1
|
Patterson A, Boyle N, John J, Wang M, Mannochio-Russo H, Pyo JJ, Kim MS, Tian S, Koo I, Anitha M, Tian Y, Morgan E, Murray I, Perdew G, Wu G, Dorrestein P, Bisanz J, Redinbo M. Glucuronidation Metabolomic Fingerprinting to Map Host-Microbe Metabolism. RESEARCH SQUARE 2025:rs.3.rs-6321321. [PMID: 40297700 PMCID: PMC12036448 DOI: 10.21203/rs.3.rs-6321321/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Glucuronidation is an important detoxification pathway that operates in balance with gastrointestinal microbial β-glucuronidase (GUS) enzymes that can regenerate active metabolites from their glucuronidated forms. Although significant progress has been made in characterizing GUS enzymes, methods to comprehensively define the glucuronidome - the collection of glucuronidated metabolites - remain limited. In this study we employed pattern-filtering data science approaches alongside untargeted LC-MS/MS metabolomics to map the glucuronidome in urine, serum, and colon/fecal samples from gnotobiotic and conventional mice. Our findings reveal microbiome-driven shifts in the glucuronidome, highlighting how differential GUS activity can influence host metabolite profiles. Reverse metabolomics of known glucuronidated chemicals and glucuronidation pattern filtering searches in public metabolomics datasets exposed the diversity of glucuronidated metabolites in human and mouse ecosystems. In summary, we present a new glucuronidation fingerprint resource that provides broader access to and analysis of the glucuronidome. By systematically capturing glucuronidation patterns, this resource enhances unknown metabolite annotation efforts and provides new insights into the dynamic relationship between the host and bacterial biotransformation activities.
Collapse
|
2
|
Kuukkanen I, Pietikäinen A, Rissanen T, Hurme S, Kortela E, Kanerva MJ, Oksi J, Hytönen J, Karonen M. UHPLC-MS/MS-based untargeted metabolite profiling of Lyme neuroborreliosis. Sci Rep 2025; 15:8442. [PMID: 40069240 PMCID: PMC11897164 DOI: 10.1038/s41598-025-92189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
The diagnosis of Lyme neuroborreliosis (LNB) requires the demonstration of intrathecal synthesis of Borrelia antibodies in a patient's cerebrospinal fluid (CSF), which involves the invasive procedure of a lumbar puncture. This study serves as a feasibility study aimed at exploring the potential of using serum samples, which are easily obtainable routine clinical samples, for LNB diagnostics via advanced metabolomics techniques. Serum samples were collected from confirmed LNB patients before and after treatment, with post-treatment samples serving as controls. The objective of the study was to find stable biomarkers for acute LNB through untargeted metabolomics analysis using ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The study focused on biomarkers that could be reliably detected in serum samples stored under typical clinical conditions, without the need for special handling, ensuring consistent detection over time. The analysis revealed 26,978 molecular features (MFs), of which 1,746 were statistically significant (p < 0.001). Further manual investigation into 91 of the most prominent MFs revealed 53 potential biomarkers for LNB, individually or in combination. The workflow developed provides a comprehensive platform for biomarker detection, with potential applications in both research and clinical settings for LNB and other infections. This minimally invasive diagnostic approach is promising, and additional validation and future studies are needed for it to be considered as a practical alternative or a complement to CSF-based diagnostics of LNB in everyday clinical practice.
Collapse
Affiliation(s)
- Ilari Kuukkanen
- Department of Chemistry, University of Turku, Turku, Finland.
- TBD Turku, University of Turku, Turku, Finland.
| | - Annukka Pietikäinen
- TBD Turku, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Tyks Laboratories, Turku University Hospital, Turku, Finland
| | - Tiia Rissanen
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Saija Hurme
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | | | - Mari J Kanerva
- Department of Infectious Diseases, Turku University Hospital and University of Turku, Turku, Finland
| | - Jarmo Oksi
- Department of Infectious Diseases, Turku University Hospital and University of Turku, Turku, Finland
| | - Jukka Hytönen
- TBD Turku, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Tyks Laboratories, Turku University Hospital, Turku, Finland
| | - Maarit Karonen
- Department of Chemistry, University of Turku, Turku, Finland
- TBD Turku, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Iglesias-Gonzalez A, Appenzeller BMR. Comprehensive analysis, comprehensive understanding: The benefit of widening the scope to uncover the complexity of human chemical exposome and tailor personalized risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178111. [PMID: 39693651 DOI: 10.1016/j.scitotenv.2024.178111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/30/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
While biomonitoring approaches are frequently employed for assessing chemical exposure, many of them are constrained to a limited number of target chemicals, running counter to our current understanding of interactions within chemical mixtures and the growing evidence of multiple exposures within human populations. Although authors agree on the need for more comprehensive methodologies, literature provides insufficient evidence of the multifaceted nature of exposure and of the benefit of widening the analytical scope to improve exposure assessment. Moreover, although multiple exposures are generally admitted, very few are known on the scale of the human chemical exposome. Here, we illustrate how increasing the number of chemicals possibly captured improves the information on exposure. Through a literature review centered on studies utilizing hair analysis to assess exposure to anthropogenic organic pollutants, we provide here the first demonstration of how expanding the number of compounds analyzed in biomonitoring methods enhances our understanding of the chemical exposome. The results not only underscore the prevalence of multiple exposures but also reveal distinct exposure patterns within various demographic groups. Utilizing extrapolated biomonitoring data, we introduce a novel approach to estimate the number of chemicals to which humans can be simultaneously exposed. This biomonitoring-based approach is the first one relying on data derived from human samples rather than indirect metrics such as sales figures or registered chemicals. Eventually, we draw upon results from studies conducted in our team to illustrate local specificities in exposure among different populations, emphasizing the complexity of risk assessment while implemented in prevention strategies.
Collapse
Affiliation(s)
- Alba Iglesias-Gonzalez
- Human Biomonitoring Research Unit, Department of Precision Health - Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health - Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg.
| |
Collapse
|
4
|
Djieugoue B, Nlend B, Ngo Boum-Nkot S, Celle H, Ben Nasr W, Vystavna Y, Re V, Zouari K, Trabelsi R, Etame J, Huneau F. Emerging organic compounds in surface and groundwater reflect the urban dynamics in sub-Saharan cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177217. [PMID: 39471949 DOI: 10.1016/j.scitotenv.2024.177217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Rapid and uncontrolled urbanization in sub-Saharan Africa has led to an increased production and expansion of synthetic chemicals, resulting in significant pollution of the aquatic environments, particularly by Emerging Organic Contaminants (EOCs). Due to the low income of the population in this region, there is often a lack of control over water and fishery resources prior to consumption. Therefore, the current study aims to use EOCs as markers of water resource quality degradation, and to assess the potential environmental risk of these compounds on some aquatic organisms. Among 120 targeted compounds, 66 were detected at 22 sites in Douala city, Cameroon, including 9 rivers and 13 groundwater samples. The detected EOCs were classified into three categories, including pharmaceuticals and personal care products (n = 55), lifestyle compounds (n = 7) and industrial compounds (n = 4). Surface water was highly impacted, with EOC total concentrations reaching 61,273 ng/L, versus 16,677 ng/L in groundwater. Contamination levels and the type of contaminants were closely linked to land use patterns in the study area. Contamination was mainly attributed to domestic, hospital and brewery's industry wastewaters, landfill and pit latrines. Consumption patterns and physicochemical properties of compounds, in particular their persistence, polarity and octanol/water gradient (Kow), explain their occurrence at high concentrations (up to μg/L) in groundwater. According to Risk Quotient (RQ) with a maximum of 93.4 in surface water and 8.5 in groundwater, about 1/3 of the identified compounds pose a serious threat to aquatic organisms, including algae, invertebrates and fish. For the first time in Central African, we revealed these high levels of water contamination by EOCs and identified the risk for the environmental health. Our study demonstrates the urgency to adopt sustainable water management strategies in large cities of the region.
Collapse
Affiliation(s)
- B Djieugoue
- Université de Douala, Faculté des Sciences, Douala, P.O. BOX 24157, Cameroon; National Engineering School of Sfax, Laboratory of Radio-Analyses and Environment, BP1173, 3038 Sfax, Tunisia
| | - B Nlend
- Université de Douala, Faculté des Sciences, Douala, P.O. BOX 24157, Cameroon
| | - S Ngo Boum-Nkot
- Université de Douala, Faculté des Sciences, Douala, P.O. BOX 24157, Cameroon
| | - H Celle
- Université de Franche-Comté, CNRS UMR 6249 Chrono-Environnement, 16 route de Gray, 25030 Besançon, France
| | - W Ben Nasr
- National Engineering School of Sfax, Laboratory of Radio-Analyses and Environment, BP1173, 3038 Sfax, Tunisia
| | - Y Vystavna
- International Atomic Energy Agency, Isotope Hydrology Section, 1400 Vienna, Austria
| | - V Re
- University of Pisa, Department of Earth Sciences, Via Santa Maria 53, 56126 Pisa, Italy
| | - K Zouari
- National Engineering School of Sfax, Laboratory of Radio-Analyses and Environment, BP1173, 3038 Sfax, Tunisia
| | - R Trabelsi
- National Engineering School of Sfax, Laboratory of Radio-Analyses and Environment, BP1173, 3038 Sfax, Tunisia
| | - J Etame
- Université de Douala, Faculté des Sciences, Douala, P.O. BOX 24157, Cameroon
| | - F Huneau
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP52, 20250 Corte, France; CNRS, UMR 6134 SPE, BP52, 20250 Corte, France.
| |
Collapse
|
5
|
Li X, Zhou S, Deng Z, Liu B, Gao B. Corn-inspired high-density plasmonic metal-organic frameworks microneedles for enhanced SERS detection of acetaminophen. Talanta 2024; 278:126463. [PMID: 38924988 DOI: 10.1016/j.talanta.2024.126463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Effective monitoring of acetaminophen (APAP) dosage is crucial for preventing antipyretic abuse, ensuring therapeutic efficacy, and minimizing toxic effects. However, existing self-monitoring methods are limited. In this study, we designed a plasmonic microneedle (MN) sensor for real-time nondestructive monitoring of acetaminophen levels in dermal interstitial fluid (ISF) by employing a handheld Raman spectrometer. The fabricated MN sensor incorporated a high-density plasmonic MOFs known as HDPM, which unique structure of large specific surface area, specific pore structure as well as high density gold nanospheres packing enabled the excellent performance of selective ISF drug enrichment and surface-enhanced Raman scattering (SERS). The maximum electric field enhancement factor of the HDPM nanostructure could be calculated as 5.73 × 107. The developed HDPM@MNs was characterized with a core-shell type "soft on the outside and rigid on the inside" structure, which exhibited sufficient hardness and flexibility to penetrate the dermal tissue with little damage, and robust SERS enhancement effect in APAP detection without any interfering peaks. Through a hydrogel drug simulation experiment, the sensor demonstrated robust capabilities for acetaminophen enrichment and monitoring, exhibiting excellent stability and repeatability. The quantitative detection window spanned from 1 to 100 μM, with a low detection limit reaching 0.45 μM. Furthermore, by monitoring the concentration of acetaminophen in the interstitial fluid of rat skin at different doses and for different administration times, the HDPM@MNs can be used to determine the pharmacokinetics of acetaminophen in rats and the physiological characteristics associated with various dosage regimens. This work not only holds promise for drug monitoring but also provides a novel approach for nondestructive monitoring of other crucial low-abundance physiological markers.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Shu Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Bing Liu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
6
|
Anjali R, Shanthakumar S. Optimization, kinetics, and pathways of pharmaceutical pollutant degradation using solar Fenton technique. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:674. [PMID: 38942963 DOI: 10.1007/s10661-024-12837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024]
Abstract
Solar Fenton is an important and extensively used advanced oxidation process (AOP) to degrade pharmaceutical pollutants. The objective of this study was to evaluate the performance of simultaneous degradation of the mixed pollutants (amoxicillin, acetaminophen, and ciprofloxacin) for an aqueous solution using the solar Fenton process. Operating parameters such as pH, iron doses, H2O2 doses, pollutant concentrations, and time were studied. From the experimental results, the ideal conditions were obtained for the removal of mixed pollutants such as pH 3, Fe2+ 0.04 mM, H2O2 4 mM, the concentration of the mixed pollutants 5 mg/L, solar radiation 400 W/m2, and time 10 min, respectively. The pseudo-first-order kinetics were utilized to investigate the degradation efficacy of the mixed pollutants. The result of the study indicates that the degradation efficiency was > 99% for the mixed pollutants. A maximum of 63% mineralization was observed, and hydroxyl radical scavenger effects were studied. The best optimal conditions were applied to assess the spiked wastewater (municipal wastewater (MWW) and hospital wastewater (HWW)). The highest elimination rates for AMX, ACET, and CIP were observed as 65%, 89%, and 85% for MWW and 76%, 92%, and 80% for HWW, respectively. The degraded by-products were detected by LC-ESI-MS in the water matrix (aqueous solution and spiked wastewater), and ECOSAR analysis was performed for the transformed products. The study concluded that the solar Fenton technique is promising and effective for the removal of mixed pollutants from the water matrix.
Collapse
Affiliation(s)
- Ravi Anjali
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | | |
Collapse
|
7
|
Reale E, Zare Jeddi M, Paini A, Connolly A, Duca R, Cubadda F, Benfenati E, Bessems J, S Galea K, Dirven H, Santonen T, M Koch H, Jones K, Sams C, Viegas S, Kyriaki M, Campisi L, David A, Antignac JP, B Hopf N. Human biomonitoring and toxicokinetics as key building blocks for next generation risk assessment. ENVIRONMENT INTERNATIONAL 2024; 184:108474. [PMID: 38350256 DOI: 10.1016/j.envint.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.
Collapse
Affiliation(s)
- Elena Reale
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | | | - Alison Connolly
- UCD Centre for Safety & Health at Work, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, D04 V1W8, Dublin, Ireland for Climate and Air Pollution Studies, Physics, School of Natural Science and the Ryan Institute, National University of Ireland, University Road, Galway H91 CF50, Ireland
| | - Radu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire national de santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Francesco Cubadda
- Istituto Superiore di Sanità - National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Jos Bessems
- VITO HEALTH, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Hubert Dirven
- Department of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032 Työterveyslaitos, Finland
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kate Jones
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Craig Sams
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Machera Kyriaki
- Benaki Phytopathological Institute, 8, Stephanou Delta Street, 14561 Kifissia, Athens, Greece
| | - Luca Campisi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Flashpoint srl, Via Norvegia 56, 56021 Cascina (PI), Italy
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | | | - Nancy B Hopf
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| |
Collapse
|
8
|
Ghosh P, Magee N, Akakpo JY, Ahamed F, Eppler N, Jones E, Yu Y, He L, Lebofsky M, Dai H, Jaeschke H, Ding WX, Zhang Y. Hepatocyte-specific deletion of small heterodimer partner protects mice against acetaminophen-induced hepatotoxicity via activation of Nrf2. Toxicol Sci 2023; 197:53-68. [PMID: 37792503 PMCID: PMC10734614 DOI: 10.1093/toxsci/kfad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Acetaminophen (APAP) overdose stands as the primary cause of acute liver failure in the United States. APAP hepatotoxicity involves hepatic glutathione (GSH) depletion and mitochondrial damage. To counteract the toxicity of APAP, the nuclear factor erythroid 2 like 2 (Nrf2) activates the expression of genes responsible for drug detoxification and GSH synthesis. In this study, we present evidence that the elimination of hepatocyte small heterodimer partner, a critical transcriptional repressor for liver metabolism, results in Nrf2 activation and protects mice from APAP-induced acute liver injury. Initial investigations conducted on wildtype (WT) mice revealed a swift downregulation of Shp mRNA within the first 24 h after APAP administration. Subsequent treatment of hepatocyte-specific Shp knockout (ShpHep-/-) mice with 300 mg/kg APAP for 2 h exhibited comparable bioactivation of APAP with that observed in the WT controls. However, a significant reduction in liver injury was observed in ShpHep-/- after APAP treatment for 6 and 24 h. The decreased liver injury correlated with a faster recovery of GSH, attributable to heightened expression of Nrf2 target genes involved in APAP detoxification and GSH synthesis. Moreover, in vitro studies revealed that SHP protein interacted with NRF2 protein, inhibiting the transcription of Nrf2 target genes. These findings hold relevance for humans, as overexpression of SHP hindered APAP-induced NRF2 activation in primary human hepatocytes. In conclusion, our studies have unveiled a novel regulatory axis involving SHP and NRF2 in APAP-induced acute liver injury, emphasizing SHP as a promising therapeutic target in APAP overdose-induced hepatotoxicity.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Nancy Magee
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Yifan Yu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Lily He
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hongyan Dai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
9
|
Gorrochategui E, Le Vee M, Selmi H, Gérard A, Chaker J, Krais AM, Lindh C, Fardel O, Chevrier C, Le Cann P, Miller GW, Barouki R, Jégou B, Gicquel T, Kristensen DM, David A. High-resolution mass spectrometry identifies delayed biomarkers for improved precision in acetaminophen/paracetamol human biomonitoring. ENVIRONMENT INTERNATIONAL 2023; 181:108299. [PMID: 37951015 DOI: 10.1016/j.envint.2023.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
Paracetamol/acetaminophen (N-acetyl-p-aminophenol, APAP) is a top selling analgesic used in more than 600 prescription and non-prescription pharmaceuticals. To study efficiently some of the potential undesirable effects associated with increasing APAP consumption (e.g., developmental disorders, drug-induced liver injury), there is a need to improve current APAP biomonitoring methods that are limited by APAP short half-life. Here, we demonstrate using high-resolution mass spectrometry (HRMS) in several human studies that APAP thiomethyl metabolite conjugates (S-methyl-3-thioacetaminophen sulfate and S-methyl-3-thioacetaminophen sulphoxide sulfate) are stable biomarkers with delayed excretion rates compared to conventional APAP metabolites, that could provide a more reliable history of APAP ingestion in epidemiological studies. We also show that these biomarkers could serve as relevant clinical markers to diagnose APAP acute intoxication in overdosed patients, when free APAP have nearly disappeared from blood. Using in vitro liver models (HepaRG cells and primary human hepatocytes), we then confirm that these thiomethyl metabolites are directly linked to the toxic N-acetyl-p-benzoquinone imine (NAPQI) elimination, and produced via an overlooked pathway called the thiomethyl shunt pathway. Further studies will be needed to determine whether the production of the reactive hepatotoxic NAPQI metabolites is currently underestimated in human. Nevertheless, these biomarkers could already serve to improve APAP human biomonitoring, and investigate, for instance, inter-individual variability in NAPQI production to study underlying causes involved in APAP-induced hepatotoxicity. Overall, our findings demonstrate the potential of exposomics-based HRMS approach to advance towards a better precision for human biomonitoring.
Collapse
Affiliation(s)
- Eva Gorrochategui
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Marc Le Vee
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Habiba Selmi
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Anne Gérard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Jade Chaker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Pierre Le Cann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Robert Barouki
- Unité UMR-S 1124 Inserm-Université Paris Descartes "Toxicologie Pharmacologie et Signalisation Cellulaire", Paris, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Thomas Gicquel
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), CHU Rennes, Univ Rennes, INSERM, INRAE, UMR_A 1341, UMR_S 1317, 35000 Rennes, France
| | - David M Kristensen
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; Department of Science and Environment, Roskilde University, Roskilde, Denmark; Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.
| |
Collapse
|
10
|
Ezugwu AL, Anaduaka EG, Chibuogwu CC, Ezeorba TPC. Meat tenderization using acetaminophen (paracetamol/APAP): A review on deductive biochemical mechanisms, toxicological implications and strategies for mitigation. Heliyon 2023; 9:e15628. [PMID: 37159697 PMCID: PMC10163616 DOI: 10.1016/j.heliyon.2023.e15628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Meats consist of edible portions originating from domestic and wild animals. Meat's palatability and sensory accessibility largely depend on its tenderness to consumers. Although many factors influence meat tenderness, the cooking method cannot be neglected. Different chemical, mechanical, and natural means of meat tenderization have been considered healthy and safe for consumers. However, many households, food vendors, and bars in developing countries engage in the unhealthy use of acetaminophen (paracetamol/APAP) in meat tenderization due to the cost reduction it offers in the overall cooking process. Acetaminophen (paracetamol/APAP) is one of the most popular, relatively cheap, and ubiquitous over-the-counter drugs that induce serious toxicity challenges when misused. It is important to note that acetaminophen during cooking is hydrolyses into a toxic compound known as 4-aminophenol, which damages the liver and kidney and results in organ failure. Despite the reports on the increase in the use of acetaminophen for meat tenderizing in many web reports, there have not been any serious scientific publications on this subject. This study adopted classical/traditional methodology to review relevant literature retrieved from Scopus, PubMed, and ScienceDirect using relevant key terms (Acetaminophen, Toxicity, Meat tenderization, APAP, paracetamol, mechanisms) and Boolean operators (AND and OR). This paper provides in-depth information on the hazard and health implications of consuming acetaminophen tenderized meat via genetic and metabolic pathways deductions. Understanding these unsafe practices will promote awareness and mitigation strategies.
Collapse
Affiliation(s)
- Arinze Linus Ezugwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Christian Chiazor Chibuogwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Corresponding author. Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.
| |
Collapse
|
11
|
Jaber MA, Ghanim BY, Al-Natour M, Arqoub DA, Abdallah Q, Abdelrazig S, Alkrad JA, Kim DH, Qinna NA. Potential biomarkers and metabolomics of acetaminophen-induced liver injury during alcohol consumption: A preclinical investigation on C57/BL6 mice. Toxicol Appl Pharmacol 2023; 465:116451. [PMID: 36894070 DOI: 10.1016/j.taap.2023.116451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The toxic effects of alcohol consumption on population health are significant worldwide and the synergistic toxic effects of concurrent intake of Acetaminophen and alcohol is of clinical concern. The understanding of molecular mechanisms beneath such synergism and acute toxicity may be enhanced through assessing underlying metabolomics changes. The molecular toxic activities of the model hereby, is assessed though metabolomics profile with a view to identifying metabolomics targets which could aid in the management of drug-alcohol interactions. In vivo exposure of C57/BL6 mice to APAP (70 mg/kg), single dose of ethanol (6 g/kg of 40%) and APAP after alcohol consumption was employed. Plasma samples were prepared and subjected to biphasic extraction for complete LC-MS profiling, and tandem mass MS2 analysis. Among the detected ions, 174 ions had significant (VIP scores >1 and FDR <0.05) changes between groups and were selected as potential biomarkers and significant variables. The presented metabolomics approach highlighted several affected metabolic pathways, including nucleotide and amino acid metabolism; aminoacyl-tRNA biosynthesis as well as bioenergetics of TCA and Krebs cycle. The impact of APAP on the concurrent administration of alcohol showed great biological interactions in the vital ATP and amino acid producing processes. The metabolomics changes show distinct metabolites which are altered to alcohol-APAP consumption while presenting several unneglectable risks on the vitality of metabolites and cellular molecules which shall be concerned.
Collapse
Affiliation(s)
- Malak A Jaber
- Department of Medicinal Chemistry and Analysis, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Mohammad Al-Natour
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Duaa Abu Arqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Qasem Abdallah
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Salah Abdelrazig
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | | | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Material and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan; Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| |
Collapse
|
12
|
López-López E, Medina-Franco JL. Towards Decoding Hepatotoxicity of Approved Drugs through Navigation of Multiverse and Consensus Chemical Spaces. Biomolecules 2023; 13:biom13010176. [PMID: 36671561 PMCID: PMC9855470 DOI: 10.3390/biom13010176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Drug-induced liver injury (DILI) is the principal reason for failure in developing drug candidates. It is the most common reason to withdraw from the market after a drug has been approved for clinical use. In this context, data from animal models, liver function tests, and chemical properties could complement each other to understand DILI events better and prevent them. Since the chemical space concept improves decision-making drug design related to the prediction of structure-property relationships, side effects, and polypharmacology drug activity (uniquely mentioning the most recent advances), it is an attractive approach to combining different phenomena influencing DILI events (e.g., individual "chemical spaces") and exploring all events simultaneously in an integrated analysis of the DILI-relevant chemical space. However, currently, no systematic methods allow the fusion of a collection of different chemical spaces to collect different types of data on a unique chemical space representation, namely "consensus chemical space." This study is the first report that implements data fusion to consider different criteria simultaneously to facilitate the analysis of DILI-related events. In particular, the study highlights the importance of analyzing together in vitro and chemical data (e.g., topology, bond order, atom types, presence of rings, ring sizes, and aromaticity of compounds encoded on RDKit fingerprints). These properties could be aimed at improving the understanding of DILI events.
Collapse
Affiliation(s)
- Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City 07360, Mexico
- Correspondence: (E.L.-L.); (J.L.M.-F.)
| | - José L. Medina-Franco
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City 07360, Mexico
- Correspondence: (E.L.-L.); (J.L.M.-F.)
| |
Collapse
|
13
|
Spindola Vilela CL, Damasceno TL, Thomas T, Peixoto RS. Global qualitative and quantitative distribution of micropollutants in the deep sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119414. [PMID: 35598814 DOI: 10.1016/j.envpol.2022.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) include a wide range of biological disruptors that can be toxic to wildlife and humans at very low concentrations (<1 μg/L). These mainly anthropogenic pollutants have been widely detected in different areas of the planet, including the deep sea, and have impacts on marine life. Because of this potential toxicity, the global distribution, quantity, incidence, and potential impacts of deep-sea MPs were investigated in a systematic review of the literature. The results showed that MPs have reached different zones of the ocean and are more frequently reported in the Northern Hemisphere, where higher concentrations are found. MPs are also concentrated in depths up to 3000 m, where they are also more frequently studied, but also extend deeper than 10,000 m. Potentially toxic metals (PTMs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), organotins, and polycyclic aromatic hydrocarbons (PAHs) were identified as the most prevalent and widely distributed MPs at ≥200 m depth. PTMs are widely distributed in the deep sea in high concentrations; aluminum is the most prevalent up to 3000 m depth, followed by zinc and copper. PCBs, organotins, hexachlorocyclohexanes (HCHs), PAHs, and phenols were detected accumulated in both organisms and environmental samples above legislated thresholds or known toxicity levels. Our assessment indicated that the deep sea can be considered a sink for MPs.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa Lopes Damasceno
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raquel Silva Peixoto
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
14
|
Kortenkamp A, Scholze M, Ermler S, Priskorn L, Jørgensen N, Andersson AM, Frederiksen H. Combined exposures to bisphenols, polychlorinated dioxins, paracetamol, and phthalates as drivers of deteriorating semen quality. ENVIRONMENT INTERNATIONAL 2022; 165:107322. [PMID: 35691715 DOI: 10.1016/j.envint.2022.107322] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Semen quality in men continues to decline in Western countries, but the contours of the issue remain obscure, in relation to contributing chemicals. OBJECTIVES To obtain more clarity about the chemicals that drive the deterioration of semen quality, we conducted a mixture risk assessment based on European exposures. METHODS We included chemicals capable of affecting semen quality after prenatal exposures, among them androgen receptor antagonists, substances that disrupt prostaglandin signalling, suppress testosterone synthesis, inhibit steroidogenic enzymes or activate the aryl hydrocarbon receptor. We employed the Hazard Index approach (HI), based on risk quotients of exposures in Europe and reference doses for reductions in semen quality. By summing up the risk quotients of the 29 chemicals included in the assessment we examined fold-exceedances of "acceptable" mixture exposures relative to an index value of 1. For bisphenols A, F, S, phthalates DEHP, DnBP, BBzP, DiNP, n-butyl paraben and paracetamol we relied on biomonitoring studies in which these 9 chemicals were measured together in the same subjects. This allowed us to construct personalised Hazard Indices. RESULTS Highly exposed subjects experienced combined exposures to the 9 chemicals that exceeded the index value of 1 by more than 100-fold; the median was a 17-fold exceedance. Accounting for median background exposures to the remaining 20 chemicals added a Hazard Index of 1.39. Bisphenol A made the largest contribution to the HI, followed by polychlorinated dioxins, bisphenols S and F and DEHP. Eliminating bisphenol A alone would still leave unacceptably high mixture risks. Paracetamol is also a driver of mixture risks among subjects using the drug. CONCLUSIONS Tolerable exposures to substances associated with deteriorations of semen quality are exceeded by a large margin. Bisphenols, polychlorinated dioxins, phthalates and analgesics drive these risks. Dedicated efforts towards lowering exposures to these substances are necessary to mitigate risks.
Collapse
Affiliation(s)
- Andreas Kortenkamp
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge UB8 3PH, United Kingdom.
| | - Martin Scholze
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
| | - Sibylle Ermler
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
| | - Lærke Priskorn
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - Niels Jørgensen
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - Hanne Frederiksen
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| |
Collapse
|
15
|
Ratios of Acetaminophen Metabolites Identify New Loci of Pharmacogenetic Relevance in a Genome-Wide Association Study. Metabolites 2022; 12:metabo12060496. [PMID: 35736429 PMCID: PMC9228664 DOI: 10.3390/metabo12060496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) with non-targeted metabolomics have identified many genetic loci of biomedical interest. However, metabolites with a high degree of missingness, such as drug metabolites and xenobiotics, are often excluded from such studies due to a lack of statistical power and higher uncertainty in their quantification. Here we propose ratios between related drug metabolites as GWAS phenotypes that can drastically increase power to detect genetic associations between pairs of biochemically related molecules. As a proof-of-concept we conducted a GWAS with 520 individuals from the Qatar Biobank for who at least five of the nine available acetaminophen metabolites have been detected. We identified compelling evidence for genetic variance in acetaminophen glucuronidation and methylation by UGT2A15 and COMT, respectively. Based on the metabolite ratio association profiles of these two loci we hypothesized the chemical structure of one of their products or substrates as being 3-methoxyacetaminophen, which we then confirmed experimentally. Taken together, our study suggests a novel approach to analyze metabolites with a high degree of missingness in a GWAS setting with ratios, and it also demonstrates how pharmacological pathways can be mapped out using non-targeted metabolomics measurements in large population-based studies.
Collapse
|
16
|
Rapid Detection of Direct Compound Toxicity and Trailing Detection of Indirect Cell Metabolite Toxicity in a 96-Well Fluidic Culture Device for Cell-Based Screening Environments: Tactics in Six Sigma Quality Control Charts. APPLIED SCIENCES-BASEL 2022. [PMID: 37502123 PMCID: PMC10374175 DOI: 10.3390/app12062786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microfluidic screening tools, in vitro, evolve amid varied scientific disciplines. One emergent technique, simultaneously assessing cell toxicity from a primary compound and ensuing cell-generated metabolites (dual-toxicity screening), entails in-line systems having sequentially aligned culture chambers. To explore dual-tox screens, we probe the dissemination of nutrients involving 1-way transport with upstream compound dosing, midstream cascading flows, and downstream cessation. Distribution of flow gives rise to broad concentration ranges of dosing compound (0→ICcompound100) and wide-ranging concentration ranges of generated cell metabolites (0→ICmetabolites100). Innately, single-pass unidirectional flow retains 1st pass informative traits across the network, composed of nine interconnected culture wells, preserving both compound and cell-secreted byproducts as data indicators in each adjacent culture chamber. Thereafter, to assess effective compound hepatotoxicity (0→ECcompound100) and simultaneously classify for cell-metabolite toxicity (0→ECmetabolite100), we reveal utility by analyzing culture viability against ramping exposures of acetaminophen (APAP) and nefazodone (NEF), compounds of hepatic significance. We then discern metabolite generation with an emphasis on amplification across µchannel multiwell sites. Lastly, using conventional cell functions as indicator tools to assess dual toxicity, we investigate a non-drug induced liver injury (non-DILI) compound and DILI compound. The technology is for predictive evaluations of new compound formulations, new chemical entities (NCE), or drugs that have previously failed testing for unresolved reasons.
Collapse
|
17
|
|
18
|
Interest of high-resolution mass spectrometry in analytical toxicology: Focus on pharmaceuticals. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Bauer AZ, Swan SH, Kriebel D, Liew Z, Taylor HS, Bornehag CG, Andrade AM, Olsen J, Jensen RH, Mitchell RT, Skakkebaek NE, Jégou B, Kristensen DM. Paracetamol use during pregnancy - a call for precautionary action. Nat Rev Endocrinol 2021; 17:757-766. [PMID: 34556849 PMCID: PMC8580820 DOI: 10.1038/s41574-021-00553-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Paracetamol (N-acetyl-p-aminophenol (APAP), otherwise known as acetaminophen) is the active ingredient in more than 600 medications used to relieve mild to moderate pain and reduce fever. APAP is widely used by pregnant women as governmental agencies, including the FDA and EMA, have long considered APAP appropriate for use during pregnancy when used as directed. However, increasing experimental and epidemiological research suggests that prenatal exposure to APAP might alter fetal development, which could increase the risks of some neurodevelopmental, reproductive and urogenital disorders. Here we summarize this evidence and call for precautionary action through a focused research effort and by increasing awareness among health professionals and pregnant women. APAP is an important medication and alternatives for treatment of high fever and severe pain are limited. We recommend that pregnant women should be cautioned at the beginning of pregnancy to: forego APAP unless its use is medically indicated; consult with a physician or pharmacist if they are uncertain whether use is indicated and before using on a long-term basis; and minimize exposure by using the lowest effective dose for the shortest possible time. We suggest specific actions to implement these recommendations. This Consensus Statement reflects our concerns and is currently supported by 91 scientists, clinicians and public health professionals from across the globe.
Collapse
Affiliation(s)
- Ann Z Bauer
- Department of Public Health, University of Massachusetts School of Health Sciences, Lowell, MA, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Kriebel
- Department of Public Health, University of Massachusetts School of Health Sciences, Lowell, MA, USA
| | - Zeyan Liew
- Yale Center for Perinatal, Paediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale-New Haven Hospital, New Haven, CT, USA
| | - Carl-Gustaf Bornehag
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Anderson M Andrade
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Jørn Olsen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Rigmor H Jensen
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, Edinburgh, Scotland
| | - Niels E Skakkebaek
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S, 1085, Rennes, France
| | - David M Kristensen
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S, 1085, Rennes, France.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
David A, Chaker J, Price EJ, Bessonneau V, Chetwynd AJ, Vitale CM, Klánová J, Walker DI, Antignac JP, Barouki R, Miller GW. Towards a comprehensive characterisation of the human internal chemical exposome: Challenges and perspectives. ENVIRONMENT INTERNATIONAL 2021; 156:106630. [PMID: 34004450 DOI: 10.1016/j.envint.2021.106630] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 05/18/2023]
Abstract
The holistic characterisation of the human internal chemical exposome using high-resolution mass spectrometry (HRMS) would be a step forward to investigate the environmental ætiology of chronic diseases with an unprecedented precision. HRMS-based methods are currently operational to reproducibly profile thousands of endogenous metabolites as well as externally-derived chemicals and their biotransformation products in a large number of biological samples from human cohorts. These approaches provide a solid ground for the discovery of unrecognised biomarkers of exposure and metabolic effects associated with many chronic diseases. Nevertheless, some limitations remain and have to be overcome so that chemical exposomics can provide unbiased detection of chemical exposures affecting disease susceptibility in epidemiological studies. Some of these limitations include (i) the lack of versatility of analytical techniques to capture the wide diversity of chemicals; (ii) the lack of analytical sensitivity that prevents the detection of exogenous (and endogenous) chemicals occurring at (ultra) trace levels from restricted sample amounts, and (iii) the lack of automation of the annotation/identification process. In this article, we discuss a number of technological and methodological limitations hindering applications of HRMS-based methods and propose initial steps to push towards a more comprehensive characterisation of the internal chemical exposome. We also discuss other challenges including the need for harmonisation and the difficulty inherent in assessing the dynamic nature of the internal chemical exposome, as well as the need for establishing a strong international collaboration, high level networking, and sustainable research infrastructure. A great amount of research, technological development and innovative bio-informatics tools are still needed to profile and characterise the "invisible" (not profiled), "hidden" (not detected) and "dark" (not annotated) components of the internal chemical exposome and concerted efforts across numerous research fields are paramount.
Collapse
Affiliation(s)
- Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Jade Chaker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Elliott J Price
- Faculty of Sports Studies, Masaryk University, Brno, Czech Republic; RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Vincent Bessonneau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Andrew J Chetwynd
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Jana Klánová
- RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Robert Barouki
- Unité UMR-S 1124 Inserm-Université Paris Descartes "Toxicologie Pharmacologie et Signalisation Cellulaire", Paris, France
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
21
|
David A, Chaker J, Multigner L, Bessonneau V. [Chemical exposome and non-targeted approaches]. Med Sci (Paris) 2021; 37:895-901. [PMID: 34647878 DOI: 10.1051/medsci/2021088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The technological advances in high-resolution mass spectrometry (HRMS), associated with the development of bioinformatics tools, allows the simultaneous detection of tens of thousands of chemical signals in biological matrices, including exogenous (i.e. xenobiotics) and endogenous molecules. These novel approaches based on HRMS, called "non-targeted" approaches, provide a unique opportunity to capture exposures to a wide range of chemicals (i.e. the internal chemical exposome) in populations, and to better understand the links between chemical exposures and the occurrence of chronic diseases.
Collapse
Affiliation(s)
- Arthur David
- Univ Rennes, Inserm, École des hautes études en santé publique (EHESP), Institut de recherche en santé, environnement et travail (Irset) - UMR_S 1085, 15 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Jade Chaker
- Univ Rennes, Inserm, École des hautes études en santé publique (EHESP), Institut de recherche en santé, environnement et travail (Irset) - UMR_S 1085, 15 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Luc Multigner
- Univ Rennes, Inserm, École des hautes études en santé publique (EHESP), Institut de recherche en santé, environnement et travail (Irset) - UMR_S 1085, 15 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes, Inserm, École des hautes études en santé publique (EHESP), Institut de recherche en santé, environnement et travail (Irset) - UMR_S 1085, 15 avenue du Professeur Léon Bernard, 35043 Rennes, France
| |
Collapse
|
22
|
Sun Y, Wan Y, Jiang Y, Wang H. Urinary concentrations of acetaminophen in young children in central and south China: Repeated measurements and associations with 8-hydroxy-guanosine and 8-hydroxy-2'-deoxyguanosine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147614. [PMID: 33992949 DOI: 10.1016/j.scitotenv.2021.147614] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Acetaminophen (AAP) is the most widely used over-the-counter analgesic in the world; it is also a metabolite of industrial chemical aniline. It may predispose individuals to oxidative stress. However, the exposure profile of AAP in the general population in China and the associations between AAP and oxidative stress biomarkers have scarcely been investigated. In this study, we determined the urinary concentrations of AAP and evaluated its associations with 8-hydroxy-guanosine (8-OHG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), the most widely used biomarkers of nucleoside oxidation affecting RNA and DNA, in 393 urine samples collected from 131 healthy children (0-6.6 y) on three consecutive days from Wuhan, central China, and Shenzhen, south China. AAP was found in all urine samples, suggesting that exposure to AAP was ubiquitous in young children in central and south China. The median concentration of specific gravity (SG)-adjusted AAP was 9.21 ng/mL (range: 1.11-1 453 ng/mL). Good inter-day reproducibility was observed for SG-adjusted AAP concentrations (intraclass correlation coefficient, 0.75). The SG-adjusted urinary 8-OHdG and 8-OHG concentrations were positively correlated with AAP (β = 0.08; 95% confidence interval [95% CI]: 0.02-0.13, and β = 0.10; 95% CI: 0.04-0.15, respectively). The data indicated that AAP exposure might be associated with oxidative DNA and RNA damage in the general population with unintentional exposure. To our knowledge, this is the first report of AAP exposure in young healthy children in central and south China. This is also the first study to evaluate the inter-day variations in urinary AAP concentrations and to explore the associations between AAP exposure and oxidative stress biomarkers in the general population.
Collapse
Affiliation(s)
- Yanfeng Sun
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Ying Jiang
- Nanshan District Centers for Disease Control and Prevention, Shenzhen, Guangdong 518054, PR China
| | - Huaiji Wang
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| |
Collapse
|
23
|
Huber C, Müller E, Schulze T, Brack W, Krauss M. Improving the Screening Analysis of Pesticide Metabolites in Human Biomonitoring by Combining High-Throughput In Vitro Incubation and Automated LC-HRMS Data Processing. Anal Chem 2021; 93:9149-9157. [PMID: 34161736 DOI: 10.1021/acs.analchem.1c00972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a current need to monitor human exposure to a large number of pesticides and other chemicals of emerging concern (CECs). This requires screening analysis with high confidence for these compounds and their metabolites in complex matrices, which is hampered by the fact that no reference standards are available for most metabolites. We address this challenge by a high-throughput workflow based on incubation of pesticides (or other CECs) with human liver S9, followed by solid-phase extraction, liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis, and automated data processing to generate a database (retention time, precursor m/z, and MS2 spectral library) for the annotation in human samples. The metabolite prioritization consists of statistical comparisons and mass defect and m/z range filtering to obtain a subset of probable phase I metabolites, for which molecular formulas and likely metabolic transformation are retrieved. We tested the workflow on 22 pesticides, for which we could determine 91 metabolite molecular formulas which are only partly covered by the literature and/or predicted by in silico metabolization. Our workflow allows for an efficient generation of metabolite reference information, which can be used directly for annotating LC-HRMS data from human samples. A full structure elucidation of individual metabolites can be limited to those being actually present in human samples.
Collapse
Affiliation(s)
- Carolin Huber
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt Biologicum, Campus Riedberg, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Erik Müller
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt Biologicum, Campus Riedberg, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Tobias Schulze
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt Biologicum, Campus Riedberg, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|