1
|
Ortlund K, Chandler M, Dunlop AL, Barr DB, Ryan PB, Liang D, Brennan PA, Buhr M, Corwin EJ, Panuwet P, Lee GE, Eatman J, Tan Y, Sehgal N, Eick SM. Housing characteristics, dietary patterns, and sociodemographic characteristics as predictors of persistent organic pollutant exposure among African American pregnant women in Atlanta. ENVIRONMENTAL RESEARCH 2025; 272:121172. [PMID: 39978620 PMCID: PMC12042955 DOI: 10.1016/j.envres.2025.121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Prenatal exposure to persistent organic pollutants (POPs) has been linked to adverse pregnancy outcomes. Existing disparities in exposure across populations highlight the need for identifying modifiable risk factors. Here, we investigated the determinants of serum levels of polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs) in pregnant African American women (N = 54). METHODS Concentrations of 2,2'4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ethe (BDE-99), 2,2',4,4',6-pentabromodiphenyl ether (BDE-100), hexachlorobenzene (HCB), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) were measured in first trimester maternal serum from a subset of women enrolled in the Atlanta African American Maternal Child Cohort. Home characteristics, cleaning behaviors, diet, and demographic information were collected via survey questionnaires. Associations between individual determinants and individual PBDE and OCP concentrations were assessed using linear regression. RESULTS Pregnant women who frequently ate red meat, cheese, milk, or yogurt had elevated levels of HCB and p,p'-DDE compared to those who ate these products less frequently (e.g., red meat: β=0.21; 95% CI=-0.07, 0.48 for p,p'-DDE), while pregnant women who reported living in apartments, homes ≥10 years old, or had couches ≥5 years old, had increased levels of PBDEs compared to reference groups. Pregnant women who vacuumed and cleaned their home more frequently showed decreased levels of PBDEs relative to reference groups (e.g., vacuuming: BDE-100 β= -0.81, 95% CI= -1.55, -0.06). CONCLUSIONS Our results illustrate modifiable determinants of PBDE and OCP exposures in pregnant women and emphasize the potential to reduce the body burden of these POPs both directly, by changing diet, residence, or home furnishings, and indirectly through cleaning methods.
Collapse
Affiliation(s)
- Kaegan Ortlund
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Madeline Chandler
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Michelle Buhr
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Grace E Lee
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jasmin Eatman
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Emory University School of Medicine, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Neha Sehgal
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Trasande L. The role of plastics in allergy, immunology, and human health: What the clinician needs to know and can do about it. Ann Allergy Asthma Immunol 2025; 134:46-52. [PMID: 38945394 DOI: 10.1016/j.anai.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The effects of plastics on human health include allergy, atopy, asthma, and immune disruption, but the consequences of chemicals used in plastic materials span nearly every organ system and age group as well. Behavioral interventions to reduce plastic chemical exposures have reduced exposure in low- and high-income populations, yet health care providers know little about plastic chemical effects and seldom offer steps to patients to limit exposure. Health care facilities also use many products that increase the risk of chemical exposures, particularly for at-risk populations such as children in neonatal intensive care units. Given that disparities in plastic chemical exposure are well documented, collaborative efforts are needed between scientists and health care organizations, to develop products that improve provider knowledge about chemicals used in plastic materials and support the use of safer alternatives in medical devices and other equipment.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, New York; Department of Population Health, NYU Grossman School of Medicine, New York, New York; NYU Wagner Graduate School of Public Service, New York, New York.
| |
Collapse
|
3
|
de Souza Araujo J, Dos Santos IC, Burgos Melo HD, Rosa AH. Polybrominated diphenyl ethers in indoor dust from Brazil: assessing demographic differences and human health exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48122-48134. [PMID: 39017870 DOI: 10.1007/s11356-024-34388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Indoor house dust is considered an important human exposure route to polybrominated diphenyl ethers (PBDEs), which has raised concern about their environmental persistence and toxicity properties. In this study, eight PBDEs (BDE-28, -47, -99, -100, -153, -154, -183, and -209) were determined in house dust from two cities with different socio-demographic characteristics from Brazil, examining possible relationships with factors that potentially influence contamination (population density, economic activities, presence of electronic equipment, and so on) and also estimating the risk of human exposure through oral ingestion and dermal contact. The Σ8PBDE concentration in Sorocaba city ranged between 380 and 4269 ng/g dw, while in Itapetininga city ranged from 106 to 1000 ng/g dw. In both regions, BDE-209 was the most abundantly found congener, followed by BDE-99. House dust from Sorocaba presented significantly greater concentrations of BDE-183 and BDE-209 than Itapetininga. Regarding risk exposure assessment, the estimated daily intake (EDI) of PBDEs was much lower than their respective reference doses (RfDs) in all pathways estimated (non-dietary ingestion and dermal contact). This study provided valuable data to improve the knowledge about the presence and exposure to PBDEs in Brazilian house dust in comparison to other developing countries and the need to control environmental pollution and protect human health.
Collapse
Affiliation(s)
- Juliana de Souza Araujo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, 18087-180, Brazil.
| | - Isadhora Camargo Dos Santos
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, 18087-180, Brazil
| | - Hansel David Burgos Melo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, 18087-180, Brazil
| | - André Henrique Rosa
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, 18087-180, Brazil
| |
Collapse
|
4
|
Tian M, Gao F, Zeng Y, Zhang X, Yang C, Guo J, Zhao Y, Chen S. Factors impacting human exposure to legacy and emerging contaminants in residential dust in Beijing, China: Characteristics of indoor microenvironment. CHEMOSPHERE 2024; 358:142095. [PMID: 38663681 DOI: 10.1016/j.chemosphere.2024.142095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Exposure to indoor dust is of concern since dust may be contaminated by various toxic chemicals and people spend considerable time indoors. Factors impacting human exposure risks to contaminants in indoor dust may differ from those affecting the loadings of contaminants, but the dominant factors have not yet been well clarified. In this study, the occurrence, human exposure, and related influencing factors of several classes of legacy and emerging contaminants in residential dust across Beijing were investigated, including per- and polyfluoroalkyl substances (PFASs) and three types of flame retardants (FRs), i.e., organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and novel halogenated FRs (NHFRs). OPEs (median: 3847 ng/g) were the most abundant group, followed by PBDEs (1046 ng/g) and NHFRs (520 ng/g). PFASs (14.3 ng/g) were one to two orders of magnitude lower than FRs. The estimated daily intakes of these contaminants were relatively higher for toddlers than other age groups, with oral ingestion being the main exposure pathway compared with dermal contact. Higher human exposure risks were found in new buildings or newly finished homes due to the elevated intake of emerging contaminants (such as OPEs). Furthermore, higher risks were also found in homes with wooden floors, which were mainly associated with higher levels of PFASs, chloroalkyl and alkyl OPEs, compared with tile floors. Citizens in the urban area also showed higher exposure risks than those in the suburban area. The quantity of household appliances and finishing styles (simple or luxurious) showed an insignificant impact on overall human exposure risks despite their significant effect on the levels of some of the dust contaminants. Results in this study are of importance in understanding human exposure to the co-existence of multiple contaminants in indoor dust.
Collapse
Affiliation(s)
- Mi Tian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Fan Gao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xiulan Zhang
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, China
| | - Chuan Yang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Jiaxuan Guo
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuyang Zhao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Shejun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Minucci JM, DeLuca NM, Durant JT, Goodwin B, Kowalski P, Scruton K, Thomas K, Cohen Hubal EA. Linking exposure to per- and polyfluoroalkyl substances (PFAS) in house dust and biomonitoring data in eight impacted communities. ENVIRONMENT INTERNATIONAL 2024; 188:108756. [PMID: 38795657 PMCID: PMC11323284 DOI: 10.1016/j.envint.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in industry and have been linked to various adverse health effects. Communities adjacent to sites where PFAS are manufactured, stored, or used may be at elevated risk. In these impacted communities, significant exposure often occurs through contaminated drinking water, yet less is known about the role of other pathways such as residential exposure through house dust. We analyzed a paired serum and house dust dataset from the Agency for Toxic Substances and Disease Registry's PFAS Exposure Assessments, which sampled eight United States communities with a history of drinking water contamination due to aqueous film forming foam (AFFF) use at nearby military bases. We found that serum PFAS levels of residents were significantly positively associated with the dust PFAS levels in their homes, for three of seven PFAS analyzed, when accounting for site and participant age. We also found that increased dust PFAS levels were associated with a shift in the relative abundance of PFAS in serum towards those chemicals not strongly linked to AFFF contamination, which may suggest household sources. Additionally, we analyzed participant responses to exposure questionnaires to identify factors associated with dust PFAS levels. Dust PFAS levels for some analytes were significantly elevated in households where participants were older and had lived at the home longer, cleaned less frequently, used stain resistant products, and had carpeted living rooms. Our results suggest that residential exposure to PFAS via dust or other indoor pathways may contribute to overall exposure and body burden, even in communities impacted by AFFF contamination of drinking water, and the magnitude of this exposure may also be influenced by demographic, behavioral, and housing factors.
Collapse
Affiliation(s)
- Jeffrey M Minucci
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States.
| | - Nicole M DeLuca
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| | - James T Durant
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Bradley Goodwin
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Peter Kowalski
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Karen Scruton
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Kent Thomas
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| | - Elaine A Cohen Hubal
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| |
Collapse
|
6
|
Zachariah JP, Jone PN, Agbaje AO, Ryan HH, Trasande L, Perng W, Farzan SF. Environmental Exposures and Pediatric Cardiology: A Scientific Statement From the American Heart Association. Circulation 2024; 149:e1165-e1175. [PMID: 38618723 DOI: 10.1161/cir.0000000000001234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Environmental toxicants and pollutants are causes of adverse health consequences, including well-established associations between environmental exposures and cardiovascular diseases. Environmental degradation is widely prevalent and has a long latency period between exposure and health outcome, potentially placing a large number of individuals at risk of these health consequences. Emerging evidence suggests that environmental exposures in early life may be key risk factors for cardiovascular conditions across the life span. Children are a particularly sensitive population for the detrimental effects of environmental toxicants and pollutants given the long-term cumulative effects of early-life exposures on health outcomes, including congenital heart disease, acquired cardiac diseases, and accumulation of cardiovascular disease risk factors. This scientific statement highlights representative examples for each of these cardiovascular disease subtypes and their determinants, focusing specifically on the associations between climate change and congenital heart disease, airborne particulate matter and Kawasaki disease, blood lead levels and blood pressure, and endocrine-disrupting chemicals with cardiometabolic risk factors. Because children are particularly dependent on their caregivers to address their health concerns, this scientific statement highlights the need for clinicians, research scientists, and policymakers to focus more on the linkages of environmental exposures with cardiovascular conditions in children and adolescents.
Collapse
|
7
|
Yang J, Yao Y, Li X, He A, Chen S, Wang Y, Dong X, Chen H, Wang Y, Wang L, Sun H. Nontarget Identification of Novel Organophosphorus Flame Retardants and Plasticizers in Indoor Air and Dust from Multiple Microenvironments in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7986-7997. [PMID: 38657129 DOI: 10.1021/acs.est.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 μg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.
Collapse
Affiliation(s)
- Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ana He
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Schachterle ML, Lowe LE, Owens JE. Exploring the residential exposome: Determination of hazardous flame retardants in air filter dust from HVAC systems. ENVIRONMENTAL RESEARCH 2024; 248:118223. [PMID: 38286254 DOI: 10.1016/j.envres.2024.118223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/31/2024]
Abstract
Dust is a sink for flame retardants, which are added to a myriad of consumer products in residential spaces. Organophosphate esters (OPEs) and brominated flame retardants (BFRs) are two classes of flame retardants that are frequently used in consumer products and consequently found in dust. In this present work, a novel solvent-limited microextraction technique, which we detailed in a companion study, was applied for the determination of four OPEs and two BFRs with limits of quantitation at the ng/g level by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry from n = 47 air filter dust samples collected from forced air HVAC systems. Levels of the BFRs, including tetrabromobisphenol-A and its derivative tribromobisphenol-A, were found at levels <4 μg/g and not frequently detected. Conversely, all four OPEs were detected in all air filter dust samples. Total OPE load was dominated by tris(2,4-di-tert-butylphenyl) phosphate, T24DtBPP, a novel OPE not widely examined in the literature. Comparison of individual and total OPE concentrations to residential characteristics revealed statistically significant relationships to location of the home and dominant flooring type. Overall, this study motivates future work in examining the whole house exposome using air filter dust as a passive sampling regime with more examination of T24DtBPP loads within other indoor spaces.
Collapse
Affiliation(s)
- Morgan L Schachterle
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA.
| | - Luis E Lowe
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA
| | - Janel E Owens
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA.
| |
Collapse
|
9
|
Lin Y, Lin R, Wang W, Xie M, Li Y, Zhang Q. Association between urinary organophosphate ester metabolite exposure and thyroid disease risk among US adults: National Health and Nutrition Examination Survey 2011-2014. Front Endocrinol (Lausanne) 2024; 15:1329247. [PMID: 38405137 PMCID: PMC10884265 DOI: 10.3389/fendo.2024.1329247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Background Organophosphate esters (OPEs) may interfere with thyroid function, but the relationship between OPEs and thyroid disease remains unclear. This study aims to elucidate the relationship between OPEs exposure and thyroid disease risk in the general population in the United States. Method Data were obtained from the 2011-2014 National Health and Nutrition Examination Survey cycle. All participants were tested for seven OPE metabolites in their urine and answered questions about whether they had thyroid disease through questionnaires. Logistic regression was employed to analyze the association between exposure to individual OPE metabolites and thyroid disease. Weighted Quantile Sum (WQS) regression modeling was utilized to assess exposure to mixed OPE metabolites and risk of thyroid disease. Bayesian kernel machine regression(BKMR) models to analyze the overall mixed effect of OPE metabolites. Result A total of 2,449 participants were included in the study, 228 of whom had a history of thyroid disease. Bis(1,3-dichloro-2-propyl) phos (BDCPP), Diphenyl phosphate (DPHP) and Bis(2-chloroethyl) phosphate (BCEP) were the top three metabolites with the highest detection rates of 91.75%, 90.77% and 86.57%, respectively. In multivariate logistic regression models, after adjustment for confounding variables, individuals with the highest tertile level of BCEP were significantly and positively associated with increased risk of thyroid disease (OR=1.57, 95% CI=1.04-2.36), using the lowest tertile level as reference. In the positive WQS regression model, after correcting for confounding variables, mixed exposure to OPE metabolites was significantly positively associated with increased risk of thyroid disease (OR=1.03, 95% CI=1.01-1.06), with BCEP and DPHP having high weights. In the BKMR model, the overall effect of mixed exposure to OPE metabolites was not statistically significant, but univariate exposure response trends showed that the risk of thyroid disease decreased and then increased as BCEP exposure levels increased. Conclusion The study revealed a significant association between exposure to OPE metabolites and an increased risk of thyroid disease, with BCEP emerging as the primary contributor. The risk of thyroid disease exhibits a J-shaped pattern, whereby the risk initially decreases and subsequently increases with rising levels of BCEP exposure. Additional studies are required to validate the association between OPEs and thyroid diseases.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruipeng Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Weikang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Manling Xie
- Laboratory Center, The Major Subject of Environment and Health of Fujian Key Universities, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yun Li
- Food and Chemical Institute, Anhui Province Institute of Product Quality Supervision & Inspection, Hefei, China
| | - Qian Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Duh-Leong C, Maffini MV, Kassotis CD, Vandenberg LN, Trasande L. The regulation of endocrine-disrupting chemicals to minimize their impact on health. Nat Rev Endocrinol 2023; 19:600-614. [PMID: 37553404 DOI: 10.1038/s41574-023-00872-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/10/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are substances generated by human industrial activities that are detrimental to human health through their effects on the endocrine system. The global societal and economic burden posed by EDCs is substantial. Poorly defined or unenforced policies can increase human exposure to EDCs, thereby contributing to human disease, disability and economic damage. Researchers have shown that policies and interventions implemented at both individual and government levels have the potential to reduce exposure to EDCs. This Review describes a set of evidence-based policy actions to manage, minimize or even eliminate the widespread use of these chemicals and better protect human health and society. A number of specific challenges exist: defining, identifying and prioritizing EDCs; considering the non-linear or non-monotonic properties of EDCs; accounting for EDC exposure effects that are latent and do not appear until later in life; and updating testing paradigms to reflect 'real-world' mixtures of chemicals and cumulative exposure. A sound strategy also requires partnering with health-care providers to integrate strategies to prevent EDC exposure in clinical care. Critical next steps include addressing EDCs within global policy frameworks by integrating EDC exposure prevention into emerging climate policy.
Collapse
Affiliation(s)
- Carol Duh-Leong
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA.
- New York University Wagner Graduate School of Public Service, New York, NY, USA.
| |
Collapse
|
11
|
Niu S, Chen X, Chen R, Zou Y, Zhang Z, Li L, Hageman KJ, Ng C, Dong L. Understanding inter-individual variability in short-chain chlorinated paraffin concentrations in human blood. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130235. [PMID: 36368064 DOI: 10.1016/j.jhazmat.2022.130235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated paraffins (CPs), particularly short-chain CPs (SCCPs), have been reported in human blood with high detection frequency and often high variation among individuals. However, factors associated with and their contributions to inter-individual variability in SCCP concentrations in human blood have not been assessed. In this study, we first measured SCCP concentrations in 57 human blood samples collected from individuals living in the same vicinity in China. We then used the PROduction-To-Exposure model to investigate the impacts of variations in sociodemographic data, biotransformation rates, dietary patterns, and indoor contamination on inter-individual variability in SCCP concentrations in human blood. Measured ∑SCCP concentrations varied by a factor of 10 among individuals with values ranging from 122 to 1230 ng/g, wet weight. Model results show that age, sex, body weight, and dietary composition played a minor role in causing variability in ∑SCCP concentrations in human blood given that modeled ∑SCCP concentrations ranged over a factor of 2 - 3 correlated to the variations of these factors. In contrast, variations in the modeled ΣSCCP concentrations increased to factors of 6 and 8 when variability in biotransformation rates and indoor contamination were considered, respectively, indicating these two factors could be the most influential on inter-individual variability in SCCP concentrations in human blood.
Collapse
Affiliation(s)
- Shan Niu
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA; National Research Center for Environmental Analysis and Measurement, Beijing, Beijing, China.
| | - Xi Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiwen Chen
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun Zou
- Organic Biological Analytical Chemistry Group, Department of Chemistry, University of Liège, Liège, Belgium
| | - ZhiZhen Zhang
- School of Public Health, University of Nevada, Reno, NV, USA
| | - Li Li
- School of Public Health, University of Nevada, Reno, NV, USA
| | - Kimberly J Hageman
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liang Dong
- National Research Center for Environmental Analysis and Measurement, Beijing, Beijing, China
| |
Collapse
|
12
|
Sanguos CL, Suárez OL, Martínez-Carballo E, Couce ML. Postnatal exposure to organic pollutants in maternal milk in north-western Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120903. [PMID: 36549446 DOI: 10.1016/j.envpol.2022.120903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Evaluation of postnatal exposure to organic pollutants is especially important for suckling infants during breastfeeding, a crucial perinatal growth period when organs and hormonal systems develop. We determined levels of 60 pollutants, including organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs), pyrethroids (PYRs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and polybrominated diphenyl ethers (PBDEs), in 81 breast milk samples from breastfeeding mothers from Santiago de Compostela (north-western Spain). For most detected organic pollutants, levels were correlated with the season of milk sampling, maternal age at delivery, and place of residence. Dietary consumption habits (eggs, molluscs, and vegetable oils) were also correlated with OCP, OPP, PCB, PBDE and PYR levels. We also assessed the risk to infant health of exposure to organic pollutants in breast milk. PAHs, OCPs, OPPs, and PYRs accounted for almost 95% of the targeted organic pollutants in the samples analysed.
Collapse
Affiliation(s)
- Carolina López Sanguos
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Olalla López Suárez
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Elena Martínez-Carballo
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain; Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense, 32004, Spain.
| | - María Luz Couce
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
13
|
Wang M, Yao G, Sun Y, Yang Y, Deng R. Exposure to construction dust and health impacts - A review. CHEMOSPHERE 2023; 311:136990. [PMID: 36309055 DOI: 10.1016/j.chemosphere.2022.136990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Construction dust contributes a significant proportion of airborne particulate matter, affecting the health of its surrounding environment and population. Construction workers are normally exposed to dust at high levels and bear severe health risks. The existing articles concerning the exposure and health impacts of construction dust are limited, but this research field has received more and more attention. This work reviews literature in the field and tries to systematically assess the current research state. Here, we review (1) methods used to monitor or sample construction dust; (2) main characteristics of construction dust, including dust classification, exposed populations, and exposure concentrations; (3) potential health hazards and (4) health risk assessment of construction dust. From existing literature, the exposure concentrations of different types and sources of construction dust are usually the focus of attention, while its particle size distribution and chemical composition are rarely mentioned. The classification and characteristics of populations exposed to construction dust ought to be a key consideration but not clear enough so far. There still lacks in-depth study of health hazards and systematic assessment of risks associated with construction dust. In future, it is valuable to develop utility instruments to precisely monitor construction dust. Besides, control means to reduce the pollution of construction dust deserve more studies. Health hazards of construction dust should be verified by biological experiments. Moreover, emerging algorithm models should be utilized in the risk assessment. The findings will help gain a better understanding of construction dust exposure and associated health risks.
Collapse
Affiliation(s)
- Mingpu Wang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing, 400045, China
| | - Gang Yao
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing, 400045, China
| | - Yujia Sun
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing, 400045, China
| | - Yang Yang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing, 400045, China
| | - Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
14
|
Young AS, Pickard HM, Sunderland EM, Allen JG. Organic Fluorine as an Indicator of Per- and Polyfluoroalkyl Substances in Dust from Buildings with Healthier versus Conventional Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17090-17099. [PMID: 36331119 PMCID: PMC9730836 DOI: 10.1021/acs.est.2c05198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of persistent, organic fluorinated chemicals added to materials and products mainly to repel stains and water. PFAS have been associated with many adverse human health effects. We aimed to determine whether buildings with "healthier" materials─defined here as reportedly free of all PFAS─exhibit lower PFAS in dust. In addition to analyzing targeted PFAS with available commercial standards, we measured extractable organic fluorine (EOF) as a novel proxy that includes both known and unknown types of PFAS. We measured at least 15 targeted PFAS (n = 24), EOF (n = 24), and total fluorine (TF; n = 14) in dust collected from university common spaces and classrooms, half of which had "healthier" furniture and carpet. We observed lower PFAS contamination in buildings with "healthier" materials: "healthier" rooms had a 66% lower median summed PFAS and a 49% lower Kaplan-Meier estimated mean EOF level in dust in comparison to conventional rooms. The summed targeted PFAS were significantly correlated with EOF but accounted for up to only 9% of EOF, indicating the likely presence of unidentified PFAS. EOF levels explained less than 1% of TF in dust. We emphasize the need to use chemical class-based methods (e.g., EOF) for evaluating class-based solutions and to expand non-PFAS solutions for other building materials.
Collapse
Affiliation(s)
- Anna S. Young
- HarvardT. H. Chan School of Public Health, Boston, Massachusetts02115, United States
| | - Heidi M. Pickard
- HarvardJohn A. Paulson School of Engineering and Applied Sciences, Boston, Massachusetts02134, United States
| | - Elsie M. Sunderland
- HarvardT. H. Chan School of Public Health, Boston, Massachusetts02115, United States
- HarvardJohn A. Paulson School of Engineering and Applied Sciences, Boston, Massachusetts02134, United States
| | - Joseph G. Allen
- HarvardT. H. Chan School of Public Health, Boston, Massachusetts02115, United States
| |
Collapse
|
15
|
Petromelidou S, Margaritis D, Nannou C, Keramydas C, Lambropoulou DA. HRMS screening of organophosphate flame retardants and poly-/perfluorinated substances in dust from cars and trucks: Occurrence and human exposure implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157696. [PMID: 35908702 DOI: 10.1016/j.scitotenv.2022.157696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Time spent within vehicles' cabin has been largely increased during the last years. As a result, the assessment of indoor dust quality is meaningful since dust can be a source of numerous emerging contaminants associated with adverse effects in human health. To this end, fourteen cars and ten trucks from the city of Thessaloniki, Northern Greece were selected to assess the quality of vehicles' microenvironments. An HRMS-based strategy was deployed for the target and non-target analysis of the collected samples. The target approach aimed at the accurate mass screening of nine organophosphate flame retardants (OPFRs) and nine per-/polyfluorinated compounds (PFAS), revealing mean concentrations for the OPFRs varied from <MQL-3409 ng/g for tris(1,3-dichloro-2-propyl) phosphate (TDCP), while the PFASs were either not detected (<MDL) or detected below the quantification limit (<MQL). To exploit the advanced technology of HRMS, a non-target analysis (NTA) workflow was also designed and employed, allowing the identification of 17 non-targets (plasticizers, PPCPs, pesticides and industrial chemicals) at identification confidence levels from 3 to 1. The statistical analysis between the positive findings and vehicles' conditions evidenced a possible of association just for individual cases. Lastly, a preliminary evaluation of human exposure to the target analytes was applied with the view to assess the potential harmful effects. All values were < 1 indicating no special effects because of exposure to this concentration level.
Collapse
Affiliation(s)
- Styliani Petromelidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Dimitris Margaritis
- Centre for Research and Technology Hellas (CERTH)/Hellenic Institute of Transport (HIT), 6th km, Charilaou - Thermi Road, GR 57001, Thermi, Thessaloniki, Greece
| | - Christina Nannou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Christos Keramydas
- Department of Supply Chain Management, School of Economics and Business Administration, International Hellenic University, 57001 Thessaloniki, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
| |
Collapse
|
16
|
Yang Y, Yang L, Chen H, Tan H, Yang J, Sun F, Sun J, Gong X, Tao L, Huang Y. Low-level alternative halogenated flame retardants (AHFRs) in indoor dust from Adelaide, South Australia decades since national legislative control on polybrominated diphenyl ethers (PBDEs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154123. [PMID: 35219667 DOI: 10.1016/j.scitotenv.2022.154123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Since commercial polybrominated diphenyl ethers (PBDEs) have been globally banned or restricted in 2000s, alternative halogenated flame retardants (AHFRs) appear increasingly dominant over PBDEs in many countries/regions. In this study, low levels of AHFRs were unexpectedly observed in the indoor dust from Adelaide, South Australia. Anti-dechlorane plus (anti-DP) was the most frequently detected AHFR with a median concentration of 1.28 ng/g, while other AFHRs were less detected (detection frequency < 50%). The levels of ΣPBDEs (496 ng/g, median) and ΣAHFRs (160 ng/g) and the ratio of ΣAHFRs/ΣPBDEs (0.32) were much lower than those investigated in Australian indoor dust previously. The findings were different to the trend for PBDEs and AHFRs from other countries over the past two decades. No significant correlation was determined between DP and PBDE congeners, indicating their different sources in dust. The human exposure assessment suggested that dust ingestion was the predominant pathway of PBDEs and AHFRs exposure for toddlers, while dermal absorption may be the dominant pathway for adults. The estimated daily intake (EDI) suggested low health risks via dust ingestion and dermal contact for general populations in Adelaide. This study contributes to the knowledge on region-specific FR contamination in indoor environments and related human exposure risk.
Collapse
Affiliation(s)
- Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China
| | - Liu Yang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental, Monitoring, China National Environmental Monitoring Center, Beijing 100012, China
| | - Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266000, China
| | - Xue Gong
- School of Agriculture, Food & Wine, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Lin Tao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Chen Y, Chen Q, Zhang Q, Zuo C, Shi H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:22. [PMCID: PMC9748405 DOI: 10.1007/s44169-022-00023-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/02/2022] [Indexed: 07/21/2023]
Abstract
Plastic fibers are ubiquitous in daily life with additives incorporated to improve their performance. Only a few restrictions exist for a paucity of common additives, while most of the additives used in textile industry have not been clearly regulated with threshold limits. The production of synthetic fibers, which can shed fibrous microplastics easily (< 5 mm) through mechanical abrasion and weathering, is increasing annually. These fibrous microplastics have become the main composition of microplastics in the environment. This review focuses on additives on synthetic fibers; we summarized the detection methods of additives, compared concentrations of different additive types (plasticizers, flame retardants, antioxidants, and surfactants) on (micro)plastic fibers, and analyzed their release and exposure pathways to environment and human beings. Our prediction shows that the amounts of predominant additives (phthalates, organophosphate esters, bisphenols, per- and polyfluoroalkyl substances, and nonylphenol ethoxylates) released from clothing microplastic fibers (MFs) are estimated to reach 35, 10, 553, 0.4, and 568 ton/year to water worldwide, respectively; and 119, 35, 1911, 1.4, and 1965 ton/year to air, respectively. Human exposure to MF additives via inhalation is estimated to be up to 4.5–6440 µg/person annually for the above five additives, and via ingestion 0.1–204 µg/person. Notably, the release of additives from face masks is nonnegligible that annual human exposure to phthalates, organophosphate esters, per- and polyfluoroalkyl substances from masks via inhalation is approximately 491–1820 µg/person. This review helps understand the environmental fate and potential risks of released additives from (micro)plastic fibers, with a view to providing a basis for future research and policy designation of textile additives.
Collapse
Affiliation(s)
- Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
- Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China
| | - Qun Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
18
|
Savvaides T, Koelmel JP, Zhou Y, Lin EZ, Stelben P, Aristizabal-Henao JJ, Bowden JA, Godri Pollitt KJ. Prevalence and Implications of Per- and Polyfluoroalkyl Substances (PFAS) in Settled Dust. Curr Environ Health Rep 2021; 8:323-335. [PMID: 34985714 PMCID: PMC11784640 DOI: 10.1007/s40572-021-00326-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Per- and polyfluoroalkyl substances (PFAS) are a family of more than 7,000 fluorinated compounds. The carbon-fluorine bond of PFAS provides desirable hydrophobic and oleophobic properties and stability that has led to widespread usage in consumer products and industrial applications. The strength of the carbon-fluorine bond also prevents appreciable degradation once released into the environment. Consequently, various household products can release volatile and nonvolatile PFAS into the indoor environment that often concentrate in dust. We discuss the diversity of PFAS in settled dust, emission sources of these chemicals, changes in PFAS profiles in dust over the past century, and the implications for human health. RECENT FINDINGS Sources of PFAS found in dust include building materials and furnishings and consumer products used in typical indoor spaces. Daycares and workplaces are emphasized as locations with widespread exposure due to the presence of treated carpeting and industrial-strength cleaners. Comparison and interpretation of findings across studies are complicated by the different ways in which PFAS are screened across studies. We further discuss recent developments in non-targeted software for the comprehensive annotation of PFAS in indoor dust and emphasize the need for comprehensive and harmonized analytical workflows. We highlight the detection and diversity of PFAS in settled dust collected from various indoor spaces, including locations with vulnerable subpopulations. There are opportunities for future research to leverage settled dust as a sentinel environmental matrix to evaluate the link between inhalation and ingestion routes of PFAS exposure to adverse health.
Collapse
Affiliation(s)
- Tina Savvaides
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 510, New Haven, CT, 06510, USA
- Department of Chemistry, Fordham University, Bronx, NY, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 510, New Haven, CT, 06510, USA
| | - Yakun Zhou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 510, New Haven, CT, 06510, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 510, New Haven, CT, 06510, USA
| | - Paul Stelben
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 510, New Haven, CT, 06510, USA
| | - Juan J Aristizabal-Henao
- Department of Physiological Sciences, College of Veterinary Medicine, Center for Human and Environmental Toxicology, University of Florida, Gainesville, FL, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, Center for Human and Environmental Toxicology, University of Florida, Gainesville, FL, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 510, New Haven, CT, 06510, USA.
| |
Collapse
|
19
|
Young AS, Herkert N, Stapleton HM, Cedeño Laurent JG, Jones ER, MacNaughton P, Coull BA, James-Todd T, Hauser R, Luna ML, Chung YS, Allen JG. Chemical contaminant exposures assessed using silicone wristbands among occupants in office buildings in the USA, UK, China, and India. ENVIRONMENT INTERNATIONAL 2021; 156:106727. [PMID: 34425641 PMCID: PMC8409466 DOI: 10.1016/j.envint.2021.106727] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 05/11/2023]
Abstract
Little is known about chemical contaminant exposures of office workers in buildings globally. Complex mixtures of harmful chemicals accumulate indoors from building materials, building maintenance, personal products, and outdoor pollution. We evaluated exposures to 99 chemicals in urban office buildings in the USA, UK, China, and India using silicone wristbands worn by 251 participants while they were at work. Here, we report concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and other brominated flame retardants (BFRs), organophosphate esters (OPEs), phthalates and phthalate alternatives, pesticides, and polycyclic aromatic hydrocarbons (PAHs). First, we found major differences in office worker chemical exposures by country, some of which can be explained by regulations and use patterns. For example, exposures to several pesticides were substantially higher in India where there were fewer restrictions and unique malaria challenges, and exposures to flame retardants tended to be higher in the USA and UK where there were historic, stringent furniture flammability standards. Higher exposures to PAHs in China and India could be due to high levels of outdoor air pollution that penetrates indoors. Second, some office workers were still exposed to legacy PCBs, PBDEs, and pesticides, even decades after bans or phase-outs. Third, we identified exposure to a contemporary PCB that is not covered under legacy PCB bans due to its presence as an unintentional byproduct in materials. Fourth, exposures to novel BFRs, OPEs, and other chemicals commonly used as substitutes to previously phased-out chemicals were ubiquitous. Fifth, some exposures were influenced by individual factors, not just countries and buildings. Phthalate exposures, for example, were related to personal care product use, country restrictions, and building materials. Overall, we found substantial country differences in chemical exposures and continued exposures to legacy phased-out chemicals and their substitutes in buildings. These findings warrant further research on the role of chemicals in office buildings on worker health.
Collapse
Affiliation(s)
- Anna S Young
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA.
| | | | | | | | - Emily R Jones
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
| | | | - Brent A Coull
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Russ Hauser
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marianne Lahaie Luna
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; University of Toronto Dalla Lana School of Public Health, Toronto, Canada
| | - Yu Shan Chung
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph G Allen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
20
|
Ghassabian A, Vandenberg L, Kannan K, Trasande L. Endocrine-Disrupting Chemicals and Child Health. Annu Rev Pharmacol Toxicol 2021; 62:573-594. [PMID: 34555290 DOI: 10.1146/annurev-pharmtox-021921-093352] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While definitions vary, endocrine-disrupting chemicals (EDCs) have two fundamental features: their disruption of hormone function and their contribution to disease and disability. The unique vulnerability of children to low-level EDC exposures has eroded the notion that only the dose makes the thing a poison, requiring a paradigm shift in scientific and policy practice. In this review, we discuss the unique vulnerability of children as early as fetal life and provide an overview of epidemiological studies on programming effects of EDCs on neuronal, metabolic, and immune pathways as well as on endocrine, reproductive, and renal systems. Building on this accumulating evidence, we dispel and address existing myths about the health effects of EDCs with examples from child health research. Finally, we provide a list of effective actions to reduce exposure, and subsequent harm that are applicable to individuals, communities, and policy-makers. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Kurunthachalam Kannan
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Leonardo Trasande
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA.,Wagner School of Public Service and College of Global Public Health, New York University, New York, NY 10016, USA
| |
Collapse
|
21
|
Young AS, Zoeller T, Hauser R, James-Todd T, Coull BA, Behnisch PA, Brouwer A, Zhu H, Kannan K, Allen JG. Assessing Indoor Dust Interference with Human Nuclear Hormone Receptors in Cell-Based Luciferase Reporter Assays. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47010. [PMID: 33851871 PMCID: PMC8045486 DOI: 10.1289/ehp8054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), organophosphate esters (OPEs), and polybrominated diphenyl ethers (PBDEs) are hormone-disrupting chemicals that migrate from building materials into air and dust. OBJECTIVES We aimed to quantify the hormonal activities of 46 dust samples and identify chemicals driving the observed activities. METHODS We evaluated associations between hormonal activities of extracted dust in five cell-based luciferase reporter assays and dust concentrations of 42 measured PFAS, OPEs, and PBDEs, transformed as either raw or potency-weighted concentrations based on Tox21 high-throughput screening data. RESULTS All dust samples were hormonally active, showing antagonistic activity toward peroxisome proliferator-activated receptor (PPARγ2) (100%; 46 of 46 samples), thyroid hormone receptor (TRβ) (89%; 41 samples), and androgen receptor (AR) (87%; 40 samples); agonist activity on estrogen receptor (ERα) (96%; 44 samples); and binding competition with thyroxine (T4) on serum transporter transthyretin (TTR) (98%; 45 samples). Effects were observed with as little as 4μg of extracted dust. In regression models for each chemical class, interquartile range increases in potency-weighted or unknown-potency chemical concentrations were associated with higher hormonal activities of dust extracts (potency-weighted: ΣPFAS-TRβ, ↑28%, p<0.05; ΣOPEs-TRβ, ↑27%, p=0.08; ΣPBDEs-TRβ, ↑20%, p<0.05; ΣPBDEs-ERα, ↑7.7%, p=0.08; unknown-potency: ΣOPEs-TTR, ↑34%, p<0.05; ΣOPEs-AR, ↑13%, p=0.06), adjusted for chemicals with active, inactive, and unknown Tox21 designations. DISCUSSION All indoor dust samples exhibited hormonal activities, which were associated with PFAS, PBDE, and OPE levels. Reporter gene cell-based assays are relatively inexpensive, health-relevant evaluations of toxic loads of chemical mixtures that building occupants are exposed to. https://doi.org/10.1289/EHP8054.
Collapse
Affiliation(s)
- Anna S. Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Population Health Sciences, Harvard Graduate School of Arts and Sciences, Cambridge, Massachusetts, USA
| | - Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Brent A. Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Joseph G. Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|