1
|
Mouatsou C, Margetaki K, Kampouri M, Roumeliotaki T, Rantakokko P, Kiviranta H, Karachaliou M, Stephanou EG, Chatzi L, Kogevinas M, Koutra K. Prenatal exposure to persistent organic pollutants and emotional and behavioral outcomes from early childhood to adolescence: Rhea Cohort Study in Crete, Greece. Environ Epidemiol 2025; 9:e377. [PMID: 40135050 PMCID: PMC11936570 DOI: 10.1097/ee9.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/10/2025] [Indexed: 03/27/2025] Open
Abstract
Background Persistent organic pollutants (POPs) are widespread, hazardous chemicals, but their impact on emotional and behavioral development is not well understood. This study aimed to investigate whether prenatal exposure to POPs influences internalizing, externalizing, and attention deficit hyperactivity disorder (ADHD) symptoms from early childhood to adolescence. Methods We utilized longitudinally collected data from 467 mother-child pairs in the Rhea study. Concentrations of hexachlorobenzene, dichlorodiphenyldichloroethylene, and six polychlorinated biphenyl congeners (PCBs) were determined in maternal serum samples collected during early pregnancy. Mothers reported their children's internalizing, externalizing, and ADHD symptoms at ages 4 (Strengths and Difficulties Questionnaire, ADHD Test), 6, 11, and 15 years (Child Behavior Checklist, Conners' Parent Rating Scale). The associations between prenatal pollutant exposure and longitudinally studied outcomes were assessed using generalized estimating equation models. Results In utero exposure to hexachlorobenzene and dichlorodiphenyldichloroethylene was not associated with emotional or behavioral outcomes. Prenatal exposure to PCBs was associated with decreased internalizing symptoms from childhood through adolescence and reduced ADHD symptoms at age 4 (adjusted β [95% confidence interval]: -0.17 [-0.29, -0.05], and -0.16 [-0.30, -0.02], per doubling of exposure, respectively). Sensitivity analyses confirmed these findings, though the association between PCB exposure and internalizing symptoms was not observed in women with sufficient gestational weight gain. Conclusions Our findings suggest that prenatal POP exposure does not adversely affect emotional and behavioral development from preschool age through adolescence. Further research is warranted to elucidate the potential impact of gestational POP exposure on developmental trajectories.
Collapse
Affiliation(s)
- Chrysi Mouatsou
- Department of Psychology, School of Social Sciences, University of Crete, Rethymno, Crete, Greece
| | - Katerina Margetaki
- Clinic of Preventive and Social Medicine, Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Mariza Kampouri
- Clinic of Preventive and Social Medicine, Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Theano Roumeliotaki
- Clinic of Preventive and Social Medicine, Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Panu Rantakokko
- Department of Public Health, Finnish Institute for Health and Welfare (THL), Kuopio, Finland
| | - Hannu Kiviranta
- Department of Public Health, Finnish Institute for Health and Welfare (THL), Kuopio, Finland
| | - Marianna Karachaliou
- Clinic of Preventive and Social Medicine, Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | | | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Katerina Koutra
- Department of Psychology, School of Social Sciences, University of Crete, Rethymno, Crete, Greece
| |
Collapse
|
2
|
Barrea C, Dufour P, Catherine P, Charlier C, Brevers F, Parent AS, Rousselle L. Neuromotor effects of early-life exposure to a mixture of endocrine disruptors in Belgian preschool children. Environ Health 2025; 24:11. [PMID: 40091032 PMCID: PMC11912637 DOI: 10.1186/s12940-025-01156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE Children gradually develop motor skills that enable them to move efficiently in various daily activities such as self-care, academics and sports. The impact of prenatal exposure to endocrine disruptors (EDCs) on these performances remains understudied and current results are inconsistent. This study aims at examining the neuromotor function of Belgian preschoolers exposed in utero to a mixture of some of these chemicals. METHODS From 2014 to 2016, 66 children (35 boys and 31 girls) were recruited for a longitudinal cohort study. Two polychlorinated biphenyls (PCBs) and four perfluoroalkyl substances (PFASs) were measured in cord serum. A standardized motor evaluation, the Movement Assessment Battery for Children II (MABC-II), and a clinical sensori-motor assessment examining minor neurological dysfunction were administered at 6 years of age. The impact of the mixture of EDCs on neuromotor outcome measures was evaluated using two validated statistical models. Sex-specific analyses were also conducted. RESULTS Using a principal component analysis, a negative association was identified between a mixture of PCB-153 and - 180 and the Total Clinical examination score in the whole population (β (95% CI) = -15.8 (-26.51; -5.09), p = 0.005). After stratification by sex, negative associations were observed between the Gross Motor score of the MABC-II test and prenatal exposure to a mixture of PFASs and PCB-180, specifically in boys. This association was consistent across both the weighted quantile sum regression model (β (95% CI) = -2.36 (-3.42; -0.62), p = 0.023) and the principal component approach (β (95% CI) = -1.09 (-2.15; -0.13), p = 0.044). CONCLUSION Our findings suggest that the neuromotor function of young children is adversely influenced by prenatal exposure to toxicants in a sex-specific manner.
Collapse
Affiliation(s)
- Christophe Barrea
- Department of Paediatrics, University of Liege (ULg), CHU, Liege, 4000, Belgium.
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, Liege, 4000, Belgium.
- CHU University of Liege, 1, Avenue de l'Hôpital, Liège, 4000, Belgium.
| | - Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, Liege, 4000, Belgium
| | - Pirard Catherine
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, Liege, 4000, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, Liege, 4000, Belgium
| | - Fanny Brevers
- Research Unit for a Life-Course Perspective on Health and Education, University of Liege (ULg), Liege, 4000, Belgium
| | - Anne-Simone Parent
- Department of Paediatrics, University of Liege (ULg), CHU, Liege, 4000, Belgium
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, Liege, 4000, Belgium
| | - Laurence Rousselle
- Research Unit for a Life-Course Perspective on Health and Education, University of Liege (ULg), Liege, 4000, Belgium
| |
Collapse
|
3
|
Qu J, Li W, Jia C, Jiang Q, Tang R, Yin Y, Wang X, Long P, Wu T, Yuan Y. Persistent organic pollutants and plasma microRNAs: A community-based profiling analysis. ENVIRONMENT INTERNATIONAL 2025; 197:109328. [PMID: 39999486 DOI: 10.1016/j.envint.2025.109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/23/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Whether exposure to persistent organic pollutants (POPs) may incur microRNAs (miRNAs) dysregulation remains largely unclear. OBJECTIVES We aim to identify the miRNA signature and related pathways of low-level POPs exposure in a community-based population. METHODS We used general linear regression to model the association of POPs with plasma miRNAs, adjusting for age, gender, smoking, alcohol consumption, body mass index, triglyceride, and total cholesterol levels. We performed pathway enrichment analysis based on 11 experimentally validated and prediction-based databases, and performed tissue specificity analysis. RESULTS We identified 19 POPs significantly associated with 23 miRNAs at false discovery rate-adjusted P value < 0.2, most of which were related to organophosphorus and organochlorine pesticides. Pathway enrichment of the associated miRNAs highlighted chromosome segregation, RNA splicing, autophagy regulation, lipid metabolism, cell growth, development and differentiation, cell cycle regulation, neural network construction, and signal transduction. Notably, 13 POPs were positively associated with miR-6810-3p, a miRNA enriched in temporal lobe with high tissue specificity (Tissue Specificity Index = 0.78). Pathway analysis revealed that miR-6810-3p contributes to the positive regulation of autophagy and multiple cellular functions related to the nervous system such as transport along microtubules, maintenance of cell polarity, and synaptic transmission. CONCLUSION In conclusion, we identified POPs-related miRNA signatures in community-dwelling adults, and highlighted miR-6810-3p in association with multiple POPs, with a potential role in nervous system regulation.
Collapse
Affiliation(s)
- Jingli Qu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wending Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY 10032, USA
| | - Chengyong Jia
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui Tang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Yin
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Barrea C, Dufour P, Catherine P, Charlier C, Brevers F, Rousselle L, Parent AS. Impact of antenatal exposure to a mixture of persistent organic pollutants on intellectual development. Int J Hyg Environ Health 2024; 261:114422. [PMID: 38981323 DOI: 10.1016/j.ijheh.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Strong experimental evidence exists that several endocrine disrupting chemicals (EDCs) have neurobehavioral toxicity. However, evidence of associations between prenatal exposure and child's cognitive development is inconsistent. Moreover, toxicants are generally analyzed one by one without considering aggregate effects. We examined here the impact of a prenatal exposure to a mixture of persistent organic pollutants (POPs) on intellectual abilities in preschool children, and compared their effects to those described in the literature. METHODS Sixty-two children were included in a longitudinal cohort. Four organochlorine pesticides, four polychlorinated biphenyls (PCBs) and seven perfluorinated compounds (PFCs) were measured in cord blood. Intellectual abilities were assessed at 6 years of age using the Wechsler Preschool and Primary Scale of Intelligence 4th ed. (WPPSI-IV). We examined the associations between a mixture of POPs and cognitive performances using principal components approach (PCA) and weighted quantile sum (WQS) regression taking sex difference into account. RESULTS No negative correlation was found when analyses were performed on boys and girls together. In sex-stratified analyses, lower scores in full scale intelligence quotient (FSIQ) and fluid reasoning index (FRI) were observed in boys most exposed to a mixture of POPs. Increase of the WQS index was also associated with lower verbal comprehension index (VCI) scores in girls only. No other negative correlation was found using both WQS and PCA models. CONCLUSION Our study suggests deleterious associations between antenatal exposure to a mixture of POPs and sex-specific cognitive level, clarifying some trends described in the literature.
Collapse
Affiliation(s)
- Christophe Barrea
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium.
| | - Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Pirard Catherine
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Fanny Brevers
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Laurence Rousselle
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Anne-Simone Parent
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium
| |
Collapse
|
5
|
Balalian AA, Stingone JA, Kahn LG, Herbstman JB, Graeve RI, Stellman SD, Factor-Litvak P. Perinatal exposure to polychlorinated biphenyls (PCBs) and child neurodevelopment: A comprehensive systematic review of outcomes and methodological approaches. ENVIRONMENTAL RESEARCH 2024; 252:118912. [PMID: 38615789 DOI: 10.1016/j.envres.2024.118912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs), extensively used in various products, prompt ongoing concern despite reduced exposure since the 1970s. This systematic review explores prenatal PCB and hydroxylated metabolites (OH-PCBs) exposure's association with child neurodevelopment. Encompassing cognitive, motor development, behavior, attention, ADHD, and ASD risks, it also evaluates diverse methodological approaches in studies. METHODS PubMed, Embase, PsycINFO, and Web of Science databases were searched through August 23, 2023, by predefined search strings. Peer-reviewed studies published in English were included. The inclusion criteria were: (i) PCBs/OH-PCBs measured directly in maternal and cord blood, placenta or breast milk collected in the perinatal period; (ii) outcomes of cognitive development, motor development, attention, behavior, attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD) among children≤18 years old. Quality assessment followed the National Heart, Lung, and Blood Institute's tool. RESULTS Overall, 87 studies were included in this review. We found evidence for the association between perinatal PCB exposure and adverse cognitive development and attention issues in middle childhood. There appeared to be no or negligible link between perinatal PCB exposure and early childhood motor development or the risk of ADHD/ASD. There was an indication of a sex-specific association with worse cognition and attention scores among boys. Some individual studies suggested a possible association between prenatal exposure to OH-PCBs and neurodevelopmental outcomes. There was significant heterogeneity between the studies in exposure markers, exposure assessment timing, outcome assessment, and statistical analysis. CONCLUSIONS Significant methodological, clinical and statistical heterogeneity existed in the included studies. Adverse effects on cognitive development and attention were observed in middle childhood. Little or no apparent link on both motor development and risk of ADHD/ASD was observed in early childhood. Inconclusive evidence prevailed regarding other neurodevelopmental aspects due to limited studies. Future research could further explore sex-specific associations and evaluate associations at lower exposure levels post-PCB ban in the US. It should also consider OH-PCB metabolites, co-pollutants, mixtures, and their potential interactions.
Collapse
Affiliation(s)
- Arin A Balalian
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Question Driven Design and Analysis Group (QD-DAG), New York, NY, USA.
| | - Jeanette A Stingone
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Linda G Kahn
- Departments of Pediatrics and Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Richard I Graeve
- Institute for Medical Sociology, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Steven D Stellman
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Costopoulou D, Kedikoglou K, Vafeiadi M, Roumeliotaki T, Margetaki K, Stephanou EG, Myridakis A, Leondiadis L. Systematic investigation of organochlorine pesticides and polychlorinated biphenyls blood levels in Greek children from the Rhea birth cohort suggests historical exposure to DDT and through diet to DDE. ENVIRONMENT INTERNATIONAL 2024; 187:108686. [PMID: 38669722 DOI: 10.1016/j.envint.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The blood levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) have been thoroughly investigated in Greek children from the Rhea birth cohort study. This investigation aimed to assess exposure levels, explore their possible relationship with children's age and sex, and indicate potential sources of exposure. Exposure patterns and common sources of PCBs and OCPs were analyzed using bivariate and multivariate statistics. A total of 947 blood samples from study participants were analyzed for OCP and PCB exposure, with 375 samples collected at 4 years old, 239 at 6.5 years old, and 333 at 11 years old. Elevated levels of DDE were observed in 6.5-year-old children compared to corresponding levels in other European countries. Higher levels of DDE were found in 4-year-old children, with the lowest concentrations in the 11-year-old group. The DDT/DDE ratio was consistently less than 1 among all the examined subjects. These results indicate exposure to DDT and DDE both in utero and through breastfeeding and dietary intake. For the entire cohort population, the highest concentration was determined for PCB 28, followed by PCBs 138, 153, and 180. The sum of the six indicator PCBs implied low exposure levels for the majority of the cohort population. Spearman correlations revealed strong associations between PCBs and OCPs, while principal component analysis identified two different groupings of exposure. DDE exhibited a correlation with a series of PCBs (153, 156, 163, 180), indicating a combined OCP-PCB source, and an anticorrelation with others (52, 28, 101), implying a separate and competing source.
Collapse
Affiliation(s)
- Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece.
| | - Kleopatra Kedikoglou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Euripides G Stephanou
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece.
| | - Antonis Myridakis
- Centre for Pollution Research & Policy, Environmental Sciences, Brunel University London, UB8 3PH, United Kingdom
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| |
Collapse
|
7
|
Dimitrov LV, Kaminski JW, Holbrook JR, Bitsko RH, Yeh M, Courtney JG, O'Masta B, Maher B, Cerles A, McGowan K, Rush M. A Systematic Review and Meta-analysis of Chemical Exposures and Attention-Deficit/Hyperactivity Disorder in Children. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2024; 25:225-248. [PMID: 38108946 PMCID: PMC11132938 DOI: 10.1007/s11121-023-01601-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/19/2023]
Abstract
Exposure to certain chemicals prenatally and in childhood can impact development and may increase risk for attention-deficit/hyperactivity disorder (ADHD). Leveraging a larger set of literature searches conducted to synthesize results from longitudinal studies of potentially modifiable risk factors for childhood ADHD, we present meta-analytic results from 66 studies that examined the associations between early chemical exposures and later ADHD diagnosis or symptoms. Studies were eligible for inclusion if the chemical exposure occurred at least 6 months prior to measurement of ADHD diagnosis or symptomatology. Included papers were published between 1975 and 2019 on exposure to anesthetics (n = 5), cadmium (n = 3), hexachlorobenzene (n = 4), lead (n = 22), mercury (n = 12), organophosphates (n = 7), and polychlorinated biphenyls (n = 13). Analyses are presented for each chemical exposure by type of ADHD outcome reported (categorical vs. continuous), type of ADHD measurement (overall measures of ADHD, ADHD symptoms only, ADHD diagnosis only, inattention only, hyperactivity/impulsivity only), and timing of exposure (prenatal vs. childhood vs. cumulative), whenever at least 3 relevant effect sizes were available. Childhood lead exposure was positively associated with ADHD diagnosis and symptoms in all analyses except for the prenatal analyses (odds ratios (ORs) ranging from 1.60 to 2.62, correlation coefficients (CCs) ranging from 0.14 to 0.16). Other statistically significant associations were limited to organophosphates (CC = 0.11, 95% confidence interval (CI): 0.03-0.19 for continuous measures of ADHD outcomes overall), polychlorinated biphenyls (CC = 0.08, 95% CI: 0.02-0.14 for continuous measures of inattention as the outcome), and both prenatal and childhood mercury exposure (CC = 0.02, 95% CI: 0.00-0.04 for continuous measures of ADHD outcomes overall for either exposure window). Our findings provide further support for negative impacts of prenatal and/or childhood exposure to certain chemicals and raise the possibility that primary prevention and targeted screening could prevent or mitigate ADHD symptomatology. Furthermore, these findings support the need for regular review of regulations as our scientific understanding of the risks posed by these chemicals evolves.
Collapse
Affiliation(s)
- Lina V Dimitrov
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - Jennifer W Kaminski
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph R Holbrook
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rebecca H Bitsko
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael Yeh
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph G Courtney
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | |
Collapse
|
8
|
Reimann B, Remy S, Koppen G, Schoeters G, Den Hond E, Nelen V, Franken C, Covaci A, Bruckers L, Baeyens W, Loots I, van Larebeke N, Voorspoels S, De Henauw S, Nawrot TS, Plusquin M. Prenatal exposure to mixtures of per- and polyfluoroalkyl substances and organochlorines affects cognition in adolescence independent of postnatal exposure. Int J Hyg Environ Health 2024; 257:114346. [PMID: 38447259 DOI: 10.1016/j.ijheh.2024.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Studies on cognitive and neurodevelopmental outcomes have shown inconsistent results regarding the association with prenatal exposure to perfluoroalkyl substance (PFAS) and organochlorines. Assessment of mixture effects of correlated chemical exposures that persist in later life may contribute to the unbiased evaluation and understanding of dose-response associations in real-life exposures. METHODS For a subset of the 4th Flemish Environment and Health Study (FLEHS), concentrations of four PFAS and six organochlorines were measured in respectively 99 and 153-160 cord plasma samples and 15 years later in adolescents' peripheral serum by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Sustained and selective attention were measured at 14-15 years with the Continuous Performance Test (CPT) and Stroop Test as indicators of potential neurodevelopmental deficits. Quantile g-computation was applied to assess the joint associations between prenatal exposure to separate and combined groups of PFAS and organochlorines and performance in the CPT and Stroop Test at adolescence. Subsequently, individual effects of each chemical compound were analyzed in mixed effects models with two sets of covariates. Analytical data at birth and at the time of cognitive assessment allowed for off-setting postnatal exposure. RESULTS In mixtures analysis, a simultaneous one-quantile increase in the natural log-transformed values of PFAS and organochlorines combined was associated with a decrease in the mean reaction time (RT) and the reaction time variability (RTV) in the CPT (β = -15.54, 95% CI:-29.64, -1.45, and β = -7.82, 95% CI: -14.97, -0.67 respectively) and for the mixture of PFAS alone with RT (β = -11.94, 95% CI: -23.29, -0.60). In the single pollutant models, these results were confirmed for the association between perfluorohexanesulfonate (PFHxS) with RT (β = -17.95, 95% CI = -33.35, -2.69) and hexachlorobenzene with RTV in the CPT (β = -5.78, 95% CI: -10.39, -0.76). Furthermore, the participants with prenatal exposure above the limit of quantification for perfluorononanoic acid (PFNA) had a significantly shorter RT and RTV in the CPT (β = -23.38, 95% CI: -41.55, -5.94, and β = -9.54, 95% CI: -19.75, -0.43, respectively). CONCLUSION Higher prenatal exposure to a PFAS mixture and a mixture of PFAS and organochlorines combined was associated with better sustained and selective attention during adolescence. The associations seemed to be driven by PFHxS and were not linked to exposure levels at the time of assessment.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium
| | - Sylvie Remy
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Environmental Toxicology Unit, Mol, Belgium
| | - Gudrun Koppen
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Environmental Toxicology Unit, Mol, Belgium
| | - Greet Schoeters
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Elly Den Hond
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium; Family Medicine and Population Health (FAMPOP), University of Antwerp, Gouverneur Kingsbergencentrum, Doornstraat 331, 2610, Wilrijk, Belgium
| | - Vera Nelen
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Carmen Franken
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Liesbeth Bruckers
- Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, 3590, Diepenbeek, Belgium
| | - Willy Baeyens
- Department of Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Belgium
| | - Ilse Loots
- University of Antwerp, Department of Sociology (CRESC and IMDO), Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Nicolas van Larebeke
- Department of Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Belgium; Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Stefan Voorspoels
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Environmental Toxicology Unit, Mol, Belgium
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium; School of Public Health, Occupational & Environmental Medicine, Leuven University, 3000, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium.
| |
Collapse
|
9
|
Wu C, Du X, Liu H, Chen X, Ge K, Meng R, Zhang Z, Zhang H. Advances in polychlorinated biphenyls-induced female reproductive toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170543. [PMID: 38309369 DOI: 10.1016/j.scitotenv.2024.170543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Polychlorinated biphenyls (PCBs) are a class of endocrine-disrupting chemicals (EDCs) widely present in the environment. PCBs have been of concern due to their anti/estrogen-like effects, which make them more toxic to the female reproductive system. However, there is still a lack of systematic reviews on the reproductive toxicity of PCBs in females, so the adverse effects and mechanisms of PCBs on the female reproductive system were summarized in this paper. Our findings showed that PCBs are positively associated with lower pregnancy rate, hormone disruption, miscarriage and various reproductive diseases in women. In animal experiments, PCBs can damage the structure and function of the ovaries, uterus and oviducts. Also, PCBs could produce epigenetic effects and be transferred to the offspring through the maternal placenta, causing development retardation, malformation and death of embryos, and damage to organs of multiple generations. Furthermore, the mechanisms of PCBs-induced female reproductive toxicity mainly include receptor-mediated hormone disorders, oxidative stress, apoptosis, autophagy, and epigenetic modifications. Finally, we also present some directions for future research on the reproductive toxicity of PCBs. This detailed information provided a valuable reference for fully understanding the reproductive toxicity of PCBs.
Collapse
Affiliation(s)
- Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
10
|
Goodman CV, Green R, DaCosta A, Flora D, Lanphear B, Till C. Sex difference of pre- and post-natal exposure to six developmental neurotoxicants on intellectual abilities: a systematic review and meta-analysis of human studies. Environ Health 2023; 22:80. [PMID: 37978510 PMCID: PMC10655280 DOI: 10.1186/s12940-023-01029-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Early life exposure to lead, mercury, polychlorinated biphenyls (PCBs), polybromide diphenyl ethers (PBDEs), organophosphate pesticides (OPPs), and phthalates have been associated with lowered IQ in children. In some studies, these neurotoxicants impact males and females differently. We aimed to examine the sex-specific effects of exposure to developmental neurotoxicants on intelligence (IQ) in a systematic review and meta-analysis. METHOD We screened abstracts published in PsychINFO and PubMed before December 31st, 2021, for empirical studies of six neurotoxicants (lead, mercury, PCBs, PBDEs, OPPs, and phthalates) that (1) used an individualized biomarker; (2) measured exposure during the prenatal period or before age six; and (3) provided effect estimates on general, nonverbal, and/or verbal IQ by sex. We assessed each study for risk of bias and evaluated the certainty of the evidence using Navigation Guide. We performed separate random effect meta-analyses by sex and timing of exposure with subgroup analyses by neurotoxicant. RESULTS Fifty-one studies were included in the systematic review and 20 in the meta-analysis. Prenatal exposure to developmental neurotoxicants was associated with decreased general and nonverbal IQ in males, especially for lead. No significant effects were found for verbal IQ, or postnatal lead exposure and general IQ. Due to the limited number of studies, we were unable to analyze postnatal effects of any of the other neurotoxicants. CONCLUSION During fetal development, males may be more vulnerable than females to general and nonverbal intellectual deficits from neurotoxic exposures, especially from lead. More research is needed to examine the nuanced sex-specific effects found for postnatal exposure to toxic chemicals.
Collapse
Affiliation(s)
- Carly V Goodman
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada.
| | - Rivka Green
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| | - Allya DaCosta
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| | - David Flora
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Christine Till
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| |
Collapse
|
11
|
Lee F, Gallo MV, Schell LM, Jennings J, Lawrence DA, On The Environment ATF. Exposure of Akwesasne Mohawk women to polychlorinated biphenyls and hexachlorobenzene is associated with increased serum levels of thyroid peroxidase autoantibodies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:597-613. [PMID: 37335069 DOI: 10.1080/15287394.2023.2226685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Persistent organic pollutants (POPs) including polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and dichlorodiphenyltrichloroethane (p,p'-DDT) were reported to influence immunological activity. As endocrine-disrupting chemicals (EDC), these pollutants may disrupt normal thyroid function and act as catalysts for development of autoimmune thyroid disease by directly and indirectly affecting levels of thyroid peroxidase antibodies (TPOAbs). Native American communities are disproportionately exposed to harmful toxicants and are at an increased risk of developing an autoimmune disease. The aim of this study was to determine the association between POPs and TPOAbs in serum obtained from Native American women. This assessment was used to measure whether increased risk of autoimmune thyroid disease occurred as a result of exposure to POPs. Data were collected from 183 Akwesasne Mohawk women, 21-38 years of age, between 2009 and 2013. Multivariate analyses were conducted to determine the association between toxicant exposure and levels of TPOAbs. In multiple logistic regression analyses, exposure to PCB congener 33 was related to elevated risk of individuals possessing above normal levels of TPOAbs. Further, HCB was associated with more than 2-fold higher risk of possessing above normal levels of TPOAbs compared to women with normal levels of TPOAbs. p,p'-DDE was not associated with TPOAb levels within this study. Exposure to PCB congener 33 and HCB was correlated with above normal levels of TPOAbs, a marker of autoimmune thyroid disease. Additional investigations are needed to establish the causes and factors surrounding autoimmune thyroid disease which are multiple and complex.
Collapse
Affiliation(s)
- Florence Lee
- Department of Anthropology, University at Albany, Albany, NY, USA
| | - Mia V Gallo
- Department of Anthropology, University at Albany, Albany, NY, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, NY, USA
| | - Lawrence M Schell
- Department of Anthropology, University at Albany, Albany, NY, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, NY, USA
- Department of Epidemiology and Biostatistics, University at Albany, Albany, NY, USA
| | - Julia Jennings
- Department of Anthropology, University at Albany, Albany, NY, USA
| | - David A Lawrence
- Wadsworth Center/New York State Department of Health, Albany, NY, USA
- Biomedical Sciences and Environmental Health Sciences, University at Albany, Albany, NY, USA
| | | |
Collapse
|
12
|
Rodriguez PM, Ondarza PM, Miglioranza KSB, Ramirez CL, Vera B, Muntaner C, Guiñazú NL. Pesticides exposure in pregnant Argentinian women: Potential relations with the residence areas and the anthropometric neonate parameters. CHEMOSPHERE 2023; 332:138790. [PMID: 37142107 DOI: 10.1016/j.chemosphere.2023.138790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Intrauterine environment is the first chemical exposure scenario in life, through transplacental transfer. In this study, the aim was to determine concentrations of organochlorine pesticides (OCPs) and selected current use pesticides in the placentas of pregnant women from Argentina. Socio-demographic information, the mother's lifestyle and neonatal characteristics were also analysed and related to pesticides residue concentrations. Thus, 85 placentas were collected at birth, from an area of intensive fruit production for the international market, in Patagonia Argentina. Concentrations of 23 pesticides including, trifluralin (herbicide), the fungicides chlorothalonil and HCB, and the insecticides chlorpyrifos, HCHs, endosulfans, DDTs, chlordanes, heptachlors, drins and metoxichlor, were determined by GC-ECD and GC-MS. Results were first analysed all together and then grouped by their residential settings, in urban and rural groups. Total mean pesticide concentration was 582.6 ± 1034.4 ng/g lw, where DDTs (325.9 ± 950.3 ng/g lw) and chlorpyrifos (188.4 ± 365.4 ng/g lw) showed a high contribution. Pesticide levels found exceeded those reported in low, middle and high income countries from Europe, Asia and Africa. In general, pesticides concentrations were not associated with neonatal anthropometric parameters. When the results were analysed by residence place, significantly higher concentrations of total pesticides and chlorpyrifos (Mann Whitney test p = 0.0003 and p = 0.032, respectively) were observed in placentas collected from mothers living in rural settings compared to urban areas. Rural pregnant women presented the highest pesticide burden (5.9 μg), where DDTs and chlorpyrifos were the major constituents. These results suggested that all pregnant women are highly exposed to complex pesticide mixtures, including banned OCPs and the widely used chlorpyrifos. Based on the pesticide concentrations found, our results warn of possible health impacts from prenatal exposure through transplacental transfer. This is one of the first reports of both chlorpyrifos and chlorothalonil concentrations in placental tissue, and contributes to the knowledge of current pesticide exposure in Argentina.
Collapse
Affiliation(s)
- Piuque M Rodriguez
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
| | - Paola M Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina.
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina
| | - Critina L Ramirez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina
| | - Berta Vera
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina; Facultad de Medicina, Universidad Nacional Del Comahue, Los Arrayanes y Av. Toschi, Cipolletti, 8324, Río Negro, Argentina
| | - Celeste Muntaner
- Facultad de Medicina, Universidad Nacional Del Comahue, Los Arrayanes y Av. Toschi, Cipolletti, 8324, Río Negro, Argentina
| | - Natalia L Guiñazú
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina; Departamento de Ciencias Del Ambiente, Facultad de Ciencias Del Ambiente y la Salud, Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
| |
Collapse
|
13
|
Roberts M, Colley K, Currie M, Eastwood A, Li KH, Avery LM, Beevers LC, Braithwaite I, Dallimer M, Davies ZG, Fisher HL, Gidlow CJ, Memon A, Mudway IS, Naylor LA, Reis S, Smith P, Stansfeld SA, Wilkie S, Irvine KN. The Contribution of Environmental Science to Mental Health Research: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5278. [PMID: 37047894 PMCID: PMC10094550 DOI: 10.3390/ijerph20075278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Mental health is influenced by multiple complex and interacting genetic, psychological, social, and environmental factors. As such, developing state-of-the-art mental health knowledge requires collaboration across academic disciplines, including environmental science. To assess the current contribution of environmental science to this field, a scoping review of the literature on environmental influences on mental health (including conditions of cognitive development and decline) was conducted. The review protocol was developed in consultation with experts working across mental health and environmental science. The scoping review included 202 English-language papers, published between 2010 and 2020 (prior to the COVID-19 pandemic), on environmental themes that had not already been the subject of recent systematic reviews; 26 reviews on climate change, flooding, air pollution, and urban green space were additionally considered. Studies largely focused on populations in the USA, China, or Europe and involved limited environmental science input. Environmental science research methods are primarily focused on quantitative approaches utilising secondary datasets or field data. Mental health measurement was dominated by the use of self-report psychometric scales. Measures of environmental states or exposures were often lacking in specificity (e.g., limited to the presence or absence of an environmental state). Based on the scoping review findings and our synthesis of the recent reviews, a research agenda for environmental science's future contribution to mental health scholarship is set out. This includes recommendations to expand the geographical scope and broaden the representation of different environmental science areas, improve measurement of environmental exposure, prioritise experimental and longitudinal research designs, and giving greater consideration to variation between and within communities and the mediating pathways by which environment influences mental health. There is also considerable opportunity to increase interdisciplinarity within the field via the integration of conceptual models, the inclusion of mixed methods and qualitative approaches, as well as further consideration of the socio-political context and the environmental states that can help support good mental health. The findings were used to propose a conceptual model to parse contributions and connections between environmental science and mental health to inform future studies.
Collapse
Affiliation(s)
- Michaela Roberts
- Social, Economic and Geographical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland AB15 8QH, UK
| | - Kathryn Colley
- Social, Economic and Geographical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland AB15 8QH, UK
| | - Margaret Currie
- Social, Economic and Geographical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland AB15 8QH, UK
| | - Antonia Eastwood
- Social, Economic and Geographical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland AB15 8QH, UK
| | - Kuang-Heng Li
- Social, Economic and Geographical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland AB15 8QH, UK
| | - Lisa M. Avery
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland AB15 8QH, UK
| | - Lindsay C. Beevers
- Institute of Infrastructure and Environment, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Isobel Braithwaite
- UCL Institute of Health Informatics, 222 Euston Road, London NW1 2DA, UK
| | - Martin Dallimer
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Zoe G. Davies
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, Kent CT2 7NR, UK
| | - Helen L. Fisher
- King’s College London, Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, 16 De Crespigny Park, London SE5 8AF, UK
- Economic & Social Research Council (ESRC) Centre for Society and Mental Health, King’s College London, 44-46 Aldwych, London WC2B 4LL, UK
| | - Christopher J. Gidlow
- Centre for Health and Development (CHAD), Staffordshire University, Leek Road, Stoke-on-Trent ST4 2DF, UK
| | - Anjum Memon
- Department of Primary Care and Public Health, Brighton and Sussex Medical School, Brighton BN1 9PH, UK
| | - Ian S. Mudway
- MRC Centre for Environment and Health, Imperial College London, White City Campus, London W12 0BZ, UK
- NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Larissa A. Naylor
- School of Geographical & Earth Sciences, East Quadrangle, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik EH26 0QB, UK
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Truro, Cornwall TR1 3HD, UK
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, UK
| | - Stephen A. Stansfeld
- Centre for Psychiatry, Barts and the London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Stephanie Wilkie
- School of Psychology, Murray Library, City Campus, University of Sunderland, Sunderland SR1 3SD, UK
| | - Katherine N. Irvine
- Social, Economic and Geographical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland AB15 8QH, UK
| |
Collapse
|
14
|
Ding X, Wen Y, Ma X, Zhang Y, Cheng Y, Liu Z, Hu W, Xia Y. Pyridoxal 5'-phosphate alleviates prenatal pyridaben exposure-induced anxiety-like behaviors in offspring. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100224. [PMID: 36437888 PMCID: PMC9691908 DOI: 10.1016/j.ese.2022.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Pyridaben (PY) is a widely used organochlorine acaricide, which can be detected in the peripheral blood of pregnant women. Available evidence suggests that PY has reproductive toxicity. However, it remains uncertain whether prenatal PY exposure impacts neurobehavioral development in offspring. Here, we administered PY to pregnant mice at a dose of 0.5 and 5 mg kg-1 day-1 via gavage and observed anxiety-like behaviors in PY offspring aged five weeks. We then integrated the metabolome and transcriptome of the offspring's brain to explore the underlying mechanism. Metabolome data indicated that the vitamin B6 metabolism pathway was significantly affected, and the pyridoxal 5'-phosphate (PLP) concentration and the active form of vitamin B6 was significantly reduced. Moreover, the transcriptome data showed that both PLP generation-related Pdxk and anxiety-related Gad1 were significantly down-regulated. Meanwhile, there was a decreasing trend in the concentration of GABA in the hippocampal DG region. Next, we supplemented PLP at a dose of 20 mg kg-1 day-1 to the PY offspring via intraperitoneal injection at three weeks. We found up-regulated expression of Pdxk and Gad1 and restored anxiety-like behaviors. This study suggests that prenatal exposure to PY can disrupt vitamin B6 metabolism, reduce the concentration of PLP, down-regulate the expression levels of Pdxk and Gad1, inhibit the production of GABA, and ultimately lead to anxiety-like behaviors in offspring.
Collapse
Affiliation(s)
- Xingwang Ding
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Ya Wen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Department of Chronic Non-Communicable Disease Control, Wuxi Liangxi District Center for Disease Control and Prevention, Wuxi, 214011, China
| | - Xuan Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Yuepei Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Yuting Cheng
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Zhaofeng Liu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| |
Collapse
|
15
|
An S, Rauch SA, Maphula A, Obida M, Kogut K, Bornman R, Chevrier J, Eskenazi B. In-utero exposure to DDT and pyrethroids and child behavioral and emotional problems at 2 years of age in the VHEMBE cohort, South Africa. CHEMOSPHERE 2022; 306:135569. [PMID: 35798156 PMCID: PMC9520228 DOI: 10.1016/j.chemosphere.2022.135569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Half the world's population is at risk for malaria. Indoor residual spraying (IRS) with insecticides has been effective in controlling malaria, yet the potential neurotoxicity of these insecticides is of concern, particularly for infants exposed in utero. OBJECTIVES To determine the association of prenatal exposure to DDT/DDE and pyrethroid insecticides and behavioral/emotional problems in two-year-old children. METHODS The Venda Health Examination of Mothers, Babies and their Environment (VHEMBE) birth cohort in South Africa, measured concentrations of p,p'-DDT and p,p'-DDE in maternal serum and pyrethroid metabolites (cis-DBCA, cis-DCCA, trans-DCCA, and 3-PBA) in maternal urine collected during pregnancy. At 2 years, 683 mothers were interviewed about their children's behavior and emotional development, using the Child Behavior Checklist (CBCL). We examined associations between behavioral or emotional problems and biomarkers of prenatal insecticide exposure. RESULTS Maternal serum p,p'-DDT concentrations were associated with heightened withdrawn behavior in 2-year olds, with a 0.24 increase in raw scores (95%CI = 0.00, 0.49) and a 12% increase (95%CI = 1.01, 1.23) in risk of being at or above the borderline-clinical level, per 10-fold increase in concentrations. Ten-fold increases in p,p'-DDT and p,p'-DDE were related to 30% (RR = 1.30; 95%CI = 1.01, 1.67) and 39% (RR = 1.39; 95%CI =1.01, 1.91) higher risks, respectively, for increased oppositional-defiant behavior. p,p'-DDE concentrations were also related to increased risk of ADHD-related problems (RR = 1.30; 95%CI = 0.98, 1.72). Maternal urinary concentrations of cis-DBCA and 3-PBA were associated with increased risk of externalizing behaviors (RR = 1.30; 95%CI = 1.05, 1.62; RR = 1.35, 95%CI = 1.03, 1.78 per 10-fold increase, respectively), with some evidence of an association between cis-DBCA and affective disorders (RR = 1.25; 95%CI = 0.99, 1.56). Some associations with maternal pyrethroid concentrations were stronger in girls than boys. CONCLUSIONS Prenatal exposure to DDT and pyrethroid insecticides may be associated with maternally-reported behavioral problems in two-year-old children. Given their long history and continued use, further investigation is warranted.
Collapse
Affiliation(s)
- Sookee An
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Stephen A Rauch
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Angelina Maphula
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa; Department of Psychology, University of Venda, Limpopo, South Africa
| | - Muvhulawa Obida
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Katherine Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Riana Bornman
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Yaghoobi B, Miller GW, Holland EB, Li X, Harvey D, Li S, Lehmler HJ, Pessah IN, Lein PJ. Ryanodine receptor-active non-dioxin-like polychlorinated biphenyls cause neurobehavioral deficits in larval zebrafish. FRONTIERS IN TOXICOLOGY 2022; 4:947795. [PMID: 36278027 PMCID: PMC9582434 DOI: 10.3389/ftox.2022.947795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/18/2022] [Indexed: 01/28/2023] Open
Abstract
Although their production was banned in the United States in 1977, polychlorinated biphenyls (PCBs) continue to pose significant risks to the developing nervous system. Perinatal exposure to PCBs is associated with increased risk of neuropsychiatric disorders, perhaps due to altered patterns of dendritic arborization of central neurons. Non-dioxin-like (NDL) PCB congeners enhance dendritic arborization of developing mammalian neurons via sensitization of ryanodine receptors (RYR). Structure-activity relationships (SAR) of RYR sensitization by PCBs have been demonstrated using mammalian and rainbow trout (Oncorhynchus mykiss) tissue homogenates. The purpose of this study is to determine whether this SAR translates to developmental neurotoxicity (DNT) of PCBs in vivo, a question that has yet to be tested. To address this gap, we leveraged a zebrafish model to evaluate the developmental neurotoxicity potential of PCBs 28, 66, 84, 95, 138, and 153, congeners previously shown to have broadly different potencies towards sensitizing RYR. We first confirmed that these PCB congeners exhibited differing potency in sensitizing RYR in zebrafish muscle ranging from negligible (PCB 66) to moderate (PCB 153) to high (PCB 95) RYR activity. Next, enzymatically dechorionated embryos were statically exposed to varying concentrations (0.1-10 μM) of each PCB congener from 6 h post-fertilization to 5 days post-fertilization (dpf). Embryos were observed daily using stereomicroscopy to assess mortality and gross malformations and photomotor behavior was assessed in larval zebrafish at 3, 4, and 5 dpf. The body burden of each PCB was measured by gas chromatography. The key findings are: 1) None of these PCBs caused death or overt teratology at the concentrations tested; 2) A subset of these PCB congeners altered photomotor behavior in larval zebrafish and the SAR for PCB behavioral effects mirrored the SAR for RYR sensitization; and 3) Quantification of PCB levels in larval zebrafish ruled out the possibility that congener-specific effects on behavior were due to differential uptake of PCB congeners. Collectively, the findings from this study provide in vivo evidence in support of the hypothesis that RYR sensitization contributes to the DNT of PCBs.
Collapse
Affiliation(s)
- Bianca Yaghoobi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Galen W. Miller
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erika B. Holland
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States,Department of Biological Sciences, California State University of Long Beach, Long Beach, CA, United States
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, United States
| | - Danielle Harvey
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Shuyang Li
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States,*Correspondence: Pamela J. Lein,
| |
Collapse
|
17
|
Cheslack-Postava K, Rantakokko P, Kiviranta H, Hinkka-Yli-Salomäki S, Surcel HM, Vivio N, Falabella G, McKeague IW, Sourander A, Brown AS. Maternal serum persistent organic pollutant exposure and offspring diagnosed ADHD in a national birth cohort. ENVIRONMENTAL RESEARCH 2022; 212:113145. [PMID: 35318010 PMCID: PMC9232966 DOI: 10.1016/j.envres.2022.113145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Evidence implicates environmental factors in attention-deficit/hyperactivity disorder (ADHD) risk. Prenatal exposures to polychlorinated biphenyls (PCBs) and the pesticide metabolite p,p'-dichlorodiphenyl dichloroethylene (DDE) have been linked to lower cognitive ability, increased impulsivity, and attention related deficits in the offspring. However, information on the relationship of these exposures to the risk of clinically diagnosed ADHD is limited. OBJECTIVES To determine whether prenatal maternal levels of PCBs or DDE are associated with ADHD diagnosis in the offspring. METHODS The investigation was conducted in the Finnish Prenatal Study of ADHD (FIPS-ADHD), a case-control study nested in a national birth cohort. Cases were born in 1998 or 1999 and diagnosed with ADHD (ICD-9 314x or ICD-10 F90. x) according to the national Care Register for Health Care. Each case was individually matched to a control on sex, date, and place of birth. PCB congeners (PCB 74, 99, 118, 138, 153, 156, 170, 180, 183, 187) and DDE were quantified from archived prenatal maternal sera from 359 matched case-control pairs using gas chromatography - high triple quadrupole mass spectrometry. Maternal total PCBs were quantified as the sum of concentrations of the measured congeners. Associations with ADHD were examined using conditional logistic regression. RESULTS Maternal PCB or DDE levels greater than the 75th percentiles of the control distributions showed no evidence of association with offspring ADHD (PCBs: adjusted odds ratio (aOR) = 1.01, 95% CI = 0.63, 1.60), p = 0.98; DDE: aOR = 1.13, 95% CI = 0.71, 1.81; p = 0.60). Maternal levels of either pollutant dichotomized at the 90th percentile or considered as a continuous variable also did not show evidence for association with offspring ADHD diagnosis. DISCUSSION This study did not find evidence for association of maternal prenatal levels of PCBs or DDE with clinical diagnosis of offspring ADHD; however, this does not rule out the possibility of an impact on subclinical phenotypes.
Collapse
Affiliation(s)
- Keely Cheslack-Postava
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA.
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Kuopio, Finland
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Kuopio, Finland
| | - Susanna Hinkka-Yli-Salomäki
- Department of Child Psychiatry, Research Centre for Child Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Heljä-Marja Surcel
- Faculty of Medicine, University of Oulu, Oulu, Finland; Biobank Borealis of Northern Finland, Oulu, Finland
| | - Nicholas Vivio
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Genevieve Falabella
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Ian W McKeague
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Andre Sourander
- Department of Child Psychiatry, Research Centre for Child Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland; Department of Child Psychiatry, Turku University Hospital, Turku, Finland; INVEST Research Flagship, University of Turku, Turku, Finland
| | - Alan S Brown
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
18
|
Binter AC, Mora AM, Baker JM, Bruno JL, Kogut K, Rauch S, Reiss AL, Eskenazi B, Sagiv SK. Exposure to DDT and DDE and functional neuroimaging in adolescents from the CHAMACOS cohort. ENVIRONMENTAL RESEARCH 2022; 212:113461. [PMID: 35550812 PMCID: PMC11404404 DOI: 10.1016/j.envres.2022.113461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Epidemiological studies suggest that exposure to p,p'-dichloro-diphenyl-trichloroethane (p,p'-DDT) is associated with poorer cognitive function in children and adolescents, but the neural mechanisms underlying this association remain unclear. OBJECTIVE We investigated associations of prenatal and childhood exposure to p,p'-DDT and its metabolite p,p'-dichloro-diphenyl-dichloroethylene (p,p'-DDE) with cortical activation in adolescents using functional near-infrared spectroscopy (fNIRS). METHODS We administered fNIRS to 95 adolescents from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) aged 15-17 years. We assessed cortical activity in the frontal, temporal, and parietal brain regions while participants completed tasks of executive function, language comprehension, and social cognition. We measured serum p,p'-DDT and -DDE concentrations at age 9 years and then estimated exposure-outcome associations using linear regression models adjusted for sociodemographic characteristics. In secondary analyses, we back-extrapolated prenatal concentrations using prediction models and examined their association with cortical activation. RESULTS Median (P25-P75) p,p'-DDT and -DDE concentrations in childhood were 1.4 (1-2.3) and 141.5 (75.0-281.3) ng/g lipid, respectively. We found that childhood exposure to p,p'-DDT and -DDE was associated with altered patterns of brain activation during tasks of cognition and executive functions. For example, we observed increased activity in the left frontal lobe during a language comprehension task (β per 10 ng/g lipid increase of serum p,p'-DDE at age 9 years = 3.4; 95% CI: 0.0, 6.9 in the left inferior frontal lobe; and β = 4.2; 95% CI: 0.9, 7.5 in the left superior frontal lobe). We found no sex differences in the associations of childhood p,p'-DDT and -DDE concentrations with neural activity. Associations between prenatal p,p'-DDT and p,p'-DDE concentrations and brain activity were similar to those observed for child p,p'-DDT and -DDE concentrations. CONCLUSIONS Childhood p,p'-DDT and -DDE exposure may impact cortical brain activation, which could be an underlying mechanism for its previously reported associations with poorer cognitive function.
Collapse
Affiliation(s)
- Anne-Claire Binter
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Ana M Mora
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Jennifer L Bruno
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Katherine Kogut
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Stephen Rauch
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94305, USA; Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA; Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
19
|
Montano L, Pironti C, Pinto G, Ricciardi M, Buono A, Brogna C, Venier M, Piscopo M, Amoresano A, Motta O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. TOXICS 2022; 10:365. [PMID: 35878270 PMCID: PMC9323099 DOI: 10.3390/toxics10070365] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, Oliveto Citra, 84020 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Amalia Buono
- Research Laboratory Gentile, S.a.s., 80054 Gragnano, Italy;
| | - Carlo Brogna
- Craniomed Laboratory Group Srl, Viale degli Astronauti 45, 83038 Montemiletto, Italy;
| | - Marta Venier
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| |
Collapse
|
20
|
Li M, Gong J, Gao L, Zou T, Kang J, Xu H. Advanced human developmental toxicity and teratogenicity assessment using human organoid models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113429. [PMID: 35325609 DOI: 10.1016/j.ecoenv.2022.113429] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Tremendous progress has been made in the field of toxicology leading to the advance of developmental toxicity assessment. Conventional animal models and in vitro two-dimensional models cannot accurately describe toxic effects and predict actual in vivo responses due to obvious inter-species differences between humans and animals, as well as the lack of a physiologically relevant tissue microenvironment. Human embryonic stem cell (hESC)- and induced pluripotent stem cell (iPSC)-derived three-dimensional organoids are ideal complex and multicellular organotypic models, which are indispensable in recapitulating morphogenesis, cellular interactions, and molecular processes of early human organ development. Recently, human organoids have been used for drug discovery, chemical toxicity and safety in vitro assessment. This review discusses the recent advances in the use of human organoid models, (i.e., brain, retinal, cardiac, liver, kidney, lung, and intestinal organoid models) for developmental toxicity and teratogenicity assessment of distinct tissues/organs following exposure to pharmaceutical compounds, heavy metals, persistent organic pollutants, nanomaterials, and ambient air pollutants. Combining next-generation organoid models with innovative engineering technologies generates novel and powerful tools for developmental toxicity and teratogenicity assessment, and the rapid progress in this field is expected to continue.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
21
|
Association of prenatal exposure to dioxin-like compounds, polychlorinated biphenyl, and methylmercury with event-related brain potentials in school-aged children: the Hokkaido study. Neurotoxicology 2022; 91:11-21. [DOI: 10.1016/j.neuro.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/18/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022]
|
22
|
Oppenheimer AV, Bellinger DC, Coull BA, Weisskopf MG, Korrick SA. Prenatal exposure to chemical mixtures and working memory among adolescents. ENVIRONMENTAL RESEARCH 2022; 205:112436. [PMID: 34843721 PMCID: PMC8760169 DOI: 10.1016/j.envres.2021.112436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 05/06/2023]
Abstract
Working memory is the ability to keep information in one's mind and mentally manipulate it. Decrements in working memory play a key role in many behavioral and psychiatric disorders, therefore identifying modifiable environmental risk factors for such decrements is important for mitigating these disorders. There is some evidence that prenatal exposure to individual chemicals may adversely impact working memory among children, but few studies have explored the association of co-exposure to multiple chemicals with this outcome in adolescence, a time when working memory skills undergo substantial development. We investigated the association of organochlorines (DDE, HCB, PCBs) and metals (lead, manganese) measured in cord serum and cord blood, respectively, with working memory measured with the Wide Range Assessment of Memory and Learning, 2nd Edition among 373 adolescents living near a Superfund site in New Bedford, Massachusetts. We used Bayesian Kernel Machine Regression (BKMR) and linear regression analyses and assessed effect modification by sex and prenatal social disadvantage. In BKMR models, we observed an adverse joint association of the chemical mixture with Verbal, but not Symbolic, Working Memory. In co-exposure and covariate-adjusted linear regression models, a twofold increase in cord blood manganese was associated with lower working memory scaled scores, with a stronger association with Verbal Working Memory (difference = -0.75; 95% CI: -1.29, -0.20 points) compared to Symbolic Working Memory (difference = -0.44; 95% CI: -1.00, 0.12 points). There was little evidence of effect modification by sex and some evidence associating organochlorine pesticides with poorer working memory scores among those with greater prenatal social disadvantage. This study provided evidence of an adverse joint association of a chemical mixture with a verbal working memory task among adolescents, as well as an adverse association of prenatal manganese exposure with working memory.
Collapse
Affiliation(s)
- Anna V Oppenheimer
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - David C Bellinger
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan A Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Oppenheimer AV, Bellinger DC, Coull BA, Weisskopf MG, Korrick SA. Prenatal Exposure to Chemical Mixtures and Cognitive Flexibility among Adolescents. TOXICS 2021; 9:toxics9120329. [PMID: 34941764 PMCID: PMC8708222 DOI: 10.3390/toxics9120329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Cognitive flexibility, the ability to smoothly adapt to changing circumstances, is a skill that is vital to higher-level executive functions such as problem-solving, planning, and reasoning. As it undergoes substantial development during adolescence, decrements in cognitive flexibility may not become apparent until this time. There is evidence that prenatal exposure to individual chemicals may adversely impact executive functions in children, but few studies have explored the association of co-exposure to multiple chemicals with cognitive flexibility specifically among adolescents. We investigated this association among a diverse group of adolescents living near a Superfund site in New Bedford, Massachusetts. Specifically, using Bayesian kernel machine regression (BKMR) and multivariable regression analyses, we investigated the association of biomarkers of prenatal exposure to organochlorines (DDE, HCB, PCBs) and metals (lead, manganese) with cognitive flexibility, measured with four subtests of the Delis-Kaplan Executive Function System. In BKMR models, we observed adverse joint associations of the chemical mixture with two of the four cognitive flexibility subtests. In covariate-adjusted linear regression models, a two-fold increase in cord blood Mn was associated with poorer performance on two of the subtests: Trail-Making (scaled score difference = −0.60; 95% CI: −1.16, −0.05 points) and Color-Word Interference (scaled score difference = −0.53; 95% CI: −1.08, 0.01 points). These adverse Mn-cognitive flexibility associations were supported by the results of the BKMR. There was little evidence of effect modification by sex and some evidence of effect modification by a measure of social disadvantage, particularly for the associations between HCB and cognitive flexibility. This study is among the first to provide evidence of an adverse association of prenatal exposure to a chemical mixture with cognitive flexibility in adolescence.
Collapse
Affiliation(s)
- Anna V. Oppenheimer
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (D.C.B.); (B.A.C.); (M.G.W.); (S.A.K.)
- Correspondence: ; Tel.: +1-781-264-0697
| | - David C. Bellinger
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (D.C.B.); (B.A.C.); (M.G.W.); (S.A.K.)
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Brent A. Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (D.C.B.); (B.A.C.); (M.G.W.); (S.A.K.)
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (D.C.B.); (B.A.C.); (M.G.W.); (S.A.K.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Susan A. Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (D.C.B.); (B.A.C.); (M.G.W.); (S.A.K.)
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Oppenheimer AV, Bellinger DC, Coull BA, Weisskopf MG, Zemplenyi M, Korrick SA. Prenatal Exposure to Chemical Mixtures and Inhibition among Adolescents. TOXICS 2021; 9:311. [PMID: 34822702 PMCID: PMC8619850 DOI: 10.3390/toxics9110311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Inhibition, one of the building blocks of executive function, is the ability to focus one's attention despite interference from external stimuli. It undergoes substantial development during adolescence and may be susceptible to adverse impacts of prenatal exposure to chemical mixtures, yet few studies have explored this association. The New Bedford Cohort (NBC) is a birth cohort of residents living near the New Bedford Harbor Superfund site in Massachusetts. Among adolescents from the NBC, we investigated the association of biomarkers of prenatal exposure to organochlorines (DDE, HCB, PCBs) and metals (Pb, Mn) with inhibition, assessed with the Delis-Kaplan Executive Function System Design Fluency (non-verbal task) and Color-Word Interference (verbal task) subtests. An exploratory mixtures analysis using Bayesian kernel machine regression (BKMR) informed a traditional multivariable regression approach. NBC adolescents are diverse with 29% non-white and 31% in a low-income household at birth. Cord serum organochlorine concentrations and cord blood metals concentrations were generally similar to other birth cohorts. In BKMR models, we observed a suggestive adverse association of the chemical mixture with Color-Word Interference but not Design Fluency. In covariate-adjusted linear regression models including all five chemical exposure measures, a doubling of cord blood Mn was associated with poorer Color-Word Interference completion time scaled scores (difference = -0.74; 95% CI: -1.34, -0.14). This study provided evidence of an adverse joint association between prenatal exposure to a five-chemical mixture and verbal inhibition in adolescence with exposure to Mn potentially driving this overall association.
Collapse
Affiliation(s)
- Anna V. Oppenheimer
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (D.C.B.); (B.A.C.); (M.G.W.); (S.A.K.)
| | - David C. Bellinger
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (D.C.B.); (B.A.C.); (M.G.W.); (S.A.K.)
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Brent A. Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (D.C.B.); (B.A.C.); (M.G.W.); (S.A.K.)
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (D.C.B.); (B.A.C.); (M.G.W.); (S.A.K.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michele Zemplenyi
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Susan A. Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (D.C.B.); (B.A.C.); (M.G.W.); (S.A.K.)
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Juntarawijit Y, Chaichanawirote U, Rakmeesri P, Chairattanasakda P, Pumyim V, Juntarawijit C. Chlorpyrifos and other pesticide exposure and suspected developmental delay in children aged under 5 years: a case-control study in Phitsanulok, Thailand. F1000Res 2021; 9:1501. [PMID: 34557296 PMCID: PMC8442115 DOI: 10.12688/f1000research.27874.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Developmental delay among children under 5 years of age is a serious global public health problem and much research has been carried out to find potential causes. Pesticides - especially organophosphates - are suspected to be one of the main causes of the problem. This study aimed to investigate the association between pesticide use by the mother during pregnancy and preschool children development using a case-control study. Methods: Data on prenatal and postnatal pesticide exposure of 442 children with suspected developmental delay, and 413 controls with normal development were included for analysis. The children were matched for gender, age, and residency. Data on pesticide exposure were collected via interview with the mother, and data on pregnancy outcomes abstracted from hospital records. Results: Chlorpyrifos exposure significantly increased the risk of developmental delay with an odds ratio (OR) of 3.71 (95% CI 1.03-13.36) for ever use of the pesticide, and an OR of 5.92 (95% CI 1.01-34.68) for postnatal exposure (p <0.05). Some other pesticides also had a positive association with developmental delay but none were statistically significant (p <0.05). Those pesticides were insecticide, fungicide, herbicide, and molluscicide. Individual pesticides with a positive association were glyphosate, paraquat, butachlor, methyl parathion (pholidon), savin, methomyl, endosulfan, carbosulfan, methamidophos, monochrotofos, mancozeb, and bordeaumixture. Conclusions: This case-control study found that chlorpyrifos and some other pesticides exposure during pregnancy were positively associated with developmental delay in children aged under 5 years. Further research should be conducted to better understand this potential effects of pesticides on child neurodevelopment, and the public - especially those who plan to have families - should be informed.
Collapse
Affiliation(s)
| | | | - Paphada Rakmeesri
- Faculty of Nursing, Kamphaeng Phet Rajabhat University, Kamphaeng Phet, 62000, Thailand
| | | | - Varintorn Pumyim
- Jomthong Health Promoting Hospital, Muang District Health Office, Phitsanulok, 65000, Thailand
| | - Chudchawal Juntarawijit
- Faculty of Natural Resources and Environment, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
26
|
Seralini GE, Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol Rep 2021; 8:1538-1557. [PMID: 34430217 PMCID: PMC8365328 DOI: 10.1016/j.toxrep.2021.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 % of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of "spam" in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.
Collapse
Affiliation(s)
- Gilles-Eric Seralini
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| | - Gerald Jungers
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| |
Collapse
|
27
|
Non-targeted screening methodology to characterise human internal chemical exposure: Application to halogenated compounds in human milk. Talanta 2021; 225:121979. [DOI: 10.1016/j.talanta.2020.121979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
|
28
|
Christensen K, Carlson LM, Lehmann GM. The role of epidemiology studies in human health risk assessment of polychlorinated biphenyls. ENVIRONMENTAL RESEARCH 2021; 194:110662. [PMID: 33385388 PMCID: PMC7946752 DOI: 10.1016/j.envres.2020.110662] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/19/2020] [Indexed: 05/19/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a public health concern given evidence that they persist and accumulate in the environment and can cause toxic effects in animals and humans. However, evaluating adverse effects of PCBs in epidemiologic studies is complicated by the characteristics of PCB exposure. PCBs exist as mixtures in the environment; the mixture changes over time due to degradation, and given physicochemical differences between specific PCB congeners, the mixture that an individual is exposed to (via food, air, or other sources) is likely different from that which can be measured in biological tissues. This is particularly problematic when evaluating toxicity of shorter-lived congeners that may not be measurable by the time biological samples are collected. We review these and other issues that arise when evaluating epidemiologic studies of PCBs and discuss how epidemiology data can still be used to inform both hazard identification and dose-response evaluation.
Collapse
Affiliation(s)
- Krista Christensen
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| | - Laura M Carlson
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Geniece M Lehmann
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
29
|
Neurobehavioural and cognitive effects of prenatal exposure to organochlorine compounds in three year old children. BMC Pediatr 2021; 21:99. [PMID: 33637059 PMCID: PMC7908674 DOI: 10.1186/s12887-021-02533-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background We report data of a Belgian observational prospective cohort study regarding cognitive and behavioural development until the age of 36 months in relation to internal exposure to organochlorine pollutants [sum of polychlorinated biphenyls (sum PCB), dioxin-like activity, PCB118, PCB170, hexachlorobenzene (HCB) and p,p’-dichlorodiphenyldichloroethylene (DDE)] measured in cord blood. Methods Participants were recruited as part of an Flemish Environmental Health Survey (2002–2006). Two hundred and six mother-child pairs were recruited. Hundred twenty five toddlers [Reynell Taal Ontwikkelings Schalen (language development, RTOS), Snijders-Oomen Niet-verbale intelligentietest (non-verbal intelligence, SON), Bayley Scales, milestones, Infant Behaviour Questionnaire (IBQ), gender specific play behaviour, Neurobehavioral Evaluation System (NES)-attentional task] and their mothers [Home Observation Measurement of the Environment (HOME), Wechsler Abbreviated Scale of Intelligence (WASI), State-Trait Anxiety Inventory (STAI), general questionnaires] were tested. Statistical analysis was performed with the SPSS program. Much attention was paid to confounding factors. Results In the first years of development, higher organochlorine pollutants were associated with less active children (delayed crawling: sum PCB*HCB (p < 0.05), sumPCB*DDE (p < 0.1); delayed first steps alone: sum PCB (p < 0.5), PCB118 (p < 0.01), PCB170 (p < 0.01), HCB (p < 0.01); less switching between toys: sum PCB (p < 0.01); less switching between toys in boys: PCB118 (p < 0.01), sum PCB(p < 0.01)). At 12 months children with higher dioxin-like activity tended to show less fear responses(p < 0.1) (IBQ 12 months). At 36 months, a slower development of language comprehension (RTOS) was related to all organochlorine exposure parameters(p < 0.1 or p < 0.05) except DDE. Lower nonverbal IQ scores (SON) were related to PCB118 in boys only(p < 0.05 or p < 0.01). Less masculine and more non-gender specific play behaviour was associated with sum PCB in boys and girls at 36 months(p < 0.1). Moreover, PCB118 (p < 0.05), PCB170 (p < 0.1), HCB(p < 0.05) and DDE(p < 0.05) were associated with diminished masculine play behaviour in boys. Conclusion Our data confirm the observations that neurobehavioral development of young children is adversely influenced by environmental concentrations of PCBs, especially in boys. In this context, observation of play behaviour seems to be a reliable, easy to perform and sensitive test to detect neurotoxic effects of chemicals like PCB’s and dioxin-like compounds in very young children. On the basis of our results, we hypothesize that an underarrousal pattern may play a role in the spectrum of effects measured in toddlers prenatally exposed to PCBs and dioxin-like compounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02533-2.
Collapse
|
30
|
Hu L, Luo D, Wang L, Yu M, Zhao S, Wang Y, Mei S, Zhang G. Levels and profiles of persistent organic pollutants in breast milk in China and their potential health risks to breastfed infants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142028. [PMID: 32906049 DOI: 10.1016/j.scitotenv.2020.142028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Although some persistent organic pollutants (POPs) were prohibited or limited in use several decades ago, they are still frequently detected in the human body. The purpose of this study was to understand the levels and profiles of POPs in breast milk in China and assess their potential health risks among breastfed infants under six months of age. A literature review focused on China was performed for studies published from 2001 to 2020. The POP levels in breast milk along with other important variables were extracted, and then the average individual POP levels in breast milk were estimated. This review summarises the distribution of traditional and new POPs, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), legacy brominated flame retardants (BFRs), perfluorinated compounds (PFCs), and chlorinated paraffins (CPs) and reported notably high levels of short-chain chlorinated paraffins and 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p'-DDE) in breast milk. Although the levels of traditional POPs generally declined over time, especially p,p'-DDE and beta-hexachlorocyclohexane (β-HCH), women living in coastal areas, urban areas, and southern China still have a high body burden of certain POPs. In the present study, the estimated daily intake (EDI) of POPs through breastfeeding was used to evaluate the health risk for infants by comparing with acceptable levels. The findings suggested that infants born in coastal areas most likely suffered potential health risk from exposure to DDT, and the health risk of hexachlorobenzene (HCB) in infants in most nationwide regions remains a concern. More importantly, the EDI of PCBs for infants exceeds the safe limit on a national scale. Continuous surveillance of PCBs in breast milk is critical to evaluate the potential health effects on humans.
Collapse
Affiliation(s)
- Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Dan Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
31
|
Wang S, Hu C, Lu A, Wang Y, Cao L, Wu W, Li H, Wu M, Yan C. Association between prenatal exposure to persistent organic pollutants and neurodevelopment in early life: A mother-child cohort (Shanghai, China). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111479. [PMID: 33099138 DOI: 10.1016/j.ecoenv.2020.111479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
As common environmental pollutants, persistent organic pollutants (POPs) that are widely applied in industry and agriculture have adverse effects on neurodevelopment. However, evidence on the neurotoxicity of POPs in neural development of offspring is limited. This study explored the relationship between prenatal exposure to POPs and neurodevelopment of 18-month-old toddlers in a mother-child cohort in Shanghai, China. In this study, we determined exposure levels of 37 POPs in cord blood serum collected at the time of delivery. The detection rate of pollutants HCB, β-HCH, and p,p'-DDE was higher than 60%, so these will be discussed in the following analysis. From birth to approximately 18 months, we followed up infants to longitudinally explore whether POPs influenced their language, motor, and cognitive development according to a Bayley-Ⅲ assessment . Based on multivariable regression analyses, the β-HCH concentration in cord serum was negatively related to motor development scores in children at 18 months by adjusting for the covariates, but there was no change in language and cognition. Further piecewise linear regression analysis showed that a cord serum β-HCH concentration greater than 0.2 μg/L had a significantly negative correlation with the motor development scores. p,p'-DDE was positively associated with language development at 18 months before and after adjusting for covariates. But prenatal HCB levels were not associated with any of the Bayley-Ⅲ subscales at 18 months. We concluded that prenatal exposure to β-HCH might have adverse effects on infants' motor development. The minimum harmful concentration of β-HCH was estimated at 0.2 μg/L in cord serum. The unexpected positive association between p,p'-DDT and language development could be due to live birth bias.
Collapse
Affiliation(s)
- Susu Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Chunping Hu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Anxin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqian Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Lulu Cao
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- Qilu Children's Hospital of Shandong University, Shandong, Jinan, China
| | - Hui Li
- Jining No.1 People's Hospital, Shandong, Jining, China
| | - Meiqin Wu
- The Women and Children's Health Care Department Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No.2699, West Gaoke Road, Shanghai 200040, China.
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Juntarawijit Y, Chaichanawirote U, Rakmeesri P, Chairattanasakda P, Pumyim V, Juntarawijit C. Chlorpyrifos and other pesticide exposure and suspected developmental delay in children aged under 5 years: a case-control study in Phitsanulok, Thailand. F1000Res 2020; 9:1501. [PMID: 34557296 PMCID: PMC8442115 DOI: 10.12688/f1000research.27874.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 08/12/2023] Open
Abstract
Background: Developmental delay among children under 5 years of age is a serious global public health problem and much research has been carried out to find potential causes. Pesticides - especially organophosphates - are suspected to be one of the main causes of the problem. This study aimed to investigate the association between pesticide use by the mother during pregnancy and preschool children development using a case-control study. Methods: Data on prenatal and postnatal pesticide exposure of 442 children with suspected developmental delay, and 413 controls with normal development were included for analysis. The children were matched for gender, age, and residency. Data on pesticide exposure were collected via interview with the mother, and data on pregnancy outcomes abstracted from hospital records. Results: Chlorpyrifos exposure significantly increased the risk of developmental delay with an odds ratio (OR) of 3.71 (95% CI 1.03-13.36) for ever use of the pesticide, and an OR of 5.92 (95% CI 1.01-34.68) for postnatal exposure (p <0.05). Some other pesticides also had a positive association with developmental delay but none were statistically significant (p <0.05). Those pesticides were insecticide, fungicide, herbicide, and molluscicide. Individual pesticides with a positive association were glyphosate, paraquat, butachlor, methyl parathion (pholidon), savin, methomyl, endosulfan, carbosulfan, methamidophos, monochrotofos, mancozeb, and bordeaumixture. Conclusions: This case-control study found that chlorpyrifos and some other pesticides exposure during pregnancy were positively associated with developmental delay in children aged under 5 years. Further research should be conducted to better understand this potential effects of pesticides on child neurodevelopment, and the public - especially those who plan to have families - should be informed.
Collapse
Affiliation(s)
| | | | - Paphada Rakmeesri
- Faculty of Nursing, Kamphaeng Phet Rajabhat University, Kamphaeng Phet, 62000, Thailand
| | | | - Varintorn Pumyim
- Jomthong Health Promoting Hospital, Muang District Health Office, Phitsanulok, 65000, Thailand
| | - Chudchawal Juntarawijit
- Faculty of Natural Resources and Environment, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
33
|
Goodman M, Li J, Flanders WD, Mahood D, Anthony LG, Zhang Q, LaKind JS. Epidemiology of PCBs and neurodevelopment: Systematic assessment of multiplicity and completeness of reporting. GLOBAL EPIDEMIOLOGY 2020. [DOI: 10.1016/j.gloepi.2020.100040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Schantz SL, Eskenazi B, Buckley JP, Braun JM, Sprowles JN, Bennett DH, Cordero J, Frazier JA, Lewis J, Hertz-Picciotto I, Lyall K, Nozadi SS, Sagiv S, Stroustrup A, Volk HE, Watkins DJ. A framework for assessing the impact of chemical exposures on neurodevelopment in ECHO: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2020; 188:109709. [PMID: 32526495 PMCID: PMC7483364 DOI: 10.1016/j.envres.2020.109709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 05/30/2023]
Abstract
The Environmental influences on Child Health Outcomes (ECHO) Program is a research initiative funded by the National Institutes of Health that capitalizes on existing cohort studies to investigate the impact of early life environmental factors on child health and development from infancy through adolescence. In the initial stage of the program, extant data from 70 existing cohort studies are being uploaded to a database that will be publicly available to researchers. This new database will represent an unprecedented opportunity for researchers to combine data across existing cohorts to address associations between prenatal chemical exposures and child neurodevelopment. Data elements collected by ECHO cohorts were determined via a series of surveys administered by the ECHO Data Analysis Center. The most common chemical classes quantified in multiple cohorts include organophosphate pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, environmental phenols (including bisphenol A), phthalates, and metals. For each of these chemicals, at least four ECHO cohorts also collected behavioral data during infancy/early childhood using the Child Behavior Checklist. For these chemicals and this neurodevelopmental assessment (as an example), existing data from multiple ECHO cohorts could be pooled to address research questions requiring larger sample sizes than previously available. In addition to summarizing the data that will be available, the article also describes some of the challenges inherent in combining existing data across cohorts, as well as the gaps that could be filled by the additional data collection in the ECHO Program going forward.
Collapse
Affiliation(s)
- Susan L Schantz
- Department of Comparative Biosciences, College of Veterinary Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA.
| | - Jenna N Sprowles
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA.
| | - Jose Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA.
| | - Jean A Frazier
- Eunice Kennedy Shriver Center, Division of Child and Adolescent Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Johnnye Lewis
- Community Environmental Health Program and Center for Native Environmental Health Equity Research, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | | | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA.
| | - Sara S Nozadi
- Community Environmental Health Program and Center for Native Environmental Health Equity Research, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Sharon Sagiv
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - AnneMarie Stroustrup
- Division of Newborn Medicine, Department of Pediatrics, Department of Environmental Medicine and Public Health, and Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Heather E Volk
- Departments of Mental Health and Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
36
|
Fong-McMaster C, Konji S, Nitschke A, Konkle ATM. Canadian Arctic Contaminants and Their Effects on the Maternal Brain and Behaviour: A Scoping Review of the Animal Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E926. [PMID: 32024308 PMCID: PMC7038163 DOI: 10.3390/ijerph17030926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Background: Environmental toxicants such as methylmercury, polychlorinated biphenyls, and organochlorine pesticides are potentially harmful pollutants present in contaminated food, soil, air, and water. Exposure to these ecologically relevant toxicants is prominent in Northern Canadian populations. Previous work focused on toxicant exposure during pregnancy as a threat to fetal neurodevelopment. However, little is known about the individual and combined effects of these toxicants on maternal health during pregnancy and post-partum. Methods: A scoping review was conducted to synthesize the current knowledge regarding individual and combined effects of methylmercury, polychlorinated biphenyls, and organochlorine pesticides on maternal behaviour and the maternal brain. Relevant studies were identified through the PubMed, Embase, and Toxline databases. Literature involving animal models and one human cohort were included in the review. Results: Research findings indicate that exposures to these environmental toxicants are associated with neurochemical changes in rodent models. Animal models provided the majority of information on toxicant-induced alterations in maternal care behaviours. Molecular and hormonal changes hypothesized to underlie these alterations were also addressed, although studies assessing toxicant co-exposure were limited. Conclusion: This review speaks to the limited knowledge regarding effects of these persistent organic pollutants on the maternal brain and related behavioural outcomes. Further research is required to better comprehend any such effects on maternal brain and behaviour, as maternal care is an important contributor to offspring neurodevelopment.
Collapse
Affiliation(s)
- Claire Fong-McMaster
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (C.F.-M.); (S.K.); (A.N.)
| | - Sandra Konji
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (C.F.-M.); (S.K.); (A.N.)
| | - Amanda Nitschke
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (C.F.-M.); (S.K.); (A.N.)
| | - Anne TM Konkle
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (C.F.-M.); (S.K.); (A.N.)
- School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
37
|
Gagnon-Chauvin A, Bastien K, Saint-Amour D. Environmental toxic agents: The impact of heavy metals and organochlorides on brain development. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:423-442. [PMID: 32958188 DOI: 10.1016/b978-0-444-64150-2.00030-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Exposure to environmental toxicants can have deleterious effects on the development of physical, cognitive, and mental health. Extensive laboratory and clinical studies have demonstrated how the developing brain is uniquely sensitive to toxic agents. This chapter focuses on the main neurologic impairments linked to prenatal and postnatal exposure to lead, methylmercury, and polychlorinated biphenyls, three legacy environmental contaminants whose neurotoxic effects have been extensively studied with respect to cognitive and behavioral development. The main cognitive, emotion regulation, sensory, and motor impairments in association with these contaminants are briefly reviewed, including the underlying neural mechanisms such as neuropathologic damages, brain neurotransmission, and endocrine system alterations. The use of neuroimaging as a novel tool to better understand how the brain is affected by exposure to environmental contaminants is also discussed.
Collapse
Affiliation(s)
- Avril Gagnon-Chauvin
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada; Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Kevin Bastien
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada; Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Dave Saint-Amour
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada; Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
38
|
Yin S, Guo F, Aamir M, Liu Y, Tang M, Liu W. Multicenter biomonitoring of polybrominated diphenyl ethers (PBDEs) in colostrum from China: Body burden profile and risk assessment. ENVIRONMENTAL RESEARCH 2019; 179:108828. [PMID: 31704496 DOI: 10.1016/j.envres.2019.108828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) were listed in the Stockholm Convention due to their persistent and toxic nature. In utero exposure to PBDEs might affect fetal development as it is sensitive when exposed to even low dose of xenobiotic substances during the pregnancy. In this study, a multi-centre human biomonitoring study of tri-to hexa-BDEs was conducted in three Chinese cities using 60 colostrum samples from local residents. The patterns and influencing factors, correlation with the birth outcome, and potential health risks during the breastfeeding of tri-to hexa-BDEs in the colostrum samples were assessed. The median concentration of tri-to hexa-BDEs was 9.1 (Interquartile range: 3.1-19.5) ng g-1 lipid weight, and BDE-153 contributed 68% of the detected PBDEs. The PBDE levels were mostly associated with maternal age and drinking water sources, while correlations with other factors including weight gain, BMI, parity and the number of aborted pregnancies was not significant. The level of BDE-28 was positively correlated with the birth weight, while the BDE-99 was positively correlated with the head circumference, using multilinear regression. For the total hazard quotients, 60% of the infants have an estimated value higher than 1, showed potential chronic hazard for future development and possible adverse health effects to the babies from the exposure to PBDE congeners. Alternative food source seems to have a lower risk for neonates than the colostrum, but the advantages of breastfeeding undoubtedly outweigh the risks and potential adverse health effects caused by environmental PBDEs and other xenobiotic chemical exposure.
Collapse
Affiliation(s)
- Shanshan Yin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fangjie Guo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Aamir
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengling Tang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, China
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Ebara T, Yamada Y, Shoji N, Ito Y, Nakagawa A, Miyachi T, Ozaki Y, Omori T, Suzuki S, Kojima M, Ueyama J, Tomizawa M, Kato S, Oguri T, Matsuki T, Sato H, Oya N, Sugiura-Ogasawara M, Saitoh S, Kamijima M. Cohort profile: Aichi regional sub-cohort of the Japan Environment and Children's Study (JECS-A). BMJ Open 2019; 9:e028105. [PMID: 31722936 PMCID: PMC6858231 DOI: 10.1136/bmjopen-2018-028105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Effects of fetal, perinatal and childhood environment on the health of children at birth and during later life have become a topic of concern. The Aichi regional sub-cohort of the Japan Environment and Children's Study (JECS-A) is an ongoing birth cohort of pregnant women and their children which has been used to provide unique data, as adjunct studies of JECS, on multifaceted potential factors affecting children's health. PARTICIPANTS The JECS-A is part of the JECS which follows a total of 100 000 pairs of children and their mothers (fathers' participation is optional) across 15 regions in Japan. In JECS-A, of the 8134 pregnant women living in Ichinomiya City and Nagoya City, Japan, a total of 5721 pregnant women and their 5554 children were included. Sociodemographic and psychological data as well as biological specimens were collected from the pregnant women and their spouses (if available) in the cohort during their pregnancy. Information on children included in the JECS-A was collected from their mothers and includes demographic, behavioural, childcare, psychological and psychiatric data. Urine extracted from disposable diapers and anthropometric data were also obtained from the children. FINDINGS TO DATE A similar distribution trend for age at delivery was confirmed between the pregnant women enrolled in the JECS-A and the national statistics of the relevant areas. However, differences in education level and household income were observed. A total of 5502 children remained in the cohort at 18 months after delivery. Compared with the national statistics, the basic demographics of the children in the cohort represented the population in the study areas. FUTURE PLANS The enrolled children in the JECS-A will be followed until the age of 13 years. The studies that come from JECS-A will complement JECS and bring novel results with a high level of generalisability.
Collapse
Affiliation(s)
- Takeshi Ebara
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Yasuyuki Yamada
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
- Department of Sports Management, Juntendo University School of Health and Sports Science, Graduate School of Health and Sports Science, Inzai, Chiba, Japan
| | - Naoto Shoji
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
- Department of Health and Sport Sciences, School of Health Sciences, Asahi University, Mizuho, Gifu, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Atsuko Nakagawa
- Faculty of Psychological Development, Nagoya City University Graduate School of Humanities and Social Sciences, Nagoya, Aichi, Japan
| | - Taishi Miyachi
- Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
- Nagoya West District Care Center for Disabled Children, Nagoya, Japan
| | - Yasuhiko Ozaki
- Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Toyonori Omori
- Health Care Policy and Management, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Masayo Kojima
- Medical Education, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Aichi, Japan
| | - Motohiro Tomizawa
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Sayaka Kato
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
- Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Tomoko Oguri
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Taro Matsuki
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Hirotaka Sato
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Naoko Oya
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Mayumi Sugiura-Ogasawara
- Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Shinji Saitoh
- Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi, Japan
| |
Collapse
|
40
|
Aerts R, Van Overmeire I, Colles A, Andjelković M, Malarvannan G, Poma G, Den Hond E, Van de Mieroop E, Dewolf MC, Charlet F, Van Nieuwenhuyse A, Van Loco J, Covaci A. Determinants of persistent organic pollutant (POP) concentrations in human breast milk of a cross-sectional sample of primiparous mothers in Belgium. ENVIRONMENT INTERNATIONAL 2019; 131:104979. [PMID: 31387080 DOI: 10.1016/j.envint.2019.104979] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 06/28/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Bio-accumulation of persistent organic pollutants (POPs) in the environment and in the food chain can lead to high pollutant concentrations in human fat-containing tissues and breast milk. OBJECTIVES We aimed to identify the maternal characteristics that determined POP concentrations in breast milk of primiparous mothers in Belgium. METHODS Breast milk samples were obtained from a cross-sectional sample of 206 primiparous mothers in 2014. POP concentrations in breast milk samples were determined by GC-ECNI-MS and GC-EI-MS/MS depending on the analytes' sensitivity. Associations between POP concentrations in breast milk and potential determinants were investigated using two-way contingency tables and multivariable generalized linear models. RESULTS Fifteen of the 23 screened POPs were detected in the breast milk samples. Four organochlorine compounds (p,p'-DDT, p,p'-DDE, HCB and β-HCH) and two brominated flame retardant congeners (BDE-47, BDE-153) were detected at concentrations above the limit of quantification in >50% of the breast milk samples. Maternal age and BMI were usually associated with higher POP concentrations. Rural residency and consumption of home-produced eggs, fatty fish and fish oil supplements were associated with higher concentrations of DDT and DDE. Consumption of fatty fish and being breastfed during childhood were associated with higher concentrations of HCB and β-HCH. Fish oil supplements and home-produced eggs were associated with higher concentrations of BDEs, but for BDE congeners exposure routes other than diet require further investigation. CONCLUSIONS Dietary and non-dietary determinants predict individual POP concentrations in breast milk.
Collapse
Affiliation(s)
- Raf Aerts
- Sciensano (Belgian Institute of Health), Department of Chemical and Physical Health Risks, Julliette Wytsmanstraat 14, BE-1050 Brussels, Belgium; University of Leuven (KU Leuven), Department of Earth and Environmental Sciences, Celestijnenlaan 200E-2411, BE-3001 Leuven, Belgium.
| | - Ilse Van Overmeire
- Sciensano (Belgian Institute of Health), Department of Chemical and Physical Health Risks, Julliette Wytsmanstraat 14, BE-1050 Brussels, Belgium.
| | - Ann Colles
- VITO-HEALTH, Boeretang 200, BE-2400 Mol, Belgium.
| | - Mirjana Andjelković
- Sciensano (Belgian Institute of Health), Department of Chemical and Physical Health Risks, Julliette Wytsmanstraat 14, BE-1050 Brussels, Belgium.
| | - Govindan Malarvannan
- University of Antwerp, Toxicological Center, Department of Pharmaceutical Sciences, Universiteitsplein 1, BE-2610 Wilrijk, Belgium.
| | - Giulia Poma
- University of Antwerp, Toxicological Center, Department of Pharmaceutical Sciences, Universiteitsplein 1, BE-2610 Wilrijk, Belgium.
| | - Elly Den Hond
- Provincial Institute for Hygiene, Kronenburgstraat 45, BE-2000 Antwerp, Belgium.
| | - Els Van de Mieroop
- Provincial Institute for Hygiene, Kronenburgstraat 45, BE-2000 Antwerp, Belgium
| | | | - François Charlet
- Hainaut Vigilance Sanitaire, Boulevard Sainctelette 55, BE-7000 Mons, Belgium.
| | - An Van Nieuwenhuyse
- Sciensano (Belgian Institute of Health), Department of Chemical and Physical Health Risks, Julliette Wytsmanstraat 14, BE-1050 Brussels, Belgium.
| | - Joris Van Loco
- Sciensano (Belgian Institute of Health), Department of Chemical and Physical Health Risks, Julliette Wytsmanstraat 14, BE-1050 Brussels, Belgium.
| | - Adrian Covaci
- University of Antwerp, Toxicological Center, Department of Pharmaceutical Sciences, Universiteitsplein 1, BE-2610 Wilrijk, Belgium.
| |
Collapse
|
41
|
Casadó L, Arrebola JP, Fontalba A, Muñoz A. Adverse effects of hexaclorobenzene exposure in children and adolescents. ENVIRONMENTAL RESEARCH 2019; 176:108421. [PMID: 31387069 DOI: 10.1016/j.envres.2019.03.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Hexachlorobenzene (HCB: C₆Cl₆) is a persistent, bioaccumulative chemical formerly used worldwide in pesticide mixtures but also produced as a by-product in the chemical and metallurgical industry. Despite current international restrictions in the use and production of HCB, the majority of the general population still show detectable levels of HCB, which raises concerns on the potential health implications of the exposure. OBJECTIVE To compile and synthesize the available scientific evidence regarding the adverse effects of exposure to HCB in children and adolescents. METHODS A review of the literature focused on the adverse effects of HCB exposure in children. Eligible studies were systematically screened from searches in Medline, Scopus and Ebsco-host databases. A total of 62 studies were finally included. RESULTS AND DISCUSSION In our search we found evidences of potential health effects linked to HCB exposure at different levels (e.g. neurotoxic, nephrotoxic, immunotoxic, hepatotoxic and toxicogenomic), although the conclusions are still contradictory. Further prospective research is needed, considering the special vulnerability of children and adolescent population as well as the ubiquity of the exposure.
Collapse
Affiliation(s)
- Lina Casadó
- Department of Nursing, Medical Anthropology Research Centre (MARC), University Rovira i Virgili, Tarragona, Spain.
| | - Juan Pedro Arrebola
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Hospitales Universitarios de Granada, Spain, CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Andrés Fontalba
- Northern Málaga Integrated Healthcare Area, Andalusian Health Service, Antequera, Spain, Department of Nursing, Medicine and Physiotherapy, Almeria University, Almería, Spain
| | - Araceli Muñoz
- School of Social Work, Food Observatory (ODELA), University of Barcelona, Barcelona, Spain, Medical Anthropology Research Centre (MARC), University Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
42
|
Makris G, Chrousos GP, Anesiadou S, Sabico S, Abd-Alrahman SH, Al-Daghri NM, Chouliaras G, Pervanidou P. Serum concentrations and detection rates of selected organochlorine pesticides in a sample of Greek school-aged children with neurodevelopmental disorders. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23739-23753. [PMID: 31209749 DOI: 10.1007/s11356-019-05666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Prospective studies indicate that the exposure to organochlorine pesticides (OCPs) during fetal life, infancy, and early childhood may be associated with features of neurodevelopmental disorders in children. However, few studies have investigated the concentrations of serum OCPs in children with categorically diagnosed neurodevelopmental disorders. The aim of this study was to assess the concentrations and detection rates of dichlorodiphenyltrichloroethane (DDT) metabolites, hexachlorocyclohexane (HCH) isomers, cyclodienes, and methoxychlor in serum samples of children with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and specific learning disorder (SLD), all of normal intelligence, compared to typically developing controls (TD). In total, 114 schoolchildren, aged 6-13 years old, were assessed and distributed into four groups: ASD (n = 39), ADHD (n = 21), SLD (n = 32), and TD (n = 18). Each clinical group was compared to the TD group. Concentrations of serum OCPs were determined by gas chromatography and are presented as ng/g lipid. Concentrations of β-HCH, the sum of HCH isomers, and o,p'-DDD were significantly higher in ASD children: ASD vs. TD (mean ± SD): 10.5 ± 7.7 vs. 6.1 ± 4.0, (p = 0.049); 12.0 ± 10.3 vs. 6.6 ± 4.0, (p = 0.025); 7.4 ± 6.5 vs. 2.8 ± 2.3, (p = 0.0019), respectively. The detection rates of p,p'-DDT, at least one substance from DDTs detected, and the cyclodiene heptachlor epoxide, were significantly lower in the ASD group: ASD vs. TD: 12.8% vs. 38.9%, (p = 0.037); 69.2% vs. 94.4%, (p = 0.044); 10.3% vs. 38.9%, (p = 0.026), respectively. No significant differences between the ADHD or SLD groups and the TD group were observed. We demonstrated higher serum concentrations and lower detection rates of selected OCPs in ASD than TD children. Our results add to potential neurodevelopmental concerns surrounding OCPs and provide evidence of specificity in the relations between HCHs and ASD.
Collapse
Affiliation(s)
- Gerasimos Makris
- First Department of Pediatrics, School of Medicine, Unit of Developmental and Behavioral Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Thivon & Levadias, 11527, Goudi, Athens, Greece.
| | - George P Chrousos
- First Department of Pediatrics, School of Medicine, Unit of Developmental and Behavioral Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Thivon & Levadias, 11527, Goudi, Athens, Greece
| | - Sophia Anesiadou
- First Department of Pediatrics, School of Medicine, Unit of Developmental and Behavioral Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Thivon & Levadias, 11527, Goudi, Athens, Greece
| | - Shaun Sabico
- Biochemistry Department, Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherif H Abd-Alrahman
- Biochemistry Department, Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pesticides Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Centre, Giza, Egypt
| | - Nasser M Al-Daghri
- Biochemistry Department, Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Giorgos Chouliaras
- First Department of Pediatrics, School of Medicine, Unit of Developmental and Behavioral Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Thivon & Levadias, 11527, Goudi, Athens, Greece
| | - Panagiota Pervanidou
- First Department of Pediatrics, School of Medicine, Unit of Developmental and Behavioral Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Thivon & Levadias, 11527, Goudi, Athens, Greece
| |
Collapse
|
43
|
Berghuis SA, Roze E. Prenatal exposure to PCBs and neurological and sexual/pubertal development from birth to adolescence. Curr Probl Pediatr Adolesc Health Care 2019; 49:133-159. [PMID: 31147261 DOI: 10.1016/j.cppeds.2019.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several chemical compounds are resistant to degradation and end up in the food chain. One group of these chemicals is polychlorinated biphenyls (PCBs) which are used as flame retardants and plasticizers. Although PCBs were banned several decades ago, PCBs are still found in environmental media, including in the body of humans. PCBs are transferred from mother to fetus via the placenta during pregnancy. Considering that the prenatal period is a sensitive period during which essential developmental processes take place, exposure to environmental chemicals might have considerable and permanent consequences for outcomes in later life. The aim of this review is to provide an update on the latest insights on the effects of prenatal exposure to PCBs on neurological, sexual and pubertal development in children. We give an overview of recent literature, and discuss it in the light of the findings in a unique Dutch birth cohort, with data on both neurological and pubertal development into adolescence. The findings in the studies included in this review, together with the findings in the Dutch cohort, demonstrate that prenatal exposure to PCBs can interfere with normal child development, not only during the perinatal period, but up to and including adolescence. Higher prenatal exposure to PCBs was found to be both negatively and positively associated with neurodevelopmental outcomes. Regarding pubertal development, higher prenatal PCB exposure was found to be associated with more advanced pubertal development, also in the Dutch cohort, whereas other studies also found delayed pubertal development. These findings raise concern regarding the effects of man-made chemical compounds on child development. They further contribute to the awareness of how environmental chemical compounds can interfere with child development and negatively influence healthy ageing.
Collapse
Affiliation(s)
- Sietske Annette Berghuis
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ, Groningen, the Netherlands.
| | - Elise Roze
- Division of Neonatology, Department of Pediatrics, Wilhelmina Children's Hospital, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
44
|
Miret NV, Pontillo CA, Zárate LV, Kleiman de Pisarev D, Cocca C, Randi AS. Impact of endocrine disruptor hexachlorobenzene on the mammary gland and breast cancer: The story thus far. ENVIRONMENTAL RESEARCH 2019; 173:330-341. [PMID: 30951959 DOI: 10.1016/j.envres.2019.03.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Breast cancer incidence is increasing globally and exposure to endocrine disruptors has gained importance as a potential risk factor. Hexachlorobenzene (HCB) was once used as a fungicide and, despite being banned, considerable amounts are still released into the environment. HCB acts as an endocrine disruptor in thyroid, uterus and mammary gland and was classified as possibly carcinogenic to human. This review provides a thorough analysis of results obtained in the last 15 years of research and evaluates data from assays in mammary gland and breast cancer in diverse animal models. We discuss the effects of environmentally relevant HCB concentrations on the normal mammary gland and different stages of carcinogenesis, and attempt to elucidate its mechanisms of action at molecular level. HCB weakly binds to the aryl hydrocarbon receptor (AhR), activating both membrane (c-Src) and nuclear pathways. Through c-Src stimulation, AhR signaling interacts with other membrane receptors including estrogen receptor-α, insulin-like growth factor-1 receptor, epidermal growth factor receptor and transforming growth factor beta 1 receptors. In this way, several pathways involved in mammary morphogenesis and breast cancer development are modified, inducing tumor progression. HCB thus stimulates epithelial cell proliferation, preneoplastic lesions and alterations in mammary gland development as well as neoplastic cell migration and invasion, metastasis and angiogenesis in breast cancer. In conclusion, our findings support the hypothesis that the presence and bioaccumulation of HCB in high-fat tissues and during highly sensitive time windows such as pregnancy, childhood and adolescence make exposure a risk factor for breast tumor development.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Junín 954, subsuelo, CP1113, Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| |
Collapse
|
45
|
Forns J, Stigum H, Høyer BB, Sioen I, Sovcikova E, Nowack N, Lopez-Espinosa MJ, Guxens M, Ibarluzea J, Torrent M, Wittsiepe J, Govarts E, Trnovec T, Chevrier C, Toft G, Vrijheid M, Iszatt N, Eggesbø M. Prenatal and postnatal exposure to persistent organic pollutants and attention-deficit and hyperactivity disorder: a pooled analysis of seven European birth cohort studies. Int J Epidemiol 2019; 47:1082-1097. [PMID: 29912347 DOI: 10.1093/ije/dyy052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 11/14/2022] Open
Abstract
Background Attention-deficit/hyperactivity disorder (ADHD) is increasing worldwide for reasons largely unknown and environmental chemicals with neurotoxic properties, such as persistent organic pollutants (POPs), have been proposed to play a role. We investigated the association between prenatal and postnatal exposure to polychlorinated biphenyl-153 (PCB-153), p-p´-dichlorodiphenyldichloroethylene (p-p'-DDE) and hexachlorobenzene (HCB) and ADHD in childhood. Methods We pooled seven European birth cohort studies encompassing 4437 mother-child pairs from the general population with concentrations of PCB-153, p-p´-DDE and HCB measured in cord blood, maternal blood or milk. We then calculated prenatal (birth) and postnatal (3, 6, 12 and 24 months) POP concentrations using a pharmacokinetic model. The operational definition of ADHD varied across cohorts and ranged from doctor diagnosis obtained from patient registries to maternal or teachers reports. We used multilevel (mixed) logistic regression models to estimate the associations between exposure to POPs at birth, 3, 6, 12 and 24 months and ADHD. Results The global prevalence of ADHD in our study was 6%. The mean age at assessment of ADHD was 5.8 years (range: 3.8-9.5 years). We found no association between exposure to PCB-153, p-p´-DDE and HCB at any age point between birth and 24 months and ADHD, in the pooled analyses (pooled odds ratios ranging from 1.00 to 1.01). A number of sensitivity analyses gave basically the same results. Conclusions In the largest study to date of 4437 children in seven European birth cohorts, we did not observe any association between either pre- or postnatal exposure (up to 24 months) to PCB-153, p-p´-DDE and HCB and the risk of ADHD before the age of 10 years.
Collapse
Affiliation(s)
- Joan Forns
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Hein Stigum
- Department of Non-Communicable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Birgit Bjerre Høyer
- Department of Occupational and Environmental Medicine, Bispebjerg University Hospital, Copenhagen, Denmark.,Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Isabelle Sioen
- Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - Eva Sovcikova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| | - Nikola Nowack
- Department of Developmental Psychology, Ruhr University Bochum, Bochum, Germany
| | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valencia, Valencia, Spain.,Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Barcelona, Spain.,ISGlobal, Center for Research in Environmental Epidemiology, Barcelona, Spain.,Pompeu Fabra University, Barcelona, Spain.,Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jesús Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Barcelona, Spain.,Sub-Directorate for Public Health of Gipuzkoa, Department of Health of the Basque Country, San Sebastián, Spain.,BIODONOSTIA Health Research Institute, Basque Country, Spain.,Faculty of Psychology, University of the Basque Country, San Sebastian, Spain
| | - Matias Torrent
- Pompeu Fabra University, Barcelona, Spain.,Menorca Health Area, Balearic Health Service (ib-salut), Menorca, Spain
| | - Jürgen Wittsiepe
- Department of Hygiene, Social and Environmental Medicine, Ruhr University Bochum, Bochum, Germany
| | - Eva Govarts
- Unit Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tomas Trnovec
- Faculty of Public Health, Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Gunnar Toft
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Barcelona, Spain.,ISGlobal, Center for Research in Environmental Epidemiology, Barcelona, Spain.,Pompeu Fabra University, Barcelona, Spain
| | - Nina Iszatt
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Merete Eggesbø
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
46
|
Kyriklaki A, Margetaki K, Kampouri M, Koutra K, Bitsios P, Chalkiadaki G, Dermitzaki E, Venihaki M, Sarri K, Anousaki D, Kogevinas M, Chatzi L. Association between high levels of inflammatory markers and cognitive outcomes at 4 years of age: The Rhea mother-child cohort study, Crete, Greece. Cytokine 2019; 117:1-7. [PMID: 30772773 PMCID: PMC8801160 DOI: 10.1016/j.cyto.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 01/01/2023]
Abstract
There is growing evidence associating inflammatory markers in complex, higher order neurological functions, such as cognition and memory. We examined whether high levels of various inflammatory markers are associated with cognitive outcomes at 4 years of age in a mother-child cohort in Crete, Greece (Rhea study). We included 642 children in this cross-sectional study. Levels of several inflammatory markers (IFN-γ, IL-1β, IL-6, IL-8, IL-17α, IL-10, MIP-1α, TNF-α and the ratios of IL-6 to IL-10 and TNF-α to IL-10) were determined in child serum via immunoassay. Neurodevelopment at 4 years was assessed by means of the McCarthy Scales of Children's Abilities. Multivariate linear regression analyses were used to estimate the associations between the exposures and outcomes of interest after adjustment for various confounders. Our results indicate that children with high TNF-α concentrations (≥90th percentile) in serum demonstrated decreased scores in memory (adjusted β = -4.0; 95% CI: -7.7, -0.2), working memory (adjusted β = -4.0; 95% CI: -8.0, -0.1) as well as in memory span scale (adjusted β = -4.0; 95% CI: -7.9, -0.1). We also found that children with high IFN-γ serum levels showed lower scores in memory span scale (adjusted β = -3.4; 95% CI: -7.3, -0.4). Children with elevated TNF-α/IL-10 ratio demonstrated decreased quantitative (adjusted β = -4.3; 95% CI: -8.2, -0.4), motor (adjusted β = -3.5; 95% CI: -7.5, -0.5), executive function (adjusted β = -4.8; 95% CI: -8.5, -1.1), general cognitive (adjusted β = -3.6; 95% CI: -7.3, -0.1), memory (adjusted β = -3.8; 95% CI: -7.6, -0), working memory (adjusted β = -3.5; 95% CI: -7.5, -0.5) and memory span scores (adjusted β = -5.3; 95% CI: -9.1, -1.4) The findings suggest that high levels of TNF-α may contribute to reduced memory performance at preschool age.
Collapse
Affiliation(s)
- Andriani Kyriklaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece.
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Mariza Kampouri
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Katerina Koutra
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Panos Bitsios
- Department of Psychiatry & Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgia Chalkiadaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Eirini Dermitzaki
- Department of Clinical Chemistry, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Katerina Sarri
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Despoina Anousaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Leda Chatzi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
47
|
Lenters V, Iszatt N, Forns J, Čechová E, Kočan A, Legler J, Leonards P, Stigum H, Eggesbø M. Early-life exposure to persistent organic pollutants (OCPs, PBDEs, PCBs, PFASs) and attention-deficit/hyperactivity disorder: A multi-pollutant analysis of a Norwegian birth cohort. ENVIRONMENT INTERNATIONAL 2019; 125:33-42. [PMID: 30703609 DOI: 10.1016/j.envint.2019.01.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/20/2018] [Accepted: 01/07/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Numerous ubiquitous environmental chemicals are established or suspected neurotoxicants, and infants are exposed to a mixture of these during the critical period of brain maturation. However, evidence for associations with the risk of attention-deficit/hyperactivity disorder (ADHD) is sparse. We investigated early-life chemical exposures in relation to ADHD. METHODS We used a birth cohort of 2606 Norwegian mother-child pairs enrolled 2002-2009 (HUMIS), and studied a subset of 1199 pairs oversampled for child neurodevelopmental outcomes. Concentrations of 27 persistent organic pollutants (14 polychlorinated biphenyls, 5 organochlorine pesticides, 6 brominated flame retardants, and 2 perfluoroalkyl substances) were measured in breast milk, reflecting the child's early-life exposures. We estimated postnatal exposures in the first 2 years of life using a pharmacokinetic model. Fifty-five children had a clinical diagnosis of ADHD (hyperkinetic disorder) by 2016, at a median age of 13 years. We used elastic net penalized logistic regression models to identify associations while adjusting for co-exposure confounding, and subsequently used multivariable logistic regression models to obtain effect estimates for the selected exposures. RESULTS Breast milk concentrations of perfluorooctane sulfonate (PFOS) and β‑hexachlorocyclohexane (β-HCH) were associated with increased odds of ADHD: odds ratio (OR) = 1.77, 95% confidence interval (CI): 1.16, 2.72 and OR = 1.75, 95% CI: 1.22, 2.53, per interquartile range increase in ln-transformed concentrations, respectively. Stronger associations were observed among girls than boys for PFOS (pinteraction = 0.025). p,p'‑Dichlorodiphenyltrichloroethane (p,p'-DDT) levels were associated with lower odds of ADHD (OR = 0.64, 95% CI: 0.42, 0.97). Hexachlorobenzene (HCB) had a non-linear association with ADHD, with increasing risk in the low-level exposure range that switched to a decreasing risk at concentrations above 8 ng/g lipid. Postnatal exposures showed similar results, whereas effect estimates for other chemicals were weaker and imprecise. CONCLUSIONS In a multi-pollutant analysis of four classes of chemicals, early-life exposure to β-HCH and PFOS was associated with increased risk of ADHD, with suggestion of sex-specific effects for PFOS. The unexpected inverse associations between p,p'-DDT and higher HCB levels and ADHD could be due to live birth bias; alternatively, results may be due to chance findings.
Collapse
Affiliation(s)
- Virissa Lenters
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway.
| | - Nina Iszatt
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway.
| | - Joan Forns
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway.
| | - Eliška Čechová
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice; 753/5, 625 00 Brno, Czech Republic.
| | - Anton Kočan
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice; 753/5, 625 00 Brno, Czech Republic.
| | - Juliette Legler
- Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, the Netherlands.
| | - Pim Leonards
- Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, the Netherlands.
| | - Hein Stigum
- Department of Non-Communicable Diseases, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway.
| | - Merete Eggesbø
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
48
|
Zhang X, Wu X, Lei B, Jing Y, Jiang Z, Zhang X, Fang X, Yu Y. Transplacental transfer characteristics of organochlorine pesticides in paired maternal and cord sera, and placentas and possible influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:446-454. [PMID: 29100182 DOI: 10.1016/j.envpol.2017.10.075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Organochlorine pesticides (OCPs), including dichlorodiphenyltrichloroethane (DDT) and its metabolites [dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane], hexachlorocyclohexanes (HCHs), and hexachlorobenzene (HCB), are widely detected in humans despite the considerable decline in environmental concentrations. To understand the placental transfer of OCPs and the possible maternal influence on them, we measured the concentrations of DDTs, HCHs, and HCB in 102 paired samples of maternal and cord sera, and placentas collected in Shanghai, China. The median concentrations of DDTs and HCHs were the highest in maternal sera (601, 188 ng g-1 lipid), followed by umbilical cord sera (389, 131 ng g-1 lipid), and placentas (65, 37 ng g-1 lipid). 4,4'-DDE, β-HCH, and HCB were the predominant contaminants in the three matrices. The ubiquitous existence of OCPs, and the significant concentration relationships of DDTs, HCHs, and OCPs in the three matrices suggested placental transfer from mother to fetus. The lipid-based concentration ratios of 4,4'-DDE, β-HCH, and HCB in umbilical cord serum to those in maternal serum (F/M), and ratios of placenta to maternal serum (P/M) ranged from 0.66 to 1.01, and 0.12 to 0.25, respectively. Maternal variables affected the levels of fetal contamination. For primiparous women, significant correlations between maternal age and maternal HCHs, and between pre-pregnancy body mass index (BMI) and maternal HCHs were found. The negative effect of parity, and the positive effect of food consumption on maternal OCP concentrations were also observed, although there were no significant differences. The possible influence of parity on F/M and P/M of 4,4'-DDE suggested borderline significant differences between primiparous and multiparous women. Also, slight group differences were observed between elder and younger women, and between overweight and normal/underweight women. Parity seems to have a potential influence on transfer ratios of some OCP pollutants.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xia Wu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Ye Jing
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Zi'an Jiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xinyu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiangming Fang
- Shanghai Huangpu Maternity & Infant Health Hospital, Shanghai 200020, PR China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
49
|
Palkovičová Murínová Ľ, Wimmerová S, Lancz K, Patayová H, Koštiaková V, Richterová D, Govarts E, Jusko TA, Trnovec T. Partitioning of hexachlorobenzene between human milk and blood lipid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:994-999. [PMID: 28778790 PMCID: PMC6044446 DOI: 10.1016/j.envpol.2017.07.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 05/12/2023]
Abstract
In epidemiological studies on the toxic effects of prenatal exposure to hexachlorobenzene (HCB), researchers report HCB concentrations, either as wet-weight or per lipid weight basis, in matrices like breast milk, and maternal and cord blood. Conversion of exposures across matrices is needed for comparisons of concentrations and dose effect across cohorts. Using data from a birth cohort study in eastern Slovakia, we derived the maternal blood to cord blood HCB concentration ratio utilizing measured concentrations in 1027 paired maternal and cord blood samples, on a per-lipid basis. In addition to data from the Slovak study, the maternal milk to maternal serum ratio was summarized from 23 published studies on partitioning of HCB between human milk lipid and blood lipid. We identified two distinct groups of milk:blood ratios, those ≤0.45 and those ≥0.85. We assumed that using partition ratios ≤0.45 will underestimate HCB exposure estimates. Taking into account this precautionary measure, we suggest a conversion ratio of 1.21, which is the median of the 16 ratios identified in our literature review. We consider our estimate as conservative and providing appropriate safety in risk analysis.
Collapse
Affiliation(s)
- Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Soňa Wimmerová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Kinga Lancz
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Henrieta Patayová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Vladimíra Koštiaková
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Denisa Richterová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Eva Govarts
- Unit Environmental Risk and Health, VITO NV, Boeretang 200, 2400 Mol, Belgium
| | - Todd A Jusko
- Departments of Public Health Sciences and Environmental Medicine, University of Rochester, School of Medicine & Dentistry, 265 Crittenden Blvd, CU 420644, Rochester, NY 14642, United States
| | - Tomáš Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia.
| |
Collapse
|
50
|
Chatzi L, Leventakou V, Vafeiadi M, Koutra K, Roumeliotaki T, Chalkiadaki G, Karachaliou M, Daraki V, Kyriklaki A, Kampouri M, Fthenou E, Sarri K, Vassilaki M, Fasoulaki M, Bitsios P, Koutis A, Stephanou EG, Kogevinas M. Cohort Profile: The Mother-Child Cohort in Crete, Greece (Rhea Study). Int J Epidemiol 2017; 46:1392-1393k. [DOI: 10.1093/ije/dyx084] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
|