1
|
Bao Y, Tian H, Wang X. Effects of climate change and ozone on vegetation phenology on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172780. [PMID: 38685428 DOI: 10.1016/j.scitotenv.2024.172780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The vegetation phenology, encompassing the start (SOS) and end (EOS) of the growing season on the Tibetan Plateau, has been significantly impacted by global climate change. Furthermore, ozone (O3) has gradually become the main pollutant in this region, substantially influencing carbon cycle and ecosystems on Earth. While ongoing studies have focused mainly on the implications of climate parameters, including temperature, precipitation, and radiation, the effects of O3 on the SOS and EOS remain unclear. Here, we compared the responses and sensitivities of the SOS and EOS to both climatic factors and O3 in this region. With the use of partial correlation analysis, we found that increased precipitation was the most important factor influencing the SOS and caused earlier occurrence (4.8 % vs. 21.9 %) for most plant functional types. In comparison, temperature only dominated in shrublands. In particular, we found that the EOS responded comparably to climatic factors with similar proportions between advancing and delaying patterns. However, higher O3 levels consistently advanced the EOS for almost all plant functional types and was the main factor controlling EOS variations based on the sensitivity analysis. Our results emphasized that O3 pollution should be considered for obtaining better phenological forecasts and determining the impacts of the environment and atmospheric composition on carbon sequestration in terrestrial ecosystems.
Collapse
Affiliation(s)
- Yanlei Bao
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China; Department of Hydraulic Engineering, Hebei University of Water Resources and Electric Engineering, Cangzhou 061001, China
| | - Haifeng Tian
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Xiaoyue Wang
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Li P, Feng Z, Shang B, Uddling J. Combining carbon and oxygen isotopic signatures to identify ozone-induced declines in tree water-use efficiency. TREE PHYSIOLOGY 2021; 41:2234-2244. [PMID: 33822226 DOI: 10.1093/treephys/tpab041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/03/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Ground-level ozone (O3) pollution affects the plant carbon and water balance, but the relative contributions of impaired photosynthesis and the loss of stomatal functioning to the O3-induced reductions in water-use efficiency (WUE) remain unclear. We combined the leaf stable dual isotopic signatures of carbon (δ13C) and oxygen (δ18O) with related instantaneous gas exchange performance to determine the effects of O3 dose on the net photosynthetic rate (An), stomatal conductance (gs) and intrinsic WUE (iWUE = An/gs) in four tree species (one being a hybrid) exposed to five O3 levels. The iWUE declined for each step increase in O3 level, reflecting progressive loss of the coupling between leaf carbon gain and water loss. In ambient compared with charcoal-filtered air, the decreased iWUE was associated with reductions in both An and gs (i.e., decreased δ13C and increased δ18O). In elevated O3 treatments, however, the iWUE declines were caused by reduced An at constant or increased gs. The results show that the dual isotope approach provides a robust way to gather time-integrated information on how O3 pollution affects leaf gas exchange. Our study highlights that O3-induced decoupling between photosynthesis and stomatal regulation causes large and progressive declines in the WUE of forest trees, demonstrating the need for incorporating this hitherto unaccounted for effect into vegetation models.
Collapse
Affiliation(s)
- Pin Li
- Research Center for Urban Forestry, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Qinghua East Road 35, Haidian, Beijing 100083, China
| | - Zhaozhong Feng
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Ningliu Road 219, Pukou District, Nanjing 210044, China
| | - Bo Shang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Ningliu Road 219, Pukou District, Nanjing 210044, China
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
3
|
Cernusak LA, Farha MN, Cheesman AW. Understanding how ozone impacts plant water-use efficiency. TREE PHYSIOLOGY 2021; 41:2229-2233. [PMID: 34569610 DOI: 10.1093/treephys/tpab125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Queensland 4878, Australia
| | - Mst Nahid Farha
- College of Science and Engineering, James Cook University, Cairns, Queensland 4878, Australia
- Department of Chemistry, Rajshahi University of Engineering and Technology, Bangladesh 6204
| | - Alexander W Cheesman
- College of Science and Engineering, James Cook University, Cairns, Queensland 4878, Australia
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, UK
| |
Collapse
|
4
|
Tai APK, Sadiq M, Pang JYS, Yung DHY, Feng Z. Impacts of Surface Ozone Pollution on Global Crop Yields: Comparing Different Ozone Exposure Metrics and Incorporating Co-effects of CO2. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.534616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Surface ozone (O3) pollution poses significant threats to crop production and food security worldwide, but an assessment of present-day and future crop yield losses due to exposure to O3 still abides with great uncertainties, mostly due: (1) to the large spatiotemporal variability and uncertain future projections of O3 concentration itself; (2) different methodological approaches to quantify O3 exposure and impacts; (3) difficulty in accounting for co-varying factors such as CO2 concentration and climatic conditions. In this paper, we explore these issues using a common framework: a consistent set of simulated present-day O3 fields from one chemical transport model, coupled with a terrestrial ecosystem-crop model to derive various O3 exposure metrics and impacts on relative crop yields worldwide, and examine the potential effects of elevated CO2 on O3-induced crop yield losses. Throughout, we review and explain the differences in formulation and parameterization in the various approaches, including the concentration-based metrics, flux-based metrics, and mechanistic biophysical crop modeling. We find that while the spatial pattern of yield losses for a given crop is generally consistent across metrics, the magnitudes can differ substantially. Pooling the concentration-based and flux-based metrics together, we estimate the present-day globally aggregated yield losses to be: 3.6 ± 1.1% for maize, 2.6 ± 0.8% for rice, 6.7 ± 4.1% for soybean, and 7.2 ± 7.3% for wheat; these estimates are generally consistent with previous studies but on the lower end of the uncertainty range covered. We attribute the large combined uncertainty mostly to the differences among methodological approaches, and secondarily to differences in O3 and meteorological inputs. Based on a biophysical crop model that mechanistically simulates photosynthetic and yield responses of crops to stomatal O3 uptake, we further estimate that increasing CO2 concentration from 390 to 600 ppm reduces the globally aggregated O3-induced yield loss by 21–52% for maize and by 27–38% for soybean, reflecting a CO2-induced reduction in stomatal conductance that in turn alleviates stomatal O3 uptake and thus crop damage. Rising CO2 may therefore render the currently used exposure-yield relationships less applicable in a future atmosphere, and we suggest approaches to address such issues.
Collapse
|
5
|
Johansson KSL, El-Soda M, Pagel E, Meyer RC, Tõldsepp K, Nilsson AK, Brosché M, Kollist H, Uddling J, Andersson MX. Genetic controls of short- and long-term stomatal CO2 responses in Arabidopsis thaliana. ANNALS OF BOTANY 2020; 126:179-190. [PMID: 32296835 PMCID: PMC7304471 DOI: 10.1093/aob/mcaa065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/09/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS The stomatal conductance (gs) of most plant species decreases in response to elevated atmospheric CO2 concentration. This response could have a significant impact on plant water use in a future climate. However, the regulation of the CO2-induced stomatal closure response is not fully understood. Moreover, the potential genetic links between short-term (within minutes to hours) and long-term (within weeks to months) responses of gs to increased atmospheric CO2 have not been explored. METHODS We used Arabidopsis thaliana recombinant inbred lines originating from accessions Col-0 (strong CO2 response) and C24 (weak CO2 response) to study short- and long-term controls of gs. Quantitative trait locus (QTL) mapping was used to identify loci controlling short- and long-term gs responses to elevated CO2, as well as other stomata-related traits. KEY RESULTS Short- and long-term stomatal responses to elevated CO2 were significantly correlated. Both short- and long-term responses were associated with a QTL at the end of chromosome 2. The location of this QTL was confirmed using near-isogenic lines and it was fine-mapped to a 410-kb region. The QTL did not correspond to any known gene involved in stomatal closure and had no effect on the responsiveness to abscisic acid. Additionally, we identified numerous other loci associated with stomatal regulation. CONCLUSIONS We identified and confirmed the effect of a strong QTL corresponding to a yet unknown regulator of stomatal closure in response to elevated CO2 concentration. The correlation between short- and long-term stomatal CO2 responses and the genetic link between these traits highlight the importance of understanding guard cell CO2 signalling to predict and manipulate plant water use in a world with increasing atmospheric CO2 concentration. This study demonstrates the power of using natural variation to unravel the genetic regulation of complex traits.
Collapse
Affiliation(s)
- Karin S L Johansson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Ellen Pagel
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Rhonda C Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Kadri Tõldsepp
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Anders K Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Brosché
- Institute of Technology, University of Tartu, Tartu, Estonia
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Chen X, Zhao P, Hu Y, Zhao X, Ouyang L, Zhu L, Ni G. The sap flow-based assessment of atmospheric trace gas uptake by three forest types in subtropical China on different timescales. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28431-28444. [PMID: 30088244 DOI: 10.1007/s11356-018-2891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Assessing the uptake of trace gases by forests contributes to understanding the mechanisms of gas exchange between vegetation and the atmosphere and to evaluating the potential risk of these pollutant gases to forests. In this study, the multi-timescale characteristics of the stomatal uptake of NO, NO2, SO2 and O3 by Schima superba, Eucalyptus citriodora and Acacia auriculiformis were investigated by continuous sap flow measurements for a 3-year period. The peak canopy stomatal conductance (GC) for these three species appeared between 9:00 and 12:00, which was jointly regulated by the vapour pressure deficit (VPD) and photosynthetically active radiation (PAR). Additionally, annual and seasonal variations in the stomatal uptake of trace gases for these three tree species suggested that there was a combination effect between canopy stomatal conductance and ambient concentration on the uptake of trace gases. Furthermore, the result demonstrated that the trace gas absorption capacities among these three forest types followed the order of S. superba > E. citriodora > A. auriculiformis. The findings of this study have theoretical significance and application value in assessing air purification and the risk of harm to forests in Southern China.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.
| | - Yanting Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Xiuhua Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Lei Ouyang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Liwei Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| |
Collapse
|
7
|
Hasper TB, Dusenge ME, Breuer F, Uwizeye FK, Wallin G, Uddling J. Stomatal CO 2 responsiveness and photosynthetic capacity of tropical woody species in relation to taxonomy and functional traits. Oecologia 2017; 184:43-57. [PMID: 28260113 PMCID: PMC5408058 DOI: 10.1007/s00442-017-3829-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/22/2017] [Indexed: 12/27/2022]
Abstract
Stomatal CO2 responsiveness and photosynthetic capacity vary greatly among plant species, but the factors controlling these physiological leaf traits are often poorly understood. To explore if these traits are linked to taxonomic group identity and/or to other plant functional traits, we investigated the short-term stomatal CO2 responses and the maximum rates of photosynthetic carboxylation (V cmax) and electron transport (J max) in an evolutionary broad range of tropical woody plant species. The study included 21 species representing four major seed plant taxa: gymnosperms, monocots, rosids and asterids. We found that stomatal closure responses to increased CO2 were stronger in angiosperms than in gymnosperms, and in monocots compared to dicots. Stomatal CO2 responsiveness was not significantly related to any of the other functional traits investigated, while a parameter describing the relationship between photosynthesis and stomatal conductance in combined leaf gas exchange models (g 1) was related to leaf area-specific plant hydraulic conductance. For photosynthesis, we found that the interspecific variation in V cmax and J max was related to within leaf nitrogen (N) allocation rather than to area-based total leaf N content. Within-leaf N allocation and water use were strongly co-ordinated (r 2 = 0.67), such that species with high fractional N investments into compounds maximizing photosynthetic capacity also had high stomatal conductance. We conclude that while stomatal CO2 responsiveness of tropical woody species seems poorly related to other plant functional traits, photosynthetic capacity is linked to fractional within-leaf N allocation rather than total leaf N content and is closely co-ordinated with leaf water use.
Collapse
Affiliation(s)
- Thomas B Hasper
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 405 30, Gothenburg, Sweden
| | - Mirindi E Dusenge
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 405 30, Gothenburg, Sweden
- Department of Biology, University of Rwanda, University Avenue, PO Box 56, Huye, Rwanda
| | - Friederike Breuer
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 405 30, Gothenburg, Sweden
| | - Félicien K Uwizeye
- Department of Biology, University of Rwanda, University Avenue, PO Box 56, Huye, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 405 30, Gothenburg, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 405 30, Gothenburg, Sweden.
| |
Collapse
|
8
|
Matyssek R, Baumgarten M, Hummel U, Häberle KH, Kitao M, Wieser G. Canopy-level stomatal narrowing in adult Fagus sylvatica under O3 stress - means of preventing enhanced O3 uptake under high O3 exposure? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:518-26. [PMID: 25062776 DOI: 10.1016/j.envpol.2014.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/15/2014] [Accepted: 06/19/2014] [Indexed: 05/19/2023]
Abstract
Spatio-temporally consistent O(3) doses are demonstrated in adult Fagus sylvatica from the Kranzberg Forest free-air fumigation experiment, covering cross-canopy and whole-seasonal scopes through sap flow measurement. Given O(3)-driven closure of stomata, we hypothesized enhanced whole-tree level O(3) influx to be prevented under enhanced O(3) exposure. Although foliage transpiration rate was lowered under twice-ambient O(3) around noon by 30% along with canopy conductance, the hypothesis was falsified, as O(3) influx was raised by 25%. Nevertheless, the twice-ambient/ambient ratio of O(3) uptake was smaller by about 20% than that of O(3) exposure, suggesting stomatal limitation of uptake. The O(3) response was traceable from leaves across branches to the canopy, where peak transpiration rates resembled those of shade rather than sun branches. Rainy/overcast-day and nightly O(3) uptake is quantified and discussed. Whole-seasonal canopy-level validation of modelled with sap flow-derived O(3) flux becomes available in assessing O(3) risk for forest trees.
Collapse
Affiliation(s)
- R Matyssek
- Ecophysiology of Plants, Technische Universität München, von-Carlowitz-Platz 2, D-85354 Freising, Germany.
| | - M Baumgarten
- Ecophysiology of Plants, Technische Universität München, von-Carlowitz-Platz 2, D-85354 Freising, Germany
| | - U Hummel
- Ecophysiology of Plants, Technische Universität München, von-Carlowitz-Platz 2, D-85354 Freising, Germany
| | - K-H Häberle
- Ecophysiology of Plants, Technische Universität München, von-Carlowitz-Platz 2, D-85354 Freising, Germany
| | - M Kitao
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - G Wieser
- Department of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Rennweg 1, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Wagg S, Mills G, Hayes F, Wilkinson S, Davies WJ. Stomata are less responsive to environmental stimuli in high background ozone in Dactylis glomerata and Ranunculus acris. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 175:82-91. [PMID: 23354156 DOI: 10.1016/j.envpol.2012.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/23/2012] [Accepted: 11/25/2012] [Indexed: 06/01/2023]
Abstract
Two mesotrophic grassland species, Ranunculus acris and Dactylis glomerata were exposed to a range of ozone treatments (16.2-89.5 ppb 24 h mean) and two watering regimes under naturally fluctuating photosynthetically active radiation (PAR), vapour pressure deficit (VPD) and temperature. Stomatal conductance was measured throughout the experiments, and the combined data set (>1000 measurements) was analysed for effects of low and high ozone on responses to environmental stimuli. We show that when D. glomerata and R. acris were grown in 72.6-89.5 ppb ozone the stomata consistently lose the ability to respond, or have reduced response, to naturally fluctuating environmental conditions in comparison to their response in low ozone. The maximum stomatal conductance (g(max)) was also significantly higher in the high ozone treatment for D. glomerata. We discuss the hypotheses for the reduced sensitivity of stomatal closure to a changing environment and the associated implications for ozone flux modelling.
Collapse
Affiliation(s)
- Serena Wagg
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | | | | | | | | |
Collapse
|
10
|
Uddling J, Wallin G. Interacting effects of elevated CO2 and weather variability on photosynthesis of mature boreal Norway spruce agree with biochemical model predictions. TREE PHYSIOLOGY 2012; 32:1509-1521. [PMID: 23042768 DOI: 10.1093/treephys/tps086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
According to well-known biochemical and biophysical mechanisms, the stimulation of C(3) photosynthesis by elevated atmospheric CO(2) concentration ([CO(2)]) is strongly modified by changes in temperature and radiation. In order to investigate whether a static parameterization of the commonly used Farquhar et al. model of photosynthesis (i.e., without CO(2)-induced seasonal or thermal acclimation of photosynthetic capacity) can accurately predict these interactions in mature boreal Norway spruce (Picea abies (L.) Karst.) during the frost-free part of the growing season, shoot gas exchange was continuously measured on trees during their second/third year of exposure to ambient or doubled [CO(2)] inside whole-tree chambers. The relative CO(2)-induced enhancement of net photosynthesis (A(n)) at a given temperature remained stable over the study period, but increased strongly with temperature and radiation, in agreement with predictions by the model. Light-saturated A(n) (+67% at 20 °C), dark respiration (+36%) and intercellular to ambient [CO(2)] ratio (c(i)/c(a); +27%) were significantly increased by CO(2) treatment. Stomatal conductance (g(s)) was not significantly affected. Our results demonstrate that the Farquhar et al. model of photosynthesis has the capability to predict interactions between [CO(2)] and seasonal weather variability on A(n) in Norway spruce during the non-frost growing season without accounting for CO(2)-induced seasonal and/or thermal photosynthetic acclimation. However, stomatal model assumptions of reduced g(s) and constant c(i)/c(a) under rising atmospheric [CO(2)] did not hold.
Collapse
Affiliation(s)
- Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-405 30 Gothenburg, Sweden.
| | | |
Collapse
|
11
|
Hoshika Y, Watanabe M, Inada N, Koike T. Ozone-induced stomatal sluggishness develops progressively in Siebold's beech (Fagus crenata). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 166:152-156. [PMID: 22504428 DOI: 10.1016/j.envpol.2012.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
We investigated the effects of ozone and leaf senescence on steady-state stomatal conductance and stomatal response to light variation. Measurements were carried out in a free-air ozone exposure experiment on a representative deciduous broadleaved tree species in Japan (Fagus crenata). Both steady-state and dynamic stomatal response to light variation varied intrinsically with season due to leaf senescence. Ozone induced the decrease in steady-state leaf gas exchange and the sluggish stomatal closure progressively. These findings suggest that ozone reduces the ability of plants to adapt to a fluctuating light environment under natural conditions, and therefore impairs plant growth and ability to control water loss.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Silvicluture and Forest Ecological Studies, Hokkaido University, Sapporo 060-8689, Japan
| | | | | | | |
Collapse
|