1
|
Hoang AQ, Takahashi S, Tue NM, Tuyen LH, Tran TM, Yen NTH, Tu MB. Occurrence, emission sources, and risk assessment of polybrominated diphenyl ethers and current-use brominated flame retardants in settled dust from end-of-life vehicle processing, urban, and rural areas, northern Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2061-2074. [PMID: 35927405 DOI: 10.1007/s11356-022-22396-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Settled dust samples from Vietnamese end-of-life vehicle (ELV) processing, urban, and rural areas were analyzed for polybrominated diphenyl ethers (PBDEs) and other current-use brominated flame retardants (BFRs). PBDE levels found in dust samples collected from ELV workshops (median 390; range 120-520 ng/g) and nearby living areas (110; 36-650 ng/g) were generally higher than those in common house dust (25-170 ng/g). BDE-209 was the most predominant congener detected in almost all the samples, indicating extensive application of products containing deca-BDE mixtures. The dust samples from ELV workplaces showed a more abundance of lower brominated congeners (e.g., tetra- to hexa-BDEs) that may originate from car interior materials treated by penta-BDE formulations. Concentrations of other BFRs decreased in the order urban > rural > ELV dust, reflecting the current use of these compounds in new consumer products. Decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were the major alternative BFRs. Daily intake doses and hazard indexes of PBDEs and some other BFRs through dust ingestion were estimated and showed acceptable levels of risk. However, more comprehensive risk assessment considering multiple exposure pathways should be performed, especially for ELV workers and children in the ELV processing and urban areas.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam.
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Nguyen Minh Tue
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Vietnam
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Nguyen Thi Hong Yen
- National Institute of Hygiene and Epidemiology, Hai Ba Trung, Hanoi, Vietnam
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| |
Collapse
|
2
|
Xiong S, Hao Y, Fu J, Wang P, Yang R, Pei Z, Li Y, Li A, Zhang Q, Jiang G. Legacy and novel brominated flame retardants in air of Ny-Ålesund, Arctic from 2011 to 2019. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120195. [PMID: 36126770 DOI: 10.1016/j.envpol.2022.120195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Concentrations of polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in the atmosphere of Ny-Ålesund, Svalbard, were investigated. Passive air samples were collected for eight consecutive one-year periods from August 2011 to August 2019 at seven Arctic sampling sites. High-resolution gas chromatography coupled with high-resolution mass spectrometry (HRGC-HRMS) and gas chromatography coupled with election capture negative ionization mass spectrometry (GC-NCI-MS) were employed for PBDE and NBFR analysis, respectively. The median concentrations of Ʃ11PBDEs and Ʃ6NBFRs were 0.6 pg/m3 and 4.0 pg/m3, respectively. Hexabromobenzene and BDE-47 were the most abundant NBFR and PBDE congeners in the atmosphere, accounting for 31% and 24% of ƩNBFR and ƩPBDE concentrations, respectively. ƩNBFR concentration was approximately six times higher than that of ƩPBDEs in the same samples. Among NBFRs, the concentrations of 1,2,3,4,5-pentabromobenzene, 2,3,4,5,6-pentabromobenzene, and 2,3-dibromopropyl-2,4,6-tribromophenyl ether showed increasing temporal variations, with estimated doubling times of 3.0, 3.3, and 2.8 years, respectively. The concentrations of almost all PBDE congeners showed a decreasing variation, with halving times ranging from 2.1 to 9.5 years.
Collapse
Affiliation(s)
- Siyuan Xiong
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfen Hao
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pu Wang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Martínez Valenzuela C, Gavilán García A, Conde Avila V, Barrientos Alemán D, Apodaca Avalos M, Luna Valdez JG, Castro Carranza G, Masías Ambríz LO. Applying the Global Monitoring Plan and analysis of POPs results in atmospheric air in Mexico (2017-2018). CHEMOSPHERE 2022; 303:135154. [PMID: 35640689 DOI: 10.1016/j.chemosphere.2022.135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Air is one of the target matrices of the Global Monitoring Plan (GMP) of the Stockholm Convention to determine concentrations and transport of Persistent Organic Pollutants (POPs). Mexico participates in the GMP for POPs in ambient air through the AIR-Global Environment Facility (GEF) program. The objective of this study was to analyze the results of POPs monitoring of air samples collected in Los Mochis, Sinaloa, Mexico, between 2017 and 2018. Passive samplers were used for the determination of chlorinated basic POPs, indicator polychlorinated biphenyls (Ind. PCBs), polybrominated biphenyl ethers (PBDEs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (dl-PCBs). A principal component analysis was applied to determine relationships between pollutants and groups present in the ambient air of the rural study area. Of the total POPs analyzed, 85.56% were detected in ambient air samples from Mexico. Organochlorine compounds, as DDT derivatives, were identified mainly, as well as PBDEs, PCDDs, and PCDFs. The prevalence of compounds differed according to the seasonality of sampling, with no change in average concentration between monitoring years.
Collapse
Affiliation(s)
- Carmen Martínez Valenzuela
- Unidad de Investigación en Ambiente y Salud, Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera Internacional C.P., 81223, Los Mochis, Sinaloa, Mexico.
| | | | - Victoria Conde Avila
- Facultad de Biotecnología, Universidad Popular Autónoma Del Estado de Puebla, Puebla, Pue., Mexico
| | - Dolores Barrientos Alemán
- Representante Del Programa de las Naciones Unidas para el Medio Ambiente en México (Oficina Regional para América Latina y el Caribe), Mexico
| | - Marisa Apodaca Avalos
- Unidad de Investigación en Ambiente y Salud, Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera Internacional C.P., 81223, Los Mochis, Sinaloa, Mexico
| | - José Guadalupe Luna Valdez
- Unidad de Investigación en Ambiente y Salud, Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera Internacional C.P., 81223, Los Mochis, Sinaloa, Mexico
| | - Gabriel Castro Carranza
- Unidad de Investigación en Ambiente y Salud, Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera Internacional C.P., 81223, Los Mochis, Sinaloa, Mexico
| | - Luis Omar Masías Ambríz
- Unidad de Investigación en Ambiente y Salud, Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera Internacional C.P., 81223, Los Mochis, Sinaloa, Mexico
| |
Collapse
|
4
|
Rezania S, Talaiekhozani A, Oryani B, Cho J, Barghi M, Rupani PF, Kamali M. Occurrence of persistent organic pollutants (POPs) in the atmosphere of South Korea: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119586. [PMID: 35680069 DOI: 10.1016/j.envpol.2022.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies found the presence of persistent organic pollutants (POPs) in various environmental compartments, including air, water, and soil. POPs have been discovered in various industrial and agricultural products with severe environmental and human health consequences. According to the data, South Korea is a hotspot for POP pollution in the southern part of Asia; hence, South Korea has implemented the Stockholm Convention's National Implementation Plan (NIP) to address this worldwide issue. The purpose of this review is to assess the distribution pattern of POPs pollution in South Korea's atmosphere. According to findings, PAHs, PCBs, BFRs, and PBDEs significantly polluted the atmosphere of South Korea; however, assessing their exposure nationwide is difficult due to a shortage of data. The POPs temporal trend and meta-analysis disclosed no proof of a decrease in PAHs and BFRs residues in the atmosphere. However, POP pollution in South Korea tends to decrease compared to contamination levels in neighboring countries like Japan and China.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, 84919-63395, Iran
| | - Bahareh Oryani
- Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | | | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
5
|
Zhang ZW, Shahpoury P, Zhang W, Harner T, Huang L. A new method for measuring airborne elemental carbon using PUF disk passive samplers. CHEMOSPHERE 2022; 299:134323. [PMID: 35302004 DOI: 10.1016/j.chemosphere.2022.134323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Carbonaceous aerosol species, such as elemental carbon (EC), are important Short-Lived Climate Forcers (SLCFs), contributing to climate and health effects of air pollution. The quantification of carbonaceous aerosols has been conventionally carried out using active air sampling followed by various analytical techniques, such as thermal/thermal-optical analysis. Active sampling requires specific equipment and infrastructure with electricity and therefore may not be the best choice for studying carbonaceous aerosols at remote locations. Passive sampling on the other hand provides a simple and cost-effective alternative to study time-weighted temporal and spatial trends. For the first time in this study, we have developed a method to examine the viability of measuring EC using polyurethane foam passive air samplers (PUF-PAS) coupled with a thermal analysis, i.e., EnCan-Total-900 (ECT9). The method was found reproducible with coefficients of variation as low as 3% for EC measured in ambient passive samples. The method had relatively low background with EC levels in blanks being as low as 0.1% of those in deployed samples, allowing quantification within a wide range of concentrations. The results indicate a homogenous distribution of particles within the PUF-PAS substrate. EC concentrations measured with the passive method were not significantly different from those obtained from active samples at the study sites (p > 0.01). This proof of concept of the PUF-PAS method provides an opportunity to cost-effectively expand measurements of elemental carbon at the global scale, and could be further extended to include other carbonaceous aerosol species in the future. This helps address regional data gaps for improving uncertainties of SLCF impacts on global climate forcing and to inform policy decisions.
Collapse
Affiliation(s)
- Zheng Wei Zhang
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Pourya Shahpoury
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada; Department of Chemistry, Trent University, Peterborough, Canada.
| | - Wendy Zhang
- Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Lin Huang
- Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
| |
Collapse
|
6
|
Zhang Q, Gu S, Yu C, Cao R, Xu Y, Fu L, Wang C. Integrated assessment of endocrine disrupting potential of four novel brominated flame retardants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113206. [PMID: 35085884 DOI: 10.1016/j.ecoenv.2022.113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Novel brominated flame retardants (NBFRs) have emerged as alternatives to the legacy BFRs due to BFRs' persistence, bioaccumulation and evidence of adverse health effects. The increasing production of NBFRs has led to the frequent detection in environmental media and even in organisms. Thus the potential health risks of these novel NBFRs need to be taken into account. Herein, the endocrine disrupting effects of the four NBFRs (α/β-TBCO, PBEB, EHTBB and BEHTBP) were evaluated by constructing an estrogen receptor (ERα), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) mediated dual-luciferase reporter gene assays on the CHO cells, in combination with steroid experiments on the H295R cells and molecular docking. The results revealed that α/β-TBCO, PBEB and EHTBB induced anti-estrogenic activity at certain concentrations while none of the four NBFRs was agonistic to ERα. For reporter gene assay, only PBEB exhibited GR antagonistic effects. Notably, none of the four NBFRs possess neither agonistic nor antagonistic activity of MR. The molecular docking results were generally consistent with the reporter gene assay, which showed the different binding affinities between NBFRs and the receptors. For steroidogenesis, α/β-TBCO, PBEB, and EHTBB all upregulated genes encoding for steroid synthesis enzymes, including 17βHSD, CYP11B1 and CYP17. Altogether, the data clarified that NBFRs may pose risks of endocrine disruption.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| | - Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Chang Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Rui Cao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Yitian Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Lili Fu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Sun R, Wang X, Tian C, Zong Z, Ma W, Zhao S, Wang Y, Tang J, Cui S, Li J, Zhang G. Exploring source footprint of Organophosphate esters in the Bohai Sea, China: Insight from temporal and spatial variabilities in the atmosphere from June 2014 to May 2019. ENVIRONMENT INTERNATIONAL 2022; 159:107044. [PMID: 34915353 DOI: 10.1016/j.envint.2021.107044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) are still produced and used in large quantities in the world-wide, and the environmental burden and behavior have generated widespread concern, especially in some large-scale waterbodies. This study conducted a comprehensive assessment on the temporal and spatial variabilities and budget of OPEs to trace the source for the Bohai Sea (BS), based on a 5-year seasonal monitoring campaign (June 2014 to May 2019) of 12 atmospheric sites around the BS and our previous studies. The average concentration of Σ10OPEs in atmosphere during the sampling period was 7.65 ± 6.42 ng m-3, and chlorinated OPEs were the major compounds. The Seasonal-Trend decomposition procedure based on Loess (STL) analyzed that during the 5-year sampling period, the atmospheric concentrations of Σ10OPEs had a slightly increasing trend with a rate of + 0.092 ng m-3 yr-1, and the seasonal concentrations had a distinct seasonal distribution. The highest concentration of Σ10OPEs was observed at the sampling site of Dalian, followed by Tianjin, Yantai, and Beihuangcheng. The estimation of the fugacity ratios and air-water gas exchange fluxes established that the concentration levels of two major components of chlorinated OPEs (tris-(2-chloroethyl) phosphate (TCEP) and tris-(1-chloro-2-propyl) phosphate (TCPP)) in the atmosphere were dominated by their volatilization from BS's seawater (1.24 ± 0.46 t yr-1 for TCEP and 5.15 ± 2.15 t yr-1 for TCPP), with 73% deriving from the coastal seawater. The budget assessment suggested that the volatile fluxes of TCEP and TCPP accounted for 8% and 29% of their storages (15.6 ± 5.32 t for TCEP and 17.6 ± 6.70 t for TCPP) in the BS seawater, which were mainly contributed by continental river input (20% for TCEP and 42% for TCPP). The efforts indicated that river inputs of TCEP and TCPP needed to be paid more attention for the improvement of environmental quality of the BS.
Collapse
Affiliation(s)
- Rong Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Chongguo Tian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Zheng Zong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wenwen Ma
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| |
Collapse
|
8
|
Hu PT, Ma WL, Zhang ZF, Liu LY, Song WW, Cao ZG, Macdonald RW, Nikolaev A, Li L, Li YF. Approach to Predicting the Size-Dependent Inhalation Intake of Particulate Novel Brominated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15236-15245. [PMID: 34724783 DOI: 10.1021/acs.est.1c03749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The risk of human exposure to particulate novel brominated flame retardants (NBFRs) in the atmosphere has received increasing attention from scientists and the public, but currently, there is no reliable approach to predict the intake of these compounds on the basis of their size distribution. Here, we develop a reliable approach to predict the size-dependent inhalation intake of particulate NBFRs, based on the gas/particle (G/P) partitioning behavior of the NBFRs. We analyzed the concentrations of eight NBFRs in 363 size-segregated particulate samples and 99 paired samples of gaseous and bulk particles. Using these data, we developed an equation to predict the G/P partitioning quotients of NBFRs in particles in different size ranges (KPi) based on particle size. This equation was then successfully applied to predict the size-dependent inhalation intake of particulate NBFRs in combination with an inhalation exposure model. This new approach provides the first demonstration of the effects of the temperature-dependent octanol-air partitioning coefficient (KOA) and total suspended particle concentration (TSP) on the intake of particulate NBFRs by inhalation. In an illustrative case where TSP = 100 μg m-3, inhalation intake of particulate NBFRs exceeded the intake of gaseous NBFRs when log KOA > 11.4.
Collapse
Affiliation(s)
- Peng-Tuan Hu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Zhi-Guo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Robie W Macdonald
- Department of Fisheries and Oceans, Institute of Ocean Sciences, P.O. Box 6000, Sidney, British Columbia V8L 4B2, Canada
| | - Anatoly Nikolaev
- Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky str., Yakutsk 677000, Russia
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| |
Collapse
|
9
|
Niu S, Harner T, Chen R, Parnis JM, Saini A, Hageman K. Guidance on the Application of Polyurethane Foam Disk Passive Air Samplers for Measuring Nonane and Short-Chain Chlorinated Paraffins in Air: Results from a Screening Study in Urban Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11693-11702. [PMID: 34431673 DOI: 10.1021/acs.est.1c02428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study provides guidance on using polyurethane foam-based passive air samplers (PUF-PASs) for atmospheric nonane chlorinated paraffins (C9-CPs) and short-chain CPs (SCCPs) and reports SCCP concentrations in air in the Greater Toronto Area (GTA), Canada. We estimated the partition coefficients between PUF and air (KPUF-A) and between octanol and air (KOA) for C9-CP and SCCP congeners using the COSMO-RS method, so that PUF disk uptake profiles for each formula group could be calculated. We then measured SCCP concentrations in PUF disk samples collected from distinct source sectors in urban air across the GTA. Concentrations in samplers were used to calculate C9-CP and SCCP concentrations in air and the PUF disk uptake profiles revealed that time-weighted linear phase sampling was possible for congeners having log KOA values greater than 8.5. The highest SCCP concentrations, with an annual average concentration of 35.3 ng/m3, were measured at the industrial site, whereas lower but comparable SCCP concentrations were found in residential and background sites, with annual averages of 7.73 and 10.5 ng/m3, respectively. No consistent seasonal variation in SCCP concentrations was found in the six distinct source sectors. Direct measurements of KPUF-A and KOA values as a function of temperature could be used to increase accuracy in future studies.
Collapse
Affiliation(s)
- Shan Niu
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Ruiwen Chen
- Utah Water Research Laboratory, Utah State University, Logan, Utah 84322, United States
| | - J Mark Parnis
- Department of Chemistry and Canadian Environmental Modelling Centre, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Amandeep Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Kimberly Hageman
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
10
|
Maddela NR, Venkateswarlu K, Kakarla D, Megharaj M. Inevitable human exposure to emissions of polybrominated diphenyl ethers: A perspective on potential health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115240. [PMID: 32698055 DOI: 10.1016/j.envpol.2020.115240] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 05/24/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as flame retardants in many household materials such as electrical and electronic devices, furniture, textiles, plastics, and baby products. Though the use of PBDEs like penta-, octa- and deca-BDE greatly reduces the fire damage, indoor pollution by these toxic emissions is ever-growing. In fact, a boom in the global market projections of PBDEs threatens human health security. Therefore, efforts are made to minimize PBDEs pollution in USA and Europe by encouraging voluntary phasing out of the production or imposing compelled regulations through Stockholm Convention, but >500 kilotons of PBDEs still exist globally. Both 'environmental persistence' and 'bioaccumulation tendencies' are the hallmarks of PBDE toxicities; however, both these issues concerning household emissions of PBDEs have been least addressed theoretically or practically. Critical physiological functions, lipophilicity and toxicity, trophic transfer and tissue specificities are of utmost importance in the benefit/risk assessments of PBDEs. Since indoor debromination of deca-BDE often yields many products, a better understanding on their sorption propensity, environmental fate and human toxicities is critical in taking rigorous measures on the ever-growing global deca-BDE market. The data available in the literature on human toxicities of PBDEs have been validated following meta-analysis. In this direction, the intent of the present review was to provide a critical evaluation of the key aspects like compositional patterns/isomer ratios of PBDEs implicated in bioaccumulation, indoor PBDE emissions versus human exposure, secured technologies to deal with the toxic emissions, and human toxicity of PBDEs in relation to the number of bromine atoms. Finally, an emphasis has been made on the knowledge gaps and future research directions related to endurable flame retardants which could fit well into the benefit/risk strategy.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador; Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
11
|
Zhang X, Saini A, Hao C, Harner T. Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: Opportunities and challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Liu L, Zhen X, Wang X, Li Y, Sun X, Tang J. Legacy and novel halogenated flame retardants in seawater and atmosphere of the Bohai Sea: Spatial trends, seasonal variations, and influencing factors. WATER RESEARCH 2020; 184:116117. [PMID: 32726740 DOI: 10.1016/j.watres.2020.116117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Seventeen halogenated flame retardants (HFRs) were concurrently analyzed in surface seawater and low atmospheric samples from the Bohai Sea during four research cruises. HFRs mainly existed in particulate phases, and in general decabromodiphenyl ethane (DBDPE) was the predominant compound in both air and water samples. Relatively high concentrations were observed in the water of Laizhou Bay (LB), where the largest manufacturing base of brominated flame retardants (BFRs) in China is located and weak water exchange occurs. Transport from LB by coastal currents may be the main source of BFRs in some areas without emission sources. The HFRs in seawater exhibited distinct seasonal variation, with significantly higher concentrations in winter than those in summer. The controlling factors include the resuspension of sediment induced by large wind waves in winter and phytoplankton scavenging in spring and seawater stratification in summer. HFRs composition varied largely in different seasons, due to the different extents of riverine input and atmospheric deposition. Normally, for air masses passing through the nearby industrial regions, high concentrations of DBDPE (up to 1780 pg m-3) co-existed with high total suspended particle (TSP) levels (up to 150 μg m-3). The estimated atmospheric deposition fluxes of HFRs were 19, 51, and 80 kg season-1 in spring, summer, and winter, respectively, indicating that the Bohai Sea is a sink of HFRs via atmospheric deposition. This study has increased our understanding of the behaviors and fates of the legacy and novel HFRs in the shallow coastal sea.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomei Zhen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
| | - Yanfang Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xu Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
13
|
Wania F, Shunthirasingham C. Passive air sampling for semi-volatile organic chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1925-2002. [PMID: 32822447 DOI: 10.1039/d0em00194e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During passive air sampling, the amount of a chemical taken up in a sorbent from the air without the help of a pump is quantified and converted into an air concentration. In an equilibrium sampler, this conversion requires a thermodynamic parameter, the equilibrium sorption coefficient between gas-phase and sorbent. In a kinetic sampler, a time-averaged air concentration is obtained using a sampling rate, which is a kinetic parameter. Design requirements for kinetic and equilibrium sampling conflict with each other. The volatility of semi-volatile organic compounds (SVOCs) varies over five orders of magnitude, which implies that passive air samplers are inevitably kinetic samplers for less volatile SVOCs and equilibrium samplers for more volatile SVOCs. Therefore, most currently used passive sampler designs for SVOCs are a compromise that requires the consideration of both a thermodynamic and a kinetic parameter. Their quantitative interpretation depends on assumptions that are rarely fulfilled, and on input parameters, that are often only known with high uncertainty. Kinetic passive air sampling for SVOCs is also challenging because their typically very low atmospheric concentrations necessitate relatively high sampling rates that can only be achieved without the use of diffusive barriers. This in turn renders sampling rates dependent on wind conditions and therefore highly variable. Despite the overall high uncertainty arising from these challenges, passive air samplers for SVOCs have valuable roles to play in recording (i) spatial concentration variability at scales ranging from a few centimeters to tens of thousands of kilometers, (ii) long-term trends, (iii) air contamination in remote and inaccessible locations and (iv) indoor inhalation exposure. Going forward, thermal desorption of sorbents may lower the detection limits for some SVOCs to an extent that the use of diffusive barriers in the kinetic sampling of SVOCs becomes feasible, which is a prerequisite to decreasing the uncertainty of sampling rates. If the thermally stable sorbent additionally has a high sorptive capacity, it may be possible to design true kinetic samplers for most SVOCs. In the meantime, the passive air sampling community would benefit from being more transparent by rigorously quantifying and explicitly reporting uncertainty.
Collapse
Affiliation(s)
- Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | | |
Collapse
|
14
|
Harrad S, Drage DS, Sharkey M, Berresheim H. Perfluoroalkyl substances and brominated flame retardants in landfill-related air, soil, and groundwater from Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135834. [PMID: 31972917 DOI: 10.1016/j.scitotenv.2019.135834] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Between November 2018 and January 2019, samples of air and soil were collected from locations downwind and upwind of 10 landfills across the Republic of Ireland. Samples of groundwater (n = 10) were also collected from locations with links traceable to the studied landfills. Concentrations of perfluoroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs), hexabromocyclodecane (HBCDD), and decabromodiphenyl ethane (DBDPE) determined in air and soil samples were not significantly different (p > 0.05) between downwind and upwind locations. The arithmetic mean concentration of PFOA in groundwater sourced from landfills (n = 4) that were not fully lined (69 ng/L) exceeded that in groundwater samples sourced from lined landfills (n = 6; 4.1 ng/L), with the difference, however being not statistically significant (p > 0.1). A positive correlation (p = 0.014) was observed between concentrations of PFOA in groundwater in our study and those reported previously in leachate from the same landfills. However, this correlation was driven substantially by one landfill which displayed the highest concentrations in both groundwater and leachate and no significant correlation (p > 0.1) was observed between log-transformed concentrations of PFOA in groundwater and leachate. DBDPE was detected in groundwater for the first time anywhere, in all samples at concentrations (median = 9.4 ng/L; arithmetic mean = 78 ng/L) that exceeded those of any other BFRs or PFASs targeted in this study. This likely reflects its recent use as a "drop-in" replacement for the recently restricted Decabromodiphenyl ether product. Overall, our data suggest that the 10 landfills studied do not exert a discernible influence on local air and soil concentrations of BFRs and PFASs. In contrast, while not of immediate concern, our data suggest that further more detailed study of the impact of landfill emissions on concentrations of DBDPE and PFOA is advisable.
Collapse
Affiliation(s)
- Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Daniel S Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin Sharkey
- School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Harald Berresheim
- School of Physics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
15
|
Zhou C, Pagano J, McGoldrick DJ, Chen D, Crimmins BS, Hopke PK, Milligan MS, Murphy EW, Holsen TM. Legacy Polybrominated Diphenyl Ethers (PBDEs) Trends in Top Predator Fish of the Laurentian Great Lakes (GL) from 1979 to 2016: Will Concentrations Continue to Decrease? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6650-6659. [PMID: 31141349 DOI: 10.1021/acs.est.9b00933] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) were widely used as fire retardants and have been detected throughout the Great Lakes (GL) ecosystem. The concentration trends (after fish age normalization) of PBDEs in top predator fish (lake trout and walleye) of the GLs were determined from 1979 to 2016, which includes most of the period when PBDEs were manufactured and used in this region. The fish samples were collected by two national (U.S. and Canada) long-term monitoring and surveillance programs. Trends in total concentrations (age-normalized) of the five major PBDE congeners (BDE-47, 99, 100, 153, and 154) found in fish across all five lakes have varied over time. Significant increases were observed from 1990 to 2000 (16.3% per year). Rapidly decreasing concentrations (-19.5% per year) were found from 2000 to 2007. Since 2007, the decreasing trend has become smaller (less than -5.5% per year) and relatively unchanged from 2011 to 2015. BDE-47, the congener with the highest concentrations in lake trout, has decreased continuously (ranging from -6.7% to -16.2% per year) in all lakes except Lake Erie. This decrease can be associated with the voluntary and regulatory phase out of production and/or usage of PBDEs since 2000. However, it has been offset by recent (since 2007) increasing trends of the other four higher brominated BDE congeners, especially BDE-100 and 154. Production and usage of commercial penta- and octa- BDE mixtures containing primarily the five major PBDE congeners was discontinued in 2004 in the U.S.A. and 2008 in Canada. These results indicate increasing fish uptake and bioaccumulation of higher brominated BDE congeners may be related to the transformation of BDE-209 to lower brominated BDE compounds in the GL environment or food web. Considering the abundance of BDE-209 in existing products and sediment in GL region, the duration of the unchanging total PBDE concentration trend in GL fish could be longer than expected.
Collapse
Affiliation(s)
- Chuanlong Zhou
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13676 , United States
| | - James Pagano
- Environmental Research Center, Department of Chemistry , State University of New York at Oswego , Oswego , New York 13126 , United States
| | - Daryl J McGoldrick
- Environment & Climate Change Canada , Water Science and Technology Directorate , Burlington , Ontario L7S 1A1 , Canada
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , P. R. China
| | - Bernard S Crimmins
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13676 , United States
- AEACS, LLC. , New Kensington , Pennsylvania 15068 , United States
| | - Philip K Hopke
- Center for Air Resources Engineering and Science , Clarkson University , Potsdam , New York 13699 , United States
| | - Michael S Milligan
- Department of Chemistry and Biochemistry , State University of New York at Fredonia , Houghton Hall , Fredonia , New York 14063 , United States
| | - Elizabeth W Murphy
- Great Lakes National Program Office , United States Environmental Protection Agency , 77 W. Jackson Boulevard , Chicago , Illinois 60604 , United States
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13676 , United States
| |
Collapse
|
16
|
Tang S, Tan H, Liu X, Chen D. Legacy and alternative flame retardants in house dust and hand wipes from South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1-8. [PMID: 30502730 DOI: 10.1016/j.scitotenv.2018.11.369] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/18/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
The present study investigated the occurrence of legacy and alternative halogenated flame retardants (FRs) in house dust (n = 51) from Guangzhou, South China and hand wipes collected from adults (n = 51) and children (n = 31). In addition to polybrominated diphenyl ether (PBDE) congeners (particularly BDE-209), several alternative FRs were also detected in >60% of dust samples, including decabromodiphenylethane (DBDPE; median: 4600 ng/g), bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP; 43.9 ng/g), 1,2-bis(2,4,6-tribormophenoxy)ethane (BTBPE; 9.2 ng/g), pentabromotoluene (PBT; 10.1 ng/g), and syn- and anti-dechlorane plus (DPs, 24.5 ng/g). BDE-47, BDE-209, DBDPE, BEH-TEBP, and DPs were also frequently detected on hand wipes from children (median mass: 0.1-1.1 ng) and adults (0.1-1.2 ng). Linear regression models suggest that dust concentrations of BDE-47 and DPs had significant or marginally significant associations with their masses on children's (10β = 2.82; 95% CI: 1.20, 6.64 and 10β = 5.57, 95% CI: 1.85, 16.75, respectively) and adults' hands (10β = 4.46; 95% CI: 0.92, 21.58 and 10β = 5.11; 95% CI: 1.74, 14.96, respectively), whereas no association was observed for any other FRs. Most of the investigated demographic, environmental, or behavioral factors did not significantly influence the levels of halogenated FRs on human hands. Estimation of human exposure risks via hand-to-mouth contact and dust ingestion indicates that children are subjected to elevated exposure than adults, and the relative importance of the two pathways is chemical-specific.
Collapse
Affiliation(s)
- Shuqin Tang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Wu Y, Tan H, Zhou C, Crimmins BS, Holsen TM, Pagano JJ, Chen D. Spatial and Temporal Trends (2004-2016) of Selected Alternative Flame Retardants in Fish of the Laurentian Great Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1786-1796. [PMID: 30681328 DOI: 10.1021/acs.est.8b05300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Following the phase-out of polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCDD) flame retardants (FRs) from North American markets, the use of alternative FRs has increased. In this study the occurrence and spatiotemporal distributions of 18 dechlorane analogues (collectively referred to as DECs) and 20 alternative brominated FRs (referred to as ABFRs, i.e., brominated FRs other than PBDEs and HBCDD) were investigated in top predator fish megacomposites (i.e., a composite of all 50 fish) collected yearly from each of the Great Lakes from 2004 to 2016. Frequently detected substances include dechlorane 602, 603, 604 Component B, anti- and syn-dechlorane plus, and chlordene plus, as well as several brominated benzene FRs (i.e., hexabromobenzene, pentabromotoluene, and tetrabromo- o-chlorotoluene). Concentrations of ΣDECs and ΣABFRs ranged from 0.33-31.9 ng/g lipid weight (lw) (0.01-8.3 ng/g wet weight or ww) and 0.91-54.7 ng/g lw (0.09-7.1 ng/g ww), respectively. Flame retardant contamination exhibited chemical-specific spatial variations across the five lakes. Concentrations of ΣABFRs in Lake Erie fish were generally lower than those from other lakes. By contrast, fish ΣDEC concentrations were highest in Lake Ontario and the composition of dechlorane analogues differed significantly between Lake Ontario and the other lakes, indicating likely point-source influences. Temporal analyses revealed declining trends of ΣDECs and ΣABFRs in most lakes except Lake Erie, with age corrected trend slopes of -13.5% to -8.8% and -20.1% to -7.0% per year, respectively.
Collapse
Affiliation(s)
- Yan Wu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
- Cooperative Wildlife Research Laboratory and Department of Zoology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Chuanlong Zhou
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13699 , United States
| | - Bernard S Crimmins
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13699 , United States
- AEACS, LLC , Alliance , Ohio 44601 , United States
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13699 , United States
| | - James J Pagano
- Environmental Research Center, Department of Chemistry , State University of New York at Oswego , Oswego , New York 13126 , United States
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| |
Collapse
|
18
|
Katima ZJ, Olukunle OI, Kalantzi OL, Daso AP, Okonkwo JO. The occurrence of brominated flame retardants in the atmosphere of Gauteng Province, South Africa using polyurethane foam passive air samplers and assessment of human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1894-1903. [PMID: 30064875 DOI: 10.1016/j.envpol.2018.07.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Polyurethane foam passive samplers were deployed between May 2016 and January 2017 to evaluate concentrations of polybrominated diphenyl ethers (PBDEs), selected alternative flame retardants (AFRs) and total hexabromocyclododecane (HBCDD) (sum of α-, β-, and γ-HBCDD). The PUF air samplers were deployed in semi-urban, urban, industrial and landfill sites in Gauteng Province, South Africa. The acquired results presented a clear semi urban-industrial-urban-landfill concentration gradient for all BFRs measured. Taking into account 2 sampling periods (cold and warm periods) (n = 16), the atmospheric concentrations of ∑9PBDEs, HBCDDs and ∑AFRs were 100-2820 pg m-3, 12-117 pg m-3 and 41-4660 pg m-3, respectively, for the sparsely populated residential area, densely populated residential area, industrial area and the landfill area. In all cases, BDE 47, 99, and 209 were the most dominant congeners with high detection frequencies. The highest calculated daily exposure dose in Gauteng Province atmosphere was 0.61 and 1.54 ng kg -1 - bw d -1 for adults and children respectively. The estimated total intake of PBDEs was 0.47-33.4 ng kg -1 - bw d -1, which was generally below the lowest adverse effect limit (LOAEL), suggesting that the residents of Gauteng Province may not be significantly affected as a result of their exposure to these pollutants through inhalation. However, this does not necessarily suggest that the pollutants are harmless to human health, since they have the tendency to bioaccumulate in biological systems. Incidentally, this is the first study from Africa to report on the atmospheric concentrations of PBDEs, HBCDDs and AFRs in urban, landfill and industrial areas. The findings from this study further highlight the contributory role of landfills as potential sources of BFRs into the atmosphere.
Collapse
Affiliation(s)
- Zainab J Katima
- Environmental Chemistry Research Group, Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; University of Dar es Salaam, College of Engineering and Technology, Department of Chemical and Mining Engineering, P.O. Box 35131, Dar es Salaam, Tanzania
| | - Olubiyi I Olukunle
- School of Public and Environmental Affairs, Indiana University, 702N Walnut Grove Avenue, Bloomington, 47405, Indiana, USA
| | | | - Adegbenro P Daso
- Environmental Chemistry Research Group, Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Jonathan O Okonkwo
- Environmental Chemistry Research Group, Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
19
|
Hammel SC, Phillips AL, Hoffman K, Stapleton HM. Evaluating the Use of Silicone Wristbands To Measure Personal Exposure to Brominated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11875-11885. [PMID: 30216050 PMCID: PMC6445795 DOI: 10.1021/acs.est.8b03755] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biomarkers remain the gold standard for assessing chemical exposure. However, silicone wristbands may provide some added benefits for characterizing personal exposures compared to single biomarker measurements, such as decreased costs, noninvasive sampling, and increased ease of analysis. Previously, we validated their use in characterizing exposure to organophosphate flame retardants (PFRs). However, it is unclear whether these results would extend to chemicals like polybrominated diphenyl ethers (PBDEs), which biomagnify and have longer half-lives than PFRs in the body. This study sought to determine if accumulation of PBDEs on wristbands was correlated to serum biomarkers. Adult participants ( n = 30) provided serum samples and wore wristbands for 7 days. PBDEs and 6 novel brominated flame retardants (BFRs) were measured on wristbands, and serum samples were analyzed for PBDE biomarkers. Like most PBDE congeners, 5 of 6 novel BFRs were frequently detected on wristbands (≥90% of bands). In particular, decabromodiphenyl ethane (DBDPE) was detected in all wristbands in this study and was significantly correlated with BDE-209, suggesting a similar source and exposure pathway. Wristband levels of BDE-47, -99, -100, and -153 were significantly and positively associated with respective serum biomarkers ( rs = 0.39-0.57, p < 0.05). This study demonstrates that silicone wristbands can accurately detect personal PBDE exposures.
Collapse
Affiliation(s)
- Stephanie C. Hammel
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| | - Allison L. Phillips
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| |
Collapse
|
20
|
Li L, Wania F. Elucidating the Variability in the Hexabromocyclododecane Diastereomer Profile in the Global Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10532-10542. [PMID: 30146881 DOI: 10.1021/acs.est.8b03443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hexabromocyclododecane (HBCDD) is a hazardous flame retardant subject to international regulation. Whereas γ-HBCDD is a dominant component in the technical HBCDD mixture, the diastereomer profile in environmental samples shows substantial temporal and spatial variations, ranging from γ- to α-HBCDD-dominant. To explain such variability, we simulate the global emissions and fate of HBCDD diastereomers, using a dynamic substance flow analysis model (CiP-CAFE) coupled to a multimedia environmental fate model (BETR-Global). Our modeling results indicate that, as of 2015, 340-1000 tonnes of HBCDD have been emitted globally, with slightly more γ-HBCDD (50%-65%) than α-HBCDD (30%-50%). Emissions of γ-HBCDD primarily originate from production and other industrial processes, whereas those of α-HBCDD are mainly associated with the use and end-of-life disposal of HBCDD-containing products. Presently, α-HBCDD dominates the contamination in the air of populated areas, while γ-HBCDD is more abundant in remote background areas and in regions with HCBDD production and processing facilities. Globally, the relative abundance of α-HBCDD is anticipated to increase after production of HBCDD is banned. Due to isomerization, α-HBCDD accumulates to a larger extent than γ-HBCDD in Arctic surface media. Since α-HBCDD is more persistent and bioaccumulative than other diastereomers, isomerization has bearing on the potential environmental and health impacts on a global scale.
Collapse
Affiliation(s)
- Li Li
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , Ontario Canada M1C 1A4
| | - Frank Wania
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , Ontario Canada M1C 1A4
| |
Collapse
|
21
|
Nacci D, Clark B, La Guardia MJ, Miller K, Champlin D, Kirby I, Bertrand A, Jayaraman S. Bioaccumulation and effects of dietary exposure to the alternative flame retardant, bis(2-ethylhexyl) tetrabromophthalate (TBPH), in the Atlantic killifish, Fundulus heteroclitus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2350-2360. [PMID: 29846010 PMCID: PMC6123825 DOI: 10.1002/etc.4180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/05/2018] [Accepted: 05/29/2018] [Indexed: 05/23/2023]
Abstract
Bis(2-ethylhexyl) tetrabromophthalate (TBPH), a high production volume flame retardant chemical used as a replacement for banned flame retardants, has been detected in media and human and wildlife tissues globally. We describe bioaccumulation and biological effects from dietary exposure of TBPH to an estuarine fish, Atlantic killifish, Fundulus heteroclitus. Briefly, adult fish were fed carrier control or chemically amended diets for 28 d, followed by 14 d of control diet feeding. Diets were amended with TBPH (TBPH_LO diet, 139 μg/g dry wt, or TBPH_HI diet, 4360 μg/g dry wt) or a polychlorinated biphenyl congener (PCB153 diet, 13 μg/g dry wt), which was included as a positive control for bioaccumulation. Although bioaccumulation of either chemical correlated with fish size, only a small proportion of the TBPH offered (<0.5% total TBPH) had bioaccumulated into TBPH-treated fish by 28 d. In contrast, 24.5% of the PCB153 offered was accounted for in 28-d PCB-treated fish. Although 28-d bioaccumulated concentrations of TBPH differed by sex and treatment, sexes did not differ in their rates of TBPH bioaccumulation, and the time to achieve 50% of 28 d concentration (T1/2 ) was estimated to be 13 d. Depuration rates of TBPH did not differ by sex or treatment, and the time after exposure to achieve T1/2 was estimated to be 22 d. Independent of treatment, male fish grew faster than female fish, but for both sexes reproductive condition (gonadal somatic index) declined unexpectedly over the experimental period. Across treatments, only the TBPH_LO treatment affected growth, reducing male but increasing female growth rates by small amounts relative to respective controls. In summary, our study used very high concentrations of dietary TBPH to contaminate fish tissues above the highest levels reported to date in wild biota, yet we observed few adverse biological effects. Environ Toxicol Chem 2018;37:2350-2360. © 2018 SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Diane Nacci
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Bryan Clark
- Atlantic Ecology Division, Oak Ridge Institute for Science and Education, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Mark J La Guardia
- Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, USA
| | - Ken Miller
- CSC Government Solutions, A CSRA Company, Alexandria, Virginia, USA
| | - Denise Champlin
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Ian Kirby
- Atlantic Ecology Division, Student Services Contractor, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Ashley Bertrand
- Atlantic Ecology Division, Student Services Contractor, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Saro Jayaraman
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| |
Collapse
|
22
|
de la Torre A, Barbas B, Sanz P, Navarro I, Artíñano B, Martínez MA. Traditional and novel halogenated flame retardants in urban ambient air: Gas-particle partitioning, size distribution and health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:154-163. [PMID: 29477113 DOI: 10.1016/j.scitotenv.2018.02.199] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Urban ambient air samples, including gas-phase (PUF), total suspended particulates (TSP), PM10, PM2.5 and PM1 airborne particle fractions were collected to evaluate gas-particle partitioning and size particle distribution of traditional and novel halogenated flame retardants. Simultaneously, passive air samplers (PAS) were deployed in the same location. Analytes included 33 polybrominated diphenyl ether (PBDE), 2,2',4,4',5,5'-hexabromobiphenyl (BB-153), hexabromobenzene (HBB), pentabromoethylbenzene (PBEB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), decabromodiphenyl ethane (DBDPE), dechloranes (Dec 602, 603, 604, 605 or Dechorane plus (DP)) and chlordane plus (CP). Clausius-Clapeyron equation, gas-particle partition coefficient (Kp), fraction partitioned onto particles (φ) and human respiratory risk assessment were used to evaluate local or long-distance transport sources, gas-particle partitioning sorption mechanisms, and implications for health, respectively. PBDEs were the FR with the highest levels (13.9pgm-3, median TSP+PUF), followed by DP (1.56pgm-3), mirex (0.78pgm-3), PBEB (0.05pgm-3), and BB-153 (0.04pgm-3). PBDE congener pattern in particulate matter was dominated by BDE-209, while the contribution of more volatile congeners, BDE-28, -47, -99, and -100 was higher in gas-phase. Congener contribution increases with particle size and bromination degree, being BDE-47 mostly bounded to particles≤PM1, BDE-99 to > PM1 and BDE-209 to > PM2.5. No significant differences were found for PBDE and DP concentrations obtained with passive and active samplers, demonstrating the ability of the formers to collect particulate material. Deposition efficiencies and fluxes on inhaled PBDEs and DP in human respiratory tract were calculated. Contribution in respiratory track was dominated by head airway (2.16 and 0.26pgh-1, for PBDE and DP), followed by tracheobronchial (0.12 and 0.02pgh-1) and alveoli (0.01-0.002pgh-1) regions. Finally, hazard quotient values on inhalation were proposed (6.3×10-7 and 1.1×10-8 for PBDEs and DP), reflecting a low cancer risk through inhalation.
Collapse
Affiliation(s)
- A de la Torre
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain.
| | - B Barbas
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| | - P Sanz
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| | - I Navarro
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| | - B Artíñano
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| | - M A Martínez
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| |
Collapse
|
23
|
Wang T, Tian M, Ding N, Yan X, Chen SJ, Mo YZ, Yang WQ, Bi XH, Wang XM, Mai BX. Semivolatile Organic Compounds (SOCs) in Fine Particulate Matter (PM 2.5) during Clear, Fog, and Haze Episodes in Winter in Beijing, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5199-5207. [PMID: 29627972 DOI: 10.1021/acs.est.7b06650] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Few efforts have been made to elucidate the influence of weather conditions on the fate of semivolatile organic compounds (SOCs). Here, daily fine particulate matter (PM2.5) during clear, haze, and fog episodes collected in the winter in Beijing, China was analyzed for polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), and organophosphate flame retardants (OPFRs). The total concentrations of PAHs, OPFRs, and BFRs had medians of 45.1 ng/m3 and 1347 and 46.7 pg/m3, respectively. The temporal pattern for PAH concentrations was largely dependent on coal combustion for residential heating. OPFR compositions that change during colder period were related to enhanced indoor emissions due to heating. The mean concentrations of SOCs during haze and fog days were 2-10 times higher than those during clear days. We found that BFRs with lower octanol and air partition coefficients tended to increase during haze and fog episodes, be removed from PM2.5 during clear episodes, or both. For PAHs and OPFRs, pollutants that are more recalcitrant to degradation were prone to accumulate during haze and fog days. The potential source contribution function (PSCF) model indicated that southern and eastern cities were major source regions of SOCs at this site.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Mi Tian
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
| | - Nan Ding
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiao Yan
- Center for Environmental Health Research, South China Institute of Environmental Sciences , Ministry of Environmental Protection , Guangzhou 510530 , China
| | - She-Jun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Yang-Zhi Mo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei-Qiang Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xin-Hui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Xin-Ming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| |
Collapse
|
24
|
Rauert C, Schuster JK, Eng A, Harner T. Global Atmospheric Concentrations of Brominated and Chlorinated Flame Retardants and Organophosphate Esters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2777-2789. [PMID: 29406704 DOI: 10.1021/acs.est.7b06239] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyurethane foam (PUF) disk passive air samples, deployed during 2014 in the Global Atmospheric Passive Sampling (GAPS) Network, were analyzed for a range of flame retardants (FRs) including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), brominated and chlorinated novel FRs, and organophosphate esters (OPEs). Mean concentrations of PBDEs and novel FRs at the 48 sites monitored ranged from 0.097 to 93 pg/m3 for Σ14PBDEs and from below detection limits to 126 pg/m3 for Σ15novel FRs. For PBDEs, the detected concentrations were similar to those previously reported from samples collected in 2005 at GAPS sites, suggesting global background atmospheric concentrations of PBDEs have not declined since regulatory measures were implemented. OPEs were detected at every GAPS site, with Σ18OPEs ranging from 69 to 7770 pg/m3. OPE concentrations were at least an order of magnitude higher than the PBDEs. This study presents the first data on global distributions of OPEs in the atmosphere, obtained from a single passive sampling monitoring network. Challenges that can arise in passive air sampling campaigns are also highlighted and addressed with suggested recommendations for future campaigns.
Collapse
Affiliation(s)
- Cassandra Rauert
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Jasmin K Schuster
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Anita Eng
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Tom Harner
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| |
Collapse
|
25
|
Pozo K, Oyola G, Estellano VH, Harner T, Rudolph A, Prybilova P, Kukucka P, Audi O, Klánová J, Metzdorff A, Focardi S. Persistent Organic Pollutants (POPs) in the atmosphere of three Chilean cities using passive air samplers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:107-114. [PMID: 28063657 DOI: 10.1016/j.scitotenv.2016.11.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
In this study passive air samplers containing polyurethane foam (PUF) disks were deployed in three cities across Chile; Santiago (STG) (n=5, sampling sites), Concepciόn (CON) (n=6) and Temuco (TEM) (n=6) from 2008 to 2009. Polychlorinated biphenyls (PCBs) (7 indicator congeners), chlorinated pesticides hexachlorocyclohexanes (HCHs), dichlorodiphenyl trichloroethanes (DDTs) and flame retardants such as polybrominated diphenyl ethers (PBDEs) were determined by gas chromatography coupled mass spectrometry (GC/MS). A sampling rate (R) typical of urban sites (4m3/day) was used to estimate the atmospheric concentrations of individual compounds. PCB concentrations in the air (pg/m3) ranged from ~1-10 (TEM), ~1-40 (STG) and 4-30 (CON). Higher molecular weight PCBs (PCB-153, -180) were detected at industrial sites (in Concepción). The HCHs showed a prevalence of γ-HCH across all sites, indicative of inputs from the use of lindane but a limited use of technical HCHs in Chile. DDTs were detected with a prevalence of p,p'-DDE accounting for ~50% of the total DDTs. PBDE concentrations in air (pg/m3) ranged from 1 to 55 (STG), 0.5 to 20 (CON) and from 0.4 to 10 (TEM), and were generally similar to those reported for many other urban areas globally. The pattern of PBDEs was different among the three cities; however, PBDE-209 was dominant at most of the sites. These results represent one of the few assessments of air concentrations of POPs across different urban areas within the same country. These data will support Chilean commitments as a signatory to the Stockholm Convention on POPs and for reporting as a member country of the Group of Latin America and Caribbean Countries (GRULAC) region.
Collapse
Affiliation(s)
- Karla Pozo
- Universidad Católica de la Santísima Concepción, Facultad de Ciencias, Concepción, Chile; Universidad Católica de la Santísima Concepción, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Concepción, Chile; Masaryk University, Faculty of Science, Research Center for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic; Universitá degli Studi di Siena, Dipartimento Scienze fisiche, della Terra e dell'ambiente, Siena, Italy.
| | - Germán Oyola
- Ministery of the Environment (MMA), Air Quality Division and Climate change, Santiago, Chile
| | - Victor H Estellano
- Universitá degli Studi di Siena, Dipartimento Scienze fisiche, della Terra e dell'ambiente, Siena, Italy
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Anny Rudolph
- Universidad Católica de la Santísima Concepción, Facultad de Ciencias, Concepción, Chile
| | - Petra Prybilova
- Masaryk University, Faculty of Science, Research Center for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Petr Kukucka
- Masaryk University, Faculty of Science, Research Center for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Ondrej Audi
- Masaryk University, Faculty of Science, Research Center for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Jana Klánová
- Masaryk University, Faculty of Science, Research Center for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - America Metzdorff
- Universidad Católica de la Santísima Concepción, Facultad de Ciencias, Concepción, Chile; Universitá degli Studi di Siena, Dipartimento Scienze fisiche, della Terra e dell'ambiente, Siena, Italy
| | - Silvano Focardi
- Universitá degli Studi di Siena, Dipartimento Scienze fisiche, della Terra e dell'ambiente, Siena, Italy
| |
Collapse
|
26
|
Rauert C, Harner T, Schuster JK, Quinto K, Fillmann G, Castillo LE, Fentanes O, Ibarra MV, Miglioranza KSB, Rivadeneira IM, Pozo K, Puerta AP, Zuluaga BHA. Towards a regional passive air sampling network and strategy for new POPs in the GRULAC region: Perspectives from the GAPS Network and first results for organophosphorus flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:1294-1302. [PMID: 27436778 DOI: 10.1016/j.scitotenv.2016.06.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 05/21/2023]
Abstract
A discussion is presented on the limitations for air monitoring studies around the Group of Latin American and Caribbean Countries (GRULAC), highlighting key issues requiring further attention, and reports on how a special initiative is addressing these limitations. Preliminary results are presented for the first reported data on organophosphorus flame retardant (OPFR) concentrations in outdoor air from the GRULAC region. At the majority of sites the concentrations and the profile of the OPFRs detected were similar with tris (chloroisopropyl) phosphate (TCPP) dominating (<MDL to 1280pg/m3). However, the urban location at Concepción, Chile presented higher concentrations and a different profile with tris (2-butoxyethyl) phosphate (TBEP) dominating (mean 800pg/m3 vs 80pg/m3 at the other locations) -indicating different sources at this location. OPFRs, used extensively as flame retardants and plasticizers, are found ubiquitously in indoor environments yet only few studies report outdoor air levels. This preliminary study of only 7 sites highlights how extensive regional passive sampling networks (such as GAPS) can provide important new information to support risk assessment of these and similar chemicals. Finally, the various challenges with implementing a regional monitoring program are discussed, including harmonizing data from various monitoring programs for reporting to the GMP.
Collapse
Affiliation(s)
- Cassandra Rauert
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada.
| | - Jasmin K Schuster
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Karen Quinto
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Gilberto Fillmann
- Universidade Federal do Rio Grande, Instituto de Oceanografia, Rio Grande, RS, Brazil
| | | | | | | | | | | | - Karla Pozo
- Universidad Católica de la Santísima Concepción, Facultad de Ciencias, Concepción, Chile
| | | | | |
Collapse
|
27
|
Li WL, Huo CY, Liu LY, Song WW, Zhang ZF, Ma WL, Qiao LN, Li YF. Multi-year air monitoring of legacy and current-use brominated flame retardants in an urban center in northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:633-642. [PMID: 27401280 DOI: 10.1016/j.scitotenv.2016.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/02/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
The occurrence and temporal trends of polybrominated diphenyl ethers (PBDEs) and non-PBDE brominated flame retardants (NBFRs) were investigated in an urban atmosphere of Northeast China in consecutive six years (2008-2013). Among all chemicals, BDE-209, l,2,5,6,9,10-hexabromocyclododecane (HBCD), and decabromodiphenylethane (DBDPE) were the three most dominant compounds. During the period, the levels of pentabromodiphenyl ethers in the gas-phase and octabromodiphenyl ethers in the particle-phase significantly decreased, while the levels of BDE-209 and NBFRs increased in either the gas-phase or particle-phase. Ambient temperature was the most significant variable that influenced the gas-phase and particle-phase concentrations of BFRs, followed by wind speed and relative humidity. A stronger temperature dependence of the atmospheric concentrations was found for lower mass BFRs. Gas-particle partitioning studies suggested PBDEs in the urban atmosphere of Northeast China were at steady-state. Steady-state equation can also well describe the partitioning behavior for NBFRs, suggesting that the atmospheric partitioning behaviors of NBFRs were similar to those of PBDEs.
Collapse
Affiliation(s)
- Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Li-Na Qiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada; School of Environmental Science, Liaoning University, Shenyang 110036, China
| |
Collapse
|
28
|
Davie-Martin CL, Hageman KJ, Chin YP, Nistor BJ, Hung H. Concentrations, gas-particle distributions, and source indicator analysis of brominated flame retardants in air at Toolik Lake, Arctic Alaska. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1274-1284. [PMID: 27602544 DOI: 10.1039/c6em00395h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Brominated flame-retardants (BFRs) can be released from consumer products, resulting in accumulation in the surrounding environment and/or long-range transport to remote environments. We evaluated concentration changes in a suite of BFRs, including 13 polybrominated diphenyl ethers (PBDEs) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in air at Toolik Lake, Arctic Alaska during the Northern Hemisphere summer of 2013. A high-volume active air sampler was used to collect 2 day integrated samples at the field station and three flow-through air samplers were used to collect 18 day integrated samples along a transect extending away from the field station. The BDE congeners associated with the penta-BDE commercial mixture (BDE-47, -99, and -100) were the most frequently detected BFRs and were found at concentrations consistent with those reported at other Arctic sites. Gas-particle distributions were influenced by temperature and correlations between gas-phase concentrations and temperature suggested that either volatilization from local sources or re-emission from secondary sources (that is, re-volatilization of BFRs that had migrated northwards from distant sources) was important for the lower-brominated BFRs during the warmer months. Source indicator analysis suggested no single dominant geographic source of BFRs while results from the flow-through samplers indicated that the field station itself was not a significant source of BFRs.
Collapse
Affiliation(s)
| | - Kimberly J Hageman
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand.
| | - Yu-Ping Chin
- School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin J Nistor
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand.
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|
29
|
Hung H, Katsoyiannis AA, Guardans R. Ten years of global monitoring under the Stockholm Convention on Persistent Organic Pollutants (POPs): Trends, sources and transport modelling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 217:1-3. [PMID: 27302410 DOI: 10.1016/j.envpol.2016.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin St., Toronto, ON M3H 5T4, Canada.
| | | | - Ramon Guardans
- Subdirectorate of Air Quality and Industrial Environment, Ministry of Agriculture Food and the Environment, Alvarez de Castro, 12, Madrid 28010, Spain
| |
Collapse
|