1
|
Zhou J, Wang P, Wang Y, Zhang J, He X, Wang L. Genome-wide identification and expression analysis of SpUGE gene family and heterologous expression-mediated Arabidopsis thaliana tolerance to Cd stress. Int J Biol Macromol 2024; 282:137358. [PMID: 39515725 DOI: 10.1016/j.ijbiomac.2024.137358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The UDP-glucose 4-epimerase (UGE) enzyme plays a critical role in plant growth and responses to abiotic stressors, such as heavy metal exposure. However, UGE-mediated remodeling of cell wall polysaccharides in response to these stressors remains poorly understood in willow. This study investigated the structure, function, and expression patterns of the UGE gene family in willow, focusing on cadmium treatment to elucidate how SpUGE1 enhances Cd resistance. Six SpUGE genes were identified through whole-genome sequencing and bioinformatics analysis, and they were mapped across five chromosomes. Quantitative PCR analysis revealed that, with the exception of SpUGE3, all genes showed their highest relative expression in the leaves. Under Cd treatment, members of the SpUGE gene family displayed varying levels of responsiveness, with SpUGE1 showing a marked increase in expression over time. In transgenic Arabidopsis thaliana overexpressing SpUGE1, the cellulose, hemicellulose, lignin, and pectin content significantly increased, with cellulose levels rising by >50 % and pectin by approximately 30 %. This overexpression conferred enhanced Cd resistance by increasing cell wall thickness through elevated cell wall polysaccharides, which reduced Cd uptake. Consequently, Cd content in the cell wall, chloroplasts, and mitochondria was significantly lower than that in wild-type plants, reducing cellular damage and improving Cd resistance. Overall, this study provides valuable theoretical and experimental insights into the role of the SpUGE1 gene family in willow.
Collapse
Affiliation(s)
- Jie Zhou
- Jiangsu Academy of Forestry, Nanjing 211153, China.
| | - Pu Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Yixuan Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Jue Zhang
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Xudong He
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China.
| |
Collapse
|
2
|
Xue C, Liu R, Xia Z, Jia J, Hu B, Rennenberg H. Sulfur availability and nodulation modify the response of Robinia pseudoacacia L. to lead (Pb) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135612. [PMID: 39182290 DOI: 10.1016/j.jhazmat.2024.135612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.
Collapse
Affiliation(s)
- Caixin Xue
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Zhuyuan Xia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jin Jia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
3
|
Guo N, Fan L, Cao Y, Ling H, Xu G, Zhou J, Chen Q, Tao J. Comparison of two willow genotypes reveals potential roles of iron-regulated transporter 9 and heavy-metal ATPase 1 in cadmium accumulation and resistance in Salix suchowensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114065. [PMID: 36108434 DOI: 10.1016/j.ecoenv.2022.114065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Willows (Salix spp.) are promising extractors of cadmium (Cd), with fast growth, high biomass production, and high Cd accumulation capacity. However, the molecular mechanisms underlying Cd uptake and detoxification are currently poorly understood. Analysis of the Cd uptake among 30 willow genotypes in hydroponic systems showed that the S. suchowensis and S. integra hybrids, Jw8-26 and Jw9-6, exhibited distinct Cd accumulation and resistance characteristics. Jw8-26 was a high Cd-accumulating and tolerant willow, while Jw9-6 was a low Cd-accumulating and relatively Cd-intolerant willow. Therefore, these two genotypes were ideal specimens for determining the molecular mechanisms of Cd uptake and detoxification. To identify relevant genes in Cd handling, the parent S. suchowensis was treated with Cd and RNA-seq analysis was performed. SsIRT, SsHMA, and SsGST, in addition to the transcription factors SsERF, SsMYB, and SsZAT were identified as being associated with Cd uptake and resistance. Because membrane-localised heavy metal transporters mediate Cd transfer to plant tissues, a total of 17 SsIRT and 12 SsHMA family members in S. suchowensis were identified. Subsequently, a thorough bioinformatics analysis of the SsIRT and SsHMA families was conducted, and their transcript levels were analysed in the roots of the two hybrids. The transcript levels of SsIRT9 in roots were positively correlated with the observed differences in Cd accumulation in Jw8-26 versus Jw9-6. Jw8-26 displayed higher SsIRT9 expression levels and higher Cd accumulation than Jw9-6; therefore, SsIRT9 may be involved in Cd uptake. Gene expression analysis also revealed that SsHMA1 was a candidate gene associated with Cd resistance. These results lay the foundation for understanding the molecular mechanism of Cd transfer and detoxification in willows, and provide guidance for the screening and breeding of high Cd-accumulating and tolerant willow genotypes via genetic engineering.
Collapse
Affiliation(s)
- Nan Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Liyan Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yue Cao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Ling
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhou
- National Willow Engineering Technology Research Center, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Qingsheng Chen
- National Willow Engineering Technology Research Center, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Jun Tao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
4
|
Navazas A, Mesa V, Thijs S, Fuente-Maqueda F, Vangronsveld J, Peláez AI, Cuypers A, González A. Bacterial inoculant-assisted phytoremediation affects trace element uptake and metabolite content in Salix atrocinerea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153088. [PMID: 35063508 DOI: 10.1016/j.scitotenv.2022.153088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Natural plant-associated microorganisms are of critical importance to plant growth and survival in field conditions under toxic concentrations of trace elements (TE) and these plant-microbial processes can be harnessed to enhance phytoremediation. The total bacterial diversity from grey willow (Salix atrocinerea) on a brownfield heavily-polluted with lead (Pb) and arsenic (As) was studied through pyrosequencing. Culturable bacteria were isolated and in vitro tested for plant growth-promotion (PGP) traits, arsenic (As) tolerance and impact on As speciation. Two of the most promising bacterial strains - the root endophyte Pantoea sp. AV62 and the rhizospheric strain Rhodococcus erythropolis AV96 - were inoculated in field to S. atrocinerea. This bioaugmentation resulted in higher As and Pb concentrations in both, roots and leaves of bacterial-inoculated plants as compared to non-inoculated plants. In consequence, bacterial bioaugmentation also affected parameters related to plant growth, oxidative stress, the levels of phytochelatins and phenylpropanoids, together with the differential expression of genes related to these tolerance mechanisms to TE in leaves. This study extends our understanding about plant-bacterial interactions and provides a solid basis for further bioaugmentation studies aiming to improve TE phytoremediation efficiency and predictability in the field.
Collapse
Affiliation(s)
- Alejandro Navazas
- Department of Organisms and Systems Biology, Area of Plant Physiology, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain; Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Victoria Mesa
- Faculty of Pharmacy, Université de Paris, UMR-S1139, F-75006 Paris, France
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | | | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Ana I Peláez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Oviedo, Spain; University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Aida González
- Department of Organisms and Systems Biology, Area of Plant Physiology, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain.
| |
Collapse
|
5
|
Zhang Y, Ji H, Xi H, Zhu Y. Co-remediation of PTEs contaminated soil in mining area by heat modified sawdust and herb. CHEMOSPHERE 2021; 281:130908. [PMID: 34034084 DOI: 10.1016/j.chemosphere.2021.130908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Exploring efficient remediation technologies to remediate potentially toxic element (PTE) in soil around the mining area has become a trendy research topic. This study conducted material composed of sawdust ash (SA) and sawdust biochar (SB) with mass ratio of SA:SB = 1:2 in combination with Medicago sativa L. and Festuca arundinacea to remediate soil contaminated by zinc (Zn), cadmium (Cd), and arsenic (As) in a mining area. The result showed that the removal rates of Zn, Cd, and As were the highest under the treatment of Festuca arundinacea combined with 5% material with values of 22.15%, 22.05%, and 12.47%, respectively. Festuca arundinacea had the most potent ability to absorb and tolerate composite PTEs, and the co-remediation process could remarkably improve soil enzyme environment and microbial community diversity. The distribution of PTEs in plant subcellular showed that the accumulation of Zn, Cd, and As in the cell wall of Festuca arundinacea root was significantly increased by adding 2% materials. The concentrations of Zn, Cd, and As in the cell wall were 4486.25, 33.59, and 124.15 mg/kg, respectively. The combination of 2% material and Festuca arundinacea could effectively remove PTEs in soil and enhance the detoxification ability of the plant, thus effectively improving the soil environment and remediating PTEs pollution. This study provided insights into the remediation of PTE-contaminated soil in mining area by combining materials and plants.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Hongbing Ji
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
6
|
Navazas A, Thijs S, Feito I, Vangronsveld J, Peláez AI, Cuypers A, González A. Arsenate-reducing bacteria affect As accumulation and tolerance in Salix atrocinerea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144648. [PMID: 33736260 DOI: 10.1016/j.scitotenv.2020.144648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Arsenic (As)-reducing bacteria are able to influence As-speciation and, in this way, change As bio-availability. In consequence, this has an impact on As uptake by plants growing on polluted soil and on the effectiveness of the phytoremediation process. To be able to efficiently utilize these bacteria for As-phytoremediation in the field, a better understanding of the plant-bacterial interactions involved in As-tolerance or toxicity is needed. In this work, seedlings of a clone of Salix atrocinerea derived from a specimen naturally growing on an As-polluted brownfield were grown under gnotobiotic conditions exposed to As, and in the presence or absence of two of its field-associated and in vitro characterized plant growth-promoting (PGP) bacteria. The inoculation with Pantoea sp., induced a moderate reduction of AsV to AsIII in the exposure medium that, together with a coordinated plant response of As uptake, chelation and sequestration, increased As accumulation in roots; which is reflected into a higher phytostabilization. However, inoculation with Rhodococcus erythropolis due to a higher disproportionate reduction of AsV to AsIII in the medium caused less As accumulation in roots that non-bioaugmented plants and despite the lower As content, the concentrations of AsIII present in the medium and the damage suffered in roots and leaves, indicated that As tolerance mechanisms (such as prevention of AsIII uptake and efflux) did not occur in time to avoid physical disturbance and plants growth reduction. Interestingly, by two different metabolic pathways -coordinated by different key transporters mediating As uptake, tolerance, distribution and vacuolar accumulation at the roots- both bacteria limited As accumulation in Salix shoots. Our results provide for the first time a detailed insight in the plant-bacterial responses and physiological changes contributing to As tolerance in S. atrocinerea, that will facilitate the design of effective strategies for exploitation of plant-associated microorganisms for phytoremediation.
Collapse
Affiliation(s)
- Alejandro Navazas
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain; Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Isabel Feito
- Agri-Food Research and Development Service, Forestry Program, La Mata s/n, 33825 Grado, Spain
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Ana I Peláez
- Department of Functional Biology - Area of Microbiology-IUBA, University of Oviedo, Oviedo, Spain
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Aida González
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain.
| |
Collapse
|
7
|
Corso M, An X, Jones CY, Gonzalez-Doblas V, Schvartzman MS, Malkowski E, Willats WGT, Hanikenne M, Verbruggen N. Adaptation of Arabidopsis halleri to extreme metal pollution through limited metal accumulation involves changes in cell wall composition and metal homeostasis. THE NEW PHYTOLOGIST 2021; 230:669-682. [PMID: 33421150 DOI: 10.1111/nph.17173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/22/2020] [Indexed: 05/21/2023]
Abstract
Metallophytes constitute powerful models for the study of metal homeostasis, adaptation to extreme environments and the evolution of naturally selected traits. Arabidopsis halleri is a pseudometallophyte which shows constitutive zinc/cadmium (Zn/Cd) tolerance and Zn hyperaccumulation but high intraspecific variability in Cd accumulation. To examine the molecular basis of the variation in metal tolerance and accumulation, ionome, transcriptome and cell wall glycan array profiles were compared in two genetically close A. halleri populations from metalliferous and nonmetalliferous sites in Northern Italy. The metallicolous population displayed increased tolerance to and reduced hyperaccumulation of Zn, and limited accumulation of Cd, as well as altered metal homeostasis, compared to the nonmetallicolous population. This correlated well with the differential expression of transporter genes involved in trace metal entry and in Cd/Zn vacuolar sequestration in roots. Many cell wall-related genes were also more highly expressed in roots of the metallicolous population. Glycan array and histological staining analyses demonstrated that there were major differences between the two populations in terms of the accumulation of specific root pectin and hemicellulose epitopes. Our results support the idea that both specific cell wall components and regulation of transporter genes play a role in limiting accumulation of metals in A. halleri at contaminated sites.
Collapse
Affiliation(s)
- Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Xinhui An
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Catherine Yvonne Jones
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,, NE1 7RU, UK
| | - Verónica Gonzalez-Doblas
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - M Sol Schvartzman
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Eugeniusz Malkowski
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - William G T Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,, NE1 7RU, UK
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
| |
Collapse
|
8
|
Lwalaba JLW, Zvobgo G, Gai Y, Issaka JH, Mwamba TM, Louis LT, Fu L, Nazir MM, Ansey Kirika B, Kazadi Tshibangu A, Adil MF, Sehar S, Mukobo RP, Zhang G. Transcriptome analysis reveals the tolerant mechanisms to cobalt and copper in barley. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111761. [PMID: 33333341 DOI: 10.1016/j.ecoenv.2020.111761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 05/18/2023]
Abstract
Cobalt (Co) and copper (Cu) co-exist commonly in the contaminated soils and at excessive levels, they are toxic to plants. However, their joint effect and possible interaction have not been fully addressed. In this work, a hydroponic experiment was performed to investigate the combined effects of Co and Cu on two barley genotypes at transcriptional level by RNA-seq analysis. The results identified 358 genes inclusively expressed in both genotypes under single and combined treatments of Co and Cu, with most of them being related to metal transport, stress response and transcription factor. The combined treatment induced more differently expressed genes (DEGs) than the single treatment, with Yan66, a metal tolerant genotype having more DEGs than Ea52, a sensitive genotype. The pathways associated with anthocyanin biosynthesis, MAPK signaling, glutathione biosynthesis, phenylalanine metabolism, photosynthesis, arginin biosynthesis, fatty acid elongation, and plant hormone signal transduction biosynthesis were induced and inhibited in Yan66 and Ea52, respectively. Furthermore, flavonoid biosynthesis was much more largely enhanced and accordingly more free flavonoid components (naringin, narirutin and neohesperidin) were accumulated in Yan66 than in Ea52. It may be suggested that high tolerance to both Co and Cu in Yan66 is attributed to its high gene regulatory ability.
Collapse
Affiliation(s)
- Jonas Lwalaba Wa Lwalaba
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo
| | - Gerald Zvobgo
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yunpeng Gai
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Joan Heren Issaka
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Theodore Mulembo Mwamba
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo
| | - Laurence Tennyson Louis
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Liangbo Fu
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Mudassir Nazir
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Bibich Ansey Kirika
- Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo
| | - Audry Kazadi Tshibangu
- Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo
| | - Muhammad Faheem Adil
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shafaque Sehar
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Robert Prince Mukobo
- Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo
| | - Guoping Zhang
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
9
|
Cao Y, Ma C, Chen H, Zhang J, White JC, Chen G, Xing B. Xylem-based long-distance transport and phloem remobilization of copper in Salix integra Thunb. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122428. [PMID: 32208308 DOI: 10.1016/j.jhazmat.2020.122428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/12/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Due to high biomass and an ability to accumulate metals, fast-growing tree species are good candidates for phytoremediation. However, little is known about the long-distance transport of heavy metals in woody plants. The present work focused on the xylem transport and phloem remobilization of copper (Cu) in Salix integra Thunb. Seedlings with 45 d preculture were grown in nutrient solutions added with 0.32 and 10 μM CuSO4 for 5 d. Micro X-ray fluorescence imaging showed the high Cu intensity in xylem tissues of both stem and root cross sections, confirming that the xylem played a vital role in Cu transport from roots to shoots. Cu was presented in both xylem sap and phloem exudate, which demonstrates the long-distance transport of Cu via both vascular tissues. Additionally, the 65Cu spiked mature leaf exported approximately 78 % 65Cu to newly emerged shoots, and approximately 22 % downward to the new roots, confirming the bidirectional transport of Cu via phloem. To our knowledge, this is the first report to characterize Cu vascular transport and remobilization in fast-growing woody plants, and the findings provide valuable mechanistic understanding for the phytoremediation of Cu-contaminated soils.
Collapse
Affiliation(s)
- Yini Cao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, United States
| | - Hongjun Chen
- Hunan Commodities Quality Supervision and Inspection Institute, Changsha, 410007, China
| | - Jianfeng Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, United States
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
10
|
Amdoun R, Bendifallah N, Sahli F, Moustafa K, Hefferon K, Makhzoum A, Khelifi L. Improving zinc phytoremediation characteristics in Salix pedicellata with a new acclimation approach. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:745-754. [PMID: 32026720 DOI: 10.1080/15226514.2019.1708862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Some species of Salix sp. (willows) are a potential phytoremediator that can accumulate substantial contents of mineral elements and, therefore, to detoxify soils contaminated with pollutants and heavy metals such as the zinc (Zn). However, high concentrations of Zn inhibit plant growth and reduce biomass production in plants. In an attempt to overcome this inconvenience and to enhance plant tolerance to Zn toxicity, we tested a new tolerance induction approach by acclimation in two clones of Salix pedicellata, named SPK-12 and SP-K20. The approach comprises two successive phases. The first is a "tolerance induction phase" consisting of gradual exposure of plants to low concentrations of Zn sulfate (ZnSO4) at regular intervals until reaching DI100 (ZnSO4 inhibitory concentration). And, the second is a "tolerance maintenance phase" to uphold the acquired tolerance to Zn toxicity. The SP-K20 clone was acclimated to DI100 threshold over 33 days without noticeable symptoms of chlorosis or growth inhibition. Compared to controls, the SP-K20 clone was able to accumulate high concentrations of Zn, suggesting that phytoremediation abilities of S. pedicellata have been improved throughout the applied approach. Acclimated Salix plants might thus improve metal phytoextraction in heavily polluted soils without biomass growth inhibition.
Collapse
Affiliation(s)
- Ryad Amdoun
- Institut National de la Recherche Forestière (INRF), Algiers, Algeria
| | | | - Fatiha Sahli
- Institut National de la Recherche Forestière (INRF), Algiers, Algeria
| | | | - Kathleen Hefferon
- Food Science and Technology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Lakhdar Khelifi
- Laboratoire des Ressources Génétiques et Biotechnologie, Ecole Nationale Supérieure Agronomique (ES1603), Algiers, Algeria
| |
Collapse
|
11
|
Corso M, García de la Torre VS. Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants. Metallomics 2020; 12:840-859. [DOI: 10.1039/d0mt00043d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trace metal elements are essential for plant growth but become toxic at high concentrations, while some non-essential elements, such as Cd and As, show toxicity even in traces.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin
- Université Paris-Saclay
- INRAE
- AgroParisTech
- 78000 Versailles
| | - Vanesa S. García de la Torre
- Molecular Genetics and Physiology of Plants
- Faculty of Biology and Biotechnology
- Ruhr University Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
12
|
Narendrula-Kotha R, Theriault G, Mehes-Smith M, Kalubi K, Nkongolo K. Metal Toxicity and Resistance in Plants and Microorganisms in Terrestrial Ecosystems. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 249:1-27. [PMID: 30725190 DOI: 10.1007/398_2018_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Metals are major abiotic stressors of many organisms, but their toxicity in plants is not as studied as in microorganisms and animals. Likewise, research in plant responses to metal contamination is sketchy. Candidate genes associated with metal resistance in plants have been recently discovered and characterized. Some mechanisms of plant adaptation to metal stressors have been now decrypted. New knowledge on microbial reaction to metal contamination and the relationship between bacterial, archaeal, and fungal resistance to metals has broadened our understanding of metal homeostasis in living organisms. Recent reviews on metal toxicity and resistance mechanisms focused only on the role of transcriptomics, proteomics, metabolomics, and ionomics. This review is a critical analysis of key findings on physiological and genetic processes in plants and microorganisms in responses to soil metal contaminations.
Collapse
Affiliation(s)
| | - Gabriel Theriault
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | | | - Kersey Kalubi
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.
- Department of Biology, Laurentian University, Sudbury, ON, Canada.
| |
Collapse
|
13
|
Dou X, Dai H, Twardowska I, Wei S. Hyperaccumulation of Cd by Rorippa globosa (Turcz.) Thell. from soil enriched with different Cd compounds, and impact of soil amendment with glutathione (GSH) on the hyperaccumulation efficiency. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113270. [PMID: 31563768 DOI: 10.1016/j.envpol.2019.113270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Rorippa globosa (Turcz.) Thell. is known as Cd hyperaccumulator, however neither hyperaccumulation nature, nor affecting factors like the effect of Cd compounds entering soil from different sources, or of specific soil amendments, are not yet satisfactorily clarified. In the pot culture experiment, Cd accumulation by R. globosa from soils spiked with 3 and 9 mg Cd kg-1 in the form of Cd(NO3)2, CdCl2, CdBr2, CdI2, CdSO4, CdF2, Cd(OH)2, CdCO3, Cd3(PO4)2, CdS and effect of soil amendment with glutathione (GSH) were investigated. Accumulation capacity of R. globosa for Cd appeared to reflect its extractability in soils and was about two-fold bigger for high soluble compounds than for low-soluble ones. At that, the differences between the accumulation of Cd originating from high soluble compound group did not exceed 20%, while the differences within the low soluble compound group were insignificant (p < 0.05). The analysis of Cd uptake, uptake factor (UF), enrichment factor (EF) and translocation factor (TF) patterns revealed that Cd hyperaccumulating properties of R. globosa are based on the high water/nutrients demand and strong tolerance to Cd, although weak protection against Cd uptake by root system was also observed. Amendment with GSH enhanced Cd availability to plant and its uptake from soil, but exerted no effect on Cd translocation in plants. In the light of the results, the use of R. globosa for phytoremediation of moderately polluted agricultural lands as forecrop or aftercrop, and the GSH-assisted phytoremediation of highly polluted post-industrial sites seem to be viable options.
Collapse
Affiliation(s)
- Xuekai Dou
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Irena Twardowska
- Institute of Environmental Engineering of the Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
14
|
Navazas A, Hendrix S, Cuypers A, González A. Integrative response of arsenic uptake, speciation and detoxification by Salix atrocinerea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:422-433. [PMID: 31279189 DOI: 10.1016/j.scitotenv.2019.06.279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Despite arsenic (As) being very toxic with deleterious effects on metabolism, it can be tolerated and accumulated by some plants. General genetic mechanisms responsible for As tolerance in plants, including Salix species, have been described in transcriptomic analysis, but further experimental verification of the significance of particular transcripts is needed. In this study, a Salix atrocinerea clone, able to thrive in an As-contaminated brownfield, was grown hydroponically in controlled conditions under an As concentration similar to the bioavailable fraction of the contaminated area (18 mg kg-1) for 30 days. At different time points, i.e. short-term and long-term exposure, biometric data, As accumulation, phytochelatin synthesis, non-protein thiol production and expression of target genes related to these processes were studied. Results showed that S. atrocinerea presents a great tolerance to As and accumulates up to 2400 mg As kg-1 dry weight in roots and 25 mg As kg-1 dry weight in leaves. Roots reduce As V to As III rapidly, with As III being the predominant form of As accumulated in root tissues, whereas in the leaves it is As V. After 1 d of As exposure, roots and leaves show de novo synthesis and an increase in non-protein thiols as compared to the control. Integrating these data on As accumulation in the plant and its speciation, non-protein thiol production and the kinetic gene expression of related target genes, a fundamental role is highlighted for these processes in As accumulation and tolerance in S. atrocinerea. As such, this study offers new insights in the plant tolerance mechanisms to As, which provides important knowledge for future application of high-biomass willow plants in phytoremediation of As-polluted soils.
Collapse
Affiliation(s)
- Alejandro Navazas
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; Department of Organisms and Systems Biology, Area of Plant Physiology, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain.
| | - Sophie Hendrix
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Aida González
- Department of Organisms and Systems Biology, Area of Plant Physiology, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain; Institute of Biotechnology of Asturias, Spain.
| |
Collapse
|
15
|
Dolarslan M, Gurkok T. Morphologic and Essential oil Profiles of Three Species from Asteraceae. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study we aimed to evaluate the morphological traits and essential oil compositions of three members of Astreraceae ( Helichrysum plicatum subsp. plicatum DC., Tanacetum vulgare L., Anthemis cretica L. subsp. albida (Boiss.) Grierson) growing wild in the semi-arid areas of Cankiri province, Turkey. Some morphological characters were reported for the first time. Essential oils were obtained by hydrodistillation, and their components were identified using gas chromatography–mass spectrometry (GC-MS). Forty eight compounds were detected for Helichrysum plicatum subsp. plicatum DC., 39 for Tanacetum vulgare L., and 15 for Anthemis cretica L. subsp. albida (Boiss.) Grierson. Although these species belong to the same family, the essential oil profiles revealed significant alterations. The dominant compounds in Helichrysum plicatum subsp. plicatum DC. were sesquiterpenes, whereas monoterpenes were the most abundant compounds in Tanacetum vulgare L. and Anthemis cretica L. subsp. albida (Boiss.) Grierson. The results indicated that the three species use different morphological and chemical processes for broad and specific adaptation.
Collapse
Affiliation(s)
- Melda Dolarslan
- Cankiri Karatekin University, Faculty of Science, Biology Department, 18100, Cankiri, Turkey
| | - Tugba Gurkok
- Cankiri Karatekin University, Eldivan Vocational School of Health Services, 18100, Cankiri, Turkey
| |
Collapse
|
16
|
Yao X, Ma F, Li Y, Ding X, Zou D, Niu Y, Bian H, Deng J. Effect of water cadmium concentration and water level on the growth performance of Salix triandroides cuttings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8002-8011. [PMID: 29305802 DOI: 10.1007/s11356-017-1158-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
The growth performance of Salix triandroides cuttings at three water cadmium (Cd) concentrations (0, 20, and 40 mg L-1) and three water levels (- 40 cm, water level 40 cm below the soil surface; 0 cm, water level even with the soil surface; and 40 cm, water level 40 cm above soil surface) was investigated to evaluate its potential in phytoextraction strategies. Compared to cuttings in the - 40 or 0 cm water levels, cuttings in the 40 cm water level showed significantly lower biomass, height, and adventitious root length and significantly fewer leaves and adventitious roots. However, these growth and morphological parameters were not different among the three water Cd concentrations. Water level decreased stomatal conduction and transpiration rate but showed no significant effects on chlorophyll concentration or photosynthetic rate. Chlorophyll concentration and stomatal conductance were higher at 40 mg L-1 Cd treatment than at 0 or 20 mg L-1 Cd treatment; yet, photosynthetic rate and transpiration rate were not different. Cd concentration in the leaves and stems increased as the water level increased, but the highest Cd concentration in the roots occurred in the 0 cm water level. As water Cd concentration increased, Cd concentration in the leaves, stems, and roots increased in all three water levels, except in stems in the - 40 cm water level. Under Cd stress, cuttings in the - 40 or 0 cm water levels were characterized by a higher bioaccumulation coefficient, but a lower translocation factor, than those in the 40 cm water level. However, the bioaccumulation coefficient increased with increasing water Cd concentration in all three water levels, as did the translocation factor in the 40 cm water level. The tolerance index for the cuttings was the same among all water levels and water Cd concentrations. The results clearly indicated that the low water level increased plant growth and Cd accumulation in underground parts, while the high water level decreased plant growth but increased Cd accumulation in aboveground parts.
Collapse
Affiliation(s)
- Xin Yao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Fengfeng Ma
- Hunan Academy of Forestry, Changsha, 410004, China
| | - Youzhi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xiaohui Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Dongsheng Zou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yandong Niu
- Hunan Academy of Forestry, Changsha, 410004, China
- Hunan Dongting Lake Wetland Ecosystem Research Station, Yueyang, 414000, China
| | - Hualin Bian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiajun Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
17
|
Richter J, Ploderer M, Mongelard G, Gutierrez L, Hauser MT. Role of CrRLK1L Cell Wall Sensors HERCULES1 and 2, THESEUS1, and FERONIA in Growth Adaptation Triggered by Heavy Metals and Trace Elements. FRONTIERS IN PLANT SCIENCE 2017; 8:1554. [PMID: 28936224 PMCID: PMC5594065 DOI: 10.3389/fpls.2017.01554] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/25/2017] [Indexed: 05/23/2023]
Abstract
Cell walls are not only a protective barrier surrounding protoplasts but serve as signaling platform between the extracellular environment and the intracellular physiology. Ions of heavy metals and trace elements, summarized to metal ions, bind to cell wall components, trigger their modification and provoke growth responses. To examine if metal ions trigger cell wall sensing receptor like kinases (RLKs) of the Catharanthus roseus RLK1-like (CrRLK1L) family we employed a molecular genetic approach. Quantitative transcription analyses show that HERCULES1 (HERK1), THESEUS1 (THE1), and FERONIA (FER) were differently regulated by cadmium (Cd), nickel (Ni), and lead (Pb). Growth responses were quantified for roots and etiolated hypocotyls of related mutants and overexpressors on Cd, copper (Cu), Ni, Pb, and zinc (Zn) and revealed a complex pattern of gene specific, overlapping and antagonistic responses. Root growth was often inversely affected to hypocotyl elongation. For example, both HERK genes seem to negatively regulate hypocotyl elongation upon Cd, Ni, Zn, and Pb while they support root growth on Cd, Cu, and Ni. The different THE1 alleles exhibited a similar effect between roots and hypocotyls on Ni, where the loss-of-function mutant was more tolerant while the gain of function mutants were hypersensitive indicating that THE1 is mediating Ni specific inhibition of hypocotyl elongation in the dark. In contrast hypocotyl elongation of the knock-out mutant, fer-4, was hypersensitive to Ni but exhibited a higher tolerance to Cd, Cu, Pb, and Zn. These data indicate an antagonistic action between THE1 and FER in relation to hypocotyl elongation upon excess of Ni. FERs function as receptor for rapid alkalinization factors (RALFs) was tested with the indicator bromocresol purple. While fer-4 roots strongly acidified control and metal ion containing media, the etiolated hypocotyls alkalized the media which is consistent with the already shorter hypocotyl of fer-4. No other CrRLK1L mutant exhibited this phenotype except of the THE1:GFP overexpressor on Ni suggesting that THE1 might be involved in Ni induced and hypocotyl specific RALF signaling and growth regulating pathway. Overall, our findings establish a molecular link between metal ion stress, growth and the cell wall integrity sensors of the CrRLK1L family.
Collapse
Affiliation(s)
- Julia Richter
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Marie Ploderer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules VerneAmiens, France
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules VerneAmiens, France
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| |
Collapse
|
18
|
Zhang Y, Han X, Chen S, Zheng L, He X, Liu M, Qiao G, Wang Y, Zhuo R. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Salix matsudana under different abiotic stresses. Sci Rep 2017; 7:40290. [PMID: 28120870 PMCID: PMC5264508 DOI: 10.1038/srep40290] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Salix matsudana is a deciduous, rapidly growing willow species commonly cultivated in China, which can tolerate drought, salt, and heavy metal stress conditions. Selection of suitable reference genes for quantitative real-time PCR is important for normalizing the expression of the key genes associated with various stresses. To validate suitable reference genes, we selected 11 candidate reference genes (five traditional housekeeping genes and six novel genes) and analyzed their expression stability in various samples, including different tissues and under different abiotic stress treatments. The expression of these genes was determined using five programs-geNorm, NormFinder, BestKeeper, ΔCt, and RefFinder. The results showed that α-TUB2 (alpha-tubulin 2) and DnaJ (chaperone protein DnaJ 49) were the most stable reference genes across all the tested samples. We measured the expression profiles of the defense response gene SmCAT (catalase) using the two most stable and one least stable reference genes in all samples of S. matsudana. The relative quantification of SmCAT varied greatly according to the different reference genes. We propose that α-TUB2 and DnaJ should be the preferred reference genes for normalization and quantification of transcript levels in future gene expression studies in willow species under various abiotic stress conditions.
Collapse
Affiliation(s)
- Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- School of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Shuangshuang Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Liu Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Xuelian He
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yang Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
19
|
McBride MB, Martinez CE, Kim B. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1178-1186. [PMID: 27216699 DOI: 10.1080/15226514.2016.1189401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg(-1) Zn, 70 mg kg(-1) Cd and 10,000 mg kg(-1) S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content.
Collapse
Affiliation(s)
- M B McBride
- a Section of Soil and Crop Sciences, Cornell University , Ithaca , NY
| | - C E Martinez
- a Section of Soil and Crop Sciences, Cornell University , Ithaca , NY
| | - B Kim
- b Department of Earth and Environmental Science , Temple University , Philadelphia , PA
| |
Collapse
|
20
|
Luo ZB, He J, Polle A, Rennenberg H. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 2016; 34:1131-1148. [DOI: 10.1016/j.biotechadv.2016.07.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
|
21
|
Shi X, Sun H, Chen Y, Pan H, Wang S. Transcriptome Sequencing and Expression Analysis of Cadmium (Cd) Transport and Detoxification Related Genes in Cd-Accumulating Salix integra. FRONTIERS IN PLANT SCIENCE 2016; 7:1577. [PMID: 27840630 PMCID: PMC5083712 DOI: 10.3389/fpls.2016.01577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/06/2016] [Indexed: 05/27/2023]
Abstract
Salix integra is a shrub willow native to northeastern China, Japan, Korea, and Primorsky Krai in the far southeast of Russia, and has been identified as cadmium (Cd)-accumulating trees in recent years. Although many physiological studies have been conducted with these plants, little is known about the molecular basis underlying Cd response in this plant, and this is confirmed by the very few number of gene sequences (only 39 nucleotide sequences) available in public databases. Advances in genomics for Salix are promising for future improvement in identification of new candidate genes involved in metal tolerance and accumulation. Thus, high-throughput transcriptome sequencing is essential for generating enormous transcript sequences from S. integra, especially for the purpose of Cd toxicity-responsive genes discovery. Using Illumina paired-end sequencing, approximately 60.05 million high-quality reads were obtained. De novo assembly yielded 80,105 unigenes with an average length of 703 bp, A total of 50,221 (63%) unigenes were further functionally annotated by comparing their sequences to different proteins and functional domain databases. GO annotation reveals 1849 Cd responsive genes involving in Cd binding, transport, and detoxification and cellular Cd homeostasis, and these genes were highly enriched in plant response to Cd ion and Cd ion transport. By searching against the PlantCyc database, 509 unigenes were assigned to 14 PlantCyc pathways related to Cd transport and cellular detoxification, and many of them are genes encoding heavy metal ATPases (HMAs), nature resistance-associated with microphage proteins (NRAMPs), ATP-binding cassette (ABC) transporters, etc., Comprehensive RT-qPCR analysis of these selected genes in different tissues of S. integra under the control and Cd treatment revealed metallothionein-like protein (MT2A and MT2B), Metal tolerance protein (MTP1), ABCB25, NRAMP5, and ZIP1 may be involved in the Cd transport and detoxification in leaves, while NRAMP2, ZIP8, and NRAMP5 may be related to Cd transport in roots. Our study will enrich the sequence information of S. integra in public database, and would provide some new understanding of the molecular mechanisms of heavy metal tolerance and detoxification in willows.
Collapse
Affiliation(s)
- Xiang Shi
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang ProvinceHangzhou, China
| | - Haijing Sun
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang ProvinceHangzhou, China
| | - Yitai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
| | - Hongwei Pan
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang ProvinceHangzhou, China
| | - Shufeng Wang
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang ProvinceHangzhou, China
| |
Collapse
|
22
|
Gonzalez E, Brereton NJB, Marleau J, Guidi Nissim W, Labrecque M, Pitre FE, Joly S. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil. BMC PLANT BIOLOGY 2015; 15:246. [PMID: 26459343 PMCID: PMC4603587 DOI: 10.1186/s12870-015-0636-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/30/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. METHODS Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. RESULTS Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. CONCLUSIONS The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Nicholas J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Julie Marleau
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | | | - Michel Labrecque
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Frederic E Pitre
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Simon Joly
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
23
|
Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman JF. Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. FRONTIERS IN PLANT SCIENCE 2015; 6:133. [PMID: 25814996 PMCID: PMC4357295 DOI: 10.3389/fpls.2015.00133] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/19/2015] [Indexed: 05/19/2023]
Abstract
Increasing industrialization and urbanization result in emission of pollutants in the environment including toxic heavy metals, as cadmium and lead. Among the different heavy metals contaminating the environment, cadmium raises great concern, as it is ecotoxic and as such can heavily impact ecosystems. The cell wall is the first structure of plant cells to come in contact with heavy metals. Its composition, characterized by proteins, polysaccharides and in some instances lignin and other phenolic compounds, confers the ability to bind non-covalently and/or covalently heavy metals via functional groups. A strong body of evidence in the literature has shown the role of the cell wall in heavy metal response: it sequesters heavy metals, but at the same time its synthesis and composition can be severely affected. The present review analyzes the dual property of plant cell walls, i.e., barrier and target of heavy metals, by taking Cd toxicity as example. Following a summary of the known physiological and biochemical responses of plants to Cd, the review compares the wall-related mechanisms in early- and later-diverging land plants, by considering the diversity in cell wall composition. By doing so, common as well as unique response mechanisms to metal/cadmium toxicity are identified among plant phyla and discussed. After discussing the role of hyperaccumulators' cell walls as a particular case, the review concludes by considering important aspects for plant engineering.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento Scienze della Vita, Università di Siena, Siena, Italy
| | - Gea Guerriero
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, Siena, Italy
| | - Jean-Francois Hausman
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
24
|
|