1
|
Gao Y, Cheng Z, Huang B, Mao Y, Hu J, Wang S, Wang Z, Wang M, Huang S, Han M. Deciphering the profiles and hosts of antibiotic resistance genes and evaluating the risk assessment of general and non-general hospital wastewater by metagenomic sequencing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126313. [PMID: 40288632 DOI: 10.1016/j.envpol.2025.126313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/28/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Hospital wastewater (HWW) is a substantial environmental reservoir of antibiotic resistance genes (ARGs) and poses risks to public health and aquatic ecosystems. However, research on the diversity, transmission mechanisms, pathogenic hosts, and risks of ARGs in different HWW types is limited. This study involved the collection of HWW samples from 15 hospitals in Hefei, China, which were subsequently categorized as general hospitals (GHs) and non-general hospitals (NGHs). A 280.28-Gbp sequencing dataset was generated using a metagenomic sequencing strategy and analyzed using metagenomic assembly and binning approaches to highlight these issues in GHs and NGHs. Results showed significant differences between GHs and NGHs in ARG distribution, microbial community composition, and hosts of ARGs. Potential pathogens such as Rhodocyclaceae bacterium ICHIAU1 and Acidovorax caeni were more abundant in GHs. Furthermore, plasmid-mediated ARGs (45.21%) were more prevalent than chromosome-mediated ARGs (25.74%) in HWW, with a significantly higher proportion of plasmid-mediated ARGs in GHs compared to NGHs. The co-occurrence of ARGs and mobile genetic elements was more frequent in GHs. Additionally, the antibiotic resistome risk index was higher in GHs (38.73 ± 12.84) than NGHs (22.53 ± 11.80), indicating a greater risk of ARG transmission in GHs. This pioneering study provides valuable insights into the transmission mechanisms and hosts of ARGs in hospital settings, emphasizing the increased risk of ARG transmission in GHs.
Collapse
Affiliation(s)
- Yue Gao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China; Microbial Medicinal Resources Development Research Team, Anhui Provincial Institute of Translational Medicine, China
| | - Zhixiang Cheng
- Department of Blood Transfusion, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230012, China
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yujie Mao
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
| | - Jie Hu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shu Wang
- The First People's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
| | - Mingchao Wang
- Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Shenghai Huang
- Department of Microbiology, The Institute of Clinical Virology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China; Microbial Medicinal Resources Development Research Team, Anhui Provincial Institute of Translational Medicine, China; Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China.
| |
Collapse
|
2
|
Lan L, Wang Y, Chen Y, Wang T, Zhang J, Tan B. A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater. TOXICS 2025; 13:263. [PMID: 40278579 PMCID: PMC12031161 DOI: 10.3390/toxics13040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Antibiotic resistance is a global environmental and health threat. Approximately 4.95 million deaths were associated with antibiotic resistance in 2019, including 1.27 million deaths that were directly attributable to bacterial antimicrobial resistance. Hospital wastewater is one of the key sources for the spread of clinically relevant antibiotic resistance genes (ARGs) into the environment. Understanding the current situation of ARGs in hospital wastewater is of great significance. Here, we review the prevalence of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater and wastewater from other places and the treatment methods used. We further discuss the intersection between ARGs and COVID-19 during the pandemic. This review highlights the issues associated with the dissemination of critical ARGs from hospital wastewater into the environment. It is imperative to implement more effective processes for hospital wastewater treatment to eliminate ARGs, particularly during the current long COVID-19 period.
Collapse
Affiliation(s)
- Lihua Lan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Yixin Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Yuxin Chen
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Ting Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Biqin Tan
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Pharmacy, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| |
Collapse
|
3
|
Gong P, Liu H, Yu T, Jiang C, Gou E, Guan J, Chen H, Kang H. Evaluation of resistance risk in soil due to antibiotics during application of penicillin V fermentation residue. ENVIRONMENTAL TECHNOLOGY 2024; 45:5173-5181. [PMID: 37955258 DOI: 10.1080/09593330.2023.2283807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/30/2023] [Indexed: 11/14/2023]
Abstract
The soil application of hydrothermally treated penicillin V fermentation residue (PFR) is attractive but challenged, due to the concern of the resistance risk in soil related to residual antibiotics. In this study, a lab-scale incubation experiment was conducted to investigate the influence of penicillin V on antibiotic resistance genes (ARGs) in PFR-amended soil via qPCR. The introduced penicillin V in soil could not be persistent, and its degradation occurred mainly within 2 days. The higher number of soil ARGs was detected under 108 mg/kg of penicillin V than lower contents (≤54 mg/kg). Additionally, the relative abundance of ARGs was higher in soil spiked with penicillin V than that in blank soil, and the great increase in the relative abundance of soil ARGs occurred earlier under 108 mg/kg of penicillin V than lower contents. The horizontal gene transfer might contribute to the shift of ARGs in PFR-amended soil. The results indicated that the residual penicillin V could cause the proliferation of soil ARGs and should be completely removed by hydrothermal treatment before soil application. The results of this study provide a comprehensive understanding of the resistance risk posed by penicillin V during the application of hydrothermally pretreated PFR.
Collapse
Affiliation(s)
- Picheng Gong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Huiling Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Tingting Yu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Cuishuang Jiang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Enfang Gou
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Jingze Guan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Huayuan Chen
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Haoze Kang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| |
Collapse
|
4
|
Ouyang B, Yang C, Lv Z, Chen B, Tong L, Shi J. Recent advances in environmental antibiotic resistance genes detection and research focus: From genes to ecosystems. ENVIRONMENT INTERNATIONAL 2024; 191:108989. [PMID: 39241334 DOI: 10.1016/j.envint.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) persistence and potential harm have become more widely recognized in the environment due to its fast-paced research. However, the bibliometric review on the detection, research hotspot, and development trend of environmental ARGs has not been widely conducted. It is essential to provide a comprehensive overview of the last 30 years of research on environmental ARGs to clarify the changes in the research landscape and ascertain future prospects. This study presents a visualized analysis of data from the Web of Science to enhance our understanding of ARGs. The findings indicate that solid-phase extraction provides a reliable method for extracting ARG. Technological advancements in commercial kits and microfluidics have facilitated the efficacy of ARGs extraction with significantly reducing processing times. PCR and its derivatives, DNA sequencing, and multi-omics technology are the prevalent methodologies for ARGs detection, enabling the expansion of ARG research from individual strains to more intricate microbial communities in the environment. Furthermore, due to the development of combination, hybridization and mass spectrometer technologies, considerable advancements have been achieved in terms of sensitivity and accuracy as well as lowering the cost of ARGs detection. Currently, high-frequency terms such as "Antibiotic Resistance, Antibiotics, and Metagenomics" are the center of attention for study in this area. Prominent topics include the investigation of anthropogenic impacts on environmental resistance, as well as the dynamics of migration, dissemination, and adaptation of environmental ARGs, etc. The research on environmental ARGs has made significant advancements in the fields of "Microbiology" and "Biotechnology Applied Microbiology". Over the past decade, there has been a notable increase in the fields of "Environmental Sciences Ecology" and "Engineering" with a similar growth trend observed in "Water Resources". These three domains are expected to continue driving extensive study within the realm of environmental ARGs.
Collapse
Affiliation(s)
- Bowei Ouyang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Cong Yang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Ziyue Lv
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Lei Tong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China.
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Zhao X, Ji G, Li R, Li J, Meng Q, Wu C, Liu H. Anaerobic dynamic membrane bioreactor for the co-digestion of toilet blackwater and kitchen waste. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11082. [PMID: 39039961 DOI: 10.1002/wer.11082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
Anaerobic co-digestion using an anaerobic dynamic membrane bioreactor (AnDMBR) can separate the sludge retention time and hydraulic retention time, retaining the biomass for efficient degradation and the use of less expensive large pore-size membrane materials and more sustainable dynamic membranes (DMs). Therefore, anaerobic co-digestion of toilet blackwater (BW) and kitchen waste (KW) using an AnDMBR was hypothesized to increase the potential for co-digestion. Here, the efficiency and stability of AnDMBR in anaerobic co-digestion of toilet BW and KW were investigated. DM morphology and structural characteristics, filtration properties, and composition, as well as membrane contamination and membrane regeneration mechanisms, were investigated. Average daily biogas yields of the reactor in two membrane cycles before and after cleaning were 788.67 and 746.09 ml/g volatile solids, with average methane content of 66.64% and 67.27% and average COD removal efficiencies of 82.03% and 80.96%, respectively. The results showed that the bioreactor obtained good performance and stability. During the stabilization phase of the DM operation, the flux was maintained between 43.65 and 65.15 L/m2/h. DM was mainly composed of organic and inorganic elements. Off-line cleaning facilitated DM regulation and regeneration, restoring new Anaerobic morphology and structure. PRACTITIONER POINTS: High efficiency co-digestion of BW and KW was realized in the DMBR system. Average daily biogas yields before and after membrane cleaning were 788.67 and 746.09 ml/g volatile solids. Off-line cleaning facilitated DM regulation and regeneration as well as system stability. The flux was maintained between 43.65 and 65.15 L/m2/h during operation.
Collapse
Affiliation(s)
- Xincheng Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Guixia Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Runshan Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiao Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingchen Meng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chengyang Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Amin N, Foster T, Shimki NT, Willetts J. Hospital wastewater (HWW) treatment in low- and middle-income countries: A systematic review of microbial treatment efficacy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170994. [PMID: 38365018 DOI: 10.1016/j.scitotenv.2024.170994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Proper treatment of hospital wastewater (HWW) is crucial to minimize the long-term effects on human health and aquatic ecosystems. However, the majority of HWW generated in low and middle-income countries (LMICs), is discharged without adequate treatment. This systematic review aims to fill the knowledge gap in LMICs by examining the efficacy of HWW treatment and the types of technologies used. METHODS Studies included in the review offered valuable insights into the current state of HWW management in LMICs. Between 2000 and 2022, only 36 research studies focused on hospital-based wastewater treatment within LMICs. Data were extracted on wastewater treatment technologies in hospitals or healthcare settings in LMICs. Data on sampling techniques, effectiveness, microorganisms and risk of bias of included studies were recorded. RESULTS A total of 36 articles met the eligibility criteria: mentioned about 1) hospitals 2) wastewater treatment 3) LMICs and 4) treatment efficacy. Twenty-two studies were conducted in Asia (22/36), 17 were conducted in countries with high Human Development Index. Constructed wetland, and activated sludge process were the most common technologies used in LMICs. A few studies utilized membrane bioreactors and ozone/UV treatment. Fourteen studies reported the concentration reduction to assess the microbial efficacy of the treatment process, 29/36 studies did not meet the national standards for effluent discharge. Reporting on sampling methods, wastewater treatment processes and efficacy of HWW treatment were at high risk of bias. Extreme heterogeneity in study methods and outcomes reporting precluded meta-analysis. CONCLUSIONS The existing evidence indicates inadequate microbial treatment in low- and middle-income country hospitals, with this systematic review emphasizing the need for improvement in healthcare waste management. It underscores the importance of long-term studies using innovative treatment methods to better understand waste removal in LMIC hospitals and calls for further research to develop context-specific healthcare waste treatment approaches in these regions.
Collapse
Affiliation(s)
- Nuhu Amin
- Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW 2007, Australia; Environmental Health and WASH, Health System and Population Studies Division, icddr,b, Dhaka, Bangladesh.
| | - Tim Foster
- Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW 2007, Australia
| | - Nafeya Tabassum Shimki
- Environmental Health and WASH, Health System and Population Studies Division, icddr,b, Dhaka, Bangladesh
| | - Juliet Willetts
- Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Kang Y, Wang J, Li Z. Meta-analysis addressing the characterization of antibiotic resistome in global hospital wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133577. [PMID: 38281357 DOI: 10.1016/j.jhazmat.2024.133577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/07/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Hospital wastewater (HWW) is a significant environmental reservoir of antibiotic resistance genes (ARGs). However, currently, no comprehensive understanding exists of the antibiotic resistome in global HWW. In this study, we attempted to address this knowledge gap through an in silico reanalysis of publicly accessible global HWW metagenomic data. We reanalyzed ARGs in 338 HWW samples from 13 countries in Africa, Asia, and Europe. In total, 2420 ARG subtypes belonging to 30 ARG types were detected, dominated by multidrug, beta-lactam, and aminoglycoside resistance genes. ARG composition in Europe differed from that in Asia and Africa. Notably, the ARGs presented co-occurrence with mobile genetic elements (MGEs), metal resistance genes (MRGs), and human bacterial pathogens (HBP), indicating a potential dissemination risk of ARGs in the HWW. Multidrug resistance genes presented co-occurrence with MGEs, MRGs, and HBP, is particularly pronounced. The abundance of contigs that contained ARG, contigs that contained ARG and HBP, contigs that contained ARG and MGE, contigs that contained ARG and MRG were used for health and transmission risk assessment of antibiotic resistome and screened out 40 high risk ARGs in the global HWW. This study first provides a comprehensive characterization and risk of the antibiotic resistome in global HWW.
Collapse
Affiliation(s)
- Yutong Kang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenjun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China.
| |
Collapse
|
8
|
Mosur Nagarajan A, Subramanian A, Prasad Gobinathan K, Mohanakrishna G, Sivagami K. Electrochemical-based approaches for the treatment of pharmaceuticals and personal care products in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118385. [PMID: 37392690 DOI: 10.1016/j.jenvman.2023.118385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
In recent times, emerging contaminants (ECs) like pharmaceuticals and personal care products (PPCPs) in water and wastewater have become a major concern in the environment. Electrochemical treatment technologies proved to be more efficient to degrade or remove PPCPs present in the wastewater. Electrochemical treatment technologies have been the subject of intense research for the past few years. Attention has been given to electro-oxidation and electro-coagulation by industries and researchers, indicating their potential to remediate PPCPs and mineralization of organic and inorganic contaminants present in wastewater. However, difficulties arise in the successful operation of scaled-up systems. Hence, researchers have identified the need to integrate electrochemical technology with other treatment technologies, particularly advanced oxidation processes (AOPs). Integration of technologies addresses the limitation of indiviual technologies. The major drawbacks like formation of undesired or toxic intermediates, s, energy expenses, and process efficacy influenced by the type of wastewater etc., can be reduced in the combined processes. The review discusses the integration of electrochemical technology with various AOPs, like photo-Fenton, ozonation, UV/H2O2, O3/UV/H2O2, etc., as an efficient way to generate powerful radicals and augment the degradation of organic and inorganic pollutants. The processes are targeted for PPCPs such as ibuprofen, paracetamol, polyparaben and carbamezapine. The discussion concerns itself with the various advantages/disadvantages, reaction mechanisms, factors involved, and cost estimation of the individual and integrated technologies. The synergistic effect of the integrated technology is discussed in detail and remarks concerning the prospects subject to the investigation are also stated.
Collapse
Affiliation(s)
- Aditya Mosur Nagarajan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; Faculty of Process and Systems Engineering, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Aishwarya Subramanian
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; School of Process Engineering, Technische Universität Hamburg, Hamburg, Germany
| | - Krishna Prasad Gobinathan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; School of Process Engineering, Technische Universität Hamburg, Hamburg, Germany
| | - Gunda Mohanakrishna
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubli, India.
| | - Krishnasamy Sivagami
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
9
|
Sanavi Fard M, Ehsani A, Soleimani F. Treatment of synthetic textile wastewater containing Acid Red 182 by electro-Peroxone process using RSM. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118379. [PMID: 37329582 DOI: 10.1016/j.jenvman.2023.118379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
The Azo dyes are primarily utilized in textile industries. Treatment of textile wastewater because of the presence of recalcitrant dyes using conventional processes is greatly challenging and ineffective. So far, no experimental work has been conducted on the decolorization of Acid Red 182 (AR182) in aqueous media. Hence, in this novel experimental work, the treatment of AR182 from the Azo dyes family was explored using the electro-Peroxone (EP) process. For the optimization of operating factors, including AR182 concentration, pH, applied current, and O3 flowrate in the decolorization of AR182, Central Composite Design (CCD) was utilized. The statistical optimization presented a highly satisfactory determination coefficient value and a satisfactory second-order model. The expected optimum conditions by the experimental design were as the following: AR182 concentration at 483.12 mg.L-1, applied current at 0.627,113 A, pH at 8.18284 and O3 flowrate at 1.13548 L min-1. The current density is directly proportional to dye removal. However, increasing the amount of applied current beyond a critical value has a contradictory impact on dye removal performance. The dye removal performance in both acidic and highly alkaline environments was negligible. Hence, ascertaining the optimum pH value and conduction of the experiment at that point is critical. At optimum points, the decolorization performance in predicted and experimental conditions for AR182 were 99 and 98.5%, respectively. The outcomes of this work clearly substantiated that the EP can be successfully utilized for the decolorization of AR182 in textile wastewater.
Collapse
Affiliation(s)
- Mahdi Sanavi Fard
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Fariba Soleimani
- Razi Chemistry Research Center (RCRC), Shahreza Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
10
|
Zhao Q, Wu QL, Wang HZ, Si QS, Sun LS, Li DN, Ren NQ, Guo WQ. Attenuation effects of ZVI/PDS pretreatment on propagation of antibiotic resistance genes in bioreactors: Driven by antibiotic residues and sulfate assimilation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132054. [PMID: 37473569 DOI: 10.1016/j.jhazmat.2023.132054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qi-Shi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Lu-Shi Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - De-Nian Li
- Laboratory for Integrated Technology of "Urban and Rural Mines" Exploitation, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Wushan, Tianhe District, Guangzhou, Guangdong 510640, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
11
|
Zhao H, Pu H, Yang Z. Study on the effect of different additives on the anaerobic digestion of hybrid Pennisetum: Comparison of nano-ZnO, nano-Fe 2O 3 and nano-Al 2O 3. Heliyon 2023; 9:e16313. [PMID: 37260894 PMCID: PMC10227347 DOI: 10.1016/j.heliyon.2023.e16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
The effects of three nanomaterials (ZnO, Al2O3, and Fe2O3) on the wet and dry anaerobic digestion (AD) processes of hybrid Pennisetum were assessed over 33 days, and the microbial communities of dry AD systems were studied. The results demonstrated that biogas production improved by 72.2% and 33.6% when nanoporous Al2O3 (nano-Al2O3) and nano-Fe2O3 were added during dry AD, respectively. However, biogas production decreased by 39.4% with nano-ZnO. Kinetic analysis showed that the three nanomaterials could shorten the lag phase of the AD sludge, while the 16S rRNA gene amplicon sequencing results demonstrated that microbes such as Longilinea and Methanosarcina were enriched in the nano-Al2O3 reactors and methanogenic communities community such as Methanobacterium sp., Methanobrevibacter sp., and Methanothrix sp., which were enriched in the nano-Al2O3 and nano-Fe2O3 reactors. However, the microbial community and some methanogenic communities diversity and richness were inhibited by the addition of nano-ZnO.
Collapse
Affiliation(s)
- Hongmei Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
- School of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Haiping Pu
- School of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhaorong Yang
- School of Science, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
12
|
Chin JY, Ahmad AL, Low SC. Antibiotics oxytetracycline removal by photocatalyst titanium dioxide and graphitic carbon nitride in aquaculture wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118231. [PMID: 37247545 DOI: 10.1016/j.jenvman.2023.118231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
The surge in the use of antibiotics, especially in aquaculture, has led to development of antibiotic resistance genes, which will harm environmental and public health. One of the most commonly used antibiotics in aquaculture is oxytetracycline (OTC). Employing photocatalysis, this study compared OTC degradation efficiency of two different types of common photocatalysts, TiO2 and graphitic carbon nitride (GCN) in terms of their photochemical properties and underlying photocatalytic mechanism. For reference purpose, self-synthesized GCN from urea precursor (GCN-Urea) and commercial GCN (GCN-Commercial) were both examined. OTC adsorption-photocatalysis removal rates in pure OTC solution by TiO2, GCN-Urea and GCN-Commercial were attained at 95%, 60% and 40% respectively. Photochemical properties evaluated included light absorption, band gap, valence and conduction band positions, photoluminescence, cyclic voltammetry, BET surface area and adsorption capability of the photocatalysts. Through the evaluations, this study provides novel insights towards current state-of-the-art heterogeneous photocatalytic processes. The electron-hole recombination examined by photoluminescence is not the key factor influencing the photocatalytic efficacies as commonly discussed. On the contrary, the dominating factors governing the higher OTC degradation efficiency of TiO2 compared to GCN are the high mobility of electrons that leads to high redox capability and the high pollutant-photocatalyst affinity. These claims are proven by 86% and 40% more intense anodic and cathodic cyclic voltammetry curve peaks of TiO2 as compared to both GCNs. OTC also demonstrated 1.7 and 2.3 times higher affinity towards TiO2 than GCN-Urea and GCN-Commercial. OTC removal by TiO2 in real aquaculture wastewater only achieved 50%, due to significant inhibition effect by dissolved solids, dissolved organic matters and high ionic contents in the wastewater.
Collapse
Affiliation(s)
- Jing Yi Chin
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
13
|
Liu A, Zhao Y, Cai Y, Kang P, Huang Y, Li M, Yang A. Towards Effective, Sustainable Solution for Hospital Wastewater Treatment to Cope with the Post-Pandemic Era. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2854. [PMID: 36833551 PMCID: PMC9957062 DOI: 10.3390/ijerph20042854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the globe since the end of 2019, posing significant challenges for global medical facilities and human health. Treatment of hospital wastewater is vitally important under this special circumstance. However, there is a shortage of studies on the sustainable wastewater treatment processes utilized by hospitals. Based on a review of the research trends regarding hospital wastewater treatment in the past three years of the COVID-19 outbreak, this review overviews the existing hospital wastewater treatment processes. It is clear that activated sludge processes (ASPs) and the use of membrane bioreactors (MBRs) are the major and effective treatment techniques applied to hospital wastewater. Advanced technology (such as Fenton oxidation, electrocoagulation, etc.) has also achieved good results, but the use of such technology remains small scale for the moment and poses some side effects, including increased cost. More interestingly, this review reveals the increased use of constructed wetlands (CWs) as an eco-solution for hospital wastewater treatment and then focuses in slightly more detail on examining the roles and mechanisms of CWs' components with respect to purifying hospital wastewater and compares their removal efficiency with other treatment processes. It is believed that a multi-stage CW system with various intensifications or CWs incorporated with other treatment processes constitute an effective, sustainable solution for hospital wastewater treatment in order to cope with the post-pandemic era.
Collapse
Affiliation(s)
- Ang Liu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yulong Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Min Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Anran Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
14
|
Xue W, Hong X, Du Y, Chen B. Electro-Fenton mineralization of real textile wastewater by micron-sized ZVI powder anode. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:924-937. [PMID: 36853771 DOI: 10.2166/wst.2023.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The diverse compositions and complex nature of the textile wastewater make it imperative to find an economical and suitable degradation pathway. The degradation of real textile wastewater on a novel heterogeneous electro-Fenton system was carried out with a composite anode of magnetically fixed micron ZVI coupling with a Ti/RuO2-IrO2 sheet. The influences of different variables such as mZVI dosage, H2O2 amount, applied voltage and pH value on both total organic carbon and chemical oxygen demand removal efficiencies and energy consumption were investigated. The optimized parameters were simultaneously verified by using electrochemical workstation Tafel curves and Nyquist plots. The optimal operating conditions for evaluating the wastewater treatment were H2O2 dosage of 0.10 mol·L-1, applied voltage of 5.0 V, mZVI amount of 1.0 g·L-1 and initial pH value of 3.0. The high TOC and COD removal efficiencies of 92.44 and 82.84% could be achieved simultaneously in 60 min, respectively. XRD, XPS and SEM-EDS were used to investigate the interaction between the pollutant and the mZVI. GC-MS analysis was performed on untreated and treated wastewater to determine the degradation of pollutants in dyeing wastewater during the electro-Fenton process and to effectively propose a suitable degradation mechanism for this system.
Collapse
Affiliation(s)
- Wenjuan Xue
- Department of Chemistry, School of Science, Zhejiang Sci-tech University, Hangzhou 310018, P. R. China E-mail: ;
| | - Xiaoting Hong
- Department of Chemistry, School of Science, Zhejiang Sci-tech University, Hangzhou 310018, P. R. China E-mail: ;
| | - Yingying Du
- Department of Chemistry, School of Science, Zhejiang Sci-tech University, Hangzhou 310018, P. R. China E-mail: ;
| | - Bin Chen
- Zhejiang Agriculture and Forestry University, Lin'an 311300, China
| |
Collapse
|
15
|
Mehanni MM, Gadow SI, Alshammari FA, Modafer Y, Ghanem KZ, El-Tahtawi NF, El-Homosy RF, Hesham AEL. Antibiotic-resistant bacteria in hospital wastewater treatment plant effluent and the possible consequences of its reuse in agricultural irrigation. Front Microbiol 2023; 14:1141383. [PMID: 37143530 PMCID: PMC10153669 DOI: 10.3389/fmicb.2023.1141383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Wastewater from hospitals should be monitored precisely and treated properly before discharge and reuse to avoid epidemic and pandemic complications, as it contains hazardous pollutants for the ecosystem. Antibiotic residues in treated hospital wastewater effluents constitute a major environmental concern since they resist various wastewater treatment processes. The emergence and spread of multi-drug-resistant bacteria, that cause public health problems, are therefore always a major concern. The aims and objectives of this study were mainly to characterize the chemical and microbial properties of the hospital effluent of wastewater treatment plant (WWTP) before discharge to the environment. Special attention was paid to the presence of multiple resistant bacteria and the effects of hospital effluent reuse in irrigation on zucchini as an economically important plant. The risk of cell-free DNA carrying antibiotic resistance genes contained in the hospital effluent as a long-lasting hazard had been discussed. In this study, 21 bacterial strains were isolated from the effluent of a hospital WWTP. Isolated bacteria were evaluated for multi-drug resistance ability against 5 antibiotics (Tetracycline, Ampicillin, Amoxicillin, Chloramphenicol, and Erythromycin) at a concentration of 25 ppm. Out of them, three isolates (AH-03, AH-07, and AH-13) were selected because they recorded the highest growth in presence of tested antibiotics. Selected isolates were identified using 16S rRNA gene sequence homology as Staphylococcus haemolyticus (AH-03), Enterococcus faecalis (AH-07), and Escherichia coli (AH-13). Their susceptibility to ascending concentrations of tested antibiotics indicated that they were all susceptible at a concentration above 50 ppm. Results of the greenhouse experiment regarding the effect of hospital WWTP effluent reuse on zucchini plant fresh weights compared to that irrigated with fresh water indicated that the former recorded a limited increase in total fresh weights (6.2 g and 5.3 g/plant, respectively). Our results demonstrated the low impact of the reuse of Hospital WWTP effluent in agriculture irrigation compared to its greater risk in transferring multiple antibiotic bacteria and antibiotic resistance genes to soil bacteria through natural transformation.
Collapse
Affiliation(s)
- Magda M. Mehanni
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minya, Egypt
| | - Samir I. Gadow
- Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, Cairo, Egypt
| | - Fahdah Ayed Alshammari
- Department of Biology, Faculty of Science and Arts-RAFHA, Northrn Border University, Arar, Saudi Arabia
| | - Yosra Modafer
- Department of Biology, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Kholoud Z. Ghanem
- Department of Biological Sciences, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Noha Fathy El-Tahtawi
- Department of Biology, College of Science and Arts, Shaqra University, Shaqra, Saudi Arabia
| | - Rania F. El-Homosy
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
- *Correspondence: Abd El-Latif Hesham,
| |
Collapse
|
16
|
Elbehiry A, Marzouk E, Abalkhail A, El-Garawany Y, Anagreyyah S, Alnafea Y, Almuzaini AM, Alwarhi W, Rawway M, Draz A. The Development of Technology to Prevent, Diagnose, and Manage Antimicrobial Resistance in Healthcare-Associated Infections. Vaccines (Basel) 2022; 10:2100. [PMID: 36560510 PMCID: PMC9780923 DOI: 10.3390/vaccines10122100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
There is a growing risk of antimicrobial resistance (AMR) having an adverse effect on the healthcare system, which results in higher healthcare costs, failed treatments and a higher death rate. A quick diagnostic test that can spot infections resistant to antibiotics is essential for antimicrobial stewardship so physicians and other healthcare professionals can begin treatment as soon as possible. Since the development of antibiotics in the last two decades, traditional, standard antimicrobial treatments have failed to treat healthcare-associated infections (HAIs). These results have led to the development of a variety of cutting-edge alternative methods to combat multidrug-resistant pathogens in healthcare settings. Here, we provide an overview of AMR as well as the technologies being developed to prevent, diagnose, and control healthcare-associated infections (HAIs). As a result of better cleaning and hygiene practices, resistance to bacteria can be reduced, and new, quick, and accurate instruments for diagnosing HAIs must be developed. In addition, we need to explore new therapeutic approaches to combat diseases caused by resistant bacteria. In conclusion, current infection control technologies will be crucial to managing multidrug-resistant infections effectively. As a result of vaccination, antibiotic usage will decrease and new resistance mechanisms will not develop.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Yasmine El-Garawany
- Clinical Pharmacy Program, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sulaiman Anagreyyah
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Yaser Alnafea
- Department of Statistics, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Alwarhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
17
|
Pariente MI, Segura Y, Álvarez-Torrellas S, Casas JA, de Pedro ZM, Diaz E, García J, López-Muñoz MJ, Marugán J, Mohedano AF, Molina R, Munoz M, Pablos C, Perdigón-Melón JA, Petre AL, Rodríguez JJ, Tobajas M, Martínez F. Critical review of technologies for the on-site treatment of hospital wastewater: From conventional to combined advanced processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115769. [PMID: 35944316 DOI: 10.1016/j.jenvman.2022.115769] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
This review aims to assess different technologies for the on-site treatment of hospital wastewater (HWW) to remove pharmaceutical compounds (PhCs) as sustances of emerging concern at a bench, pilot, and full scales from 2014 to 2020. Moreover, a rough characterisation of hospital effluents is presented. The main detected PhCs are antibiotics and psychiatric drugs, with concentrations up to 1.1 mg/L. On the one hand, regarding the presented technologies, membrane bioreactors (MBRs) are a good alternative for treating HWW with PhCs removal values higher than 80% in removing analgesics, anti-inflammatories, cardiovascular drugs, and some antibiotics. Moreover, this system has been scaled up to the pilot plant scale. However, some target compounds are still present in the treated effluent, such as psychiatric and contrast media drugs and recalcitrant antibiotics (erythromycin and sulfamethoxazole). On the other hand, ozonation effectively removes antibiotics found in the HWW (>93%), and some studies are carried out at the pilot plant scale. Even though, some families, such as the X-ray contrast media, are recalcitrant to ozone. Other advanced oxidation processes (AOPs), such as Fenton-like or UV treatments, seem very effective for removing pharmaceuticals, Antibiotic Resistance Bacteria (ARBs) and Antibiotic Resistance Genes (ARGs). However, they are not implanted at pilot plant or full scale as they usually consider extra reactants such as ozone, iron, or UV-light, making the scale-up of the processes a challenging task to treat high-loading wastewater. Thus, several examples of biological wastewater treatment methods combined with AOPs have been proposed as the better strategy to treat HWW with high removal of PhCs (generally over 98%) and ARGs/ARBs (below the detection limit) and lower spending on reactants. However, it still requires further development and optimisation of the integrated processes.
Collapse
Affiliation(s)
- M I Pariente
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| | - Y Segura
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - S Álvarez-Torrellas
- Department of Chemical Engineering and Materials, Universidad Complutense de Madrid, Av/ Complutense s/n, 28040, Madrid, Spain
| | - J A Casas
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - Z M de Pedro
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - E Diaz
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - J García
- Department of Chemical Engineering and Materials, Universidad Complutense de Madrid, Av/ Complutense s/n, 28040, Madrid, Spain
| | - M J López-Muñoz
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - J Marugán
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - A F Mohedano
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - R Molina
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - M Munoz
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - C Pablos
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - J A Perdigón-Melón
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering. University of Alcalá, Ctra Madrid-Barcelona, 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - A L Petre
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering. University of Alcalá, Ctra Madrid-Barcelona, 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - J J Rodríguez
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - M Tobajas
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - F Martínez
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| |
Collapse
|
18
|
Zuo X, Cao W, Li Y, Wang T. Antibiotic resistant bacteria inactivation through metal-free electrochemical disinfection with carbon catalysts and its potential risks. CHEMOSPHERE 2022; 305:135496. [PMID: 35764114 DOI: 10.1016/j.chemosphere.2022.135496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Recently, increasing attention has been paid to the inactivation of antibiotic resistant bacteria (ARB) during the electrochemical disinfection. However, no available information could be found on ARB inactivation in water during metal-free electrochemical disinfection. In this study, polyvinylidene fluoride (PVDF)-based carbon catalyst (PPC) was chosen as working electrode. Batch experiments were conducted to investigate key design for ARB inactivation, effects of water matrix and potential risks after the disinfection under the pre-determined conditions. The disinfection with current density at 2.25 mA/cm2 and Air/Water ratio of 10:1 was optimal with the largest ARB inactivation (5.0 log reduction for 40 min), which was in line with the profile and yield of hydrogen peroxide (H2O2) during the disinfection. Effects of water matrix analysis implied that ARB inactivation efficiencies during the disinfection in acidic solutions were better than the one in alkaline solutions, which could be due to rich CC levels on surface of PPC cathode. After the optimal disinfection, ARB counts increased slightly at the first 2 h and then tended to disappear, and there were no conjugation transfer and little transformation for target antibiotic resistance genes, indicating that potential risks could be blocked after the disinfection for 40 min. Furthermore, intermittent flow was more effective in inactivating ARB compared with continuous flow. These suggested that the application of metal-free electrochemical disinfection with PPC to inactivate ARB in water was feasible and desirable in this study.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China.
| | - WenXing Cao
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| | - Yang Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| | - Tao Wang
- School of Environment Engineering, Wuxi University, Wuxi, 214105, China
| |
Collapse
|
19
|
Electro-peroxone application for ciprofloxacin degradation in aqueous solution using sacrificial iron anode: A new hybrid process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Shokri A, Sanavi Fard M. Employing electro-peroxone process for industrial wastewater treatment: a critical review. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Shokri A. Employing electro-peroxone process for degradation of Acid Red 88 in aqueous environment by Central Composite Design: A new kinetic study and energy consumption. CHEMOSPHERE 2022; 296:133817. [PMID: 35131276 DOI: 10.1016/j.chemosphere.2022.133817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The Azo dyes are primarily employed in textile industries to produce high amounts of colored organic and inorganic wastewater. Therefore, their treatments are critical. In this research, the removal and mineralization of Acid red 88 (AR88), as a widely used mono Azo dye, was inspected by the Electro-peroxone(E-peroxone) method. It is a coupling of electrochemically produced H2O2 and ozone that can produce robust hydroxyl radicals. The Central Composite Design (CCD) was applied to explore the influence of operational variables on the removal of AR88 as a response. The optimal conditions predicted by the CCD were as the following; Applied current at 0.7 A, pH at 7.35, O3 Flowrate at 1.03 L min-1 and the concentration of AR88 at 527.29 mg. L-1. The Pareto chart showed that the concentration of AR88 has a significant influence on the response. At the predicted optimal conditions, the actual and predicted AR 88 removal were 95.4 and 92.96%, respectively. The removal of COD after 45 min was 70% representing the excessive efficiency of E-peroxone in mineralization of AR88. The E-peroxone follows the pseudo-first-order kinetics (kobs-E-peroxone = 6.56 × 10-2 min-1), which was more remarkable than the single ozonation, and electrolysis. The calculated specific energy consumption (SEC) in the E-peroxone was 40.14 kWh/Kg AR 18 removal, which was lower than the individual ozonation, and electrolysis methods. The operative production of H2O2 from O2 at the cathode is the critical factor in the high removal of AR88 in this process.
Collapse
Affiliation(s)
- Aref Shokri
- Jundi-Shapur Research Institute, Dezful, Iran.
| |
Collapse
|
22
|
Tang H, Shang Q, Tang Y, Liu H, Zhang D, Du Y, Liu C. Filter-membrane treatment of flowing antibiotic-containing wastewater through peroxydisulfate-coupled photocatalysis to reduce resistance gene and microbial inhibition during biological treatment. WATER RESEARCH 2021; 207:117819. [PMID: 34741897 DOI: 10.1016/j.watres.2021.117819] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The direct biological treatment of antibiotics containing wastewater brings about a potential risk of antibiotic resistance genes (ARGs) spread. Although advanced oxidation technologies based on photocatalysis generally appear effective at degrading antibiotics in wastewater, the fate of ARGs in succeeding biological treatment system is still unknown. Herein, a filter-membrane-like carbon cloth-immobilized Fe2O3/g-C3N4 photocatalyst is fabricated through immersion-calcination method. Peroxydisulfate-coupled photocatalysis system is developed to degrade tetracycline (TC, an emerging refractory antibiotic pollutant). The system can produce energetic active species (·OH, SO4·-, h+, O2·- and 1O2), exhibiting a superior performance towards TC degradation in static and continuous flow processes under visible-light irradiation. The pretreatment can eliminate the antibacterial activity of antibiotics wastewater, and the chemical oxygen demand removal is greatly enhanced in subsequent anaerobic or aerobic process. The microbial diversity and richness in activated sludge for pretreated water sample are significantly higher than those for the water sample without pretreatment. Meanwhile, the pretreatment can decrease the relative abundance of potential hosts of ARGs and reduce the emergence as well as dissemination risk of ARGs. This study uncovers the effect of pretreatment of antibiotics containing wastewater using advanced oxidation technologies on the treatment efficacy and antibiotic resistome fate in biological treatment system.
Collapse
Affiliation(s)
- Haifang Tang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Qian Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yanhong Tang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Huiling Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Danyu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yi Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
23
|
Avershina E, Shapovalova V, Shipulin G. Fighting Antibiotic Resistance in Hospital-Acquired Infections: Current State and Emerging Technologies in Disease Prevention, Diagnostics and Therapy. Front Microbiol 2021; 12:707330. [PMID: 34367112 PMCID: PMC8334188 DOI: 10.3389/fmicb.2021.707330] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Rising antibiotic resistance is a global threat that is projected to cause more deaths than all cancers combined by 2050. In this review, we set to summarize the current state of antibiotic resistance, and to give an overview of the emerging technologies aimed to escape the pre-antibiotic era recurrence. We conducted a comprehensive literature survey of >150 original research and review articles indexed in the Web of Science using "antimicrobial resistance," "diagnostics," "therapeutics," "disinfection," "nosocomial infections," "ESKAPE pathogens" as key words. We discuss the impact of nosocomial infections on the spread of multi-drug resistant bacteria, give an overview over existing and developing strategies for faster diagnostics of infectious diseases, review current and novel approaches in therapy of infectious diseases, and finally discuss strategies for hospital disinfection to prevent MDR bacteria spread.
Collapse
Affiliation(s)
- Ekaterina Avershina
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
- Laboratory or Postgenomic Technologies, Izmerov Research Institute of Occupational Health, Moscow, Russia
| | - Valeria Shapovalova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| |
Collapse
|
24
|
Ding Y, Liang B, Jiang W, Han J, Guadie A, Yun H, Cheng H, Yang R, Liu SJ, Wang A, Ren N. Effect of preferential UV photolysis on the source control of antibiotic resistome during subsequent biological treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125484. [PMID: 33647609 DOI: 10.1016/j.jhazmat.2021.125484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The environmental spread of antibiotic resistance genes (ARGs) from the direct application of traditional biological treatment systems for antibiotics in water is a potential public health threat. UV photolysis has been proved to be an efficient pretreatment method for antibacterial activity elimination, but the fate of antibiotic resistome in subsequent bioreactors fed with pretreated florfenicol (FLO) in synthetic wastewater is still unknown. Antibacterial activity in synthetic wastewater was effectively eliminated by UV irradiation pretreatment, and the diversity and abundance of detected ARGs in both aerobic and anaerobic bioreactors were significantly lower than those without pretreatment. Meanwhile, UV irradiation pretreatment shaped the structure and composition of sludge microbial communities in the subsequent bioreactors closer to those of the FLO-free groups. The relative abundances of Pseudomonas and Escherichia-Shigella working as the potential hosts of ARGs were significantly reduced in aerobic and anaerobic bioreactors, respectively. The significantly positive correlation between floR and intI1 and the decrease of intI1 abundance in UV photolytic pretreatment groups indicated that the horizontal transfer of floR was decreased. The study provides new insights into the effect of preferential UV photolysis as a pretreatment method on the source control of antibiotic resistome in subsequent biological treatment process.
Collapse
Affiliation(s)
- Yangcheng Ding
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Wenli Jiang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jinglong Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Awoke Guadie
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, PR China
| | - Haoyi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Renjun Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Nanqi Ren
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
25
|
Chen G, Wu W, Xu J, Wang Z. An anaerobic dynamic membrane bioreactor for enhancing sludge digestion: Impact of solids retention time on digestion efficacy. BIORESOURCE TECHNOLOGY 2021; 329:124864. [PMID: 33631451 DOI: 10.1016/j.biortech.2021.124864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
An anaerobic dynamic membrane bioreactor (AnDMBR), which enabled the decoupling of hydraulic retention time (HRT) and solids retention time (SRT), was used for enhancing sludge digestion, with the associated mechanisms elucidated. With the increase of SRT, the biogas production and sludge reduction rate were both enhanced. The specific biogas production and volatile solids (VS) reduction rate were improved to 0.79 L/g VS and 55.9% under SRT 50 d, respectively. Microbial community analysis revealed that Chloroflexi, which is capable of degrading metabolites and dead cells, was enriched at longer SRT. Further analysis showed that both acetoclastic and hydrogenotrophic methanogenesis contributed to the enhanced biogas production under higher SRT compared to the dominance of acetoclastic methanogenesis under lower SRT. The enhanced utilization of organic matter and acetate at longer SRT further confirmed the mechanisms. The results highlighted the potential of AnDMBR for high-efficient sludge digestion.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School and Environment of Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Chengtou Wastewater Treatment Co., Ltd., Shanghai 201203, China
| | - Wei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School and Environment of Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School and Environment of Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School and Environment of Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
26
|
Basturk I, Varank G, Murat Hocaoglu S, Yazici Guvenc S. Medical laboratory wastewater treatment by electro-fenton process: Modeling and optimization using central composite design. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:393-408. [PMID: 32885546 DOI: 10.1002/wer.1433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Medical laboratory wastewaters arising from diagnosis and examination units show highly toxic characteristic. Within the scope of the study, removal of the wastewater's toxicity and increasing BOD5 /COD ratio of the medical laboratory wastewaters through electro-Fenton (EF) process were investigated. In the study, central composite design was applied to optimize the process parameters of EF for COD, BOD5 , and toxicity unit (TU) removal. Based on ANOVA, H2 O2 /COD was found to be significant parameter for COD removal, whereas current, reaction time, and H2 O2 /COD were determined to be significant parameters for BOD5 and TU removal. Optimum conditions (pH value of 3.4, current 3 A, reaction time 33.9 min, and H2 O2 /COD of 1.29) were determined, and predicted removals of COD, BOD5, and TU were found to be 55.1%, 42.5%, and 99.7% and experimental removals were found to be 53.4%, 41.2%, and 99.5%, respectively. TU value of the wastewater decreased from the value of 163-0.815, and BOD5 /COD value increased from the value of 0.32-0.39. The results of the study indicate that EF process is an effective treatment option for COD, BOD5, and especially toxicity removal from medical laboratory wastewater. PRACTITIONER POINTS: Electro-Fenton process was applied medical laboratory wastewater with highly toxic characteristic. Response surface methodology approach using central composite design was employed for modeling. 53.4%, 41.2%, and 99.5% of COD, BOD5, and toxicity removals were achieved under statistically optimized conditions. TU value of the wastewater decreased from the value of 163-0.815. BOD5 /COD value increased from the value of 0.32-0.39.
Collapse
Affiliation(s)
- Irfan Basturk
- The Scientific and Technological Research Council of Turkey, Marmara Research Center, Environment and Cleaner Production Institute, Kocaeli, Turkey
| | - Gamze Varank
- Department of Environmental Engineering, Yıldız Technical University, Davutpaşa Campus, Istanbul, Turkey
| | - Selda Murat Hocaoglu
- The Scientific and Technological Research Council of Turkey, Marmara Research Center, Environment and Cleaner Production Institute, Kocaeli, Turkey
| | - Senem Yazici Guvenc
- Department of Environmental Engineering, Yıldız Technical University, Davutpaşa Campus, Istanbul, Turkey
| |
Collapse
|
27
|
Wu Y, Chen Z, Wen Q, Fu Q, Bao H. Mechanism concerning the occurrence and removal of antibiotic resistance genes in composting product with ozone post-treatment. BIORESOURCE TECHNOLOGY 2021; 321:124433. [PMID: 33257169 DOI: 10.1016/j.biortech.2020.124433] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The soil application of composting product will probably cause the spread of antibiotic resistance genes (ARGs) to environment, thereby it is crucial to remove ARGs in composting product. Ozone was adopted for the first time as a post-treatment method to remove the ARGs in composting product in this study. Ozone treatment significantly removed the total ARGs and mobile genetic elements (MGEs) once ozonation process finished. After 10-day storage stage, although the amount of total intracellular ARGs and MGEs increased, the total extracellular ARGs and MGEs decreased in the ozone-treated compost product. Correlation analysis revealed that the reduction in intracellular 16S rRNA contributed to intracellular tetQ and tetW removal, while the variations of other ARGs after ozonation related to MGEs abundance. Network analysis suggested that the reduction of potential host bacteria, as well as the decline in NH4+-N and TOC after the ozonation, contributed to the intracellular ARGs removal.
Collapse
Affiliation(s)
- Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Microbiology, Cornell University, Ithaca, NY 14850, United States
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
28
|
Basturk I, Murat-Hocaoglu S, Varank G, Yazici-Guvenc S. Comparison of Ozonation and Electro-Fenton Processes for Sodium Azide Removal in Medical Laboratory Wastewater by Using Central Composite Design. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1861017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Irfan Basturk
- The Scientific and Technological Research Council of Turkey, Marmara Research Center, Environment and Cleaner Production Institute, Kocaeli, Turkey
| | - Selda Murat-Hocaoglu
- The Scientific and Technological Research Council of Turkey, Marmara Research Center, Environment and Cleaner Production Institute, Kocaeli, Turkey
| | - Gamze Varank
- Department of Environmental Engineering, Yıldız Technical University, Davutpaşa Campus, Esenler, Istanbul, Turkey
| | - Senem Yazici-Guvenc
- Department of Environmental Engineering, Yıldız Technical University, Davutpaşa Campus, Esenler, Istanbul, Turkey
| |
Collapse
|
29
|
Gong P, Liu H, Xin Y, Wang G, Dai X, Yao J. Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. BIORESOURCE TECHNOLOGY 2020; 318:124271. [PMID: 33099099 DOI: 10.1016/j.biortech.2020.124271] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 05/18/2023]
Abstract
Hydrothermal pretreatment can efficiently remove the residual antibiotics in oxytetracycline fermentation residue (OFR), but its effect on antibiotic resistance genes (ARGs) during composting remains unclear. This study compared the shifts in bacterial community and evolutions in ARGs and integrons during different composting processes of OFRs with and without hydrothermal pretreatment. The results demonstrated that hydrothermal pretreatment increased the bacterial alpha diversity at the initial phase, and increased the relative abundances of Proteobacteria and Actinobacteria but decreased that of Bacteroidetes at the final phase by inactivating mycelia and removing residual oxytetracycline. Composting process inevitably elevated the abundance and relative abundance of ARGs. However, the increase in ARGs was significantly reduced by hydrothermal pretreatment, because the removal of oxytetracycline decreased their potential host bacteria and inhibited their horizontal gene transfer. The results demonstrated that hydrothermal pretreatment is an efficient strategy to reduce the enrichment of ARGs during the OFR composting.
Collapse
Affiliation(s)
- Picheng Gong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Huiling Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Gang Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jie Yao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
30
|
Investigating electrode arrangement and anode role on dye removal efficiency of electro-peroxone as an environmental friendly technology. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117350] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Zhang S, Huang J, Zhao Z, Cao Y, Li B. Hospital Wastewater as a Reservoir for Antibiotic Resistance Genes: A Meta-Analysis. Front Public Health 2020; 8:574968. [PMID: 33194975 PMCID: PMC7655780 DOI: 10.3389/fpubh.2020.574968] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/01/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The emergence and dissemination of antibiotic resistance genes (ARGs) in the environment poses a huge global health hazard. Hospital wastewater (HWW), in which a high density of antibiotic residues and antibiotic-resistant bacteria are present, may be a reservoir of ARGs dissemination into the environment. Our meta-analysis comprehensively analyzes the prevalence of ARGs in HWW, as well as the influencing factors in ARGs distribution. Methods: Online databases were used to search for literature using the subject terms: “Drug Resistance” AND “Genes” AND “Hospitals” AND “Wastewater.” Two reviewers independently applied predefined criteria to assess the literature and extract data including “relative abundance of ARGs,” “title,” “authors,” “country,” “location,” “sampling year,” and “sampling seasons.” The median values and 95% confidence intervals of ARGs abundance were calculated by Wilcox.test function in R. Temporal trends, spatial differences, seasonal variations and removal efficiency of ARGs were analyzed by Pearson correlation analysis and Kruskal-Wallis H test. Results: Resistance genes to carbapenems, sulfonamides, tetracyclines and mobile genetic elements were found at high relative abundance (>10−4 gene copies/16S rRNA gene copies) in HWW. The abundance of resistance genes to extended-spectrum β-lactams, carbapenems, sulfonamides and glycopeptide significantly decreased, while tetracycline resistance genes abundance increased from 2014 to 2018. The abundance of ARGs was significantly different by country but not by season. ARGs could not be completely removed by on-site HWW treatments and the removal efficiency varies for different ARGs. Conclusions: HWW presents more types of ARGs, and their abundance is higher than those in most wastewater systems. HWW may be a reservoir of ARGs and play an important role in the dissemination of ARGs.
Collapse
Affiliation(s)
- Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiangqing Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhichang Zhao
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
32
|
Li H, Xu H, Song HL, Lu Y, Yang XL. Antibiotic resistance genes, bacterial communities, and functions in constructed wetland-microbial fuel cells: Responses to the co-stresses of antibiotics and zinc. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115084. [PMID: 32806463 DOI: 10.1016/j.envpol.2020.115084] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 05/12/2023]
Abstract
The effects of the continuous accumulation of Zinc (Zn) on the fate of antibiotic resistance genes (ARGs) in constructed wetland-microbial fuel cells (CW-MFCs) remain unclear. In this study, the impacts of Zn addition and a circuit mode on antibiotic removal, occurrence of ARGs, the bacterial community, and bacterial functions were investigated in three groups of CW-MFCs. The results showed that continuous Zn exposure enriched the target ARGs during the initial stage, while excessive Zn accumulation decreased antibiotic removal and the abundance of ARGs. A principal component analysis demonstrated that ARGs and the bacterial community distribution characteristics were significantly impacted by the mass accumulation of antibiotics and Zn, as well as the circuit mode. A redundancy analysis, partial least squares path modeling, and Procrustes analysis revealed that the accumulation of antibiotics and Zn, the composition of the bacterial community, the circuit mode, and the abundance of intI associated with horizontal gene transfer jointly contributed to the distributions of ARGs in the electrodes and effluent. Moreover, continuous exposure to Zn decreased the bacterial diversity and changed the composition and function of the bacterial community predicted using PICRUSt tool. The co-occurrence of ARGs, their potential hosts and bacterial functions were further revealed using a network analysis. A variation partition analysis also showed that the accumulation of target pollutants and the circuit mode had a significant impact on the bacterial community composition and functions. Therefore, the interaction among ARGs, the bacterial community, bacterial functions, and pollutant accumulations in the CW-MFC was complex. This study provides useful implications for the application of CW-MFCs for the treatment of wastewater contaminated with antibiotics and heavy metals.
Collapse
Affiliation(s)
- Hua Li
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Yi Lu
- School of Environmental and Natural Resources, Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
33
|
Ding Y, Jiang W, Liang B, Han J, Cheng H, Haider MR, Wang H, Liu W, Liu S, Wang A. UV photolysis as an efficient pretreatment method for antibiotics decomposition and their antibacterial activity elimination. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122321. [PMID: 32092653 DOI: 10.1016/j.jhazmat.2020.122321] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 05/12/2023]
Abstract
The biological treatment of antibiotic-containing wastewater is a mainstream process, but the antibacterial activity from the persistence of antibiotics would inhibit the biological activity and function of wastewater treatment plants and lead to the risk of transmission of antibiotic resistant bacteria and genes. In this study, UV photolysis was selected as an appropriate pretreatment technology for antibiotic-containing wastewater. It could decompose many kinds of antibiotics and was not inhibited by the coexisting organics in wastewater. The antibacterial activities of five kinds of antibiotics, which were eliminated with UV irradiation, exhibited a significantly positive correlation with their parent compound concentrations. The photodecomposition of the main functional groups in antibiotics contributed to the elimination of antibacterial activity. Defluorination was the main pathway to eliminate the antibacterial activity of antibiotics containing a fluorine substituent (e.g., florfenicol and ofloxacin), while the photoinduced opening of the β-lactam ring was the most efficient route to eliminate the antibacterial activity of β-lactam antibiotics (e.g. cefalexin, amoxicillin and ampicillin). These results demonstrated that UV photolysis could be adopted as an efficient and promising pretreatment strategy for the source control of antibiotic antibacterial activity by the decomposition of antibiotic functional groups before the biological treatment unit.
Collapse
Affiliation(s)
- Yangcheng Ding
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenli Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, PR China
| | - Jinglong Han
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, PR China.
| | - Haoyi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, PR China
| | - Muhammad Rizwan Haider
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, PR China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, PR China
| | - Shuangjiang Liu
- State Key Laboratory Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, PR China.
| |
Collapse
|
34
|
Chen Y, Yang Z, Zhang Y, Xiang Y, Xu R, Jia M, Cao J, Xiong W. Effects of different conductive nanomaterials on anaerobic digestion process and microbial community of sludge. BIORESOURCE TECHNOLOGY 2020; 304:123016. [PMID: 32078907 DOI: 10.1016/j.biortech.2020.123016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The effects of four conductive nanomaterials (nano-carbon powder, nano-Al2O3, nano-ZnO, nano-CuO) on sludge anaerobic digestion (AD) performance and microbial community were investigated through a 36-day fermentation experiment. Results showed that biogas production enhanced by 16.9% and 23.4% with nano-carbon powder and nano-Al2O3 added but decreased by 90.2% and 17.3% with nano-ZnO and nano-CuO. Total solids (TS) removal efficiency was increased by 38.73% and 27.11% with nano-carbon powder and nano-Al2O3 added but decreased by 70.67% and 43.70% with nano-ZnO and nano-CuO. Kinetic analysis indicated four conductive nanomaterials could shorten the lag phase of AD sludge with an average rate of 51.75%. 16S rRNA amplicon sequencing results demonstrated microbes such as Syntrophomonas and Methanosaeta were enriched in nano-carbon powder and nano-Al2O3 reactors. However, microbial community diversity and richness were both inhibited by adding nano-ZnO and nano-CuO. Redundancy analysis (RDA) revealed that genera belong to Firmicutes and Chloroflexi could conduce to methanogenesis process.
Collapse
Affiliation(s)
- Yawen Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yanru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Rui Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science Technology, Guangzhou 510650, PR China
| | - Meiying Jia
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiao Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
35
|
Gong P, Liu H, Cai C, Wang G, Xin Y, Dai X. Alkaline-thermally treated penicillin V mycelial residue amendment improved the soil properties without triggering antibiotic resistance. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 105:248-255. [PMID: 32088571 DOI: 10.1016/j.wasman.2020.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Penicillin V mycelial residue (PMR) is a byproduct of the pharmaceutical industry and may be disposed through land application after alkaline-thermal treatment. However, the efficacy of alkaline-thermally treated PMR in soil amelioration and the potential contamination risk caused by introduced penicillin V are poorly understood. In this study, soil pH, the contents of organic matter, available phosphorus, available potassium were measured to study the effect of alkaline-thermally treated PMR on soil fertility; the numbers of culturable microorganisms and the activities of enzymes, which not only reflect the decomposing ability of organic matter but also monitor the ecological suppression in soil ecosystem, were also investigated; moreover, the persistence of introduced penicillin V and the variation of antibiotic resistance genes (ARGs) in soil were examined to evaluate the resulting antibiotic resistance risk. The results indicated that the pH and the content of available potassium in amended soil with treated PMR profoundly improved. In addition, the culturable microorganisms and enzymes were not inhibited throughout the incubation of treated PMR in soil. The stability of treated PMR in soil relatively completed after 43 days. More importantly, the penicillin V derived by treated PMR rapidly depleted within 3 days, which suggested a relatively low environmental persistence. The treated PMR did not enrich the ARGs detected in soil, demonstrating that the addition of treated PMR might not trigger the antibiotic resistance risk in the short-term in soil. In conclusion, our results concluded that alkaline-thermally treated PMR is available for soil application.
Collapse
Affiliation(s)
- Picheng Gong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Chen Cai
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gang Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanjun Xin
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
36
|
Wu X, Gu Y, Wu X, Zhou X, Zhou H, Amanze C, Shen L, Zeng W. Construction of a Tetracycline Degrading Bacterial Consortium and Its Application Evaluation in Laboratory-Scale Soil Remediation. Microorganisms 2020; 8:microorganisms8020292. [PMID: 32093355 PMCID: PMC7074960 DOI: 10.3390/microorganisms8020292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
As an environmental pollutant, tetracycline (TC) can persist in the soil for years and damage the ecosystem. So far, many methods have been developed to handle the TC contamination. Microbial remediation, which involves the use of microbes to biodegrade the pollutant, is considered cost-efficient and more suitable for practical application in soil. This study isolated several strains from TC-contaminated soil and constructed a TC-degrading bacterial consortium containing Raoultella sp. XY-1 and Pandoraea sp. XY-2, which exhibited better growth and improved TC degradation efficiency compared with single strain (81.72% TC was biodegraded within 12 days in Lysogeny broth (LB) medium). Subsequently, lab-scale soil remediation was conducted to evaluate its effectiveness in different soils and the environmental effects it brought. Results indicated that the most efficient TC degradation was recorded at 30 °C and in soil sample Y which had relatively low initial TC concentration (around 35 mg/kg): TC concentration decreased by 43.72% within 65 days. Soil properties were affected, for instance, at 30 °C, the pH value of soil sample Y increased to near neutral, and soil moisture content (SMC) of both soils declined. Analysis of bacterial communities at the phylum level showed that Proteobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi were the four dominant phyla, and the relative abundance of Proteobacteria significantly increased in both soils after bioremediation. Further analysis of bacterial communities at the genus level revealed that Raoultella sp. XY-1 successfully proliferated in soil, while Pandoraea sp. XY-2 was undetectable. Moreover, bacteria associated with nitrogen cycling, biodegradation of organic pollutants, soil biochemical reactions, and plant growth were affected, causing the decline in soil bacterial diversity. Variations in the relative abundance of tetracycline resistance genes (TRGs) and mobile gene elements (MGEs) were investigated, the results obtained indicated that tetD, tetG, tetX,intI1, tnpA-04, and tnpA-05 had higher relative abundance in original soils, and the relative abundance of most TRGs and MGEs declined after the microbial remediation. Network analysis indicated that tnpA may dominate the transfer of TRGs, and Massilia, Alkanibacter, Rhizomicrobium, Xanthomonadales, Acidobacteriaceae, and Xanthomonadaceae were possible hosts of TRGs or MGEs. This study comprehensively evaluated the effectiveness and the ecological effects of the TC-degrading bacterial consortium in soil environment.
Collapse
Affiliation(s)
- Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yichao Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Xiangyu Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Han Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
- Correspondence: ; Tel.: +86-0731-88877472
| |
Collapse
|
37
|
Li H, Song HL, Xu H, Lu Y, Zhang S, Yang YL, Yang XL, Lu YX. Effect of the coexposure of sulfadiazine, ciprofloxacin and zinc on the fate of antibiotic resistance genes, bacterial communities and functions in three-dimensional biofilm-electrode reactors. BIORESOURCE TECHNOLOGY 2020; 296:122290. [PMID: 31677404 DOI: 10.1016/j.biortech.2019.122290] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/12/2023]
Abstract
Three-dimensional biofilm electrode reactors (3D-BERs) with high treatment efficiency were constructed to treat wastewater containing sulfadiazine (SDZ) and ciprofloxacin (CIP) coexposure with Zinc (Zn). The results showed that coexposure to target antibiotics and Zn increased the absolute and relative abundances of target antibiotic resistance genes (ARGs). Additionally, the target ARG abundances were higher on cathode of 3D-BER compared with ordinary anaerobic reactor while the abundances of total ARGs were decreased in the effluent. Meanwhile, redundancy analysis results revealed that the composition of bacteria carrying ARGs was greatly influenced in the cathode by the accumulation of Zn and antibiotic, which dominated the changes of ARG abundances. Additionally, ARGs with their host bacteria revealed by network analysis were partially deposited on electrode substrates when being removed from wastewater. Thus, 3D-BER exhibits capability of simultaneously eliminating antibiotic and Zn, and greatly reduces the risks of ARGs spread.
Collapse
Affiliation(s)
- Hua Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Yi Lu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shuai Zhang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, China
| |
Collapse
|
38
|
Xiang Y, Yang Z, Zhang Y, Xu R, Zheng Y, Hu J, Li X, Jia M, Xiong W, Cao J. Influence of nanoscale zero-valent iron and magnetite nanoparticles on anaerobic digestion performance and macrolide, aminoglycoside, β-lactam resistance genes reduction. BIORESOURCE TECHNOLOGY 2019; 294:122139. [PMID: 31525586 DOI: 10.1016/j.biortech.2019.122139] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The effect of nanoscale zero-valent iron (NZVI) and magnetite nanoparticles (Fe3O4 NPs) on anaerobic digestion (AD) performance was investigated through a series of 100-day semi-continuous mesophilic anaerobic digestions. The results indicated that biogas production had increased by 24.44% and 21.66% with the addition of 0.5 g/L Fe3O4 NPs and 1.0 g/L NZVI, respectively. Besides, the abundance of five widespread antibiotic resistance genes (ARGs) (ermF, ermA, ermT, aac(6')-IB, blaOXA-1) was also studied. The decrease in abundance of aac(6')-IB and blaOXA-1 was observed during the AD process with an average removal rate of 95.69% and 44.82%, respectively. Most of the ARGs, especially ermA and ermT, were less abundant in NZVI group compared with control group. The overall results suggested that the addition of NZVI and Fe3O4 NPs contributed to a better sludge anaerobic digestion performance, and NZVI was beneficial to the removal of some ARGs.
Collapse
Affiliation(s)
- Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yanru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Rui Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yue Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China
| | - Jiahui Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoyang Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Meiying Jia
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiao Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
39
|
Ghalebizade M, Ayati B. Acid Orange 7 treatment and fate by electro-peroxone process using novel electrode arrangement. CHEMOSPHERE 2019; 235:1007-1014. [PMID: 31561289 DOI: 10.1016/j.chemosphere.2019.06.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/01/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Electro-peroxone is a novel advanced oxidation process that surpasses ozonation or peroxone because of its advantages. In this technology, combining ozone and hydrogen peroxide generated electrochemically leads to the production of hydroxyl radicals, which are the strongest oxidizing agents. In this study, a cylindrical reactor with a continuous circular flow using novel arrangements of electrodes was used to examine the effects of variant parameters on dye removal efficiency. Acid Orange 7 (C16H11N2NaO4S) served as an indicator pollutant. Based on overall energy consumption and energy consumption per dye removed weight, electro-peroxone not only has proper efficiency at high dye concentrations, it also has the least energy consumption per dye removed weight; 53 KWh kg-1 is achieved for 500 mg L-1 initial dye concentration at 99% removal efficiency after 40 min. The results show that at the optimum condition of [Dye] = 500 mg L-1, pH = 7.7, applied current = 0.5 A, O3 rate = 1 L min-1, and [Na2SO4] = 0.1 M, dye is removed completely after 90 min and COD and TOC removal is 99% and 90%, respectively. LC-MS results also showed that AO7 initially was converted to more toxic compounds than AO7 like benzoic acid but finally linear acidic intermediate with less toxicity such as fumaric acid was formed.
Collapse
Affiliation(s)
- Mohamad Ghalebizade
- Candidate of Environmental Engineering, Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box, 14115-397, Tehran, Iran.
| | - Bita Ayati
- Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box, 14115-397, Tehran, Iran.
| |
Collapse
|
40
|
Huang YH, Liu Y, Du PP, Zeng LJ, Mo CH, Li YW, Lü H, Cai QY. Occurrence and distribution of antibiotics and antibiotic resistant genes in water and sediments of urban rivers with black-odor water in Guangzhou, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:170-180. [PMID: 30903891 DOI: 10.1016/j.scitotenv.2019.03.168] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Urban rivers in some countries have been heavily polluted and the water became black and odor. Nevertheless, only few studies reported the occurrence of antibiotics and their corresponding antibiotic resistant genes (ARGs) in urban rivers with black-odor water with and without remediation. In this study, nine antibiotics (belonging to sulfonamides, tetracyclines, quinolones, and macrolides) and their corresponding ARGs in water and sediments of six urban rivers in Guangzhou, South China were analyzed to investigate their spatial distribution and the influence of water remediation. The concentrations of individual antibiotics varied from ND (not detectable) to 2702 ng/L and ND to 449 μg/kg in surface water and sediments, respectively. Norfloxacin displayed the highest average concentrations, followed by ciprofloxacin. The relative abundance of quinolone-resistance gene qnrA (~103 ARGs/16S rRNA) was the highest, followed by tetracyclines-resistance genes tetC (~10-2 ARGs/16S rRNA). The antibiotics and ARGs in sediments from various rivers exhibited distinct spatial distribution with large variation from upstream to downstream. Generally, levels of antibiotics and tetracyclines-resistance genes (tetA, tetC and tetM) in urban rivers with black-odor water (affected by industrial and domestic sewage) were higher than those in remediated urban rivers. Significant positive correlations were observed only between the relative abundances of tetA (or tetC) with the concentrations of some antibiotics (e.g., ciprofloxacin and norfloxacin). TetA was also significantly positively correlated with the concentrations of Ni, Cr, and As in sediments. This study found that urban rivers remediated with dredging might lower antibiotic levels in sediment, but high relative abundance of certain ARGs (e.g., tetB, qnrA) may still exist.
Collapse
Affiliation(s)
- Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yue Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Pei-Pei Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Juan Zeng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
41
|
Wu Q, Bao X, Guo W, Wang B, Li Y, Luo H, Wang H, Ren N. Medium chain carboxylic acids production from waste biomass: Current advances and perspectives. Biotechnol Adv 2019; 37:599-615. [PMID: 30849433 DOI: 10.1016/j.biotechadv.2019.03.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 11/29/2022]
Abstract
Alternative chemicals to diverse fossil-fuel-based products is urgently needed to mitigate the adverse impacts of fossil fuel depletion on human development. To this end, researchers have focused on the production of biochemical from readily available and affordable waste biomass. This is consistent with current guidelines for sustainable development and provides great advantages related to economy and environment. The search for suitable biochemical products is in progress worldwide. Therefore, this review recommends a biochemical (i.e., medium chain carboxylic acids (MCCAs)) utilizing an emerging biotechnological production platform called the chain elongation (CE) process. This work covers comprehensive introduction of the CE mechanism, functional microbes, available feedstock types and corresponding utilization strategies, major methods to enhance the performance of MCCAs production, and the challenges that need to be addressed for practical application. This work is expected to provide a thorough understanding of the CE technology, to guide and inspire researchers to solve existing problems in depth, and motivate large-scale MCCAs production.
Collapse
Affiliation(s)
- Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xian Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Bing Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yunxi Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
42
|
Su C, Zheng P, Lin X, Chen W, Li X, Chen Q, Wu S, Chen M. Influence of amoxicillin after pre-treatment on the extracellular polymeric substances and microbial community of anaerobic granular sludge. BIORESOURCE TECHNOLOGY 2019; 276:81-90. [PMID: 30611090 DOI: 10.1016/j.biortech.2018.12.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
A combined process coupling a Fe3O4 nanoparticles (Fe3O4 NPs) heterogeneous Fenton-like reaction and an anaerobic biological technology was investigated in order to effectively treat amoxicillin-containing wastewater. With the increase in the pretreatment degree, the average COD removal rate correspondingly increased from 84.8% to 92.4% using the anaerobic biological treatment, and the biodegradability and COD removal efficiency was improved by the pretreatment processes. During the process of amoxicillin degradation, hydroxyl free radicals tended to attack the lactamide, amide and pentacyclic rings of amoxicillin. In the excitation-emission matrix (EEM) spectra of soluble microbial products (SMPs), the absorption peak of humic acid gradually decreased with application of the pretreatment. The pretreatment products were more beneficial to the characteristics of anaerobic granular sludge. For the microbial community structure, the proportion of Methanothrix and Clostridia increased with addition the heterogeneous Fenton-like pretreatment, which favored conversion of organic contaminants to volatile fatty acids and biogas.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Peng Zheng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xumeng Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Wuyang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinjun Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Qiuyu Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shumin Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|