1
|
Gumusoglu SB, Schickling BM, Santillan DA, Teesch LM, Santillan MK. Disrupted fetal carbohydrate metabolism in children with autism spectrum disorder. J Neurodev Disord 2025; 17:16. [PMID: 40158086 PMCID: PMC11954230 DOI: 10.1186/s11689-025-09601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Despite the power and promise of early detection and treatment in autism spectrum disorder (ASD), early-life biomarkers are limited. An early-life risk biosignature would advance the field's understanding of ASD pathogenies and targets for early diagnosis and intervention. We therefore sought to add to the growing ASD biomarker literature and evaluate whether fetal metabolomics are altered in idiopathic ASD. METHODS Banked cord blood plasma samples (N = 36 control, 16 ASD) were analyzed via gas chromatography and mass spectrometry (GC-MS). Samples were from babies later diagnosed with idiopathic ASD (non-familial, non-syndromic) or matched, neurotypical controls. Metabolite set enrichment analysis (MSEA) and biomarker prediction were performed (MetaboAnalyst). RESULTS We detected 76 metabolites in all samples. Of these, 20 metabolites differed significantly between groups: 10 increased and 10 decreased in ASD samples relative to neurotypical controls (p < 0.05). MSEA revealed significant changes in metabolic pathways related to carbohydrate metabolism and glycemic control. Untargeted principle components analysis of all metabolites did not reveal group differences, while targeted biomarker assessment (using only Fructose 6-phosphate, D-Mannose, and D-Fructose) by a Random Forest algorithm generated an area under the curve (AUC) = 0.766 (95% CI: 0.612-0.896) for ASD prediction. CONCLUSIONS Despite a high and increasing prevalence, ASD has no definitive biomarkers or available treatments for its core symptoms. ASD's earliest developmental antecedents remain unclear. We find that fetal plasma metabolomics differ with child ASD status, in particular invoking altered carbohydrate metabolism. While prior clinical and preclinical work has linked carbohydrate metabolism to ASD, no prior fetal studies have reported these disruptions in neonates or fetuses who go on to be diagnosed with ASD. Future work will investigate concordance with maternal metabolomics to determine maternal-fetal mechanisms.
Collapse
Affiliation(s)
- Serena B Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, USA
- Iowa's Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), Iowa City, USA
| | | | - Donna A Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, USA
- Iowa's Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), Iowa City, USA
| | - Lynn M Teesch
- Department of Chemistry, University of Iowa, Iowa City, USA
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, USA.
- Iowa's Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), Iowa City, USA.
| |
Collapse
|
2
|
Yuan TH, Tai CJ, Tsai CH, Chien JW, Eguchi A, Li CY, Lin CW, Mori C, Chan CC. Exploring the influence of PCB exposure on neonatal birth outcomes and neurobehavioral development after 15 years of prohibition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125761. [PMID: 39884548 DOI: 10.1016/j.envpol.2025.125761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/11/2024] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Despite polychlorinated biphenyls (PCBs) have been banned in Taiwan for fifteen years, epidemiological studies indicated that prenatal PCB exposure may still affect newborns and their birth outcomes. The study aimed to investigate the association between PCB concentrations in umbilical cord blood and infants' birth outcomes and neurodevelopment. We recruited 100 pairs of mothers and infants, residing in Changhua and Yunlin countries in Taiwan from 2014 to 2016. Maternal questionnaire surveys conducted to collect demographic data, and the Chinese version of the Neonatal Neurobehavioral Assessment Scale was used to assess the development of their neurological behavior in newborns within one to two weeks after birth. Additionally, the Infant Temperament Questionnaire was used to evaluate newborns' responses to stimuli. The measured levels of 23 PCB congeners were analyzed using gas chromatography-electron capture negative ionization quadrupole mass spectrometry (GC-NICI-qMS). Multiple regression explored correlations between prenatal PCB exposure and neonatal birth outcomes, neurobehavioral, and temperament. Additionally, we used the Weighted Quantile Sum (WQS) regression model analysis to identify the major contributing congener. The results revealed that 9 PCB congeners were commonly found in the study participants, specifically PCB138, PCB153, PCB180, PCB156, PCB170, PCB177, PCB187, PCB194, and PCB201. The top three PCBs congeners by levels were PCB138, PCB153, and PCB180 (17.28 ± 16.84, 11.50 ± 15.12, 8.09 ± 14.10 pg/g wet weight, respectively). The decrease in birth weight and head circumference in newborns were each associated with 7 different PCB congeners, with 6 of them being correlated with both, including PCB153, PCB156, PCB177, PCB180, PCB187, and PCB194. Specifically, PCB153 was associated with delayed neurobehavioral development in newborns. Exposure to PCB153, PCB177, and PCB180 influenced the temperament development of newborns. The WQS results indicated that PCB156 and PCB177 were the major contributors to decreased birth weight and head circumference. In conclusion, despite the prohibition of PCB usage, prenatal exposure to PCBs may still affect neonatal health. It is recommended that Taiwan should monitor local newborns' long-term PCB exposure and track potential adverse health effects in their future development.
Collapse
Affiliation(s)
- Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - Chun-Ju Tai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan
| | | | - Jien-Wen Chien
- Changhua Christian Hospital, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan Division of Nephrology, Department of Pediatrics, China Medical University Children's Hospital, Taiwan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Japan
| | - Chih-Yun Li
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - Ching-Wen Lin
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Japan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan.
| |
Collapse
|
3
|
Doi H, Furui A, Ueda R, Shimatani K, Yamamoto M, Eguchi A, Sagara N, Sakurai K, Mori C, Tsuji T. Risk of autism spectrum disorder at 18 months of age is associated with prenatal level of polychlorinated biphenyls exposure in a Japanese birth cohort. Sci Rep 2024; 14:31872. [PMID: 39738397 PMCID: PMC11686058 DOI: 10.1038/s41598-024-82908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
Prenatal exposure to polychlorinated biphenyls (PCBs) has a detrimental effect on early cognitive development. Based on these observations, some researchers suggested that prenatal exposure to PCB may be an environmental cause of autism spectrum disorder (ASD). To investigate the potential link between prenatal exposure to PCB, we analyzed the link between the level of prenatal PCB exposure and ASD risk evaluated at 18 months of age and behavioral problems at 5 years old based on longitudinal birth cohort data collected in urban areas in Japan based on the data from 115 mother-infant pairs. Logistic regression analysis revealed a significant association between ASD risk at 18 months of age and the factor scores of the principal components (PCB PCs) obtained by compressing the exposure level to PCB congeners. There was no reliable relationship between PCB PCs and problematic behaviors at 5 years of age. Furthermore, machine learning-based analysis showed the possibility that, when the information of the pattern of infants' spontaneous bodily motion, a potential marker of ASD risk, was used as the predictors together, prenatal PCB exposure levels predict ASD risk at 18 months of age. Together, these findings support the view that prenatal exposure to PCBs is associated with the later emergence of autistic behaviors and indicate the predictability of ASD risk based on the information available at the neonatal stage.
Collapse
Affiliation(s)
- Hirokazu Doi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.
- Department of Information and Management Systems Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| | - Akira Furui
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8527, Japan
| | - Rena Ueda
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8527, Japan
| | - Koji Shimatani
- Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1, Gakuen-machi, Mihara, Hiroshima, 723-0053, Japan
| | - Midori Yamamoto
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Naoya Sagara
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Toshio Tsuji
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
4
|
Koshizaka M, Eguchi A, Takaguchi K, Yamamoto M, Takatani R, Hisada A, Kawanami A, Konno Y, Watanabe M, Tsumura K, Shimatani K, Suzuki N, Mori C, Sakurai K. Second phase Chiba study of mother and child health (C-MACH): Japanese birth cohort study with multiomics analyses. BMJ Open 2024; 14:e085682. [PMID: 39653579 PMCID: PMC11628962 DOI: 10.1136/bmjopen-2024-085682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
PURPOSE Epidemiological studies have reported that environmental factors from fetal period to early childhood can influence the risk of non-communicable diseases in adulthood. This concept has been termed the developmental origins of health and disease (DOHaD). The Chiba study of Mother and Child Health (C-MACH) is a DOHaD concept-based birth cohort study which started in 2014. This study aims to investigate the effects of genetic and environmental factors, particularly fetal and postnatal living environment, on children's health. We also aim to identify candidate biomarkers for their health status. Moreover, the second phase study of C-MACH which was initiated in 2021 aimed at expanding the sample size, especially for gut microbiota and epigenomic analysis; it also aimed at clarifying the impact of the coronavirus disease 2019 (COVID-19) pandemic on children's health. PARTICIPANTS This study consists of four hospital-based cohorts. Women who were <13 weeks pregnant and their partners were enrolled in the study. All data and biological samples will be stored in the Chiba University Centre for Preventive Medical Sciences. FINDINGS TO DATE A total of 561 women and their partners provided their consent to participate in this study. Of these women, 505 completed the questionnaire during the early gestational period. The mean age of the 505 women at enrolment was 33.0 (SD, 4.5) years. The mean prepregnancy body mass index (BMI) was 21.7 (SD, 3.6) kg/m2, with 74.5% of the women having a BMI of 18.5-24.9 kg/m2. About 5.2% of the women smoked cigarettes during the early stages of pregnancy. FUTURE PLANS The primary study outcomes are allergies, obesity, endocrine and metabolic disorders and developmental difficulties in children. Variables related to genome, metabolome, epigenome, gut microbiota and exposome will be evaluated as health-related factors. The relationships between these outcomes and the health-related factors will be analysed.
Collapse
Affiliation(s)
- Masaya Koshizaka
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Kohki Takaguchi
- Endowed course on Indoor Air Quality (Sekisui House, Ltd.), Center for PreventiveMedical Sciences, Chiba University, Chiba, Japan
| | - Midori Yamamoto
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Rieko Takatani
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Aya Hisada
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Akiko Kawanami
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Yuki Konno
- Department of Environmental Preventive Medicine (Yamada Bee Company, Inc.), Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Masahiro Watanabe
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Kayo Tsumura
- Endowed course on Indoor Air Quality (Sekisui House, Ltd.), Center for PreventiveMedical Sciences, Chiba University, Chiba, Japan
| | - Keiichi Shimatani
- Endowed course on Indoor Air Quality (Sekisui House, Ltd.), Center for PreventiveMedical Sciences, Chiba University, Chiba, Japan
| | - Norimichi Suzuki
- Department of Healthy Cities and Built Environment, Center for Preventive MedicalSciences, Chiba University, Chiba, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Rotander A, Ramos MJG, Mueller JF, Toms LM, Hyötyläinen T. Metabolic changes associated with PFAS exposure in firefighters: A pilot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176004. [PMID: 39260512 DOI: 10.1016/j.scitotenv.2024.176004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
This pilot study investigated the association between occupational exposure to per- and polyfluoroalkyl substances (PFASs) and metabolic profiles among two groups of aviation firefighters (n = 37), with an average of 6 and 31 years of working experience (here referred as junior and senior firefighters) at airports across Australia, with samples collected in 2013. PFAS levels in serum were determined in a previous study to be >17 times higher in the senior firefighter group, reflecting the difference in their occupational exposure to fluorosurfactants among the groups. The aim was to examine metabolic patterns across a broad range of PFAS exposure by comparing metabolic differences and their associations with PFAS levels. In this cross-sectional study, the length of firefighting experience and PFAS levels in serum were both further associated with changes in several classes of metabolites, including free fatty acids, bile acids, amino acids, lipids and metabolites related to gut microbial metabolism. The metabolites associated with the length of firefighting experience showed similarities with the metabolites associated with PFAS levels. A non-monotonic response to PFAS concentrations, particularly in saturated fatty acids, was also observed. In the junior firefighter group, the PFAS concentrations were positively associated with saturated fatty acids, i.e., the saturated fatty acid levels increased with increased PFAS levels. In the senior firefighter group, the trend was opposite, with saturated fatty acids decreasing with increasing levels of PFAS. Accounting for potential confounding factors such as BMI and age could not explain the results. While the study population was small, our results plausibly indicate that PFAS exposure can lead to a metabolic compensation strategy that is disrupted at high, long-term exposures. Our study also suggests that serum metabolites serve as better effect-based markers of the impact of exposure than the traditional clinical measurements alone, such as total triglycerides or total cholesterol.
Collapse
Affiliation(s)
- Anna Rotander
- MTM Research Centre, Örebro university, Fakultetsgatan 1, 702 81 Örebro, Sweden
| | - Maria Jose Gomez Ramos
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n La Cañada de San Urbano, 04120 Almería, Spain
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Musk Avenue, Kelvin Grove, 4059, QLD, Australia
| | - Tuulia Hyötyläinen
- MTM Research Centre, Örebro university, Fakultetsgatan 1, 702 81 Örebro, Sweden.
| |
Collapse
|
6
|
Eguchi A, Sakurai K, Yamamoto M, Mori C. Elucidation of endogenous and exogenous chemicals in maternal serum using high-resolution mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117256. [PMID: 39490107 DOI: 10.1016/j.ecoenv.2024.117256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The increasing exposure to environmental chemicals calls for comprehensive non-targeted analysis to detect unrecognized substances in human samples. We examined human serum samples to classify compounds as endogenous or exogenous using public databases and to explore the relationships between exposure markers and metabolic patterns. Serum samples from 84 pregnant women at 32 weeks gestation were analyzed using LC-QToFMS. Using the PubChemLite for Exposomics database, we annotated and classified 106 compounds (51 endogenous, 55 exogenous). The compound patterns were analyzed using three dimensional reduction methods: Principal Component Analysis (PCA), regularized Generalized Canonical Correlation Analysis (rGCCA), and Uniform Manifold Approximation and Projection (UMAP). OPTICS clustering applied to these methods revealed two distinct clusters, with 89 % of significant compounds overlapping between clusters. The detected exogenous compounds included dietary substances, phthalates, nitrogenous compounds, and parabens. Pathway enrichment analysis showed that chemical exposure was linked to changes in amino acid metabolism, protein and mineral transport, and energy metabolism. While we found associations between exposure and metabolite changes, we could not establish causality. Our approach of analyzing both exogenous and endogenous chemicals from the same dataset using PubChemLite database presents a new method for exposome research, despite limitations in sample size and peak annotation accuracy. These findings contribute to understanding multiple chemical exposures and their metabolic effects in human biomonitoring.
Collapse
Affiliation(s)
- Akifumi Eguchi
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1-33, Chiba, Japan.
| | - Kenichi Sakurai
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1-33, Chiba, Japan
| | - Midori Yamamoto
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1-33, Chiba, Japan
| | - Chisato Mori
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1-33, Chiba, Japan; Chiba University, Department of Bioenvironmental Medicine, Graduate School of Medicine, Chuo-ku Inohana 1-8-1, Chiba, Japan
| |
Collapse
|
7
|
Ji L, Chang X, Wang L, Fu X, Lai W, Zheng L, Li Q, Xing Y, Yang Z, Guan Y, Yang F. Insights into the biodegradation of pentachlorobiphenyl by Microbacterium paraoxydans: proteomic and metabolomic studies. Front Microbiol 2024; 15:1389805. [PMID: 38933025 PMCID: PMC11203399 DOI: 10.3389/fmicb.2024.1389805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Bacterial degradation mechanism for high chlorinated pentachlorobiphenyl (PentaCB) with worse biodegradability has not been fully elucidated, which could limit the full remediation of environments afflicted by the complex pollution of polychlorinated biphenyls (PCBs). In this research, a new PentaCB-degrading bacterium Microbacterium paraoxydans that has not been reported was obtained using enzymatic screening method. The characteristics of its intracellular enzymes, proteome and metabolome variation during PentaCB degradation were investigated systematically compared to non-PentaCB conditions. The findings indicate that the degradation rate of PentaCB (1 mg/L) could reach 23.9% within 4 hours and achieve complete degradation within 12 hours, with the mixture of intracellular enzymes being most effective at a pH of 6.0. During the biodegradation of PentaCB, the 12 up-regulated proteins characterized included ABC transporter PentaCB-binding protein, translocase protein TatA, and signal peptidase I (SPase I), indicating the presence of functional proteins for PentaCB degradation in both the cytoplasm and the outer surface of the cytoplasmic membrane. Furthermore, five differentially enriched metabolites were strongly associated with the aforementioned proteins, especially the up-regulated 1, 2, 4-benzenetriol which feeds into multiple degradation pathways of benzoate, chlorocyclohexane, chlorobenzene and aminobenzoate. These relevant results help to understand and speculate the complex mechanisms regarding PentaCB degradation by M. paraoxydans, which have both theoretical and practical implications for PCB bioremediation.
Collapse
Affiliation(s)
- Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaoyu Chang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Leilei Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenkai Lai
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Liwen Zheng
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhongfeng Yang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuyao Guan
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fenglong Yang
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Motohira K, Yohannes YB, Ikenaka Y, Eguchi A, Nakayama SM, Wepener V, Smit NJ, VAN Vuren JH, Ishizuka M. Investigation of dichlorodiphenyltrichloroethane (DDT) on xenobiotic enzyme disruption and metabolomic bile acid biosynthesis in DDT-sprayed areas using wild rats. J Vet Med Sci 2023; 85:236-243. [PMID: 36596564 PMCID: PMC10017292 DOI: 10.1292/jvms.22-0490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is an organochlorine insecticide used worldwide. Several studies have reported the toxic effects of DDT and its metabolites on steroid hormone biosynthesis; however, its environmental effects are not well understood. This study examined wild rats collected in DDT-sprayed areas of South Africa and quantified plasma metabolites using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). Fold change analysis of the metabolome revealed the effect of DDT on bile acid biosynthesis. Gene expression of the related enzyme in rat liver samples was also quantified. Significant association was found between DDT and gene expression levels related to constitutive androstane receptor mediated enzymes, such as Cyp2b1 in rat livers. However, our results could not fully demonstrate that enzymes related to bile acid biosynthesis were strongly affected by DDT. The correlation between DDT concentration and gene expression involved in steroid hormone synthesis in testis was also evaluated; however, no significant correlation was found. The disturbance of metabolic enzymes occurred in rat liver in the target area. Our results suggest that DDT exposure affects gene expression in wild rats living in DDT-sprayed areas. Therefore, there is a need for DDT toxicity evaluation in mammals living in DDT-sprayed areas. We could not find an effective biomarker that could reflect the mechanism of DDT exposure; however, this approach can provide new insights for future research to evaluate DDT effects in sprayed areas.
Collapse
Affiliation(s)
- Kodai Motohira
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan.,Department of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar, Ethiopia
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan.,Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa.,Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan.,One Health Research Center, Hokkaido University, Hokkaido, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Shouta Mm Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan.,Biomedical Sciences Department, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa
| | - Johan Hj VAN Vuren
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
9
|
Wang X, Li P, Cao X, Liu B, He S, Cao Z, Xing S, Liu L, Li ZH. Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: A study of the Pacific Oyster (Crassostrea gigas). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120161. [PMID: 36100119 DOI: 10.1016/j.envpol.2022.120161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
The combined effects of emerging pollutants and ocean acidification (OA) on marine organisms and marine ecosystems have attracted increasing attention. However, the combined effects of tralopyril and OA on marine organisms and marine ecosystems remain unclear. In this study, Crassostrea gigas (C. gigas) were exposed to tralopyril (1 μg/L) and/or OA (PH = 7.7) for 21 days and a 14-day recovery acclimation. To investigate the stress response and potential molecular mechanisms of C. gigas to OA and tralopyril exposure alone or in combination, as well as the effects of OA and/or tralopyril on bivalve biomineralization and marine carbon cycling. The results showed that the combined toxicity was between that of acidification and tralopyril alone. Single or combined exposure activated the general stress defense responses of C. gigas mantle, affected energy metabolism and biomineralization of the organism and the carbon cycle of the marine ecosystem. Moreover, acidification-induced and tralopyril-induced toxicity showed potential recoverability at molecular and biochemical levels. This study provides a new perspective on the molecular mechanisms of tralopyril toxicity to bivalve shellfish and reveals the potential role of tralopyril and OA on marine carbon cycling.
Collapse
Affiliation(s)
- Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
10
|
Xiao Y, Lin X, Zhou M, Ren T, Gao R, Liu Z, Shen W, Wang R, Xie X, Song Y, Hu W. Metabolomics analysis of the potential toxicological mechanisms of diquat dibromide herbicide in adult zebrafish (Danio rerio) liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1039-1055. [PMID: 35831485 DOI: 10.1007/s10695-022-01101-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Although diquat is a widely used water-soluble herbicide in the world, its sublethal adverse effects to fish have not been well characterised. In this study, histopathological examination and biochemical assays were applied to assess hepatotoxicity and combined with gas chromatography-mass spectrometry (GC-MS)-based metabolomics analysis to reveal overall metabolic mechanisms in the liver of zebrafish (Danio rerio) after diquat exposure at concentrations of 0.34 and 1.69 mg·L-1 for 21 days. Results indicated that 1.69 mg·L-1 diquat exposure caused cellular vacuolisation and degeneration with nuclear abnormality and led to the disturbance of antioxidative system and dysfunction in the liver. No evident pathological injury was detected, and changes in liver biochemistry were not obvious in the fish exposed to 0.34 mg·L-1 diquat. Multivariate statistical analysis revealed differences between profiles obtained by GC-MS spectrometry from control and two treatment groups. A total of 17 and 22 metabolites belonging to different classes were identified following exposure to 0.34 and 1.69 mg·L-1 diquat, respectively. The metabolic changes in the liver of zebrafish are mainly manifested as inhibition of energy metabolism, disorders of amino acid metabolism and reduction of antioxidant capacity caused by 1.69 mg·L-1 diquat exposure. The energy metabolism of zebrafish exposed to 0.34 mg·L-1 diquat was more inclined to rely on anaerobic glycolysis than that of normal zebrafish, and interference effects on lipid metabolism were observed. The metabolomics approach provided an innovative perspective to explore possible hepatic damages on fish induced by diquat as a basis for further research.
Collapse
Affiliation(s)
- Ye Xiao
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Xiang Lin
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Meilan Zhou
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Tianyu Ren
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Ruili Gao
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Zhongqun Liu
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Wenjing Shen
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Rong Wang
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Xi Xie
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Yanting Song
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Wenting Hu
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China.
| |
Collapse
|
11
|
Takahashi T, Eguchi A, Watanabe M, Todaka E, Sakurai K, Mori C. Association between telomere length in human umbilical cord tissues and polychlorinated biphenyls in maternal and cord serum. CHEMOSPHERE 2022; 300:134560. [PMID: 35427669 DOI: 10.1016/j.chemosphere.2022.134560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Environmental exposure to persistent organic pollutants during pregnancy has potential adverse health effects on the fetus. One of the environmental pollutants is polychlorinated biphenyl (PCB). Earlier, we reported the presence of PCBs in fetal tissues such as the umbilical cord. Telomere length (TL) is a biomarker of aging because it shortens with each cell division. According to the Developmental Origins of Health and Disease hypothesis, fetal exposure to environmental pollutants during pregnancy affects the occurrence of non-communicable diseases in later life. In the current study, we investigated the association between cord tissue TL and serum levels of PCBs. The subjects were 114 mother-child pairs participating in a birth cohort study, the Chiba Study of Mother and Child Health (C-MACH). Maternal serum was collected during pregnancy, and cord serum and tissue were obtained at birth. TL was assessed by qPCR using genomic DNA extracted from the cord tissue. Maternal and cord serum PCB congener levels were assessed using gas chromatography and negative ion chemical ionization qMS. In male fetuses, serum levels of PCB74 in the cord blood were significantly associated with TL following covariate adjustment, but no significant association was found in female fetuses. These data suggest that the TL of the umbilical cord is affected by fetal exposure to PCBs.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Department of Environmental Preventive Medicine (Yamada Bee Company, Inc.), Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan.
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan.
| | - Masahiro Watanabe
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan.
| | - Emiko Todaka
- Department of Global Preventive Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan.
| | - Chisato Mori
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
12
|
Kim S, Hollinger H, Radke EG. 'Omics in environmental epidemiological studies of chemical exposures: A systematic evidence map. ENVIRONMENT INTERNATIONAL 2022; 164:107243. [PMID: 35551006 PMCID: PMC11515950 DOI: 10.1016/j.envint.2022.107243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Systematic evidence maps are increasingly used to develop chemical risk assessments. These maps can provide an overview of available studies and relevant study information to be used for various research objectives and applications. Environmental epidemiological studies that examine the impact of chemical exposures on various 'omic profiles in human populations provide relevant mechanistic information and can be used for benchmark dose modeling to derive potential human health reference values. OBJECTIVES To create a systematic evidence map of environmental epidemiological studies examining environmental contaminant exposures with 'omics in order to characterize the extent of available studies for future research needs. METHODS Systematic review methods were used to search and screen the literature and included the use of machine learning methods to facilitate screening studies. The Populations, Exposures, Comparators and Outcomes (PECO) criteria were developed to identify and screen relevant studies. Studies that met the PECO criteria after full-text review were summarized with information such as study population, study design, sample size, exposure measurement, and 'omics analysis. RESULTS Over 10,000 studies were identified from scientific databases. Screening processes were used to identify 84 studies considered PECO-relevant after full-text review. Various contaminants (e.g. phthalate, benzene, arsenic, etc.) were investigated in epidemiological studies that used one or more of the four 'omics of interest: epigenomics, transcriptomics, proteomics, and metabolomics . The epidemiological study designs that were used to explore single or integrated 'omic research questions with contaminant exposures were cohort studies, controlled trials, cross-sectional, and case-control studies. An interactive web-based systematic evidence map was created to display more study-related information. CONCLUSIONS This systematic evidence map is a novel tool to visually characterize the available environmental epidemiological studies investigating contaminants and biological effects using 'omics technology and serves as a resource for investigators and allows for a range of applications in chemical research and risk assessment needs.
Collapse
Affiliation(s)
- Stephanie Kim
- Superfund and Emergency Management Division, Region 2, U.S. Environmental Protection Agency, NY, USA.
| | - Hillary Hollinger
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, NC, USA.
| | - Elizabeth G Radke
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, D.C, USA.
| |
Collapse
|
13
|
Yuan TH, Eguchi A, Tai CJ, Tsai CH, Chien JW, Chan CC, Mori C. Comparison of the PCB serum levels among mother-child pairs in areas of Eastern Japan and Central Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150272. [PMID: 34852429 DOI: 10.1016/j.scitotenv.2021.150272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) have been prohibited for two decades in Japan and Taiwan. The aim of this study was to compare the PCB congeners in maternal and cord serum between two countries. Our study subjects were 248 and 100 mother-child pairs in Japan and Taiwan. The measured levels of 23 serum PCB congeners between two countries were analyzed using gas chromatography-electron capture negative ionization quadrupole mass spectrometry (GC-NICI-qMS). The statistical comparisons were conducted by Student's t-test and principal component analysis with further stratification by maternal age and parity. The maternal total PCBs levels in Japan (426 ± 244 pg/g wet wt) were significantly higher than those in Taiwan (254 ± 155 pg/g wet wt), and the similar results were found in cord total PCBs levels (97 ± 76 and 58 ± 87 pg/g wet wt). It showed different distributions of PCB congeners between two countries. Whether in maternal or cord serum, the CB138, CB153 and CB180 were the highest detectable congeners whether in Japan or Taiwan. And, the CB66, CB99, CB206 and CB209 were only detected in maternal serum of Taiwan. The women of advanced maternal age had higher levels of PCB congeners, especially in Taiwan, and the primiparous women had higher levels of PCB congeners in two countries. In summary, the PCB congeners in Japan's mother-child pairs were with higher levels and different distributions when compared to those in Taiwan, and the maternal age and parity were important factors associated with the PCB levels.
Collapse
Affiliation(s)
- Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taiwan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Japan
| | - Chun-Ju Tai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Taiwan
| | | | | | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Taiwan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Japan.
| |
Collapse
|
14
|
Association between Total and Individual PCB Congener Levels in Maternal Serum and Birth Weight of Newborns: Results from the Chiba Study of Mother and Child Health Using Weighted Quantile Sum Regression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020694. [PMID: 35055516 PMCID: PMC8775854 DOI: 10.3390/ijerph19020694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 01/06/2023]
Abstract
Maternal exposure to polychlorinated biphenyls (PCBs) during pregnancy is associated with a low birth weight; however, the congener-specific effects of PCB congeners are not well defined. In this study, we used maternal serum samples from the Chiba Study of Mother and Child Health (C-MACH) cohort, collected at 32 weeks of gestational age, to analyze the effects of PCB congener exposure on birth weight by examining the relationship between newborn birth weight and individual PCB congener levels in maternal serum (n = 291). The median total PCB level in the serum of mothers of male and female newborns at approximately 32 weeks of gestation was 39 and 37 ng g−1 lipid wt, respectively. The effect of the total PCB levels and the effects of PCB congener mixtures were analyzed using a linear regression model and a generalized weighted quantile sum regression model (gWQS). The birth weight of newborns was significantly associated with maternal exposure to PCB mixtures in the gWQS model. The results suggest that exposure to PCB mixtures results in low newborn birth weight. However, specific impacts of individual PCB congeners could not be related to newborn birth weight.
Collapse
|
15
|
Zhang CY, Flor S, Ruiz P, Ludewig G, Lehmler HJ. Characterization of the Metabolic Pathways of 4-Chlorobiphenyl (PCB3) in HepG2 Cells Using the Metabolite Profiles of Its Hydroxylated Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9052-9062. [PMID: 34125531 PMCID: PMC8264946 DOI: 10.1021/acs.est.1c01076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The characterization of the metabolism of lower chlorinated PCB, such as 4-chlorobiphenyl (PCB3), is challenging because of the complex metabolite mixtures formed in vitro and in vivo. We performed parallel metabolism studies with PCB3 and its hydroxylated metabolites to characterize the metabolism of PCB3 in HepG2 cells using nontarget high-resolution mass spectrometry (Nt-HRMS). Briefly, HepG2 cells were exposed for 24 h to 10 μM PCB3 or its seven hydroxylated metabolites in DMSO or DMSO alone. Six classes of metabolites were identified with Nt-HRMS in the culture medium exposed to PCB3, including monosubstituted metabolites at the 3'-, 4'-, 3-, and 4- (1,2-shift product) positions and disubstituted metabolites at the 3',4'-position. 3',4'-Di-OH-3 (4'-chloro-3,4-dihydroxybiphenyl), which can be oxidized to a reactive and toxic PCB3 quinone, was a central metabolite that was rapidly methylated. The resulting hydroxylated-methoxylated metabolites underwent further sulfation and, to a lesser extent, glucuronidation. Metabolomic analyses revealed an altered tryptophan metabolism in HepG2 cells following PCB3 exposure. Some PCB3 metabolites were associated with alterations of endogenous metabolic pathways, including amino acid metabolism, vitamin A (retinol) metabolism, and bile acid biosynthesis. In-depth studies are needed to investigate the toxicities of PCB3 metabolites, especially the 3',4'-di-OH-3 derivatives identified in this study.
Collapse
Affiliation(s)
- Chun-Yun Zhang
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Susanne Flor
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Patricia Ruiz
- Office
of Innovation and Analytics, Simulation Science Section, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30333, United States
| | - Gabriele Ludewig
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
- . Tel.: (319) 335-4981. Fax: (319) 335-4290
| |
Collapse
|
16
|
Winterhoff M, Chen F, Sahini N, Ebensen T, Kuhn M, Kaever V, Bähre H, Pessler F. Establishment, Validation, and Initial Application of a Sensitive LC-MS/MS Assay for Quantification of the Naturally Occurring Isomers Itaconate, Mesaconate, and Citraconate. Metabolites 2021; 11:metabo11050270. [PMID: 33925995 PMCID: PMC8146994 DOI: 10.3390/metabo11050270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/16/2023] Open
Abstract
Itaconate is derived from the tricarboxylic acid (TCA) cycle intermediate cis-aconitate and links innate immunity and metabolism. Its synthesis is altered in inflammation-related disorders and it therefore has potential as clinical biomarker. Mesaconate and citraconate are naturally occurring isomers of itaconate that have been linked to metabolic disorders, but their functional relationships with itaconate are unknown. We aimed to establish a sensitive high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay for the quantification of itaconate, mesaconate, citraconate, the pro-drug 4-octyl-itaconate, and selected TCA intermediates. The assay was validated for itaconate, mesaconate, and citraconate for intra- and interday precision and accuracy, extended stability, recovery, freeze/thaw cycles, and carry-over. The lower limit of quantification was 0.098 µM for itaconate and mesaconate and 0.049 µM for citraconate in 50 µL samples. In spike-in experiments, itaconate remained stable in human plasma and whole blood for 24 and 8 h, respectively, whereas spiked-in citraconate and mesaconate concentrations changed during incubation. The type of anticoagulant in blood collection tubes affected measured levels of selected TCA intermediates. Human plasma may contain citraconate (0.4-0.6 µM, depending on the donor), but not itaconate or mesaconate, and lipopolysaccharide stimulation of whole blood induced only itaconate. Concentrations of the three isomers differed greatly among mouse organs: Itaconate and citraconate were most abundant in lymph nodes, mesaconate in kidneys, and only citraconate occurred in brain. This assay should prove useful to quantify itaconate isomers in biomarker and pharmacokinetic studies, while providing internal controls for their effects on metabolism by allowing quantification of TCA intermediates.
Collapse
Affiliation(s)
- Moritz Winterhoff
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; (M.W.); (F.C.); (N.S.); (M.K.)
| | - Fangfang Chen
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; (M.W.); (F.C.); (N.S.); (M.K.)
| | - Nishika Sahini
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; (M.W.); (F.C.); (N.S.); (M.K.)
| | - Thomas Ebensen
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany;
| | - Maike Kuhn
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; (M.W.); (F.C.); (N.S.); (M.K.)
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, 30625 Hannover, Germany; (V.K.); (H.B.)
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, 30625 Hannover, Germany; (V.K.); (H.B.)
| | - Frank Pessler
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; (M.W.); (F.C.); (N.S.); (M.K.)
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany;
- Centre for Individualised Infection Medicine, 30625 Hannover, Germany
- Correspondence: or
| |
Collapse
|
17
|
Hyötyläinen T. Analytical challenges in human exposome analysis with focus on environmental analysis combined with metabolomics. J Sep Sci 2021; 44:1769-1787. [PMID: 33650238 DOI: 10.1002/jssc.202001263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Environmental factors, such as chemical exposures, are likely to play a crucial role in the development of several human chronic diseases. However, how the specific exposures contribute to the onset and progress of various diseases is still poorly understood. In part, this is because comprehensive characterization of the chemical exposome is a highly challenging task, both due to its complex dynamic nature as well as due to the analytical challenges. Herein, the analytical challenges in the field of exposome research are reviewed, with specific emphasis on the sampling, sample preparation, and analysis, as well as challenges in the compound identification. The primary focus is on the human chemical exposome, that is, exposures to mixtures of environmental chemicals and its impact on human metabolome. In order to highlight the recent progress in the exposome research in relation to human health and disease, selected examples of human exposome studies are presented.
Collapse
Affiliation(s)
- Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
18
|
Li M, Yang T, Gao L, Xu H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. CHEMOSPHERE 2021; 264:128484. [PMID: 33022499 DOI: 10.1016/j.chemosphere.2020.128484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a group of chemical compounds that present a considerable public health problem due to their pervasiveness and associations with chronic diseases. EDCs can interrupt the endocrine system and interfere with hormone homeostasis, leading to abnormalities in human physiology. Much attention has been focused on the adverse effects EDCs have on the reproductive system, neurogenesis, neuroendocrine system, and thyroid dysfunction. The eye is usually directly exposed to the surrounding environment; however, the influences of EDCs on the eye have received comparatively little attention. Ocular diseases, such as ocular surface diseases and retinal diseases, have been implicated in hormone deficiency or excess. Epidemiologic studies have shown that EDC exposure not only causes ocular surface disorders, such as dry eye, but also associates with visual deficits and retinopathy. EDCs can pass through the human blood-retinal barrier and enter the neural retina, and can then accumulate in the retina. The retina is an embryologic extension of the central nervous system, and is extremely sensitive and vulnerable to EDCs that could be passed across the placenta during critical periods of retinal development. Subtle alterations in the retinal development process usually result in profound immediate, long-term, and delayed effects late in life. This review, based on extensive literature survey, briefly summarizes the current knowledge about the impact of representative manufactured EDCs on retinal toxicity, including retinal structure alterations and dysfunction. We also highlight the potential mechanism of action of EDCs on the retina, and the predictive retinal models of EDC exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Tian Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
19
|
Oskar S, Stingone JA. Machine Learning Within Studies of Early-Life Environmental Exposures and Child Health: Review of the Current Literature and Discussion of Next Steps. Curr Environ Health Rep 2021; 7:170-184. [PMID: 32578067 DOI: 10.1007/s40572-020-00282-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The goal of this article is to review the use of machine learning (ML) within studies of environmental exposures and children's health, identify common themes across studies, and provide recommendations to advance their use in research and practice. RECENT FINDINGS We identified 42 articles reporting upon the use of ML within studies of environmental exposures and children's health between 2017 and 2019. The common themes among the articles were analysis of mixture data, exposure prediction, disease prediction and forecasting, analysis of complex data, and causal inference. With the increasing complexity of environmental health data, we anticipate greater use of ML to address the challenges that cannot be handled by traditional analytics. In order for these methods to beneficially impact public health, the ML techniques we use need to be appropriate for our study questions, rigorously evaluated and reported in a way that can be critically assessed by the scientific community.
Collapse
Affiliation(s)
- Sabine Oskar
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th St, Room 1608, New York, NY, 10032, USA
| | - Jeanette A Stingone
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th St, Room 1608, New York, NY, 10032, USA.
| |
Collapse
|
20
|
Dai Y, Huo X, Cheng Z, Faas MM, Xu X. Early-life exposure to widespread environmental toxicants and maternal-fetal health risk: A focus on metabolomic biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139626. [PMID: 32535459 DOI: 10.1016/j.scitotenv.2020.139626] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
Prenatal exposure to widespread environmental toxicants is detrimental to maternal health and fetal development. The effects of environmental toxicants on maternal and fetal metabolic profile changes have not yet been summarized. This systematic review aims to summarize the current studies exploring the association between prenatal exposure to environmental toxicants and metabolic profile alterations in mother and fetus. We searched the MEDLINE (PubMed) electronic database for relevant literature conducted up to September 18, 2019 with some key terms. From the initial 155 articles, 15 articles met the inclusion and exclusion criteria, and consist of highly heterogeneous research methods. Seven studies assessed the effects of multiple environmental pollutants (metals, organic pollutants, nicotine, air pollutants) on the maternal urine and blood metabolomic profile; five studies evaluated the effects of arsenic, polychlorinated biphenyls (PCBs), nicotine, and ambient fine particulate matter (PM2.5) on the cord blood metabolomic profile; and one study assessed the effects of smoking exposure on the amniotic fluid metabolomic profile. The alteration of metabolic pathways in these studies mainly involve energy metabolism, hormone metabolism, oxidative stress and inflammation. No population study investigated the association between environmental toxicants and placental metabolomics. This systematic review provides evidence that prenatal exposure to a variety of environmental pollutants can affect maternal and fetal metabolomic characteristics. Integration of environmental toxicant exposure and metabolomics data in maternal-fetal samples is helpful to understand the interaction between toxicants and metabolites, so as to reveal the pathogenesis of fetal disease or diseases of fetal origin.
Collapse
Affiliation(s)
- Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
21
|
Simond AE, Houde M, Lesage V, Michaud R, Verreault J. Metabolomic profiles of the endangered St. Lawrence Estuary beluga population and associations with organohalogen contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137204. [PMID: 32065898 DOI: 10.1016/j.scitotenv.2020.137204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
The endangered beluga (Delphinapterus leucas) population residing in the St. Lawrence Estuary (SLE; Eastern Canada) is declining. The elevated tissue concentrations of a wide range of organohalogen contaminants might play a role in the non-recovery of this whale population. Organohalogens have been reported to impair the regulation of several metabolic products from cellular reactions in mammals such as amino acids and fatty acids. The objective of this study was to investigate a suite of organohalogens including polychlorinated biphenyls, organochlorine pesticides, short-chain chlorinated paraffins (SCCPs), polybrominated diphenyl ethers, and selected emerging flame retardants in blubber (biopsy) collected from 40 SLE male belugas, and their relationships to skin concentrations of targeted metabolites (i.e., 21 amino acids, 22 biogenic amines, 18 fatty acids, and 17 energy metabolites). A cluster analysis based on metabolomic profiles distinguished two main subgroups of belugas in the upper and lower sector of their summer habitat in the SLE. These results indicate that ecological factors such as local prey availability and diet composition played a role in shaping the metabolite profiles of belugas. Moreover, SCCP concentrations in SLE male belugas correlated negatively with those of four unsaturated fatty acids (C16:1ω7, C22:5ω3c1, C22:5ω3c2, and C22:6ω3), and positively with those of acetylornithine (biogenic amine). These findings suggest that biological functions such as lipid metabolism represent potential targets for organohalogens in this population, and further our understanding on potential health risks associated with elevated organohalogen exposure in cetaceans. Our results also underscore the necessity of considering ecological factors (e.g., diet and habitat use) in metabolomic studies.
Collapse
Affiliation(s)
- Antoine E Simond
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Véronique Lesage
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, P.O. Box 1000, 850 route de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | - Robert Michaud
- Groupe de Recherche et d'Éducation sur les Mammifères Marins (GREMM), 870 avenue Salaberry, Bureau R24, Québec, QC G1R 2T9, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
22
|
Eguchi A, Nishizawa-Jotaki S, Tanabe H, Rahmutulla B, Watanabe M, Miyaso H, Todaka E, Sakurai K, Kaneda A, Mori C. An Altered DNA Methylation Status in the Human Umbilical Cord Is Correlated with Maternal Exposure to Polychlorinated Biphenyls. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152786. [PMID: 31382687 PMCID: PMC6696183 DOI: 10.3390/ijerph16152786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/26/2022]
Abstract
Maternal exposure to polychlorinated biphenyls (PCBs) results in abnormal fetal development, possibly because of epigenetic alterations. However, the association between PCB levels in cord serum with fetal DNA methylation status in cord tissue is unclear. This study aims to identify alterations in DNA methylation in cord tissue potentially associated with PCB levels in cord serum from a birth cohort in Chiba, Japan (male neonates = 32, female neonates = 43). Methylation array analysis identified five sites for female neonates (cg09878117, cg06154002, cg06289566, cg12838902, cg01083397) and one site for male neonates (cg13368805) that demonstrated a change in the methylation degree. This result was validated by pyrosequencing analysis, showing that cg06154002 (tudor domain containing 9: TDRD9) in cord tissue from female neonates is significantly correlated with total PCB levels in cord serum. These results indicate that exposure to PCBs may alter TDRD9 methylation levels, although this hypothesis requires further validation using data obtained from female neonates. However, since the present cohort is small, further studies with larger cohorts are required to obtain more data on the effects of PCB exposure and to identify corresponding biomarkers.
Collapse
Affiliation(s)
- Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan
| | - Shino Nishizawa-Jotaki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan
- Teijin Limited, Kasumigaseki Common Gate West Tower, 2-1, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo 100-0013, Japan
| | - Hiromi Tanabe
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan
| | - Masahiro Watanabe
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan
| | - Hidenobu Miyaso
- Department of Anatomy, Tokyo Medical University, Shinjuku-ku Shinjuku 6-1-1, Tokyo 160-8402, Japan
| | - Emiko Todaka
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan.
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan.
| |
Collapse
|
23
|
Qiu J, Cheng J, Xie Y, Jiang L, Shi P, Li X, Swanda RV, Zhou J, Wang Y. 1,4-Dioxane exposure induces kidney damage in mice by perturbing specific renal metabolic pathways: An integrated omics insight into the underlying mechanisms. CHEMOSPHERE 2019; 228:149-158. [PMID: 31029960 DOI: 10.1016/j.chemosphere.2019.04.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/17/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
1,4-Dioxane (dioxane), an industrial solvent widely detected in environmental and biological matrices, has potential nephrotoxicity. However, the underlying mechanism by which dioxane induces kidney damage remains unclear. In this study, we used an integrated approach, combining kidney transcriptomics and urine metabolomics, to explore the mechanism for the toxic effects of dioxane on the mouse kidney. Transcriptomics profiling showed that exposure to 0.5 mg/L dioxane induced perturbations of multiple signaling pathways in kidneys, such as MAPK and Wnt, although no changes in oxidative stress indicators or anatomical pathology were observed. Exposure to 500 mg/L dioxane significantly disrupted various metabolic pathways, concomitantly with observed renal tissue damage and stimulated oxidant defense system. Urine metabolomic analysis using NMR indicated that exposure to dioxane gradually altered the metabolic profile of urine. Within the full range of altered metabolites, the metabolic pathway containing glycine, serine and threonine was the most significantly altered pathway at the early stage of exposure (3 weeks) in both 0.5 and 500 mg/L dioxane-treated groups. However, with prolonged exposure (9 and 12 weeks), the level of taurine significantly decreased after treatment of 0.5 mg/L dioxane, while exposure to 500 mg/L dioxane significantly increased glutathione levels in urine and decreased arginine metabolism. Furthermore, integrated omics analysis showed that 500 mg/L dioxane exposure induced arginine deficiency by perturbing several genes involved in renal arginine metabolism. Shortage of arginine coupled with increased oxidative stress could lead to renal dysfunction. These findings offer novel insights into the toxicity of dioxane.
Collapse
Affiliation(s)
- Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Jiade Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanci Xie
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Liujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xinying Li
- High School Affiliated to Nanjing Normal University, Nanjing, 210003, China
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, 14853, United States
| | - Jun Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yong Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
24
|
Eguchi A, Yanase K, Yamamoto M, Sakurai K, Watanabe M, Todaka E, Mori C. The relationship of maternal PCB, toxic, and essential trace element exposure levels with birth weight and head circumference in Chiba, Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15677-15684. [PMID: 30949941 DOI: 10.1007/s11356-019-05009-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Maternal exposure to high levels of persistent organic pollutants (POPs) and trace elements is an important concern for fetal growth. In our previous study, we showed the polychlorinated biphenyl (PCB) levels in maternal serum from the Chiba Study of Mother and Child Health (C-MACH) cohort and their relationships between PCB levels in cord serum with birth weight of newborn. Various reports on the relationship between chemical exposure and birth status have been published; however, studies that analyze the effects of both PCB and metal exposure together in one cohort are still limited. In this study, we aimed to determine the relationship of maternal serum levels of PCBs and toxic and essential trace elements [mercury (Hg), manganese (Mn), selenium (Se), and cadmium (Cd)], with birth weight and head circumference, in the C-MACH cohort. The median concentration of total PCBs in maternal serum around 32 gestational weeks (n = 62) was 360 pg g-1 wet wt (41 ng g-1 lipid wt). The levels of Hg, Mn, Se, and Cd in maternal serum were 0.89, 0.84, 100, and 0.024 ng g-1, respectively. In this study, the Bayesian linear model determined the relationships of the birth weight and head circumference with combinations of PCB levels, toxic and essential trace elements, and questionnaire data. We found that PCB concentrations in maternal serum were weakly and negatively related to birth weight, whereas trace elements were not associated with birth weight. Serum PCB and Mn levels were negatively associated with head circumference, whereas other trace elements were not associated with head circumference. These results showed that maternal exposure to PCBs may be related to birth weight and head circumference, while maternal exposure to Mn is related to head circumference, even when adjusted based on the exposure levels of other contaminants, and maternal and fetal characteristics. Therefore, our findings indicate that maternal exposure to PCBs and Mn might be negatively related with birth weight and head circumference.
Collapse
Affiliation(s)
- Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, Japan
| | - Kana Yanase
- Chiba Foundation for Health Promotion and Disease Prevention, Mihama-ku Shin-Minato 32-14, Chiba, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Midori Yamamoto
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, Japan
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, Japan
| | - Masahiro Watanabe
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, Japan
| | - Emiko Todaka
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, Japan.
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba, 260-8670, Japan.
| |
Collapse
|
25
|
|
26
|
Walker DI, Valvi D, Rothman N, Lan Q, Miller GW, Jones DP. The metabolome: A key measure for exposome research in epidemiology. CURR EPIDEMIOL REP 2019; 6:93-103. [PMID: 31828002 PMCID: PMC6905435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW Application of omics to study human health has created a new era of opportunities for epidemiology research. However, approaches to characterize exogenous health triggers have largely not leveraged advances in analytical platforms and big data. In this review, we highlight the exposome, which is defined as the cumulative measure of exposure and biological responses across a lifetime as a cornerstone for new epidemiology approaches to study complex and preventable human diseases. RECENT FINDINGS While no universal approach exists to measure the entirety of the exposome, use of high-resolution mass spectrometry methods provide distinct advantages over traditional biomonitoring and have provided key advances necessary for exposome research. Application to different study designs and recommendations for combining exposome data with novel data analytic frameworks to study complex interactions of multiple stressors are also discussed. SUMMARY Even though challenges still need to be addressed, advances in methods to characterize the exposome provide exciting new opportunities for epidemiology to support fundamental discoveries to improve public health.
Collapse
Affiliation(s)
- Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Damaskini Valvi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, United States
| | - Nathaniel Rothman
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Qing Lan
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Gary W. Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York NY
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
27
|
Sakurai K, Eguchi A, Watanabe M, Yamamoto M, Ishikawa K, Mori C. Exploration of predictive metabolic factors for gestational diabetes mellitus in Japanese women using metabolomic analysis. J Diabetes Investig 2019; 10:513-520. [PMID: 29956893 PMCID: PMC6400174 DOI: 10.1111/jdi.12887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS/INTRODUCTION We aimed to explore novel predictive markers for gestational diabetes mellitus using metabolomic analysis in pregnant Japanese women. MATERIALS AND METHODS We carried out a case-control study with a cohort of participants enrolled during the first or early second trimester in the Center of Chiba Unit of the Japan Environment and Children's Study. Participants were classified as either gestational diabetes mellitus cases or matched controls based on age, body mass index and parity. Metabolite levels of their serum and urine obtained randomly before the diagnosis of gestational diabetes mellitus were analyzed using hydrophilic interaction chromatography tandem mass spectrometry. Orthogonal projections to latent structures discriminant analysis was carried out to investigate metabolome profiles for the different groups. Metabolites with a variable importance in projection value of >1.5 were identified as potential markers. RESULTS In total, 242 participants were enrolled in the study, of which 121 were cases. The R2X, R2Y and Q2 parameters for the discrimination ability of the resulting models were 0.388, 0.492 and 0.45 for serum, and 0.454, 0.674 and 0.483 for urine, respectively. We finally identified three metabolites in serum and 20 in urine as potential biomarkers. Glutamine in serum and ethanolamine and 1,3-diphosphoglycerate in urine showed >0.8 area under the receiver operating characteristic curves. CONCLUSIONS The present study identified serum and urine metabolites that are possible predictive markers of subsequent gestational diabetes mellitus in Japanese women. Further studies are required to elucidate their efficacy.
Collapse
Affiliation(s)
- Kenichi Sakurai
- Center for Preventive Medical SciencesChiba UniversityChibaJapan
| | - Akifumi Eguchi
- Center for Preventive Medical SciencesChiba UniversityChibaJapan
| | | | - Midori Yamamoto
- Center for Preventive Medical SciencesChiba UniversityChibaJapan
| | - Ko Ishikawa
- Department of Clinical Cell Biology and MedicineGraduate School of MedicineChiba UniversityChibaJapan
| | - Chisato Mori
- Center for Preventive Medical SciencesChiba UniversityChibaJapan
- Department of Bioenvironmental MedicineGraduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
28
|
Ziarrusta H, Mijangos L, Picart-Armada S, Irazola M, Perera-Lluna A, Usobiaga A, Prieto A, Etxebarria N, Olivares M, Zuloaga O. Non-targeted metabolomics reveals alterations in liver and plasma of gilt-head bream exposed to oxybenzone. CHEMOSPHERE 2018; 211:624-631. [PMID: 30098557 DOI: 10.1016/j.chemosphere.2018.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The extensive use of the organic UV filter oxybenzone has led to its ubiquitous occurrence in the aquatic environment, causing an ecotoxicological risk to biota. Although some studies reported adverse effects, such as reproductive toxicity, further research needs to be done in order to assess its molecular effects and mechanism of action. Therefore, in the present work, we investigated metabolic perturbations in juvenile gilt-head bream (Sparus aurata) exposed over 14 days via the water to oxybenzone (50 mg/L). The non-targeted analysis of brain, liver and plasma extracts was performed by means of UHPLC-qOrbitrap MS in positive and negative modes with both C18 and HILIC separation. Although there was no mortality or alterations in general physiological parameters during the experiment, and the metabolic profile of brain was not affected, the results of this study showed that oxybenzone could perturb both liver and plasma metabolome. The pathway enrichment suggested that different pathways in lipid metabolism (fatty acid elongation, α-linolenic acid metabolism, biosynthesis of unsaturated fatty acids and fatty acid metabolism) were significantly altered, as well as metabolites involved in phenylalanine and tyrosine metabolism. Overall, these changes are signs of possible oxidative stress and energy metabolism modification. Therefore, this research indicates that oxybenzone has adverse effects beyond the commonly studied hormonal activity, and demonstrates the sensitivity of metabolomics to assess molecular-level effects of emerging contaminants.
Collapse
Affiliation(s)
- Haizea Ziarrusta
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Leire Mijangos
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Sergio Picart-Armada
- B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain; Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Institut de Recerca Pediàtrica Hospital Sant Joan de Dèu, Esplugues de Llobregat, Barcelona, Spain
| | - Mireia Irazola
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Alexandre Perera-Lluna
- B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain; Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Institut de Recerca Pediàtrica Hospital Sant Joan de Dèu, Esplugues de Llobregat, Barcelona, Spain
| | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
29
|
Bonvallot N, David A, Chalmel F, Chevrier C, Cordier S, Cravedi JP, Zalko D. Metabolomics as a powerful tool to decipher the biological effects of environmental contaminants in humans. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Jin W, Otake M, Eguchi A, Sakurai K, Nakaoka H, Watanabe M, Todaka E, Mori C. Dietary Habits and Cooking Methods Could Reduce Avoidable Exposure to PCBs in Maternal and Cord Sera. Sci Rep 2017; 7:17357. [PMID: 29229988 PMCID: PMC5725569 DOI: 10.1038/s41598-017-17656-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/24/2017] [Indexed: 11/22/2022] Open
Abstract
Polychlorinated biphenyls (PCBs), like other persistent organic pollutants, are accumulating throughout the food chain and pose health threats to humans, especially children and foetuses. There is no protocol for reducing the contamination levels of the PCBs in humans. This study identified food items and cooking methods that reduce serum PCB levels by analysing data collected from the Chiba Study of Mother and Child Health. The sample size was 194 subjects. Serum PCB levels were measured using gas chromatography-electron capture negative ionization quadrupole mass spectrometry. Information on dietary habits was obtained from a brief diet history questionnaire that included questions about food items and cooking methods. Food items were categorized into food groups, and nutrient levels were calculated based on food item consumption. Principal component analysis and lasso regression were used as statistical methods. The analyses of food items and nutrients suggested that food items rich in dietary fibre reduce avoidable exposure to PCBs, as could grilling and deep frying of food, which could reduce avoidable exposure to serum PCBs in mothers and foetuses. (174 words).
Collapse
Affiliation(s)
- Weiwei Jin
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Masae Otake
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Hiroko Nakaoka
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Masahiro Watanabe
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Emiko Todaka
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan.
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
31
|
Mori C, Todaka E. For a healthier future: a virtuous cycle for reducing exposure to persistent organic pollutants. J Epidemiol Community Health 2017; 71:660-662. [PMID: 28515209 PMCID: PMC5485752 DOI: 10.1136/jech-2016-208088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 01/17/2023]
Abstract
In the modern society, people are exposed to various pollutants during their lifetime. Worldwide, the status of children's health has changed in recent decades. Some studies have attempted to identify the causes of these changes and whether they relate to pollutant exposure; however, such attempts have faced major challenges because human life is complex, involving many social and environmental factors. Several long-term cohort studies are being conducted to determine the relationship between diseases and social and environmental factors in children. Even before we establish complete proof of adverse effects, we should attempt to decrease risk to future generations by adopting precautionary principles. Environmental exposure to persistent organic pollutants can be reduced throughout the stages of life—the fetal period, newborn and infant periods, childhood, adolescence and adulthood (preconception) by individuals as well as by society as a whole. Through reducing environmental exposure to pollutants, adverse health effects can also be reduced, which will contribute to healthier future generations. Here, we suggest a virtuous cycle for improving the health of future generations through reduced exposure to persistent pollutants.
Collapse
Affiliation(s)
- Chisato Mori
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba City, Japan.,Centre for Preventive Medical Sciences, Chiba University, Chiba City, Japan
| | - Emiko Todaka
- Centre for Preventive Medical Sciences, Chiba University, Chiba City, Japan
| |
Collapse
|