a spectrum of applications. This article comprehensively and critically discusses the syntheses, properties, and emerging applications of the growing family of heteroatom-doped MXenes materials. First, the doping strategies, synthesis methods, and theoretical simulations of high-performance MXenes materials are summarized. In order to achieve high-performance MXenes materials, the mechanism of atomic element doping from three aspects of lattice optimization, functional substitution, and interface modification is analyzed and summarized, aiming to provide clues for developing new and controllable synthetic routes. The mechanisms underlying their advantageous uses for energy storage, catalysis, sensors, environmental purification and biomedicine are highlighted. Finally, future opportunities and challenges for the study and application of multifunctional high-performance MXenes are presented. This work could open up new prospects for the development of high-performance MXenes.
Collapse
Affiliation(s)
- Ronghao Wang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Muhan Li
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yuhao Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jingfa Li
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Weizhai Bao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
17
|
Zhao J, Luo S, Chen Y, Zhu R, Liang J, Wang F, Fu X, Wu C. Heterostructured Mo‐Doped CoP on MXene Supports Enhanced the Alkaline Hydrogen Evolution Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiafu Zhao
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Shaojuan Luo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Sun Yat-sen University Guangzhou Guangdong 510006 China
| | - Yonghui Chen
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Runxian Zhu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Jinyi Liang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Fei Wang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Xiaobo Fu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China
- Key Laboratory of Distributed Energy Systems of Guangdong Province & Department of Energy and Chemical Engineering Dongguan University of Technology Dongguan Guangdong 523808 China
| | - Chuande Wu
- Department of Chemistry Zhejiang University Hangzhou 310000 China
| |
Collapse
|
18
|
Johnson D, Qiao Z, Uwadiunor E, Djire A. Holdups in Nitride MXene's Development and Limitations in Advancing the Field of MXene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106129. [PMID: 35098657 DOI: 10.1002/smll.202106129] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/08/2021] [Indexed: 06/14/2023]
Abstract
As nanomaterials are becoming a key component in various electronics, 2D nanomaterials are emerging and attracting tremendous attention in the scientific community due to their unique physical, chemical, and structural properties. In recent years, a new family of 2D carbides and nitrides, known as MXenes, has become the center of attention for many electrochemical energy storage and conversion systems. While nitride MXenes have some publications centered around them, the overwhelming majority revolve around carbide and their direct application to systems without understanding the underlying mechanism behind their performance. The lack of publications in both of these fields, nitrides and mechanistic understanding, causes a major stopgap in MXene research and needs to be remedied in order to truly utilize their potential for future electronics and energy conversion systems. In this work, the limited works on nitride MXenes and the applications of in situ/operando characterization techniques in understanding the underlying mechanisms of energy storage and conversion in MXenes are reviewed, major progress and remaining challenges in both fields are identified, recommendations on how to circumvent the challenges and limitations are provided, and finally, new research directions that must be performed to advance the field of 2D carbide and nitride MXenes are proposed.
Collapse
Affiliation(s)
- Denis Johnson
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Zhi Qiao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ekenedilichukwu Uwadiunor
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Abdoulaye Djire
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
19
|
Yang RR, Wu YL, Guo Y, Yan YT, Li RJ, Yang GP, Su XL, Fu C, He XH, Wang Y. N-doped carbon material encapsulated cobalt nanoparticles for bifunctional electrocatalysts derived from a porous Co(II)-based metal-organic frameworks (MOFs). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Saini H, Srinivasan N, Šedajová V, Majumder M, Dubal DP, Otyepka M, Zbořil R, Kurra N, Fischer RA, Jayaramulu K. Emerging MXene@Metal-Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS NANO 2021; 15:18742-18776. [PMID: 34793674 DOI: 10.1021/acsnano.1c06402] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rapid progress on developing smart materials and design of hybrids is motivated by pressing challenges associated with energy crisis and environmental remediation. While emergence of versatile classes of nanomaterials has been fascinating, the real excitement lies in the design of hybrid materials with tunable properties. Metal-organic frameworks (MOFs) are the key materials for gas sorption and electrochemical applications, but their sustainability is challenged by limited chemical stability, poor electrical conductivity, and intricate, inaccessible pores. Despite tremendous efforts towards improving the stability of MOF materials, little progress has made researchers inclined toward developing hybrid materials. MXenes, a family of two-dimensional transition-metal carbides, nitrides and carbonitrides, are known for their compositional versatility and formation of a range of structures with rich surface chemistry. Hybridization of MOFs with functional layered MXene materials may be beneficial if the host structure provides appropriate interactions for stabilizing and improving the desired properties. Recent efforts have focused on integrating Ti3C2Tx and V2CTx MXenes with MOFs to result in hybrid materials with augmented electrochemical and physicochemical properties, widening the scope for emerging applications. This review discusses the potential design strategies of MXene@MOF hybrids, attributes of tunable properties in the resulting hybrids, and their applications in water treatment, sensing, electrochemical energy storage, smart textiles, and electrocatalysis. Comprehensive discussions on the recent efforts on rapidly evolving MXene@MOF materials for various applications and potential future directions are highlighted.
Collapse
Affiliation(s)
- Haneesh Saini
- Department of Chemistry, Indian Institute of Technology, Jammu, Jammu and Kashmir 181221, India
| | - Nikitha Srinivasan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Veronika Šedajová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mandira Majumder
- Department of Chemistry, Indian Institute of Technology, Jammu, Jammu and Kashmir 181221, India
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Narendra Kurra
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284 Sangareddy, Telangana, India
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Centre, Technical University of Munich, 85748 Garching, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology, Jammu, Jammu and Kashmir 181221, India
| |
Collapse
|