1
|
Nthunya LN, Mosai AK, López-Maldonado EA, Bopape M, Dhibar S, Nuapia Y, Ajiboye TO, Buledi JA, Solangi AR, Sherazi STH, Ndungu PN, Mahlangu OT, Mamba BB. Unseen threats in aquatic and terrestrial ecosystems: Nanoparticle persistence, transport and toxicity in natural environments. CHEMOSPHERE 2025; 382:144470. [PMID: 40378499 DOI: 10.1016/j.chemosphere.2025.144470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/24/2025] [Accepted: 05/03/2025] [Indexed: 05/19/2025]
Abstract
Although nanoparticles (NPs) are increasingly used in various industries, their uncontrolled environmental release presents a potential risk to water bodies, vegetation and human health. Although previous review studies evaluated the toxicity and bioaccumulation of NPs, their long-term ecological impacts and transport dynamics in aquatic and terrestrial systems remain unexplored. The current review examined the mechanistic bioaccumulation, transport and environmental persistence of NPs, highlighting the need for concurrent risk assessment, regulation and management strategies. The multifaceted nature of nanotechnology necessitates a balanced approach considering both the benefits of NPs and their potential environmental and health risks, requiring comprehensive risk assessment and management strategies. The complexities of NPs risk assessment, emphasizing the unique properties of NPs influencing their toxicity and environmental behavior are critically addressed. Strategies to mitigate NPs' environmental impact include advanced monitoring techniques, regulatory frameworks tailored to NPs' unique properties, promotion of green nanotechnology practices, and NP remediation technologies. Given the complexity and uncertainty surrounding NPs, integration of regulatory, technological, and research-based strategies is imperative. This involves detailed NPs characterization techniques providing basic data for environmental fate prediction models and understanding of biologically relevant risk assessment models to safeguard our environment and public health. In this study, the recent advances in NPs persistence, environmental transport modelling and toxicity mechanisms are uniquely integrated, providing a framework to ecological risk assessment and regulatory approaches.
Collapse
Affiliation(s)
- Lebea N Nthunya
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1709, Johannesburg, South Africa.
| | - Alseno K Mosai
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
| | | | - Mokgadi Bopape
- Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Private Bag x680, Pretoria, 0001, South Africa
| | - Subhendu Dhibar
- Department of Chemistry, The University of Burdwan, Burdwan, 713104, WB, India
| | - Yannick Nuapia
- Pharmacy Department, School of Healthcare Sciences, University of Limpopo, Polokwane, South Africa
| | - Timothy O Ajiboye
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, 6019, Gqeberha, South Africa
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Syed Tufail H Sherazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Patrick N Ndungu
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Oranso T Mahlangu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1709, Johannesburg, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1709, Johannesburg, South Africa
| |
Collapse
|
2
|
Kulus D, Tymoszuk A, Kulpińska A, Dębska B, Michalska A, Nowakowska J, Wichrowska D, Wojnarowicz J, Szałaj U. Nanoparticles in Plant Cryopreservation: Effects on Genetic Stability, Metabolic Profiles, and Structural Integrity in Bleeding Heart (Papaveraceae) Cultivars. Nanotechnol Sci Appl 2025; 18:35-56. [PMID: 39989598 PMCID: PMC11844321 DOI: 10.2147/nsa.s485428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose Studying the role of nanoparticles in plant cryopreservation is essential for developing innovative methods to conserve plant genetic resources amid environmental challenges. This research investigated the effects of gold (AuNPs), silver (AgNPs), and zinc oxide (ZnONPs) nanoparticles on the structural integrity, genetic stability, and metabolic activity of cryopreserved plant materials with medicinal properties. Methods Shoot tips from two bleeding heart (Lamprocapnos spectabilis (L). Fukuhara) cultivars, 'Gold Heart' and 'Valentine', were cryopreserved using the encapsulation-vitrification technique, with nanoparticles added at concentrations of 5 or 15 ppm during either the preculture phase or the alginate bead matrix formation. Post-recovery, the plants underwent histological, molecular, and biochemical analyses. Results Electron microscopy observations of LN-derived plant material confirmed the production of micro-morpho-structurally stable cells. It was found that nanoparticles could penetrate the cell and accumulate in its various compartments, including the nucleus. As for the genetic analysis, SCoT markers identified polymorphisms in 11.5% of 'Gold Heart' plants, while RAPDs detected mutations in 1.9% of 'Valentine' specimens. Analysis of Molecular Variance (AMOVA) indicated that in the 'Valentine' cultivar, all genetic variation detected was within populations and not significantly affected by nanoparticle treatments. In 'Gold Heart', the majority (94%) of genetic variation detected was within populations, while 6% was attributed to nanoparticle treatments (mostly the application of 15 ppm ZnONPs). The application of nanoparticles significantly influenced the metabolic profile of bleeding heart plants, particularly affecting the synthesis of phenolic acids and aldehydes, as well as the antioxidant mechanisms in both 'Gold Heart' and 'Valentine' cultivars. The content of proteins was altered in 'Gold Heart' plants but not in 'Valentine'. Conclusion The results suggest that different types and concentrations of NPs have varying effects on the production of specific metabolites, which could be harnessed to modulate plant secondary metabolism for desired pharmacological outcomes.
Collapse
Affiliation(s)
- Dariusz Kulus
- Laboratory of Horticulture, Department of Biotechnology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Tymoszuk
- Laboratory of Horticulture, Department of Biotechnology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Kulpińska
- Laboratory of Horticulture, Department of Biotechnology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Bożena Dębska
- Department of Biogeochemistry and Soil Science, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Agata Michalska
- Department of Biogeochemistry and Soil Science, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Julita Nowakowska
- Imaging Laboratory, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Wichrowska
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Szałaj
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Chandoliya R, Sharma S, Sharma V, Joshi R, Sivanesan I. Titanium Dioxide Nanoparticle: A Comprehensive Review on Synthesis, Applications and Toxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2964. [PMID: 39519883 PMCID: PMC11547906 DOI: 10.3390/plants13212964] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology has garnered significant interest worldwide due to its wide-ranging applications across various industries. Titanium dioxide nanoparticles are one type of nanoparticle that is commonly utilised in everyday use and can be synthesized by different techniques using physical, chemical and biological extracts. Green synthesis is an economical, environmentally benign and non-toxic method of synthesising nanoparticles. Titanium dioxide nanoparticles have a positive impact on plant physiology, particularly in response to biotic and abiotic stresses, depending on various factors like size, concentration, exposure of the nanoparticles and other variables. Further, titanium dioxide nanoparticles have many applications, such as being used as nano-fertilizers, adsorption of heavy metal from industrial wastewater and antimicrobial activity, as discussed in this review paper. Previous studies investigated whether titanium dioxide nanoparticles also induce genotoxicity may be due to mishandling procedure, exposure time, size, concentration and other variables. This is still contradictory and requires more research. The present review is a pragmatic approach to summarize the synthesis, application, nanotoxicity, genotoxicity and eco-friendly method of nanoparticle synthesis and disposable.
Collapse
Affiliation(s)
- Rakhi Chandoliya
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Shivika Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.S.)
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.S.)
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Zeng Y, Molnárová M, Motola M. Metallic nanoparticles and photosynthesis organisms: Comprehensive review from the ecological perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120858. [PMID: 38614005 DOI: 10.1016/j.jenvman.2024.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
This review presents a comprehensive analysis of the ecological implications of metallic nanoparticles (MNPs) on photosynthetic organisms, particularly plants and algae. We delve into the toxicological impacts of various MNPs, including gold, silver, copper-based, zinc oxide, and titanium dioxide nanoparticles, elucidating their effects on the growth and health of these organisms. The article also summarizes the toxicity mechanisms of these nanoparticles in plants and algae from previous research, providing insight into the cellular and molecular interactions that underpin these effects. Furthermore, it discusses the reciprocal interactions between different types of MNPs, their combined effects with other metal contaminants, and compares the toxicity between MNPs with their counterpart. This review highlights the urgent need for a deeper understanding of the environmental impact, considering their escalating use and the potential risks they pose to ecological systems, especially in the context of photosynthetic organisms that are vital to ecosystem health and stability.
Collapse
Affiliation(s)
- Yilan Zeng
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic; Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic.
| | - Marianna Molnárová
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Aly AA, Safwat G, Eliwa NE, Eltawil AHM, Abd El-Aziz MH. Changes in morphological traits, anatomical and molecular alterations caused by gamma-rays and zinc oxide nanoparticles in spinach (Spinacia oleracea L.) plant. Biometals 2023; 36:1059-1079. [PMID: 37173538 PMCID: PMC10545649 DOI: 10.1007/s10534-023-00505-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Spinach seeds were irradiated with gamma-rays after that soaked in zinc oxide nanoparticles (ZnO-NPs) at 0.0, 50, 100 and 200 ppm for twenty-four hours at room temperature. Vegetative plant growth, photosynthetic pigments, and proline contents were investigated. Also, anatomical studies and the polymorphism by the SCoT technique were conducted. The present results revealed that the germination percentage was at the maximum values for the treatment of 100 ppm ZnO-NPs (92%), followed by 100 ppm ZnO-NPs + 60 Gy (90%). The application of ZnO-NPs resulted in an enhancement in the plant length. The maximum of chlorophylls and carotenoids content was recorded in the treatment, 100 ppm ZnO-NPs + 60 Gy. Meanwhile, the irradiation dose level (60 Gy) with all ZnO-NPs treatments increased proline content and reached its maximum increase to 1.069 mg/g FW for the treatment 60 Gy combined with 200 ppm ZnO-NPs. Also, the anatomical studies declared that there were variations between the treatments; un-irradiated and irradiated combined with ZnO-NPs plants which reveal that the leave epidermal tissue increased with 200 ppm ZnO-NPs in both the upper and lower epidermis. While irradiated plants with 60 Gy combined with 100 ppm ZnO-NPs gave more thickness of upper epidermis. As well as SCoT molecular marker technique effectively induced molecular alterations between the treatments. Where, SCoT primers targeted many new and missing amplicons that are expected to be associated with the lowly and highly expressed genes with 18.2 and 81.8%, respectively. Also, showed that the soaking in ZnO-NPs was helped for reducing molecular alteration rate, both spontaneous and induced by gamma irradiation. This nominates ZnO-NPs as potential nano-protective agents that can reduce irradiation-induced genetic damage.
Collapse
Affiliation(s)
- Amina A Aly
- Natural Products Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt
| | - Noha E Eliwa
- Natural Products Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed H M Eltawil
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt
| | - M H Abd El-Aziz
- Genetic Department Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Zafar H, Javed R, Zia M. Nanotoxicity assessment in plants: an updated overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93323-93344. [PMID: 37544947 DOI: 10.1007/s11356-023-29150-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Nanotechnology is rapidly emerging and innovative interdisciplinary field of science. The application of nanomaterials in agricultural biotechnology has been exponentially increased over the years that could be attributed to their uniqueness, versatility, and flexibility. The overuse of nanomaterials makes it crucial to determine their fate and distribution in the in vitro (in cell and tissue cultures) and in vivo (in living species) biological environments by investigating the nano-biointerface. The literature states that the beneficial effects of nanoparticles come along with their adverse effects, subsequently leading to an array of short-term and long-term toxicities. It has been evident that the interplay of nanoparticles with abiotic and biotic communities produces several eco-toxicological effects, and the physiology and biochemistry of crops are greatly influenced by the metabolic alterations taking place at cellular, sub-cellular, and molecular levels. Numerous risk factors affect nanoparticle's accumulation, translocation, and associated cytogenotoxicity. This review article summarizes the contributing factors, possible mechanisms, and risk assessment of hazardous effects of various types of nanoparticles to plant health. The methods for evaluating the plant nanotoxicity parameters have been elaborated. Conclusively, few recommendations are put forward for designing safer, high-quality nanomaterials to protect and maintain environmental safety for smarter agriculture demanded by researchers and industrialists.
Collapse
Affiliation(s)
- Hira Zafar
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, Newfoundland, A2H 5G4, Canada.
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
7
|
Gao M, Chang J, Wang Z, Zhang H, Wang T. Advances in transport and toxicity of nanoparticles in plants. J Nanobiotechnology 2023; 21:75. [PMID: 36864504 PMCID: PMC9983278 DOI: 10.1186/s12951-023-01830-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
In recent years, the rapid development of nanotechnology has made significant impacts on the industry. With the wide application of nanotechnology, nanoparticles (NPs) are inevitably released into the environment, and their fate, behavior and toxicity are indeterminate. Studies have indicated that NPs can be absorbed, transported and accumulated by terrestrial plants. The presence of NPs in certain edible plants may decrease harvests and threaten human health. Understanding the transport and toxicity of NPs in plants is the basis for risk assessment. In this review, we summarize the transportation of four types of NPs in terrestrial plants, and the phytotoxicity induced by NPs, including their impacts on plant growth and cell structure, and the underlying mechanisms such as inducing oxidative stress response, and causing genotoxic damage. We expect to provide reference for future research on the effects of NPs on plants.
Collapse
Affiliation(s)
- Mingyang Gao
- grid.410585.d0000 0001 0495 1805Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Jia Chang
- grid.410585.d0000 0001 0495 1805Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Zhongtang Wang
- grid.410585.d0000 0001 0495 1805Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Hongyan Zhang
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Tian Wang
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
8
|
Verma KK, Song XP, Joshi A, Rajput VD, Singh M, Sharma A, Singh RK, Li DM, Arora J, Minkina T, Li YR. Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview. FRONTIERS IN PLANT SCIENCE 2022; 13:865048. [PMID: 35677230 PMCID: PMC9168910 DOI: 10.3389/fpls.2022.865048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
Conventional fertilizers and pesticides are not sustainable for multiple reasons, including high delivery and usage inefficiency, considerable energy, and water inputs with adverse impact on the agroecosystem. Achieving and maintaining optimal food security is a global task that initiates agricultural approaches to be revolutionized effectively on time, as adversities in climate change, population growth, and loss of arable land may increase. Recent approaches based on nanotechnology may improve in vivo nutrient delivery to ensure the distribution of nutrients precisely, as nanoengineered particles may improve crop growth and productivity. The underlying mechanistic processes are yet to be unlayered because in coming years, the major task may be to develop novel and efficient nutrient uses in agriculture with nutrient use efficiency (NUE) to acquire optimal crop yield with ecological biodiversity, sustainable agricultural production, and agricultural socio-economy. This study highlights the potential of nanofertilizers in agricultural crops for improved plant performance productivity in case subjected to abiotic stress conditions.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Anjney Sharma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Rajesh Kumar Singh
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Dong-Mei Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
9
|
Marmiroli M, Marmiroli N, Pagano L. Nanomaterials Induced Genotoxicity in Plant: Methods and Strategies. NANOMATERIALS 2022; 12:nano12101658. [PMID: 35630879 PMCID: PMC9145990 DOI: 10.3390/nano12101658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
In recent years, plant-nanomaterial interactions have been studied, highlighting their effects at physiological and molecular levels. Transcriptomics and proteomics studies have shown pathways and targets of nanomaterial exposure and plant response, with particular regard to abiotic stress and oxidative stress. Only little information has been reported on engineered nanomaterial (ENMs) interactions with plant genetic material, both at a genomic and organellar DNAs level. Plants can be useful experimental material, considering they both contain chloroplast and mitochondrial DNAs and several plant genomes have been completely sequenced (e.g., Arabidopsis thaliana, Solanum lycoperiscum, Allium cepa, Zea mays, etc.). In this mini review, the methods and the evidence reported in the present literature concerning the level of genotoxicity induced by ENMs exposure have been considered. Consolidated and potential strategies, which can be applied to assess the nanomaterial genotoxicity in plants, are reviewed.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
10
|
Tarbali S, Karami Mehrian S, Khezri S. Toxicity effects evaluation of green synthesized silver nanoparticles on intraperitoneally exposed male Wistar rats. Toxicol Mech Methods 2022; 32:488-500. [DOI: 10.1080/15376516.2022.2049412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sepideh Tarbali
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Saeed Karami Mehrian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
- Department of Biology, Faculty of Sciences, University of Razi, Kermanshah, Iran
| | - Shiva Khezri
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| |
Collapse
|
11
|
Angelini J, Klassen R, Široká J, Novák O, Záruba K, Siegel J, Novotná Z, Valentová O. Silver Nanoparticles Alter Microtubule Arrangement, Dynamics and Stress Phytohormone Levels. PLANTS 2022; 11:plants11030313. [PMID: 35161294 PMCID: PMC8838976 DOI: 10.3390/plants11030313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
The superior properties of silver nanoparticles (AgNPs) has resulted in their broad utilization worldwide, but also the risk of irreversible environment infestation. The plant cuticle and cell wall can trap a large part of the nanoparticles and thus protect the internal cell structures, where the cytoskeleton, for example, reacts very quickly to the threat, and defense signaling is subsequently triggered. We therefore used not only wild-type Arabidopsis seedlings, but also the glabra 1 mutant, which has a different composition of the cuticle. Both lines had GFP-labeled microtubules (MTs), allowing us to observe their arrangement. To quantify MT dynamics, we developed a new microscopic method based on the FRAP technique. The number and growth rate of MTs decreased significantly after AgNPs, similarly in both lines. However, the layer above the plasma membrane thickened significantly in wild-type plants. The levels of three major stress phytohormone derivatives—jasmonic, abscisic, and salicylic acids—after AgNP (with concomitant Ag+) treatment increased significantly (particularly in mutant plants) and to some extent resembled the plant response after mechanical stress. The profile of phytohormones helped us to estimate the mechanism of response to AgNPs and also to understand the broader physiological context of the observed changes in MT structure and dynamics.
Collapse
Affiliation(s)
- Jindřiška Angelini
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
- Correspondence:
| | - Ruslan Klassen
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| | - Jitka Široká
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (O.N.)
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (O.N.)
| | - Kamil Záruba
- Deparment of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Zuzana Novotná
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| |
Collapse
|
12
|
Labeeb M, Badr A, Haroun SA, Mattar MZ, El-Kholy AS. Ultrastructural and molecular implications of ecofriendly made silver nanoparticles treatments in pea (Pisum sativum L.). JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:5. [PMID: 34985579 PMCID: PMC8733074 DOI: 10.1186/s43141-021-00285-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Background Silver nanoparticles (AgNPs) are the most widely used nanomaterial in agricultural and environmental applications. In this study, the impact of AgNPs solutions at 20 mg/L, 40 mg/L, 80 mg/L, and 160 mg/L on cell ultrastructure have been examined in pea (Pisum sativum L) using a transmission electron microscope (TEM). The effect of AgNPs treatments on the α, β esterase (EST), and peroxidase (POX) enzymes expression as well as gain or loss of inter-simple sequence repeats (ISSRs) markers has been described. Results Different structural malformations in the cell wall and mitochondria, as well as plasmolysis and vacuolation were recorded in root cells. Damaged chloroplast and mitochondria were frequently observed in leaves and the osmiophilic plastoglobuli were more observed as AgNPs concentration increased. Starch grains increased by the treatment with 20 mg/L AgNPs. The expressions of α, β EST, and POX were slightly changed but considerable polymorphism in ISSR profiles, using 17 different primers, were scored indicating gain or loss of gene loci as a result of AgNPs treatments. This indicates considerable variations in genomic DNA and point mutations that may be induced by AgNPs as a genotoxic nanomaterial. Conclusion AgNPs may be used to induce genetic variation at low concentrations. However, considerations should be given to the uncontrolled use of nanoparticles and calls for evaluating their impact on plant growth and potential genotoxicity are justified.
Collapse
Affiliation(s)
- May Labeeb
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Soliman A Haroun
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Magdy Z Mattar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt
| | - Aziza S El-Kholy
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt.
| |
Collapse
|
13
|
Bhardwaj AK, Arya G, Kumar R, Hamed L, Pirasteh-Anosheh H, Jasrotia P, Kashyap PL, Singh GP. Switching to nanonutrients for sustaining agroecosystems and environment: the challenges and benefits in moving up from ionic to particle feeding. J Nanobiotechnology 2022; 20:19. [PMID: 34983548 PMCID: PMC8728941 DOI: 10.1186/s12951-021-01177-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
The worldwide agricultural enterprise is facing immense pressure to intensify to feed the world's increasing population while the resources are dwindling. Fertilizers which are deemed as indispensable inputs for food, fodder, and fuel production now also represent the dark side of the intensive food production system. With most crop production systems focused on increasing the quantity of produce, indiscriminate use of fertilizers has created havoc for the environment and damaged the fiber of the biogeosphere. Deteriorated nutritional quality of food and contribution to impaired ecosystem services are the major limiting factors in the further growth of the fertilizer sector. Nanotechnology in agriculture has come up as a better and seemingly sustainable solution to meet production targets as well as maintaining the environmental quality by use of less quantity of raw materials and active ingredients, increased nutrient use-efficiency by plants, and decreased environmental losses of nutrients. However, the use of nanofertilizers has so far been limited largely to controlled environments of laboratories, greenhouses, and institutional research experiments; production and availability on large scale are still lagging yet catching up fast. Despite perceivable advantages, the use of nanofertilizers is many times debated for adoption at a large scale. The scenario is gradually changing, worldwide, towards the use of nanofertilizers, especially macronutrients like nitrogen (e.g. market release of nano-urea to replace conventional urea in South Asia), to arrest environmental degradation and uphold vital ecosystem services which are in critical condition. This review offers a discussion on the purpose with which the nanofertilizers took shape, the benefits which can be achieved, and the challenges which nanofertilizers face for further development and real-world use, substantiated with the significant pieces of scientific evidence available so far.
Collapse
Affiliation(s)
| | - Geeta Arya
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - Raj Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - Lamy Hamed
- Soil and Water Department, Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
| | - Hadi Pirasteh-Anosheh
- National Salinity Research Center, Agricultural Research, Education and Extension Organization, Yazd, 8917357676 Iran
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | | |
Collapse
|
14
|
Youssef OA, Tammam AA, El-Bakatoushi RF, Alframawy AM, Emara MM, El-Sadek LM. Uptake of hematite nanoparticles in maize and their role in cell cycle dynamics, PCNA expression and mitigation of cadmium stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1177-1189. [PMID: 34374200 DOI: 10.1111/plb.13315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Cadmium toxicity is considered a major threat to several crops worldwide. Hematite nanoparticles (NPs), due to their small size and large specific surface area, could be applied as an adsorbent for toxic heavy metals in soil. Also, they serve as an efficient nano-fertilizer, promoting Fe availability and biomass production in plants, thus enabling Cd2+ -induced stress tolerance. The phytotoxicity of five different concentrations of hematite NPs, ranging from 500 to 8,000 mg·kg-1 , and Cd2+ concentrations (110 or 130 mg·kg-1 Cd2+ ) alone or combined with 500 mg·kg-1 NPs was evaluated in maize. The changes in fresh weight, element analysis, cell cycle regulation, DNA banding patterns and proliferating cell nuclear antigen (PCNA) expression were used as biomarkers. The results revealed that increased fresh weight and fewest polymorphic DNA bands were detectable after treatment with 500 mg·kg-1 NPs. However, at 8,000 mg·kg-1 NPs, PCNA expression increased significantly, which resulted in cell cycle arrest at the G1/S checkpoint in roots. Significant reductions in fresh weight, altered nutrient profiles and cell cycle perturbations are considered symptoms of Cd2+ toxicity in maize. Conversely, amending 500 mg·kg-1 NPs with 130 mg·kg-1 Cd2+ increased fresh weight, Fe concentration and genomic template stability, while reducing Cd2+ uptake and PCNA1 expression. Overall, 8,000 mg·kg-1 hematite NPs interfered with the cellular homeostatic balance of maize, resulting in a cascade of genotoxic events, leading to growth inhibition. Although 500 mg·kg-1 hematite NPs alleviated Cd2+ -induced DNA damage to a certain extent, their impact on cell cycle progression requires further verification.
Collapse
Affiliation(s)
- O A Youssef
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Camp Caesar, 21525, Egypt
| | - A A Tammam
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Camp Caesar, 21525, Egypt
| | - R F El-Bakatoushi
- Biology and Geology Sciences Department, Faculty of Education, Alexandria University, Alexandria, El-shatby, 526, Egypt
| | - A M Alframawy
- Nucleic Acids Research Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Alexandria, Borg El-Arab, 21933, Egypt
| | - M M Emara
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Ibrahimia, 21321, Egypt
| | - L M El-Sadek
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Camp Caesar, 21525, Egypt
| |
Collapse
|
15
|
Manna I, Mishra S, Bandyopadhyay M. In vivo genotoxicity assessment of nickel oxide nanoparticles in the model plant Allium cepa L. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Batool SU, Javed B, Sohail, Zehra SS, Mashwani ZUR, Raja NI, Khan T, ALHaithloul HAS, Alghanem SM, Al-Mushhin AAM, Hashem M, Alamri S. Exogenous Applications of Bio-fabricated Silver Nanoparticles to Improve Biochemical, Antioxidant, Fatty Acid and Secondary Metabolite Contents of Sunflower. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1750. [PMID: 34361136 PMCID: PMC8308146 DOI: 10.3390/nano11071750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
The present study involved the bio-fabrication of silver nanoparticles (AgNPs) by using the Euphorbia helioscopia L. leaves aqueous extract to improve the production of secondary metabolites in industrially important sunflower (Helianthus annuus L.) plants. Phyto-fabrication of AgNPs was confirmed by using spectrophotometry, SEM imaging and X-ray diffraction analysis. The morphological and optical characterization manifested that the AgNPs are crystalline and exist in the size range of 30-100 nm. Various concentrations (10, 20, 40, 60, 80 and 100 mg/L) of AgNPs were applied in combinations on sunflower seeds and crop plants. The effects of biosynthesized AgNPs were evaluated for agro-morphological parameters (plant height, flowering initiation and seed weight), biochemical metabolites (chlorophyll, proline, soluble sugar, amino acid and protein contents) and enzymatic activities (superoxide dismutase and ascorbate peroxidase) in sunflower and 60 mg/L concentration of AgNPs on sunflower seeds and foliar sprays on plants in combination were found to be effective to elicit biochemical modifications to improve secondary metabolites. It was also observed experimentally that 60 mg/L concentration of AgNPs improved the biochemical, fatty acid and enzymatic attributes of sunflower plants, which in turn improved the plant agro-morphological parameters. Near-infrared spectroscopic analysis results confirmed the improvement in the seed quality, oil contents and fatty acid composition (palmitic acid, oleic acid and linoleic acid) after the applications of AgNPs. The findings of the present investigation confirm the exogenous applications of bio-fabricated AgNPs in combinations on seeds and plants to improve the plant yield, seed quality and secondary metabolite contents of the sunflower plants.
Collapse
Affiliation(s)
- Syeda Umber Batool
- Department of Chemical and Life Sciences, Qurtuba University of Science & Information Technology, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan;
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Sohail
- Institute of Biology/Plant Physiology, Humboldt-University Zü Berlin, 10115 Berlin, Germany;
| | - Syeda Sadaf Zehra
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan;
| | - Zia-ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, Lower Dir 18800, Khyber Pakhtunkhwa, Pakistan;
| | | | | | - Amina A. M. Al-Mushhin
- Department of Biology, College of Sciences and Humanities in AlKharj, Prince Sattam Bin Abdulaziz University, AlKharj 16278, Saudi Arabia;
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (M.H.); (S.A.)
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (M.H.); (S.A.)
| |
Collapse
|
17
|
Fouda MS, Hendawey MH, Hegazi GA, Sharada HM, El-Arabi NI, Attia ME, Soliman ERS. Nanoparticles induce genetic, biochemical, and ultrastructure variations in Salvadora persica callus. J Genet Eng Biotechnol 2021; 19:27. [PMID: 33559794 PMCID: PMC7873148 DOI: 10.1186/s43141-021-00124-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Salvadora persica is an endangered medicinal plant due to difficulties in its traditional propagation. It is rich in bioactive compounds that possess many pharmaceutical, antimicrobial activities and widely used in folk medicine. The current study aims at in vitro propagation of Salvadora persica and the application of different nanoparticles (NPs) to induce the synthesis of bioactive and secondary metabolites within the plant. The cellular and genetic responses to the application of different NPs were evaluated. RESULTS The impact of nanoparticles NPs (ZnO, SiO2, and Fe3O4) on callus growth of Salvadora persica and the production of its active constituent benzyl isothiocyanate was examined, regarding some oxidative stress markers, antioxidant enzymes, and genetic variabilities. An encouraging impact of 0.5 mg/l ZnO NPs on benzyl isothiocyanate production was shown reaching up to 0.905 mg/g callus fresh weight in comparison to 0.539 mg/g in control callus. This was associated with decreasing hydrogen peroxide content and increasing superoxide dismutase and peroxidase activities. The deposition of the NPs on cellular organelles was detected using a transmission microscope. Fifteen Inter-Simple Sequence Repeats (ISSR) primers detected an overall, 79.1% polymorphism among different treatments. A reduction in genomic DNA template stability (GTS) was made and was more pronounced in higher doses of different NPs. CONCLUSION This study is a stepping stone in developing a productive protocol for in vitro production of benzyl isothiocyanate from Salvadora persica using NPs as a valuable anticancer compound.
Collapse
Affiliation(s)
- Manar S Fouda
- Department of Chemistry, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
| | - Mohamed H Hendawey
- Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo, Egypt
| | - Ghada A Hegazi
- Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo, Egypt
| | - Hayat M Sharada
- Department of Chemistry, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
| | - Nagwa I El-Arabi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed E Attia
- Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo, Egypt
| | - Elham R S Soliman
- Cytogenetics and Molecular Genetics Unit, Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt.
| |
Collapse
|
18
|
The Impact of Zinc Oxide Nanoparticles on Cytotoxicity, Genotoxicity, and miRNA Expression in Barley ( Hordeum vulgare L.) Seedlings. ScientificWorldJournal 2020; 2020:6649746. [PMID: 33343237 PMCID: PMC7725555 DOI: 10.1155/2020/6649746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
Zinc oxide nanoparticles are one of the most commonly engineered nanomaterials and necessarily enter the environment because of the large quantities produced and their widespread application. Understanding the impacts of nanoparticles on plant growth and development is crucial for the assessment of probable environmental risks to food safety and human health, because plants are a fundamental living component of the ecosystem and the most important source in the human food chain. The objective of this study was to examine the impact of different concentrations of zinc oxide nanoparticles on barley Hordeum vulgare L. seed germination, seedling morphology, root cell viability, stress level, genotoxicity, and expression of miRNAs. The results demonstrate that zinc oxide nanoparticles enhance barley seed germination, shoot/root elongation, and H2O2 stress level and decrease root cell viability and genomic template stability and up- and downregulated miRNAs in barley seedlings.
Collapse
|
19
|
Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires ARL. Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134816. [PMID: 31704404 DOI: 10.1016/j.scitotenv.2019.134816] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 05/25/2023]
Abstract
Nanotechnology is an emerging field in science and engineering, which presents significant impacts on the economy, society and the environment. The nanomaterials' (NMs) production, use, and disposal is inevitably leading to their release into the environment where there are uncertainties about its fate, behaviour, and toxicity. Recent works have demonstrated that NMs can penetrate, translocate, and accumulate in plants. However, studies about the effects of the NMs on plants are still limited because most investigations are carried out in the initial stage of plant development. The present study aimed to evaluate and characterize the photochemical efficiency of photosystem II (PSII) of broad bean (Vicia faba) leaves when subjected to silver nanoparticles (AgNPs) with diameters of 20, 51, and 73 nm as well as to micrometer-size Ag particles (AgBulk). The AgNPs were characterized by transmission electron microscopy and dynamic light scattering. The analyses were performed by injecting the leaves with 100 mg L-1 aqueous solution of Ag and measuring the chlorophyll fluorescence imaging, gas exchange, thermal imaging, and reactive oxygen species (ROS) production. In addition, silver ion (Ag+) release from Ag particles was determined by dialysis. The results revealed that AgNPs induce a decrease in the photochemical efficiency of photosystem II (PSII) and an increase in the non-photochemical quenching. The data also revealed that AgNPs affected the stomatal conductance (gs) and CO2 assimilation. Further, AgNPs induced an overproduction of ROS in Vicia faba leaves. Finally, all observed effects were particle diameter-dependent, increasing with the reduction of AgNPs diameter and revealing that AgBulk caused only a small or no changes on plants. In summary, the results point out that AgNPs may negatively affect the photosynthesis process when accumulated in the leaves, and that the NPs themselves were mainly responsible since negligible Ag+ release was detected.
Collapse
Affiliation(s)
- William F Falco
- Grupo de Óptica Aplicada, Universidade Federal da Grande Dourados, CP 533, 79804-970 Dourados, MS, Brazil
| | - Marisa D Scherer
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil
| | - Samuel L Oliveira
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil.
| | - Heberton Wender
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil
| | - Ian Colbeck
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| | - Anderson R L Caires
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil; School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| |
Collapse
|
20
|
An Assessment of the Effect of Green Synthesized Silver Nanoparticles Using Sage Leaves ( Salvia officinalis L.) on Germinated Plants of Maize ( Zea mays L.). NANOMATERIALS 2019; 9:nano9111550. [PMID: 31683686 PMCID: PMC6915364 DOI: 10.3390/nano9111550] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022]
Abstract
AgNPs have attracted considerable attention in many applications including industrial use, and their antibacterial properties have been widely investigated. Due to the green synthesis process employed, the nanoparticle surface can be coated with molecules with biologically important characteristics. It has been reported that increased use of nanoparticles elevates the risk of their release into the environment. However, little is known about the behaviour of AgNPs in the eco-environment. In this study, the effect of green synthesized AgNPs on germinated plants of maize was examined. The effects on germination, basic growth and physiological parameters of the plants were monitored. Moreover, the effect of AgNPs was compared with that of Ag(I) ions in the form of AgNO3 solution. It was found that the growth inhibition of the above-ground parts of plants was about 40%, and AgNPs exhibited a significant effect on photosynthetic pigments. Significant differences in the following parameters were observed: weights of the caryopses and fresh weight (FW) of primary roots after 96 h of exposure to Ag(I) ions and AgNPs compared to the control and between Ag compounds. In addition, the coefficient of velocity of germination (CVG) between the control and the AgNPs varied and that between the Ag(I) ions and AgNPs was also different. Phytotoxicity was proved in the following sequence: control < AgNPs < Ag(I) ions.
Collapse
|
21
|
Babajani A, Iranbakhsh A, Oraghi Ardebili Z, Eslami B. Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24430-24444. [PMID: 31230234 DOI: 10.1007/s11356-019-05676-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Regarding the rapid progress in the production and consumption of nanobased products, this research considered the behavior of Melissa officinalis toward zinc oxide nanoparticles (nZnO), nanoelemental selenium (nSe), and bulk counterparts. Seedlings were irrigated with nutrient solution containing different doses of nZnO (0, 100, and 300 mg l-1) and/or nSe (0, 10, and 50 mg l-1). The supplements made changes in growth and morphological indexes in both shoot and roots. The mixed treatments of nSe10 and nZnO led to a drastic increase in biomass, activation of lateral buds, and stimulations in the development of lateral roots. However, the nSe50 reduced plants' growth (45.5%) and caused severe toxicity which was basically lower than the bulk. Furthermore, the nSe and nZnO improved K, Fe, and Zn concentrations in leaves and roots, except for seedlings exposed to nSe50 or BSe50. Moreover, the nSe and nZnO supplementations in a dose-dependent manner caused changes in leaf non-protein thiols (mean = 77%), leaf ascorbate content (mean = 65%), and soluble phenols in roots (mean = 28%) and leaves (mean = 61%). In addition, exposure to nZnO and/or nSe drastically induced the expression of rosmarinic acid synthase (RAS) and Hydroxy phenyl pyruvate reductase (HPPR) genes. Besides, the nSe, nZnO, or bulk counterparts influenced the activities of nitrate reductase in leaves and peroxidase in roots, depending on dose factor and compound form. The comparative physiological and molecular evidence on phytotoxicity and potential advantages of nSe, nZnO, and their bulk counterparts were served as a theoretical basis to be exploited in food, agricultural, and pharmaceutical industries.
Collapse
Affiliation(s)
- Alameh Babajani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Bahman Eslami
- Department of Biology, Ghaemshahr Branch, Islamic Azad University, Ghaemshahr, Iran
| |
Collapse
|
22
|
Thabet AF, Galal OA, El-Samahy MFM, Tuda M. Higher toxicity of nano-scale TiO2 and dose-dependent genotoxicity of nano-scale SiO2 on the cytology and seedling development of broad bean Vicia faba. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0960-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
23
|
Khallef M, Benouareth DE, Konuk M, Liman R, Bouchelaghem S, Hazzem S, Kerdouci K. The effect of silver nanoparticles on the mutagenic and the genotoxic properties of the urban wastewater liquid sludges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18403-18410. [PMID: 31049867 DOI: 10.1007/s11356-019-05225-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/17/2019] [Indexed: 05/17/2023]
Abstract
Nanoparticles are very effective compounds to transform and detoxicate common environmental contaminants. For this reason, crude urban liquid wastewater sludges were treated by silver nanoparticles (Ag-NPs, 100 nm) for 24 h. Both Ag-NPs' treated and untreated sludges were examined for the evaluation if there are possible mutagenic/anti-mutagenic, cytotoxic, and genotoxic/anti-genotoxic effects by Ames and Allium cepa tests. The results were then subjected to statistical analyses by using SPSS software and p < 0.05 was accepted as a significant value. The data obtained from the Ames test showed that while untreated crude liquid sludge had a significant mutagenic effect, Ag-NP-treated one decreased its mutagenicity. Similar effects were also observed in the chromosome aberration-Allium cepa tests. Significant chromosome aberrations observed were C-metaphase, sticky metaphase, sticky anaphase, anaphase bridge, vagrant chromosome, and multipolar anaphases. Both tests demonstrated that silver nanoparticle treatment decreased the major mutagenicity and genotoxicity detected in the liquid wastewater sludges.
Collapse
Affiliation(s)
- Messaouda Khallef
- Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Djamel Eddine Benouareth
- Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Muhsin Konuk
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, Altunizade, 34662, Istanbul, Turkey.
| | - Recep Liman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Usak University, 64200, Usak, Turkey
| | - Sara Bouchelaghem
- Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Sara Hazzem
- Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Khadra Kerdouci
- Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| |
Collapse
|
24
|
Cytotoxic, Genotoxic, and Polymorphism Effects on Vanilla planifolia Jacks ex Andrews after Long-Term Exposure to Argovit ® Silver Nanoparticles. NANOMATERIALS 2018; 8:nano8100754. [PMID: 30257465 PMCID: PMC6215222 DOI: 10.3390/nano8100754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022]
Abstract
Worldwide demands of Vanilla planifolia lead to finding new options to produce large-scale and contaminant-free crops. Particularly, the Mexican Government has classified Vanilla planifolia at risk and it subject to protection programs since wild species are in danger of extinction and no more than 30 clones have been found. Nanotechnology could help to solve both demands and genetic variability, but toxicological concerns must be solved. In this work, we present the first study of the cytotoxic and genotoxic effects promoted by AgNPs in Vanilla planifolia plantlets after a very long exposure time of six weeks. Our results show that Vanilla planifolia plantlets growth with doses of 25 and 50 mg/L is favored with a small decrease in the mitotic index. A dose-dependency in the frequency of cells with chromosomal aberrations and micronuclei was found. However, genotoxic effects could be considered as minimum due to with the highest concentration employed (200 mg/L), the total percentage of chromatic aberrations is lower than 5% with only three micronuclei in 3000 cells, despite the long-time exposure to AgNP. Therefore, 25 and 50 mg/L (1.5 and 3 mg/L of metallic silver) were identified as safe concentrations for Vanilla planifolia growth on in vitro conditions. Exposure of plantlets to AgNPs increase the polymorphism registered by inter-simple sequence repeat method (ISSR), which could be useful to promote the genetic variability of this species.
Collapse
|
25
|
Kumaraswamy R, Kumari S, Choudhary RC, Pal A, Raliya R, Biswas P, Saharan V. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. Int J Biol Macromol 2018; 113:494-506. [DOI: 10.1016/j.ijbiomac.2018.02.130] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022]
|