1
|
Liu Z, Ding X, Zhang B, Pang Y, Wang Y, Xu D, Wang H. Endosulfan promotes cell growth, migration and invasion via CCL5/CCR5 axis in MCF-7 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117344. [PMID: 39549571 DOI: 10.1016/j.ecoenv.2024.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Endosulfan, recognized as an endocrine disruptor, has emerged as an important risk factor for human breast cancer. The chemokine ligand 5 (CCL5) and its receptor CCR5 constitute a biological axis, that is implicated in tumorigenesis and cancer progression. However, the role of the CCL5/CCR5 axis in breast cancer when exposure to endosulfan remains unclear. The present study aimed to determine the significance of the CCL5/CCR5 axis in the carcinogenic effects of endosulfan in human breast cancer MCF-7 cells. The results showed that endosulfan significantly promoted cell proliferation, increased the rate of colony formation, and enhanced cell migration ability in a dose-dependent manner by activating the PI3K/AKT signaling pathway, which were rescued by the specific inhibitor (LY-294002) for PI3K/AKT signaling pathway. We utilized Cytoscape software to construct protein-protein interaction (PPI) network when exposure to endosulfan, and identified 47 highly connected genes in the network diagram centered on CCL5. Endosulfan significantly increased the secretion of CCL5 and the expression levels of CCL5/CCR5, which were reversed by CCR5 inhibitor (HY-13004). HY-13004 significantly counteracted the effects of endosulfan on colony formation, cell migration and the activation of PI3K/AKT signaling pathway. Endosulfan markedly altered the expression levels of epithelial-mesenchymal transition (EMT) biomarkers and enhanced transwell migration and invasion capabilities of MCF-7 cells, which were inhibited by HY-13004, similar to the effects observed with LY-294002. Collectively, our findings suggest that endosulfan activates the PI3K/AKT signaling pathway to promote cell growth, and induces EMT, thereby enhancing cell migration and invasion via the CCL5/CCR5 axis in MCF-7 cells.
Collapse
Affiliation(s)
- Zeming Liu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Xiaolin Ding
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yue Pang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yuhui Wang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China.
| | - Hailong Wang
- Department of Clinical Epidemiology and Evidence-based Medicine, First Hospital of China Medical University, Shenyang 110016, PR China.
| |
Collapse
|
2
|
Italia S, Vivarelli S, Teodoro M, Costa C, Fenga C, Giambò F. Effects of pesticide exposure on the expression of selected genes in normal and cancer samples: Identification of predictive biomarkers for risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104524. [PMID: 39098443 DOI: 10.1016/j.etap.2024.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Pesticides pivotal in controlling pests, can represent a threat for human health. Regulatory agencies constantly monitor their harmful effects, regulating their use. Several studies support a positive association between long-term exposure to pesticides and chronic pathologies, such as cancer. Geno-toxicological biomonitoring has proven to be valuable to assess genetic risks associated with exposure to pesticides, representing a promising tool to improve preventive measures and identify workers at higher risk. In this study, a differential gene expression analysis of 70 candidate genes deregulated upon pesticide exposure, was performed in 10 GEO human gene expression DataSets. It was found that six genes (PMAIP1, GCLM, CD36, SQSTM1, ABCC3, NR4A2) had significant AUC predictive values. Also, CD36 was upregulated in non-transformed cell samples and healthy workers, but downregulated in cancer cells. Further validation in larger groups of workers will corroborate the importance of the identified candidates as biomarkers of exposure/effect.
Collapse
Affiliation(s)
- Sebastiano Italia
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| | - Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy.
| | - Federica Giambò
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| |
Collapse
|
3
|
Syed S, Qasim S, Ejaz M, Sammar, Khan N, Ali H, Zaker H, Hatzidaki E, Mamoulakis C, Tsatsakis A, Shah STA, Amir S. Effects of Dichlorodiphenyltrichloroethane on the Female Reproductive Tract Leading to Infertility and Cancer: Systematic Search and Review. TOXICS 2023; 11:725. [PMID: 37755736 PMCID: PMC10536953 DOI: 10.3390/toxics11090725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023]
Abstract
Persistent Organic Pollutants (POPs) such as dichlorodimethyltrichloroethane (DDT) are present and ubiquitous in the environment due to their resilient nature. DDT is a prevalent endocrine disruptor still found in detectable amounts in organisms and the environment even after its use was banned in the 1970s. Medline and Google Scholar were systematically searched to detect all relevant animal and human studies published in the last 20 years (January 2003 to February 2023) in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. In total, 38 studies were included for qualitative synthesis. This systematic search and review indicated that exposure to DDT is associated with female reproductive health issues, such as reduced fecundability; increased risk of preterm/premature deliveries; increased periods of gestation; alterations in the synthesis of crucial reproductive hormones (Progesterone and Oxytocin) through ion imbalances and changes in prostaglandin synthesis, myometrial and stromal hypertrophy, and edema; and variations in uterine contractions through increased uterine wet weight. There was also limited evidence indicating DDT as a carcinogen sufficient to instigate reproductive cancers. However, this review only takes into account the in vitro studies that have established a possible pathway to understand how DDT impacts female infertility and leads to reproductive cancers. Links between the pathways described in various studies have been developed in this review to produce a summarized picture of how one event might lead to another. Additionally, epidemiological studies that specifically targeted the exposure to DDT of females belonging to various ethnicities have been reviewed to develop an overall picture of prevailing female reproductive health concerns in different nations.
Collapse
Affiliation(s)
- Shermeen Syed
- Functional Genomics and Proteomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Park Road Chak Shehzad, Islamabad 44000, Pakistan; (S.S.); (S.Q.); (M.E.); (S.); (N.K.); (S.T.A.S.)
| | - Shandana Qasim
- Functional Genomics and Proteomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Park Road Chak Shehzad, Islamabad 44000, Pakistan; (S.S.); (S.Q.); (M.E.); (S.); (N.K.); (S.T.A.S.)
| | - Maheen Ejaz
- Functional Genomics and Proteomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Park Road Chak Shehzad, Islamabad 44000, Pakistan; (S.S.); (S.Q.); (M.E.); (S.); (N.K.); (S.T.A.S.)
| | - Sammar
- Functional Genomics and Proteomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Park Road Chak Shehzad, Islamabad 44000, Pakistan; (S.S.); (S.Q.); (M.E.); (S.); (N.K.); (S.T.A.S.)
| | - Nimra Khan
- Functional Genomics and Proteomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Park Road Chak Shehzad, Islamabad 44000, Pakistan; (S.S.); (S.Q.); (M.E.); (S.); (N.K.); (S.T.A.S.)
| | - Haider Ali
- Cerebral Venous Disorder Lab, University of California, San Francisco, CA 94143, USA;
| | - Himasadat Zaker
- Histology and Microscopic Analysis Division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia 5756115322, Iran;
| | - Eleftheria Hatzidaki
- Department of Neonatology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Crete, Greece;
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Crete, Greece;
| | - Aristidis Tsatsakis
- Toxicology Lab, Department of Medicine, University of Crete, 71003 Heraklion, Crete, Greece;
- Department of Human Ecology and Environmental Hygiene, IM Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Syed Tahir Abbas Shah
- Functional Genomics and Proteomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Park Road Chak Shehzad, Islamabad 44000, Pakistan; (S.S.); (S.Q.); (M.E.); (S.); (N.K.); (S.T.A.S.)
| | - Saira Amir
- Functional Genomics and Proteomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Park Road Chak Shehzad, Islamabad 44000, Pakistan; (S.S.); (S.Q.); (M.E.); (S.); (N.K.); (S.T.A.S.)
| |
Collapse
|
4
|
Jiang Z, Zhuang Y, Guo S, Sohan ASMMF, Yin B. Advances in Microfluidics Techniques for Rapid Detection of Pesticide Residues in Food. Foods 2023; 12:2868. [PMID: 37569137 PMCID: PMC10417549 DOI: 10.3390/foods12152868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Food safety is a significant issue that affects people worldwide and is tied to their lives and health. The issue of pesticide residues in food is just one of many issues related to food safety, which leave residues in crops and are transferred through the food chain to human consumption. Foods contaminated with pesticide residues pose a serious risk to human health, including carcinogenicity, neurotoxicity, and endocrine disruption. Although traditional methods, including gas chromatography, high-performance liquid chromatography, chromatography, and mass spectrometry, can be used to achieve a quantitative analysis of pesticide residues, the disadvantages of these techniques, such as being time-consuming and costly and requiring specialist staff, limit their application. Therefore, there is a need to develop rapid, effective, and sensitive equipment for the quantitative analysis of pesticide residues in food. Microfluidics is rapidly emerging in a number of fields due to its outstanding strengths. This paper summarizes the application of microfluidic techniques to pyrethroid, carbamate, organochlorine, and organophosphate pesticides, as well as to commercial products. Meanwhile, the study also outlines the development of microfluidics in combination with 3D printing technology and nanomaterials for detecting pesticide residues in food.
Collapse
Affiliation(s)
- Zhuoao Jiang
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| | - Yu Zhuang
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| | - Shentian Guo
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| | - A. S. M. Muhtasim Fuad Sohan
- Faculty of Engineering, Department of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| |
Collapse
|
5
|
Jiang J, Liu Z, Li B, Yuan S, Lin R, Yu X, Liu X, Zhang X, Li K, Xiao D, Yu S, Mu W. Ecotoxicological risk assessment of 14 pesticides and corresponding metabolites to groundwater and soil organisms using China-PEARL model and RQ approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3653-3667. [PMID: 36460934 DOI: 10.1007/s10653-022-01439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/11/2022] [Indexed: 06/01/2023]
Abstract
Global use of pesticides brings uncertain risks to human and nontarget species via environmental matrix. Currently, various models for exposure risk assessment are developed and widely used to forecast the impact of pesticides on environmental organisms. In this study, five commonly used insecticides, seven herbicides and three fungicides were chosen to analyze the subsequent risks in groundwater in simulated scenarios using China-PEARL (Pesticide Emission Assessment at Regional and Local Scales) model. In addition, their exposure risks to soil organisms were characterized based on risk quotient (RQ) approach. The results indicated that 23.3% of the total 528 predicted environmental concentrations (PECs) of pesticides and respective metabolites in groundwater from six Chinese simulated locations with ten crops were above 10 μg L-1. Furthermore, acceptable human risks of pesticides in groundwater were observed for all simulation scenarios (RQ < 1). Based on the derived PECs in soil short-term and long-term exposure simulation scenarios, all compounds were evaluated to be with acceptable risks to soil organisms, except that imidacloprid was estimated to be with unacceptable chronic risk (RQ = 27.5) to earthworms. Overall, the present findings provide an opportunity for a more-comprehensive understanding of exposure toxicity risks of pesticides leaching into groundwater and soil.
Collapse
Affiliation(s)
- Jiangong Jiang
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhixin Liu
- Seaside Forest Farm, Weihai, 264300, Shandong, People's Republic of China
| | - Beixing Li
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | - Shankui Yuan
- Ministry of Agriculture and Rural Affairs, Institute for the Control of Agrochemicals, Beijing, 100125, People's Republic of China
| | - Ronghua Lin
- Ministry of Agriculture and Rural Affairs, Institute for the Control of Agrochemicals, Beijing, 100125, People's Republic of China
| | - Xin Yu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xiao Liu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xianxia Zhang
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Ke Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Dong Xiao
- Haiyang Plant Protection Station, Yantai, 265100, Shandong, People's Republic of China
| | - Shaoli Yu
- Haiyang Plant Protection Station, Yantai, 265100, Shandong, People's Republic of China
| | - Wei Mu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Xiong Y, Wang C, Dong M, Li M, Hu C, Xu X. Chlorphoxim induces neurotoxicity in zebrafish embryo through activation of oxidative stress. ENVIRONMENTAL TOXICOLOGY 2023; 38:566-578. [PMID: 36331003 DOI: 10.1002/tox.23702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
It is known that chlorphoxim is a broad-spectrum and high-effective pesticide. With the wide use in agricultural practice, chlorphoxim residue is also frequently detected in water, but its potential toxicity to aquatic life is still unclear. In this study, zebrafish is used as a model to detect the toxicity of chlorphoxim. Our results showed that exposure of high concentration of chlorphoxim at 96 h post-fertilization (hpf) resulted in a high mortality and pericardium edema rate, a low hatchability rate and heart rate. The nervous system damage, swimming behavior alteration and acetylcholinesterase (AChE) inhibition were measured in zebrafish embryos after a 6 days post-fertilization (dpf) of chlorphoxim exposure. The expression of neural-related genes is abnormal in zebrafish embryos. Chlorphoxim exposure significantly increases oxidative stress in zebrafish embryos by inhibiting antioxidant enzyme (SOD and CAT) and activating reactive oxygen species (ROS). As expected, chlorphoxim exposure induces apoptosis by enhancing the expression of apoptotic genes (Bax, Bcl2, and p53). Astaxanthin (ATX), an effective antioxidant, was found to be able to rescue the neurotoxicity of chlorphoxim through relieving oxidative stress and apoptosis. Altogether, the results showed that chlorphoxim exposure led to severe neurotoxicity to zebrafish embryos, which was contributed to a more comprehensive understanding of the safety use of the organophosphorus pesticide.
Collapse
Affiliation(s)
- Yanxia Xiong
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Chengyuan Wang
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Mengyi Dong
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, China
| | - Meifeng Li
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaowen Xu
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Kiyani R, Dehdashti B, Heidari Z, Sharafi SM, Mahmoodzadeh M, Amin MM. Biomonitoring of organochlorine pesticides and cancer survival: a population-based study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37357-37369. [PMID: 36572771 DOI: 10.1007/s11356-022-24855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Organochlorine pesticides (OCPs) are endocrine-disrupting chemicals (EDCs) that even at very low levels can cause cancer by increasing the activity of tumor cells and suppressing the immune system. There is also little information on OCPs and survival after diagnosis. The aim of this study was to monitor the concentration of OCPs in the blood serum of cancer patients and its relationship with their socio-demographic characteristics and ultimately that impact on survival time and hazard ratio (HR). This cross-sectional study included 89 diagnosed patients with cancer in Isfahan, Iran. 12 types of OCPs were measured in serum by gas chromatography (7GC) with an electron capture detector and equipped with mass spectrometer (MS). Also, participants' questionnaire was completed to collect information. T-test, ANOVA, and Chi-square tests were used to evaluate the association between serum levels of OCPs and quantitative and qualitative information of patients. Survival analysis was also examined based on Kaplan-Meier method, log-rank test, and Cox model. The mean of total OCPs in patients' serum was calculated to be 1.82 ± 1.36 μg/L. Concentration of 2,4' DDE had a significant relationship with body mass index (BMI) (kg/m2) (P < 0.05). In addition, gender revealed a significant correlation in estimating survival time (P < 0.05). Non-exposure to OCPs showed a positive effect on increasing the life expectancy of patients. Lindane and endosulfan increased the risk of death by 16% and 37%, respectively, with insignificant P value (P > 0.05). The findings of the present study showed adverse effects of OCPs on patients' survival time and increased mortality of HR. Moreover, as the first research conducted in the study area, it is suggested management of environmental, individual and social factors that could be influenced the biological accumulation of OCPs in humans and cause health promotion.
Collapse
Affiliation(s)
- Raziyeh Kiyani
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahare Dehdashti
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Sharafi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Mahmoodzadeh
- Department of Adult Oncology Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Fama F, Feltracco M, Moro G, Barbaro E, Bassanello M, Gambaro A, Zanardi C. Pesticides monitoring in biological fluids: Mapping the gaps in analytical strategies. Talanta 2023; 253:123969. [PMID: 36191513 DOI: 10.1016/j.talanta.2022.123969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Pesticides play a key-role in the development of the agrifood sector allowing controlling pest growth and, thus, improving the production rates. Pesticides chemical stability is responsible of their persistency in environmental matrices leading to bioaccumulation in animal tissues and hazardous several effects on living organisms. The studies regarding long-term effects of pesticides exposure and their toxicity are still limited to few studies focusing on over-exposed populations, but no extensive dataset is currently available. Pesticides biomonitoring relies mainly on chromatographic techniques coupled with mass spectrometry, whose large-scale application is often limited by feasibility constraints (costs, time, etc.). On the contrary, chemical sensors allow rapid, in-situ screening. Several sensors were designed for the detection of pesticides in environmental matrices, but their application in biological fluids needs to be further explored. Aiming at contributing to the implementation of pesticides biomonitoring methods, we mapped the main gaps between screening and chromatographic methods. Our overview focuses on the recent advances (2016-2021) in analytical methods for the determination of commercial pesticides in human biological fluids and provides guidelines for their application.
Collapse
Affiliation(s)
- Francesco Fama
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Giulia Moro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy.
| | - Elena Barbaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy
| | - Marco Bassanello
- Health Direction Monastier di Treviso Hospital, Via Giovanni XXIII 7, 31050, Treviso, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy.
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Institute for the Organic Synthesis and Photosynthesis, Research National Council, 40129, Bologna, Italy
| |
Collapse
|
9
|
Medellín-Garibay SE, Alcántara-Quintana LE, Rodríguez-Báez AS, Sagahón-Azúa J, Rodríguez-Aguilar M, Hernández Cueto MDLA, Muñoz Medina JE, Milán-Segovia RDC, Flores-Ramírez R. Urinary phthalate metabolite and BPA concentrations in women with cervical cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21033-21042. [PMID: 36264455 DOI: 10.1007/s11356-022-23654-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Environmental pollutants are involved in the development and progression of numerous cancers, including cervical cancer (CC). One possible explanation for this is the ability of several pollutants to mimic natural hormones. This study aimed to evaluate the urinary concentrations of monoesters of phthalates and bisphenol A (BPA) in women with CC. A total of 45 women were included: 15 in the control group, 12 with CC diagnosis classified in early stages IA-IIB, and 18 in late stages III-IV. Urine samples were analyzed for BPA, mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono 2-ethylhexyl phthalate (MEHP) using high-performance liquid chromatography coupled to a tandem mass detector. The detection rate of environmental pollutants was 100%, with a median concentration in the control group and early-, and late-stage groups of 10.4, 9.2, 4.3, 38.4, and 12.9 µg L-1; 3.1, 3.1, 151.1, 54.5, and 30.4 µg L-1 and 1.9, 92.8, 3.6, 31.0, and 9.3 µg L-1 for BPA, MEHP, MBzP, MBP, and MiBP, respectively This study reveals high levels of phthalates, particularly MEHP, in urine samples of women with CC associated with human papillomavirus (HPV) infection. Further studies are needed to evaluate the possible role of phthalates in synergy with HPV in progression to CC.
Collapse
Affiliation(s)
| | - Luz Eugenia Alcántara-Quintana
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | | | - Julia Sagahón-Azúa
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Maribel Rodríguez-Aguilar
- Departamento de Ciencias Básicas, Universidad Autónoma de Quintana Roo, Chetumal, Quintana Roo, México
| | | | - José Esteban Muñoz Medina
- Laboratorio Central de Epidemiología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | | | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.
| |
Collapse
|
10
|
Boamah B, Barnsley S, Finch L, Briens J, Siciliano S, Hogan N, Hecker M, Hanson M, Campbell P, Peters R, Manek A, Al-Dissi AN, Weber L. Target Organ Toxicity in Rats After Subchronic Oral Exposure to Soil Extracts Containing a Complex Mixture of Contaminants. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:85-100. [PMID: 36577861 DOI: 10.1007/s00244-022-00972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Complex mixtures of unknown contaminants present a challenge to identify toxicological risks without using large numbers of animals and labor-intensive screens of all organs. This study examined soil extracts from a legacy-contaminated pesticide packaging and blending site. HepG2 cytotoxicity was used as an initial screen of 18 soil samples; then, three extracts (A, B and C) from different locations at the study site were used for testing in animals. The first two extracts were identified as the most toxic in vitro, and the latter extract obtained from a location further from these two toxic sampling sites. Then, target organ toxicities were identified following biweekly oral gavage for one month of three soil extracts (0.1% in polyethylene glycol or PEG) compared to vehicle control in male Sprague-Dawley rats (n = 9-10/group). Exposure to extract A significantly increased neutrophils and lymphocytes compared to control. In contrast, all extracts increased plasma α-2 macroglobulin and caused mild-to-moderate lymphocytic proliferation within the spleen white pulp, all indicative of inflammation. Rats exposed to all soil extracts exhibited acute tubular necrosis. Cholinesterase activity was significantly reduced in plasma, but not brain, after exposure to extract A compared to control. Increased hepatic ethoxyresorufin-o-deethylase activity compared to control was observed following exposure to extracts A and B. Exposure to soil extract C in rats showed a prolonged QTc interval in electrocardiography as well as increased brain lipid peroxidation. Candidate contaminants are organochlorine, organophosphate/carbamate pesticides or metabolites. Overall, HepG2 cytotoxicity did not successfully predict the neurotoxicity and cardiotoxicity observed with extract C but was more successful with suspected hydrocarbon toxicities in extracts A and B. Caution should be taken when extrapolating the observation of no effects from in vitro cell culture to in vivo toxicity, and better cell culture lines or assays should be explored.
Collapse
Affiliation(s)
- B Boamah
- Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - S Barnsley
- Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - L Finch
- Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - J Briens
- Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - S Siciliano
- Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - N Hogan
- Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - M Hecker
- Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - M Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - P Campbell
- Wood Environment & Infrastructure Solutions, Winnipeg, MB, Canada
| | - R Peters
- Federated Co-Operatives Limited, Saskatoon, SK, Canada
| | - A Manek
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - A N Al-Dissi
- Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - L Weber
- Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
11
|
Ataei M, Abdollahi M. A systematic review of mechanistic studies on the relationship between pesticide exposure and cancer induction. Toxicol Appl Pharmacol 2022; 456:116280. [DOI: 10.1016/j.taap.2022.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 01/01/2023]
|
12
|
Wang Y, Guo Y, Lu Y, Sun Y, Xu D. The effects of endosulfan on cell migration and invasion in prostate cancer cells via the KCNQ1OT1/miR-137-3p/PTP4A3 axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157252. [PMID: 35817112 DOI: 10.1016/j.scitotenv.2022.157252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Endosulfan belongs to persistent organic pollutants (POPs), closely related to an increased risk of prostate cancer (PCa). The existing evidence shows that lncRNAs compete with miRNAs for binding sites and contribute to the onset and progression of human malignancies. In this study we investigate how endosulfan promotes cell migration and invasion in DU145 and PC3 prostate cancer cells through epigenetic mechanism of lncRNA-miRNA regulation. Based on our past research we focused on PTP4A3 and constructed wild-type (WT) and mutant PTP4A3 plasmids for further analysis. Our results revealed that transfection of PTP4A3-WT can lead to changes in the expression of epithelial-mesenchymal transition (EMT) biomarkers and critical proteins in the TGF-β signaling pathway, and promote cell migration and invasion in PCa cells. Bioinformatics analysis shows that there were complementary sequences in PTP4A3 3'-UTR and KCNQ1OT1 3'-UTR to the seed sequence of hsa-miR-137-3p, and dual luciferase reporter assay indicates the potential binding capacity of miR-137-3p to 3'-UTR of PTP4A3 and KCNQ1OT1. We found that miR-137-3p mimic inhibited cell migration and invasion, as well as repressed alterations of EMT biomarkers and critical proteins in the TGF-β signaling pathway. Rescue experiment results revealed that co-transfection of miR-137-3p mimic and PTP4A3-WT plasmid reversed these changes following transfection with miR-137-3p mimic alone. We found that KCNQ1OT1 was predominantly distributed in the cytoplasm from a subcellular fractionation assay. Functionally, silencing of KCNQ1OT1 repressed cell migration and invasion, and caused alterations of EMT biomarkers and critical proteins in the TGF-β signaling pathway, which were all restored by co-transfection with anti-miR-137-3p or PTP4A3-WT plasmid. Furthermore, overexpression of miR-137-3p or silencing of KCNQ1OT1 dramatically rescued the effects of endosulfan on promoting cell migration and invasion. These findings suggest that endosulfan can indeed promote cell migration and invasion via the KCNQ1OT1/miR-137-3p/PTP4A3 axis in PCa cells.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yubing Guo
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yanyuan Lu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| |
Collapse
|
13
|
Perera-Rios J, Ruiz-Suarez E, Bastidas-Bastidas PDJ, May-Euán F, Uicab-Pool G, Leyva-Morales JB, Reyes-Novelo E, Pérez-Herrera N. Agricultural pesticide residues in water from a karstic aquifer in Yucatan, Mexico, pose a risk to children's health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2218-2232. [PMID: 34282684 DOI: 10.1080/09603123.2021.1950652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Yucatan is a region with a high impact of water contamination since it has a karst type soil favoring contaminants entry into the phreatic level, the only source of freshwater in the area. However, no studies report pesticides in water for human consumption or the risk it represents. The objective of this study was to detect and measure pesticide concentrations in domestic tap water to estimate the risk (carcinogenic and non-carcinogenic) to health. A non-probabilistic sampling was applied of 48 tap water sources, and then pesticide detection with solid-phase extraction gas chromatography coupled to the electron capture and flame photometric detectors allowed the estimation of risk through hazard ratios. The present results suggest that aldrin, heptachlor, and β-BHC residues in domestic tap water from Ticul, Yucatan, pose a risk to children's health, particularly for potential carcinogenic risks.
Collapse
Affiliation(s)
- Javier Perera-Rios
- Facultad De Medicina, Universidad Autónoma De Yucatán, Mérida, Yucatán, México
| | | | - Pedro de Jesús Bastidas-Bastidas
- Laboratorio Nacional Para La Investigación En Inocuidad Alimentaria (Residuos De Plaguicidas), CIAD, A.C. Unidad Culiacán, Culiacán, Sinaloa, México
| | - Fernando May-Euán
- Facultad De Medicina, Universidad Autónoma De Yucatán, Mérida, Yucatán, México
- Facultad De Enfermería, Universidad Autónoma De Yucatán, Mérida, Yucatán, México
| | - Gloria Uicab-Pool
- Facultad De Enfermería, Universidad Autónoma De Yucatán, Mérida, Yucatán, México
| | - José Belisario Leyva-Morales
- Centro De Investigación En Recursos Naturales Y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago De Chile, Chile
- Doctorado En Sustentabilidad, Universidad Autónoma De Occidente (Unidad Guasave, Sinaloa), Guasave, Sinaloa, México
| | - Enrique Reyes-Novelo
- Centro De Investigaciones Regionales "Dr. Hideyo Noguchi", Unidad Biomédica, Universidad Autónoma De Yucatán, Mérida, Yucatán, México
| | - Norma Pérez-Herrera
- Facultad De Medicina, Universidad Autónoma De Yucatán, Mérida, Yucatán, México
| |
Collapse
|
14
|
Korsakov AV, Kryukova AE, Troshin VP, Milushkina OY, Lagerev DG. Cervical and Endometrial Cancer Incidence in the Female Population from the Bryansk Region Living in Conditions of Chemical, Radioactive and Combined Environmental Contamination (2000-2020). Life (Basel) 2022; 12:life12101488. [PMID: 36294923 PMCID: PMC9605682 DOI: 10.3390/life12101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
At the end of 36 years after the Chernobyl disaster, about 5 million people still live in the radioactively contaminated territories of Russia, Ukraine, and Belarus, and the density of radioactive contamination by Cesium-137 and Strontium-90 will remain radiologically significant for decades. We assessed cervical and endometrial cancer primary incidence (new cases) in the female population from the Bryansk region living in conditions of chemical, radioactive, and combined environmental contamination for 2000−2020. We found a significant increase in the long-term trend in the primary incidence of cervical and endometrial cancer in all the studied groups, regardless of the environmental conditions of residence (p < 0.00001). We did not find statistically significant differences in the incidence of cervical and endometrial cancer in women, regardless of the level of chemical, radioactive, and combined environmental contamination. However, women living in environmentally unfavorable areas (in total, in the territories of chemical, radioactive, and combined contamination) are statistically significantly more likely to develop endometrial cancer in terms of relative risk compared to environmentally safe (control) areas (RR 1.17 (1.08−1.27)). No such pattern was found for cervix cancer. It should be noted, since environmentally safe (control) areas have a certain level of contamination (albeit low), RR is underestimated.
Collapse
Affiliation(s)
- Anton V. Korsakov
- Department of Disaster Medicine, Faculty of Medicine, Pirogov Russian National Research Medical University (Pirogov Medical University), 117997 Moscow, Russia
- Correspondence:
| | - Anna E. Kryukova
- Department of Technosphere Safety, Bryansk State Technical University, 241035 Bryansk, Russia
| | - Vladislav P. Troshin
- Department of Technosphere Safety, Bryansk State Technical University, 241035 Bryansk, Russia
| | - Olga Yu. Milushkina
- Department of Hygiene, Faculty of Pediatrics, Pirogov Russian National Research Medical University (Pirogov Medical University), 117997 Moscow, Russia
| | - Dmitry G. Lagerev
- Department of Computer Science and Software, Bryansk State Technical University, 241035 Bryansk, Russia
| |
Collapse
|
15
|
Panis C, Candiotto LZP, Gaboardi SC, Gurzenda S, Cruz J, Castro M, Lemos B. Widespread pesticide contamination of drinking water and impact on cancer risk in Brazil. ENVIRONMENT INTERNATIONAL 2022; 165:107321. [PMID: 35691095 DOI: 10.1016/j.envint.2022.107321] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Pesticides, which are associated with endocrine dysfunction, immunological dysregulation, and cancer, are widespread sources of drinking water contamination. The state of Paraná has a population of 11 million, is the second largest grain producer in Brazil and is a leading consumer of pesticides. In this study, we analyzed the extent of drinking water contamination from 11 proven, probable, or potentially carcinogenic pesticides (alachlor, aldrin-dieldrin, atrazine, chlordane, DDT-DDD-DDE, diuron, glyphosate-AMPA, lindane-γ-HCH, mancozeb-ETU, molinate, and trifluralin) in 127 grain-producing municipalities in the state of Paraná. Extensive contamination of drinking water was found, including legacy pesticides such as aldrin-dieldrin (mean 0.047 ppb), DDT-DDD-DDE (mean: 0.07), chlordane (mean: 0.181), and lindane-HCH (mean: 2.17). Most of the municipalities were significantly above the maximum limits for each one of the currently allowed pesticides (67% for alachlor, 9.44% for atrazine, 96.85% for diuron, 100% for glyphosate-AMPA, 80.31% for mancozeb-ETU, 91.33% for molinate, and 12.6% for trifluralin). Ninety-seven percent of municipalities presented a sum of all pesticides at levels significantly above (189.84 ppb) the European Union preconized limits (<0.5 ppb). Using the mean pesticide concentration in water (ppb), the exposed population for each municipality, and the benchmark cancer risk for pesticides, we estimated the minimum number of cancer cases attributable to pesticide-contaminated drinking water during the period (total of 542 cases). More than 80% were attributed to mancozeb-ETU and diuron. Glyphosate-AMPA and diuron-attributable cases strongly correlated with the total cancer cases in the same period (R = 0.8117 and 0.8138, respectively) as well as with breast cancer cases (R = 0.7695 and 0.7551, respectively). Water contamination was significantly correlated with the sum of the estimated cancer cases for all 11 pesticides detected in each city (R = 0.58 and p < 0.0001). These findings reveal extensive contamination of drinking water in the state of Paraná and suggest that contamination may increase the risk of cancer in this region.
Collapse
Affiliation(s)
- Carolina Panis
- Laboratory of Tumor Biology, State University of Western Paraná, UNIOESTE, Francisco Beltrão, Paraná, Brazil; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States.
| | | | - Shaiane Carla Gaboardi
- Catarinense Federal Institute of Science and Technology, Campus Ibirama, Santa Catarina, Brazil
| | - Susie Gurzenda
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Jurandir Cruz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States; Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Marcia Castro
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Bernardo Lemos
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|
16
|
Karimi H, Mahdavi S, Asgari Lajayer B, Moghiseh E, Rajput VD, Minkina T, Astatkie T. Insights on the bioremediation technologies for pesticide-contaminated soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1329-1354. [PMID: 34476637 DOI: 10.1007/s10653-021-01081-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The fast pace of increasing human population has led to enhanced crop production, due to which a significant increase in the application of pesticides has been recorded worldwide. Following the enhancement in the utilization of pesticides, the degree of environmental pollution, particularly soil pollution, has increased. To address this challenge, different methods of controlling and eliminating such contaminants have been proposed. Various methods have been reported to eradicate or reduce the degree of contamination of pesticides in the soil. Several factors are crucial for soil contamination, including pH, temperature, the number, and type/nature of soil microorganisms. Among the accessible techniques, some of them respond better to contamination removal. One of these methods is bioremediation, and it is one of the ideal solutions for pollution reduction. In this innovative technique, microorganisms are utilized to decompose environmental pollutants or to curb pollution. This paper gives detailed insight into various strategies used for the reduction and removal of soil pollution.
Collapse
Affiliation(s)
- Hoda Karimi
- Environmental Science Department, Research Institute for Grapes and Raisin (RIGR), Malayer University, Malayer, Iran
| | - Shahriar Mahdavi
- Department of Soil Science, Faculty of Agriculture, Malayer University, Malayer, Iran
| | - Behnam Asgari Lajayer
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ebrahim Moghiseh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, Russia, 344090
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, Russia, 344090
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
17
|
Keswani C, Dilnashin H, Birla H, Roy P, Tyagi RK, Singh D, Rajput VD, Minkina T, Singh SP. Global footprints of organochlorine pesticides: a pan-global survey. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:149-177. [PMID: 34027568 DOI: 10.1007/s10653-021-00946-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/19/2021] [Indexed: 05/16/2023]
Abstract
Organochlorine pesticides (OCPs) are ubiquitous environmental contaminants widely used all over the world. These chlorinated hydrocarbons are toxic and often cause detrimental health effects because of their long shelf life and bioaccumulation in the adipose tissues of primates. OCP exposure to humans occurs through skin, inhalation and contaminated foods including milk and dairy products, whereas developing fetus and neonates are exposed through placental transfer and lactation, respectively. In 1960s, OCPs were banned in most developed countries, but because they are cheap and easily available, they are still widely used in most third world countries. The overuse or misuse of OCPs has been rising continuously which pose threats to environmental and human health. This review reports the comparative occurrence of OCPs in human and bovine milk samples around the globe and portrays the negative impacts encountered through the long history of OCP use.
Collapse
Affiliation(s)
- Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, 247667, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dheer Singh
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Surya P Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Needle-trap device packed with the MIL-100(Fe) metal–organic framework for the extraction of the airborne organochlorine pesticides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Heal RD, Hasan NA, Haque MM. Increasing disease burden and use of drugs and chemicals in Bangladesh shrimp aquaculture: A potential menace to human health. MARINE POLLUTION BULLETIN 2021; 172:112796. [PMID: 34385024 DOI: 10.1016/j.marpolbul.2021.112796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Using structured surveys in 2008 and 2016, change in disease burden and use of chemical treatments in Bangladesh shrimp farm management was examined. Overall, disease burden had increased in all farms and was more polarized, with a fewer number of individual infectious diseases responsible for most disease in ponds. Farmers also reported physical deformities, nutritional deficiencies, and unknown diseases further indicating poor health of their stock. To combat the threat, more chemical treatments were used (5.2 treatments per farm in 2008 versus 28.8 in 2016), resulting in an average increase of 424% in the number of active substances entering shrimp ponds. Although there was a modest reduction in the use of antimicrobials, shrimp was being exposed to a wider range of chemicals during rearing. The subsequent concern for the environment, animal and human health demands further research to identify potential risks from residues of chemical products.
Collapse
Affiliation(s)
- Richard D Heal
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, UK
| | - Neaz A Hasan
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh.
| | - Mohammad Mahfujul Haque
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh; Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
20
|
A Systematic Review of Studies on Genotoxicity and Related Biomarkers in Populations Exposed to Pesticides in Mexico. TOXICS 2021; 9:toxics9110272. [PMID: 34822663 PMCID: PMC8624200 DOI: 10.3390/toxics9110272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
In agricultural activities, pest control is essential, and the most effective method is the use of chemical agents that also represent an important source of exposure to potentially toxic compounds. Pesticides constitute a heterogeneous group of compounds designed specifically to control different pests. Besides measuring their levels or that of their metabolites in air, plasma, serum, blood, urine, etc., some studies reported increased DNA damage levels after occupational or environmental pesticides exposure, evidenced by several cytogenetic biomarkers such as chromosomal aberrations (CA), sister chromatid exchanges (SCE), micronuclei frequency (MN) together with other nuclear abnormalities (NA), alkaline comet assay, but also changes in oxidative stress parameters and miRNA levels. Single or combined, these techniques have also been used in genotoxic biomonitoring studies of workers occupationally exposed to pesticides in Mexico. Despite being a country with great agricultural activity and reported excessive pesticide use, genotoxic studies have been relatively few and, in some cases, contradictory. A review was made of the studies available (published until the end of 2020 on PubMed, Web of Science, Redalyc and Scielo, both in English and Spanish) in the scientific literature that evaluated occupational exposure of human samples to pesticides assessed with DNA damage and related biomarkers in Mexico.
Collapse
|
21
|
Díaz de León-Martínez L, Ortega-Romero MS, Barbier OC, Pérez-Herrera N, May-Euan F, Perera-Ríos J, Rodríguez-Aguilar M, Flores-Ramírez R. Evaluation of hydroxylated metabolites of polycyclic aromatic hydrocarbons and biomarkers of early kidney damage in indigenous children from Ticul, Yucatán, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52001-52013. [PMID: 33997934 DOI: 10.1007/s11356-021-14460-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental persistent chemicals, produced by the incomplete combustion of solid fuels, found in smoke. PAHs are considered carcinogenic, teratogenic, and genotoxic. Children are susceptible to environmental pollutants, particularly those living in high-exposure settings. Therefore, the main objective of this study was to evaluate the exposure to PAHs through hydroxylated metabolites of PAHs (OH-PAHs), 1-hydroxynaphtalene (1-OH-NAP), and 2-hydroxynaphtalene (2-OH-NAP); 2-,3-, and 9-hydroxyfluorene (2-OH-FLU, 3-OH-FLU, 9-OH-FLU); 1-,2-,3-, and 4-hydroxyphenanthrene (1-OH-PHE, 2-OH-PHE, 3-OH-PHE, 4-OH-PHE); and 1-hydroxypyrene (1-OH-PYR), as well as kidney health through biomarkers of early kidney damage (osteopontin (OPN), neutrophil gelatinase-associated lipocalin (NGAL), α1-microglobulin (α1-MG), and cystatin C (Cys-C)) in children from an indigenous community dedicated to footwear manufacturing and pottery in Ticul, Yucatán, Mexico. The results show a high exposure to PAHs from the found concentrations of OH-PAHs in urine in 80.5% of the children in median concentrations of 18.4 (5.1-71.0) μg/L of total OH-PAHs, as well as concentrations of kidney damage proteins in 100% of the study population in concentrations of 4.8 (3-12.2) and 7.9 (6.5-13.7) μg/g creatinine of NGAL and Cys-C respectively, and 97.5% of the population with concentrations of OPN and α1-MG at mean concentrations of 207.3 (119.8-399.8) and 92.2 (68.5-165.5) μg/g creatinine. The information provided should be considered and addressed by the health authorities to establish continuous biomonitoring and programs to reduce para-occupational exposure in the vulnerable population, particularly children, based on their fundamental human right to health.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Manolo S Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | - Olivier C Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | | | - Fernando May-Euan
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Javier Perera-Ríos
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Maribel Rodríguez-Aguilar
- Department of Pharmacy, Health Sciences Division, Universidad de Quintana Roo, Av. Erick Paolo Martínez, Chetumal, Quintana Roo, Mexico.
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
22
|
Organochlorine pesticide residues in plants and their possible ecotoxicological and agri food impacts. Sci Rep 2021; 11:17841. [PMID: 34497319 PMCID: PMC8426456 DOI: 10.1038/s41598-021-97286-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/24/2021] [Indexed: 11/08/2022] Open
Abstract
Scientific investigations on levels of Organochlorine Pesticide (OCP) residues in plants largely consider the edible parts (crops, vegetables, and fruit plants). Though the non-edible parts of plants are not eaten by human beings directly, these parts are consumed by livestock and other animals, thereby facilitating the flow of chemical residues through the food chain. The objective of the present investigation was to evaluate the concentration of OCP residues in non-edible plant parts to provide insights on their potential ecotoxicological impacts. Eighteen OCP residues were extracted in nine different plant species (banana Musa acuminate, brinjal Solanum melongena, Casuarina equisetifolia, Eucalyptus globulus, lotus Nelumbo nucifera, paddy Oryza sativa, sugarcane Saccharum officinarum, tapioca Manihot esculenta, tomato Lycopersicon esculentum) following QuEChERS method. The concentrations of OCP residues in plant extracts were determined using Gas Chromatography coupled with Mass Spectrometry (GC-MS). The OCP residues, namely: γ-HCH (lindane), heptachlor epoxide isomer, dieldrin, endrin, endrin aldehyde and endrin ketone were found predominantly in seven plant species. Residues of γ-HCH (lindane) were reported in different parts of plant species such as stem (581.14 ng/g in paddy and 585.82 ng/g in tapioca) and leaf (583.3 ng/g in tomato). Seven samples contained residues of heptachlor epoxide isomer (512.53 to 1173.8 ng/g). Dieldrin was found in paddy stem (489.97 ng/g), tapioca stem (490.21 ng/g) and tapioca leaf (490.32 ng/g). The detected OCPs in the present study were 10-50 times higher than the Maximum Residue Limits (MRL, 0.01-0.1 mg/Kg) as prescribed in the Codex Alimentarius of the FAO/WHO. Their elevated concentrations in the plant parts therefore pose risk of contamination to the consumers in the food chain, including human beings those are dependent on the animals as source of protein. The findings of this study are the first report on residue levels of OCPs in non-edible plant parts in the agricultural landscape of Puducherry region, India. Since, this study assumes significance for the strategic location of Oussudu Lake, an interstate lake spread over Puducherry and Tamil Nadu states, regular monitoring of OCP residues in different environmental segments in strategic locations in both the states is suggested, which will help the authorities in devising a comprehensive environmental management plan aiming at the ecosystem at large.
Collapse
|
23
|
Russo M, Humes ST, Figueroa AM, Tagmount A, Zhang P, Loguinov A, Lednicky JA, Sabo-Attwood T, Vulpe CD, Liu B. Organochlorine Pesticide Dieldrin Suppresses Cellular Interferon-Related Antiviral Gene Expression. Toxicol Sci 2021; 182:260-274. [PMID: 34051100 DOI: 10.1093/toxsci/kfab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Organochlorine pesticides (OCPs) are persistent pollutants linked to diverse adverse health outcomes. Environmental exposure to OCPs has been suggested to negatively impact the immune system but their effects on cellular antiviral responses remain unknown. Transcriptomic analysis of N27 rat dopaminergic neuronal cells unexpectedly detected high level expression of genes in the interferon (IFN)-related antiviral response pathways including the IFN-induced protein with tetratricopeptide repeats 1 and 2 (Ifit1/2) and the MX Dynamin Like GTPases Mx1 and Mx2. Interestingly, treatment of N27 cells with dieldrin markedly downregulated the expression of many of these genes. Dieldrin exterted a similar effect in inhibiting IFIT2 and MX1 gene expression in human SH-SY5Y neuronal cells induced by an RNA viral mimic, polyinosinic: polycytidylic acid (poly I:C) and IFIT2/3 gene expression in human pulmonary epithelial cells exposed to human influenza H1N1 virus. Mechanistically, dieldrin induced a rapid rise in levels of intracellular reactive oxygen species (iROS) and a decrease in intracellular glutathione (GSH) levels in SH-SY5Y cells. Treatment with N-acetylcysteine, an antioxidant and GSH biosynthesis precursor, effectively blocked both dieldrin-induced increases in iROS and its inhibition of poly I:C-induced upregulation of IFIT and MX gene expression, suggesting a role for intracellular oxidative status in dieldrin's modulation of antiviral gene expression. This study demonstrates that dieldrin modulates key genes of the cellular innate immune responses that are normally involved in the host's cellular defense against viral infections. Our findings have potential relevance to understanding the organismal effects of environmentally persistent organochlorine contaminants on the mammalian cellular immune system.
Collapse
Affiliation(s)
- Max Russo
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Sara T Humes
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Ariana M Figueroa
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Ping Zhang
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Alex Loguinov
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Chris D Vulpe
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Bin Liu
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| |
Collapse
|
24
|
Basu S, Chanda A, Gogoi P, Bhattacharyya S. Organochlorine pesticides and heavy metals in the zooplankton, fishes, and shrimps of tropical shallow tidal creeks and the associated human health risk. MARINE POLLUTION BULLETIN 2021; 165:112170. [PMID: 33621901 DOI: 10.1016/j.marpolbul.2021.112170] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Studies on organochlorine pesticides (OCPs) and heavy metals (HMs) from tidal creeks are scarce. Sixteen OCPs and seven HMs were measured in the surface water, zooplankton, two fishes (Harpadon nehereus and Pampus argenteus), and one shrimp (Penaeus indicus) collected from three tidal creeks of the Indian Sundarban. The surface water was polluted by hexachlorocyclohexane isomers (ΣHCH: 525-1581 ng l-1), dichlorodiphenyltrichloroethane congeners (ΣDDT: 188-377 ng l-1), endosulfan congeners (ΣEND: 687-1474 ng l-1), and other OCPs (512-1334 ng l-1). However, the mean HM concentrations in the surface water were <1 μg l-1. The zooplankton community exhibited bioaccumulation of both OCPs and HMs. Aldrin, Heptachlor, and α-HCH levels in the edible biotas could lead to cancer. Co and Cd levels could lead to non-cancerous risks, and Pb levels could pose a cancerous risk. This study showed that creeks could be potential sites of both OCP and HM pollution.
Collapse
Affiliation(s)
- Sanghamitra Basu
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Abhra Chanda
- School of Oceanographic Studies, Jadavpur University, Kolkata, West Bengal 700032, India.
| | - Pranab Gogoi
- Central Inland Fisheries Research Institute, CGO Complex, DF Block, Kolkata 700064, West Bengal, India
| | - Subarna Bhattacharyya
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India.
| |
Collapse
|
25
|
Estrogen Disrupting Pesticides in Nebraska Groundwater: Trends between Pesticide-contaminated Water and Estrogen-related Cancers in An Ecological Observational Study. WATER 2021. [DOI: 10.3390/w13060790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen disrupting pesticides (EDP) are pesticides that modify estrogen activities in estrogen-producing vertebrates. A substantial amount of these pesticides has been detected in human tissues, and they function directly to disrupt estrogen synthesis or effector cells. This study examines EDP’s ecological distribution across Nebraska counties and its association with estrogen-related cancers (ERC). To determine the ecological distribution of selected EDP, county-level choropleth maps were created. Moreover, EDP was tested in separate linear models with different ERC to determine the association between ERC and EDP across Nebraska counties. Exposure data for this county-level study was obtained from the quality assessed agrichemical contaminant Nebraska groundwater database between 1 January 1974 and 31 December 2012. Acetochlor, atrazine, and its metabolites, deethylatrazine (DEA), and de-isopropyl atrazine (DIA) were the most frequently detected EDP in Nebraska groundwater. Moreover, Nebraska county-level potential confounder for ERC such as physically unhealthy days, % adult smoking, % obese adult, % uninsured, and % binge drinking were obtained from County Health Rankings 2010. ERC, which is the outcome variable (breast cancer, uterine cancer, and prostate cancer), were obtained from the Nebraska State profile of the National Cancer Institute. This was expressed as county-level age-standardized incidence cancer rates between 1 January 2013 and 31 December 2017. Data characteristics were determined using percentages, mean, median, 25th and 75th percentile, minimum and maximum values. The relationship between county-level cancer rates and % wells positive for pesticides after adjusting for the county level potential confounders were analyzed in a linear regression model. Water supply wells positive for atrazine and DEA were observed to cluster in the South and South East counties of Nebraska. Furthermore, breast cancer and prostate cancer incidence rates were higher in the southeast of Nebraska with more atrazine and DEA. However, breast cancer and prostate cancer were not significantly associated in a linear regression model with any of the observed EDP. In contrast, uterine cancer was statistically associated with % water supply wells positive for acetochlor (β = 4.01, p = 0.04). While consistent associations were not observed between ERC and EDP from the GIS and the linear regression model, this study’s results can drive future conversation concerning the potential estrogenic effects of acetochlor, atrazine, and its metabolites on the incidence of breast, uterine and prostate cancer in the State of Nebraska.
Collapse
|
26
|
Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. TOXICS 2021; 9:42. [PMID: 33668829 PMCID: PMC7996329 DOI: 10.3390/toxics9030042] [Citation(s) in RCA: 561] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Environmental problems have always received immense attention from scientists. Toxicants pollution is a critical environmental concern that has posed serious threats to human health and agricultural production. Heavy metals and pesticides are top of the list of environmental toxicants endangering nature. This review focuses on the toxic effect of heavy metals (cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn)) and pesticides (insecticides, herbicides, and fungicides) adversely influencing the agricultural ecosystem (plant and soil) and human health. Furthermore, heavy metals accumulation and pesticide residues in soils and plants have been discussed in detail. In addition, the characteristics of contaminated soil and plant physiological parameters have been reviewed. Moreover, human diseases caused by exposure to heavy metals and pesticides were also reported. The bioaccumulation, mechanism of action, and transmission pathways of both heavy metals and pesticides are emphasized. In addition, the bioavailability in soil and plant uptake of these contaminants has also been considered. Meanwhile, the synergistic and antagonistic interactions between heavy metals and pesticides and their combined toxic effects have been discussed. Previous relevant studies are included to cover all aspects of this review. The information in this review provides deep insights into the understanding of environmental toxicants and their hazardous effects.
Collapse
Affiliation(s)
- Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
| | - Sara Taha Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Sundas Rana Qureshi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
| |
Collapse
|
27
|
Jagirani MS, Ozalp O, Soylak M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit Rev Anal Chem 2021; 52:1343-1369. [PMID: 33560139 DOI: 10.1080/10408347.2021.1874867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focused on the green microextraction methods used for the extraction of pesticides from the environmental and food samples. Microextraction techniques have been explored and applied in various fields of analytical chemistry since its beginning, as evinced by the numerous reviews published. The success of any technique in science and technology is measured by the simplicity, environmentally friendly, and its applications; and the microextraction technique is highly successive. Deliberations were attentive to studies where efforts have been made to validate the methods through the inter-laboratory comparison study to assess the analytical performance of microextraction techniques against conventional methods. Succinctly, developed microextraction methods are shown to impart significant benefits over conventional techniques. Provided that the analytical community continues to put forward attention and resources into the growth and validation of the microextraction technique, a promising future for microextraction is forecasted.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
28
|
Dutra LS, Ferreira AP, Horta MAP, Palhares PR. Uso de agrotóxicos e mortalidade por câncer em regiões de monoculturas. SAÚDE EM DEBATE 2020. [DOI: 10.1590/0103-1104202012706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O uso de agrotóxicos na agricultura brasileira é um problema de saúde pública, dadas as contaminações no ambiente, em alimentos e as intoxicações resultantes do uso dessas substâncias. O objetivo deste artigo é investigar a distribuição espacial das áreas plantadas de lavouras e as taxas de mortalidade de alguns tipos de câncer: mama, colo do útero e próstata. Escolheram-se quatro estados brasileiros que possuem grande produção de commodities agrícolas a serem estudadas. Trata-se de um estudo ecológico de análise espacial conduzido com dados e informações do Sistema de Informação sobre Mortalidade (SIM) do Ministério da Saúde, por meio do qual elaboraram-se taxas de mortalidade para os referidos tipos de câncer, cujos óbitos tenham ocorrido entre 1996 e 2016. Há indícios de que existe correspondência entre as áreas de maior estimativa de uso de agrotóxicos Disruptores Endócrinos e o aumento das taxas de mortalidade pelos diferentes tipos de câncer.
Collapse
|
29
|
Yu Y, Hua X, Chen H, Wang Y, Li Z, Han Y, Xiang M. Toxicity of lindane induced by oxidative stress and intestinal damage in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114731. [PMID: 32416425 DOI: 10.1016/j.envpol.2020.114731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/13/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Lindane, a lipophilic pollutant, may be toxic to organisms. To explore the toxic effects of lindane and the underlying mechanisms of this toxicity, the animal model Caenorhabditis elegans (C. elegans) was exposed to lindane for 3 d at environmentally relevant concentrations (0.01-100 ng/L) and the physiological, biochemical, and molecular indices were evaluated. Subacute exposure to 10-100 ng/L of lindane caused adverse physiological effects on the development, reproduction, and locomotion behaviors in C. elegans. Exposure to 1-100 ng/L of lindane increased the accumulation of Nile red and blue food dye, which suggested high permeability of the intestine in nematodes. Lindane exposure also significantly influenced the expression of genes related to intestinal development (e.g., mtm-6 and opt-2). Moreover, reactive oxygen species production, lipofuscin accumulation, and expression of oxidation resistance genes (e.g., sod-5 and isp-1) were significantly increased in C. elegans exposed to 10-100 ng/L of lindane, which indicated that lindane exposure induced oxidative stress. According to Pearson correlation analyses, oxidative stress and intestinal damage were significantly correlated with the adverse physiological effects of lindane. Therefore, the adverse effects of lindane may have been induced by intestinal damage and oxidative stress, and mtm-6, opt-2, sod-5, isp-1, and mev-1 might play important roles in the toxicity of lindane.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Ya'e Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yajing Han
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
30
|
Wang Y, Guo Y, Hu Y, Sun Y, Xu D. Endosulfan triggers epithelial-mesenchymal transition via PTP4A3-mediated TGF-β signaling pathway in prostate cancer cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139234. [PMID: 32413665 DOI: 10.1016/j.scitotenv.2020.139234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Endosulfan is a persistent organochlorine pesticide that bioaccumulates in human body through the food chain and thus represents a potential risk to public health. Despite epidemiological studies, the molecular mechanisms underlying the carcinogenic effects of endosulfan in the prostate remain poorly understood. In this study, we investigated the effect of endosulfan on epithelial-mesenchymal transition (EMT) in human prostate cancer PC3 and DU145 cells. Endosulfan induced alterations of EMT biomarkers, reflecting repression of E-cadherin expression and induction of fibronectin, snail2, ZEB2, Twist1 and Vimentin. The expression of Protein-tyrosine Phosphatase 4A3 (PTP4A3) at mRNA and protein levels was upregulated by endosulfan. PTP4A3 inhibitor reversed the changes of EMT biomarkers, PTP4A3 and p-Smad2/Smad2, but did not affect the upregulation of Cleaved-Notch1 and Jagged1 in endosulfan-exposed cells. Endosulfan promoted cell migration and invasion, which were rescued by specific inhibitors for PTP4A3, TGF-β signaling and Notch signaling, respectively. These findings suggest that endosulfan promoted cell migration and invasion with the induction of EMT through PTP4A3-mediated TGF-β signaling pathway in prostate cancer cells.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yubing Guo
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yumeng Hu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China.
| |
Collapse
|
31
|
Zhang R, Zhang Z, Li R, Tan Y, Lv S, McClements DJ. Impact of pesticide polarity and lipid phase dimensions on the bioaccessibility of pesticides in agricultural produce consumed with model fatty foods. Food Funct 2020; 11:6028-6037. [PMID: 32697245 DOI: 10.1039/c9fo03055g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For most people, the pesticide residues found on agriculture products are the main source of pesticide exposure, which may adversely influence consumer health. The potential health hazard of residual pesticides depends on the nature of the foods they are consumed with. Studies with fat-soluble vitamins and nutraceuticals have shown that their bioaccessibility depends on food matrix composition and structure. We used an in vitro method to investigate the influence of the dimensions of the lipid phase in model fatty foods (emulsified or bulk oil) on the bioaccessibility of various pesticides. Three pesticides that differed in their oil-water partition coefficients were selected: bendiocarb (log P = 1.7), parathion (log P = 3.8), and chlorpyrifos (log P = 5.3). These pesticides were mixed with tomato puree to represent pesticide-treated agricultural products. Three model foods with different oil phase dimensions were used to represent different kinds of food product: small emulsions (d32 = 0.14 μm); large emulsions (d32 = 10 μm); and, bulk oil. Our results showed that the oil droplets underwent extensive changes as they passed through the simulated gastrointestinal tract due to changes in environmental conditions, such as pH, ionic strength, bile salts, and enzyme activities. The initial rate and final amount of lipid hydrolysis decreased with increasing lipid phase dimensions. Pesticide bioaccessibility depended on both the hydrophobicity of the pesticide and the dimensions of the co-ingested lipid droplets. The least hydrophobic pesticide (bendiocarb) had a high bioaccessibility (>95%) that did not depend on lipid phase dimensions. The more hydrophobic pesticides (parathion and chlorpyrifos) has a lower bioaccessibility that increased with decreasing lipid phase dimensions. Our results demonstrate the critical role that food structure plays on the potential uptake of pesticides from agricultural products, like fruits and vegetables.
Collapse
Affiliation(s)
- Ruojie Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Zipei Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Ruyi Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. and Key Laboratory of Food Science and Technology, School of Food, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Shanshan Lv
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. and College of Forestry, Northeast A&F University, Yangling, Shanxi 712100, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. and Laboratory for Environmental Health NanoScience, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
32
|
Polanco-Rodríguez AG, Arcega-Cabrera F, Araujo-León JA, Lamas-Cosío E. Organochlorine Pesticides and Potentially Toxic Elements in Groundwater from a Protected Reserve in the Maya Region of Hopelchen, Mexico. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:568-574. [PMID: 32322933 DOI: 10.1007/s00128-020-02848-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Water quality degradation by organochlorine pesticides and potentially toxic elements is of worldwide concern. This research explores groundwater conditions, regarding organochlorine pesticides and potentially toxic elements, in Hopelchen, Campeche, which is located in the buffer zone of the Calakmul Biosphere Reserve. Unfortunately, agriculture is allowed and agrochemical use is not monitored and sanctioned. Results show that Heptachlor, Endosulfan, and Dieldrin, all recognized carcinogens, had concentrations above the Mexican normative recommended values. Conversely, Cd and Ni concentrations were below recommended values. These results demonstrate that government intervention involving immediate control over agrochemical use is mandatory. Also, the results underscore the contamination of groundwater in several of the Calakmul Biosphere Reserve's buffer zones by organochlorine pesticides concentrations, posing a probable threat for local inhabitants who consume this water and use it for recreation.
Collapse
Affiliation(s)
- A G Polanco-Rodríguez
- Centro de Investigaciones Regionales, Universidad Autónoma de Yucatán, 97000, Mérida, Yucatán, Mexico
| | - F Arcega-Cabrera
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, 97355, Sisal, Yucatán, México.
| | - J A Araujo-León
- Laboratorio de Cromatografía, Facultad de Química, Universidad Autonoma de Yucatan, 97000, Mérida, Yucatán, Mexico
| | - E Lamas-Cosío
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, 97355, Sisal, Yucatán, México
| |
Collapse
|
33
|
Cepeda S, Forero-Castro M, Cárdenas-Nieto D, Martínez-Agüero M, Rondón-Lagos M. Chromosomal Instability in Farmers Exposed to Pesticides: High Prevalence of Clonal and Non-Clonal Chromosomal Alterations. Risk Manag Healthc Policy 2020; 13:97-110. [PMID: 32104116 PMCID: PMC7024798 DOI: 10.2147/rmhp.s230953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction An important economic activity in Colombia is agricultural production and farmers are frequently exposed to pesticides. Occupational exposure to pesticides is associated with an increased incidence of various diseases, including cancer, Parkinson’s disease, Alzheimer’s disease, reproductive disorders, and birth defects. However, although high genotoxicity is associated with these chemicals, information about the type and frequency of specific chromosomal alterations (CAs) and the level of chromosomal instability (CIN) induced by exposure to pesticides is scarce or absent. Methods In this study, CAs and CIN were assessed in peripheral blood lymphocytes (PBLs) from five farmers occupationally exposed to pesticides and from five unexposed individuals using GTG-banding and molecular cytogenetic analysis. Results A significant increase in clonal and non-clonal chromosomal alterations was observed in pesticide-exposed individuals compared with unexposed individuals (510±12,2 vs 73±5,7, respectively; p<0.008). Among all CAs, monosomies and deletions were more frequently observed in the exposed group. Also, a high frequency of fragilities was observed in the exposed group. Conclusion Together, these findings suggest that exposure to pesticides could be associated with CIN in PBLs and indicate the need for the establishment of educational programs on safety precautions when handling pesticides, such as wearing gloves, masks and boots, changing clothes and maintaining proper hygiene, among others. Further evaluation in other similar studies that include a greater number of individuals exposed to pesticides is necessary.
Collapse
Affiliation(s)
- Sebastian Cepeda
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Maribel Forero-Castro
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Diana Cárdenas-Nieto
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - María Martínez-Agüero
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 111221, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| |
Collapse
|
34
|
Escamilla-López A, Ruiz-Piña HA, Rendón-von Osten J. Organochlorine Pesticides Residues in Blood of Peridomestic Populations of Virginia Opossum (Didelphis virginiana) from Ex-Henequen Rural Localities of Yucatan, Mexico. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:303-309. [PMID: 31701182 DOI: 10.1007/s00244-019-00685-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Organochlorine pesticides (OCPs) have been used for many decades, both for the control of pests in agriculture and for the control of vectors of human and animal diseases. Several recent studies have reported significant concentrations of these compounds in multiple environmental substrates due to their persistence, as well as the effect they have on ecosystem health, human health, and wildlife populations. In the present study, organochlorine pesticide residues were determined and quantified in 260 blood samples from different populations of the Virginia opossum (Didelphis virginiana) from 11 rural ex-henequen sites of the state of Yucatan, Mexico. The organochlorine groups detected, following an order of predominance and concentration, were: ΣDienes (0.0557 ppm) > ΣDDTs (0.0481 ppm) > ΣEndosulfans (0.0376 ppm) > and ΣHCHs (0.0319 ppm). The highest levels of OCPs were recorded in the opossums captured in the towns of Chicxulub and Cacalchen. In 6 of the 11 localities, the OCPs detected in the opossums showed significant differences in concentration, whereas the opossums in 4 of the 11 localities did not present this difference. The results confirm the presence and persistence of OCPs in the rural environmental of Yucatan due to both the misuse and abuse of the OCPs by rural populations. In addition, the synanthropic characteristics and abundant populations of D. virginiana in the Yucatecan region make it a good candidate to serve as a biomonitor of environmental pollution in the Yucatan Peninsula. This could aid in assessing the effects exposure to pesticides and other contaminants have on the health of the Yucatecan population, whether short, medium, or long term.
Collapse
Affiliation(s)
- Andrea Escamilla-López
- Laboratorio de Contaminantes Orgánicos Persistentes, Instituto EPOMEX, Universidad Autónoma de Campeche, Campus VI, Av. Heroe de Nacozari 480, 24070, Campeche, Mexico
| | - Hugo A Ruiz-Piña
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Av. Iztaés x 59 #490, Col. Centro, C.P. 97000, Mérida, Yucatán, Mexico
| | - Jaime Rendón-von Osten
- Laboratorio de Contaminantes Orgánicos Persistentes, Instituto EPOMEX, Universidad Autónoma de Campeche, Campus VI, Av. Heroe de Nacozari 480, 24070, Campeche, Mexico.
| |
Collapse
|
35
|
Raimondo EE, Saez JM, Aparicio JD, Fuentes MS, Benimeli CS. Coupling of bioaugmentation and biostimulation to improve lindane removal from different soil types. CHEMOSPHERE 2020; 238:124512. [PMID: 31430718 DOI: 10.1016/j.chemosphere.2019.124512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Lindane is an organochlorine pesticide that, due to its persistence in the environment, is still detected in different matrices. Bioremediation using actinobacteria consortia proved to be promising for the restoration of contaminated soils. Another alternative to remove xenobiotics is to use agricultural residues, which stimulates microbial activity, increasing its capacity to degrade organic pollutants. The present work studies the coupling of sugarcane bagasse biostimulation and bioaugmentation with the actinobacteria consortium composed of Streptomyces sp. A2, A5, A11 and M7 on lindane removal in different soil types. In this sense, factorial designs with three factors (proportion and size of sugarcane bagasse particles, and moisture content) were employed. A response optimizer identified the combination of factors levels that jointly allowed obtaining the maximum lindane removal in the evaluated conditions. In the optimal conditions, the effect of the bioremediation process on soil microbiota was studied by evaluating different parameters. The highest lindane removal percentages were detected in biostimulated microcosms bioaugmented with the microbial consortium, which were accompanied by a decrease in lindane half-life respect to the controls. Also, the bioaugmentation of biostimulated microcosms increased the microbial counts and enhanced soil enzymatic activities, corroborating the bioremediation process efficiency. The survival of the four actinobacteria at the end of the assay confirmed the ability of all Streptomyces strains to colonize amended soils. Bioremediation by simultaneous application of biostimulation with sugarcane bagasse and bioaugmentation with the actinobacteria consortium, in the optimized conditions, represents an efficient strategy to restore lindane contaminated soils.
Collapse
Affiliation(s)
- Enzo E Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Juliana M Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Juan D Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - María S Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Claudia S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina.
| |
Collapse
|
36
|
Araujo-León JA, Mena-Rejón GJ, Canché-Pool EB, Ruiz-Piña HA. Biomonitoring Organochlorine Pesticides in Didelphis virginiana from Yucatan, Mexico by GC-ECD. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:836-842. [PMID: 30989282 DOI: 10.1007/s00128-019-02609-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present work was to apply a validated methodology for the detection of organochlorine pesticides in Didelphis virginiana (Virginia opossum) serum samples collected in Yucatan, Mexico. Recent studies performed to investigate the presence of Organochlorines (OCLs) in water, human blood and milk, and animal tissues from Yucatan have shown that the OCLs concentrations are high and can be associated with potential human health risk. Since opossum is considered an important synanthropic species in Yucatan, 40 opossum serum samples were analyzed by gas chromatography with electron capture detector. The most common OCLs found in opossum sera were lindanes, chlordanes, drines, and endosulfan. Heptachlor, heptachlor epoxide, and lindanes were found at the highest concentrations, while dichlorodiphenyl trichloroethane and its metabolites were found at the lowest concentrations in the samples. The good linearity, precision, and accuracy obtained in the evaluated parameters in the extraction and chromatographic methods support its application for the monitoring of OCLs pesticides in populations of opossums and other wild species in Yucatan.
Collapse
Affiliation(s)
- Jesús Alfredo Araujo-León
- Laboratorio de Cromatografía, Facultad de Química, Universidad Autónoma de Yucatán, C. 43 No. 613 x C. 90, Col. Inalámbrica, C. P. 97069, Mérida, Yucatán, México
| | - Gonzalo J Mena-Rejón
- Laboratorio de Espectrometría de Masas, Facultad de Química, Universidad Autónoma de Yucatán, C. 43 No. 613 x C. 90, Col. Inalámbrica, C. P. 97069, Mérida, Yucatán, México
| | - Elsy B Canché-Pool
- Laboratorio de Zoonosis y Otras ETV's, Centro de Investigaciones Regionales "Dr, Hideyo Noguchi", Universidad Autónoma de Yucatán. Av., Itzáes x 59 #490, Col. Centro, C. P. 97000, Mérida, Yucatán, México
| | - Hugo A Ruiz-Piña
- Laboratorio de Zoonosis y Otras ETV's, Centro de Investigaciones Regionales "Dr, Hideyo Noguchi", Universidad Autónoma de Yucatán. Av., Itzáes x 59 #490, Col. Centro, C. P. 97000, Mérida, Yucatán, México.
| |
Collapse
|
37
|
Liu J, Liu Y, Zhang A, Liu Y, Zhu Y, Guo M, Zhang R. Spatial distribution, source identification, and potential risk assessment of toxic contaminants in surface waters from Yulin, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:293. [PMID: 31016390 DOI: 10.1007/s10661-019-7441-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The Yulin Energy and Chemical Industry Base is widely known for its rich mineral resources and multiple types of fossil-fuel-based chemical industries; nevertheless, information regarding the level of toxic contaminants in the surface waters is lacking in this area. Therefore, this study investigates the distributions, sources, and risks of various toxic contaminants, including heavy metals, organochlorine pesticides (OCPs), and polycyclic aromatic hydrocarbons (PAHs), from 35 sampling sites in eight rivers. The ΣHCH concentration ranged from 1.28 to 6.64 ng/L with predominant β-HCH, and the ΣDDT concentration was less than 0.35 ng/L. The OCPs were derived from the recent input of lindane, residual technical-grade HCHs, and DDTs. The soil type can affect the environmental fate of DDT, and p,p'-DDE was widespread in the sandy land and loess areas. p,p'-DDD was rarely detected in the Mu Us Sandy Land area. The calculated ratios of isomers indicated that petroleum was the major source of PAHs. OCP and PAH contamination in the surface waters posed potential risks at several sampling sites. Due to the impacts by industrial emissions, agricultural sources, and vehicular traffic, the distribution of contaminant concentrations in the surface waters exhibited a significant spatial relationship with the land use pattern in the study region according to the results of principal component analysis and cluster analysis.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
- School of Civil Engineering, Yulin University, Yulin, 719000, China
| | - Yongjun Liu
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China.
| | - Aining Zhang
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Yu Liu
- School of Petroleum and Environment Engineering, Yanan University, Yanan, 716000, China
| | - Ying Zhu
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Ming Guo
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Rui Zhang
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| |
Collapse
|
38
|
Costa JAV, Freitas BCB, Cruz CG, Silveira J, Morais MG. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:366-375. [PMID: 30729858 DOI: 10.1080/03601234.2019.1571366] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The loss of yields from agricultural production due to the presence of pests has been treated over the years with synthetic pesticides, but the use of these substances negatively affects the environment and presents health risks for consumers and animals. The development of agroecological systems using biopesticides represents a safe alternative that contributes to the reduction of agrochemical use and sustainable agriculture. Microalgae are able to biosynthesize a number of metabolites with potential biopesticidal action and can be considered potential biological agents for the control of harmful organisms to soils and plants. The present work aims to provide a critical perspective on the consequences of using synthetic pesticides, offering as an alternative the biopesticides obtained from microalgal biomass, which can be used together with the implementation of environmentally friendly agricultural systems.
Collapse
Affiliation(s)
- Jorge Alberto Vieira Costa
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Bárbara Catarina Bastos Freitas
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Camila Gonzales Cruz
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Jéssica Silveira
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Michele Greque Morais
- b College of Chemistry and Food Engineering, Laboratory of Microbiology and Biochemistry , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| |
Collapse
|
39
|
Ye X, Liu J. Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:590-599. [PMID: 30476888 DOI: 10.1016/j.envpol.2018.11.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Pyrethroids, a class of ubiquitous insecticides, have been recognized as endocrine-disrupting chemicals (EDCs). A lot of studies have implied the endocrine-disrupting effects of pyrethroids on the hypothalamic-pituitary-gonadal (HPG) axis. However, there are few review articles regarding the effects of pyrethroids on the HPG axis of mammal and human, especially new research progress made in this area. The present review sums up the effects of pyrethroids on the HPG axis-related reproductive outcomes, including epidemiological investigations based on human biomonitoring, animal studies and in vitro tests. Mechanisms have described that the endocrine-disrupting effects of pyrethroids on mammal can be mediated via the interaction with steroid receptors, the direct action on ion channels and signaling molecules. Finally, we summarize the current research gaps and suggest future directions in this topic.
Collapse
Affiliation(s)
- Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
Wahlang B. Exposure to persistent organic pollutants: impact on women's health. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:331-348. [PMID: 30110273 DOI: 10.1515/reveh-2018-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/18/2018] [Indexed: 05/23/2023]
Abstract
This literature review focuses on the causal relationship between persistent organic pollutants (POPs) exposure and women's health disorders, particularly cancer, cardio-metabolic events and reproductive health. Progressive industrialization has resulted in the production of a multitude of chemicals that are released into the environment on a daily basis. Environmental chemicals or pollutants are not only hazardous to our ecosystem but also lead to various health problems that affect the human population worldwide irrespective of gender, race or age. However, most environmental health studies that have been conducted, until recently, were exclusively biased with regard to sex and gender, beginning with exposure studies that were reported mostly in male, occupational workers and animal studies being carried out mostly in male rodent models. Health-related issues pertaining to women of all age groups have not been studied thoroughly and rather disregarded in most aspects of basic health science research and it is therefore pertinent that we address these limitations in environmental health. The review also addresses studies looking at the associations between health outcomes and exposures to POPs, particularly, polychlorinated biphenyls (PCBs), dioxins and pesticides, reported in cohort studies while accounting for gender differences. Considering that current levels of POPs in women can also impact future generations, informative guidelines related to dietary patterns and exposure history are needed for women of reproductive age. Additionally, occupational cohorts of highly exposed women worldwide, such as women working in manufacturing plants and female pesticide applicators are required to gather more information on population susceptibility and disease pathology.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, 505 S. Hancock Street, CTRB, Louisville, KY 40202-1617, USA
| |
Collapse
|
41
|
Cao F, Qin P, Lu S, He Q, Wu F, Sun H, Wang L, Li L. Measurement of volatile organic compounds and associated risk assessments through ingestion and dermal routes in Dongjiang Lake, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:645-653. [PMID: 30243211 DOI: 10.1016/j.ecoenv.2018.08.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
This study aims to investigate the occurrence, distribution and risk assessment of volatile organic compounds (VOCs) in Dongjiang Lake of China. Twenty two kinds of VOCs were detected, and the major VOCs were alkene compounds. The total concentration of VOCs (∑VOCs) ranged from 2.93 to 4.69 µg/L, and none of the VOCs detected in Dongjiang Lake exceeded the concentration limits set in the National Drinking Water Quality Standards (GB5749-2006) or the National Environmental Quality Standards for Surface Water (GB3838-2002) of China. Risk quotients (RQ) model, Multimedia Environment Pollutant Assessment System (MEPAS) and value of odor hazard index (OHI) were used to assess the ecological risk, lifetime carcinogenic risk and olfactory risk of VOCs in Dongjiang Lake, respectively. The RQtotal values varied from 3.95 × 10-3 to 0.34 and the RQ values for all the 22 detected VOCs in 12 sample locations of Dongjiang Lake were below 0.01, which means negligible risk to aquatic organisms. The cancerous and non-cancerous risk indices were in the range of 2.31 × 10-9-5.16 × 10-7 and 1.68 × 10-7-1.45 × 10-2, respectively. Bromodichloromethane and 1,1-dichloroethene were associated with the highest and lowest carcinogenic risks in all 12 sample locations. Results also demonstrated that the olfactory risk in Dongjiang Lake is negligible. These data suggest that the VOCs in Dongjiang Lake may not lead great ecological and health risks for organism and human.
Collapse
Affiliation(s)
- Fengmei Cao
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China
| | - Pan Qin
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China; Beijing Normal University, Beijing 100012, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China.
| | - Qi He
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China
| | - Fengchang Wu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Linlin Li
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Dayangfang Beiyuan Road, 8#, Chaoyang District, Beijing 100012, China; Beijing Normal University, Beijing 100012, China
| |
Collapse
|
42
|
Li Z. A health-based regulatory chain framework to evaluate international pesticide groundwater regulations integrating soil and drinking water standards. ENVIRONMENT INTERNATIONAL 2018; 121:1253-1278. [PMID: 30389383 DOI: 10.1016/j.envint.2018.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Pesticide residues in groundwater, mainly transported from contaminated soil, may threaten drinking water sources and cause adverse health effects. Therefore, pesticide groundwater standards were implemented by international environmental agencies to ensure the quality of groundwater, which serves as the direct drinking water source in many countries. However, regulatory inconsistencies are always found among groundwater, soil, drinking water, and even health standards due to the lack of communication among the regulatory processes. This study first developed a health-based regulatory chain framework to analyze pesticide groundwater regulations integrating soil, drinking water, and health regulations. Six regulatory indexes associated with probabilistic risk assessments and pesticide transport modeling were constructed to evaluate the performance of pesticide groundwater regulations identified from 56 countries. Worldwide pesticide groundwater regulations were analyzed by quantifying the impact on the downstream (exposure pathways in general) pesticide drinking water standards and human health and the influence from upstream (environmental pathways in general) soil regulations. The results indicated that in general, worldwide pesticide soil regulations do not encompass a sufficient number of pesticides or provide appropriate standard values to be compatible with groundwater regulations. The computed indexes between pesticide groundwater and drinking water regulations indicated more positive results than soil regulations because most European nations have groundwater regulations that are compatible with those of drinking water. However, most pesticide groundwater regulations could not protect human health according to the health-based indexes. Hopefully, the regulatory framework developed in this study will help environmental agencies comprehensively evaluate and establish pesticide groundwater regulations.
Collapse
Affiliation(s)
- Zijian Li
- Parsons Corporation, Chicago, IL 60606, USA; Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
43
|
Sabarwal A, Kumar K, Singh RP. Hazardous effects of chemical pesticides on human health-Cancer and other associated disorders. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:103-114. [PMID: 30199797 DOI: 10.1016/j.etap.2018.08.018] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/21/2018] [Accepted: 08/27/2018] [Indexed: 05/27/2023]
Abstract
Poisoning from pesticides is a global public health problem and accounts for nearly 300,000 deaths worldwide every year. Exposure to pesticides is inevitable; there are different modes through which humans get exposed to pesticides. The mode of exposure is an important factor as it also signifies the concentration of pesticides exposure. Pesticides are used extensively in agricultural and domestic settings. These chemicals are believed to cause many disorders in humans and wildlife. Research from past few decades has tried to answer the associated mechanism of action of pesticides in conjunction with their harmful effects. This perspective considers the past and present research in the field of pesticides and associated disorders. We have reviewed the most common diseases including cancer which are associated with pesticides. Pesticides have shown to be involved in the pathogenesis of Parkinson's and Alzheimer's diseases as well as various disorders of the respiratory and reproductive tracts. Oxidative stress caused by pesticides is an important mechanism through which many of the pesticides exert their harmful effects. Oxidative stress is known to cause DNA damage which in turn may cause malignancies and other disorders. Many pesticides have shown to modulate the gene expression at the level of non-coding RNAs, histone deacetylases, DNA methylation patterns suggesting their role in epigenetics.
Collapse
Affiliation(s)
- Akash Sabarwal
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India; Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kunal Kumar
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Rana P Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India; Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
44
|
Ghosh K, Chatterjee B, Jayaprasad AG, Kanade SR. The persistent organochlorine pesticide endosulfan modulates multiple epigenetic regulators with oncogenic potential in MCF-7 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1612-1622. [PMID: 29054638 DOI: 10.1016/j.scitotenv.2017.10.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/28/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Environmental cues and chemicals can potentially modulate the phenotypic expression of genome through alterations in the epigenetic mechanisms. Endosulfan is one of the extensively used organochlorine pesticides around the world which is known for its endocrine, neuro- and reproductive toxicity. This study was aimed to investigate the potential of α-endosulfan in modulation of multiple epigenetic enzymes in MCF-7 cells. The cells were treated with DMSO (control) or α-endosulfan (1 and 10μM) and the expression of various epigenetic enzymes was assayed by real-time PCR and immunoblotting, in addition to their activity assays. The results shows α-endosulfan, at 1 and 10μM concentration, significantly promoted viability of MCF-7 cells compared to untreated cells after 24h. The expression of DNA methyltransferases (DNMTs) was upregulated while the global DNA methylation status was initially affected, but later recovered. Total intracellular histone deacetylase (HDAC) activity was found to be significantly increased which was correlated with upregulation of class I HDACs (HDAC 1 and 3) while no significant alteration in the other HDAC classes was observed. The expression and activity of arginine and lysine methylation enzymes, protein arginine methyltransferase 5 (PRMT5) and Enhancer of Zeste homolog 2 (EZH2), respectively, were also found to be modulated by α-endosulfan. We found increased expression of histones H3 and H4, trimethylated H3K27 (product of EZH2), symmetric dimethylation of H4R3 (product of PRMT5) and five different (unidentified) proteins whose arginine residues are symmetrically dimethylated (by increased level of PRMT5) were enhanced in response to 10μM α-endosulfan after 24h exposure window. Moreover, overexpression of basal level of estrogen receptor alpha (ERα), suggests estrogenicity of α-endosulfan. In summary, our results shows modulatory impact of α-endosulfan on multiple cellular epigenetic regulators, known to possess oncogenic potential which might contribute to mechanistic insight of its action in future.
Collapse
Affiliation(s)
- Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Aparna Geetha Jayaprasad
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India.
| |
Collapse
|
45
|
Sharma N, Garg D, Deb R, Samtani R. Toxicological profile of organochlorines aldrin and dieldrin: an Indian perspective. REVIEWS ON ENVIRONMENTAL HEALTH 2017; 32:361-372. [PMID: 28915126 DOI: 10.1515/reveh-2017-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Several epidemiological studies have suggested various environmental factors as a possible cause for increased incidence of various abnormalities. Of the various environmental contaminants, the most prevalent and the most discussed are the endocrine disrupting chemicals. Contact of such disruptors with humans has become inevitable today. They are cosmopolitan and present from agriculture to industrial sectors, even in day-to-day consumer products. Aldrin and dieldrin belong to one such class of substances which are known to have a toxic effect on various physiological systems of the human body. Despite an imposed ban on their manufacture and commercial use, these pesticides could still be detected in probable areas of consumption like agriculture. The present review discusses the known possible toxic effects of aldrin and dieldrin and their current existence in the ecosystem across India.
Collapse
|
46
|
Ferrante MC, Fusco G, Monnolo A, Saggiomo F, Guccione J, Mercogliano R, Clausi MT. Food contamination by PCBs and waste disposal crisis: Evidence from goat milk in Campania (Italy). CHEMOSPHERE 2017; 186:396-404. [PMID: 28802131 DOI: 10.1016/j.chemosphere.2017.07.144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/23/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
AIM The study aims at investigating whether, and if so, to what extent the strong presence of urban and industrial waste in a territory may cause PCB contamination in goat milk produced therein. METHODS We compared PCB concentrations in goat milk from three different locations in the Campania region (Italy). One of the three locations, together with its surrounding area, has long suffered from illegal waste disposal and burning mainly by the so-called Ecomafia. The other locations, not involved in these illegal activities, allowed us to create a control group of goats with characteristics very similar to those of main interest. RESULTS In milk from the waste contaminated area we identified high PCB concentrations (six indicator PCBs amounted to 170 ng g-1 on lipid weight, on average), whereas there was an almost total absence of such pollutants in milk from the control group. Concentrations of the six indicator PCBs were above the current European maximum residue limit fixed by the EU. At the same time, we found a lower average value of lipid content and a negative relationship between lipid content and PCB concentrations. CONCLUSION Evidence indicates the potential health risk for consumers living in areas involved in illegal dumping of waste.
Collapse
Affiliation(s)
- M C Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy.
| | - G Fusco
- Experimental Zooprophylactic Institute of Southern Italy, Portici (Naples), Italy
| | - A Monnolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - F Saggiomo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - J Guccione
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - R Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - M T Clausi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| |
Collapse
|