1
|
Álvarez-Varas R, Ayala E, Lagos R, Peña-Galindo I, Palma-Rojas V, Hereveri N, Campos N, Chiang G, Gaymer CF. Mercury exposure and health challenges in Rapa Nui green turtles: urging conservation and long-term monitoring in the South Pacific. CONSERVATION PHYSIOLOGY 2025; 13:coaf019. [PMID: 40207014 PMCID: PMC11981715 DOI: 10.1093/conphys/coaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
The endangered green sea turtle (Chelonia mydas; hereafter C. mydas) plays a crucial role in maintaining the balance of marine ecosystems. However, its populations are highly vulnerable to various threats, including marine pollution. Rapa Nui (Easter Island), an isolated location in the southeastern Pacific, provides vital foraging habitats for both morphotypes of Pacific C. mydas (black and yellow). In this study, we examined the demographic structure (morphotype, life stage, sex) and health status (based on blood analytes and mercury-Hg concentration) of C. mydas on Rapa Nui during 2018 and 2023. Turtles from various life stages and sexes were observed, with a predominance of yellow morphotype juveniles, likely recently recruited or emerging from brumation. Haematological analyses revealed low levels of several key analytes (e.g. cholesterol, calcium, phosphorus, total protein, globulins), suggesting poor nutritional status, potentially related to the brumation process, limited food availability or poor food quality in the region. Alterations in both red and white blood cell lines, including anaemia and lymphopenia, indicate ongoing inflammatory states and infections, consistent with clinical observations. Rapa Nui turtles exhibited some of the highest blood Hg concentrations globally. Abnormalities in blood profiles, along with correlations between various analytes and blood Hg concentrations, suggest altered immune function and probable renal and liver dysfunction, likely resulting from both natural and anthropogenic sources of this heavy metal. Additionally, a very high body condition index in turtles with carapace lesions suggests a negative impact from human food subsidies in local bays, particularly from high-trophic-level fish, which may also serve as a pathway for Hg accumulation, both for the turtle aggregation and the human population. Our findings underscore the urgent need for long-term mercury monitoring and turtle movement studies to identify pollution sources, inform effective conservation strategies for this endangered species, and address potential public health concerns on this remote Pacific island.
Collapse
Affiliation(s)
- Rocío Álvarez-Varas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Zip code 2373223, Valparaíso, Chile
- Centro de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Zip code 781421, Coquimbo, Chile
- Qarapara Tortugas Marinas Chile NGO, Las Flores Oriente 2725, Zip code 7940560, Santiago, Chile
| | - Eamy Ayala
- Qarapara Tortugas Marinas Chile NGO, Las Flores Oriente 2725, Zip code 7940560, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Zip code 7800003, Santiago, Chile
| | - Rocío Lagos
- Laboratorio Clínico Veterinario SpVet, Arturo Prat 705, Zip code 9500037, Región Metropolitana, Santiago, Chile
| | - Irene Peña-Galindo
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Zip code 8370251, Santiago, Chile
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Zip code 7820436, Santiago, Chile
| | - Victoria Palma-Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Zip code 2373223, Valparaíso, Chile
| | | | | | - Gustavo Chiang
- Centro para la Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Zip code 4801043 Temuco, Chile
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Zip code 8370251, Santiago, Chile
| | - Carlos F Gaymer
- Centro de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Zip code 781421, Coquimbo, Chile
| |
Collapse
|
2
|
Dias VHV, Mattos JJ, Serafini PP, Lüchmann KH, Bainy ACD. A systematic review of the impact of chemical pollution on sea turtles: Insights from biomarkers of aquatic contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135813. [PMID: 39298959 DOI: 10.1016/j.jhazmat.2024.135813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Chemical anthropogenic contaminants in the marine environment pose a substantial threat to sea turtles. The current systematic review quantified the published literature on biomarkers of aquatic contamination in sea turtles. It examined the exposure and potential impacts of pollution at biochemical, molecular, and cellular levels, as indicated by these biomarkers. Eighty-seven primary peer-reviewed papers were included, most of which were published from 2013 onwards. Most studies focused on the species Chelonia mydas (n = 43 papers) and Caretta caretta (n = 36) and used blood samples for biomarker (n = 54) and chemical (n = 38) analyses. Chemical analyses were assessed alongside biomarker analyses in most studies (n = 71). Some studies indicated possible damage to the DNA, cells, oxidative balance, and reproduction of sea turtles associated with chemical contaminants as metals, emerging, and mixtures of organic pollutants. Research gaps and recommendations for future studies were addressed to help understand the toxicity of chemical pollutants in sea turtles. The purpose of this review is to contribute for supporting actions to mitigate the threats posed by pollution to these protected species, as well as to plan new studies in this research field for both conservation and biomonitoring purposes.
Collapse
Affiliation(s)
- Vera Helena Vidal Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil
| | - Jacó Joaquim Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil
| | - Patricia Pereira Serafini
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil
| | - Karim Hahn Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, CEP: 88035001, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil.
| |
Collapse
|
3
|
Valdés-Flores J, Ley-Quiñonez CP, León-Sicairos N, Flores-Villaseñor H, Velázquez-Román J, Angulo-Zamudio U, Zavala-Norzagaray A, Hart CE, Olimón-Andalón V, Leal-Moreno R, Sosa-Cornejo I, Aguirre AA, Canizalez-Román A. Comparison of the blood biochemical values of foraging and nesting Olive Ridley turtles (Lepidochelys olivacea) from Sinaloa, Mexico. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106491. [PMID: 38657368 DOI: 10.1016/j.marenvres.2024.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Our study aimed to establish reference values for nesting females and compare them with those previously reported to understand olive ridley turtles' health status and contribute to long-term health assessment and monitoring in foraging and nesting areas from the state of Sinaloa, Mexico. In August and September 2018, morphometric data and biochemical profiles were collected from 33 nesting olive ridley turtles from Ceuta Beach Sanctuary (CBS) and 14 foraging female turtles captured at the foraging site, Navachiste Marine Area (NMA). Nesting turtles sampled had greater CCL (65.86 ± 1.70 cm) than those from the foraging area (61.54 ± 1.22) (p < 0.05). Regarding biochemical profiles, post-nesting turtles had higher packed cell volume (PCV), albumin, blood urea nitrogen (BUN), cholesterol, triglycerides, and calcium than turtles from the foraging area (p < 0.05). Phosphorus levels were higher in foraging turtles than in nesting turtles (p = 0.001), while the remaining parameters showed no significant differences. The present study describes for the first time the blood biochemical values of nesting turtles from the Ceuta Beach Sanctuary in southern Sinaloa, Mexico, similar to those of foraging turtles from the north of the state. The significant differences observed between the two analysis groups may be due to the energy reserves and reproductive and nesting activity of the nesting turtles, so the blood biochemistry values described in this study can be used as a standard reference blood value for the olive ridley turtle population of Sinaloa, Mexico.
Collapse
Affiliation(s)
- Jorge Valdés-Flores
- Programa Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Autónoma de Sinaloa, 80040, Culiacán, Sinaloa, Mexico
| | | | - Nidia León-Sicairos
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacán, Sinaloa, Mexico; Pediatric Hospital of Sinaloa, 80200, Culiacán, Sinaloa, Mexico
| | - Hector Flores-Villaseñor
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacán, Sinaloa, Mexico; The Sinaloa State Public Health Laboratory, Secretariat of Health, 80020, Culiacán, Sinaloa, Mexico
| | - Jorge Velázquez-Román
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacán, Sinaloa, Mexico
| | - Uriel Angulo-Zamudio
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacán, Sinaloa, Mexico
| | | | - Catherine E Hart
- Centro de Investigaciones Oceánicas del Mar de Cortés, Gran Acuario Mazatlán, 82017, Mazatlán, Sinaloa, Mexico
| | - Vicente Olimón-Andalón
- Programa Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Autónoma de Sinaloa, 80040, Culiacán, Sinaloa, Mexico
| | - Renato Leal-Moreno
- Instituto Politécnico Nacional, CIIDIR-SIN, 81049, Guasave, Sinaloa, Mexico
| | - Ingmar Sosa-Cornejo
- Programa Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Autónoma de Sinaloa, 80040, Culiacán, Sinaloa, Mexico
| | - A Alonso Aguirre
- Department of Fish, Wildlife and Conservation Biology, Warner College of Natural Resources, Colorado State University, 80523, Fort Collins, CO, USA
| | - Adrian Canizalez-Román
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacán, Sinaloa, Mexico; The Women's Hospital, Secretariat of Health, 80020, Culiacan, Mexico.
| |
Collapse
|
4
|
Barrios-Rodriguez CA, Bezerra MF, Ristau N, Mendonça DM, Pires TT, de Souza Paulino LR, Lacerda LDD. Biological and ecological traits rather than geography control mercury (Hg) in scutes of marine turtles from the Southwest Atlantic. MARINE POLLUTION BULLETIN 2024; 200:116085. [PMID: 38325203 DOI: 10.1016/j.marpolbul.2024.116085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
The use of sentinel species in monitoring programs for toxic metals such as mercury (Hg) is essential to understand these pollutants' impact on the environment. For this purpose, it is essential to use organisms that have a lifespan compatible with the residence time of Hg in the oceans, and preferably with a wide geographical distribution, such as sea turtles. Here, we assess the regional variability of Hg concentrations using carapace scutes of four sea turtle species along the foraging and spawning area in the northeast coastline of Brazil. Mercury concentrations in samples showed no relationship with the environmental Hg levels (obtained from literature). Rather, Hg concentrations varied according to species-specific biological, and ecological traits. Characteristics such as the ontogenetic shift in the diet of Chelonia mydas, capital breeding in females, depth of foraging in oceanic waters, and selectivity of food items, such as in Eretmochelys imbricata, significantly influenced Hg concentrations.
Collapse
Affiliation(s)
- César Augusto Barrios-Rodriguez
- Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Moises Fernandes Bezerra
- Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | - Luiz Drude de Lacerda
- Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
5
|
Flores-Ramírez R, Mendoza-Rivera SP, García-Grajales J, Buenrostro-Silva A, Sanjuan-Meza EU, Berumen-Rodríguez AA, Espinosa-Reyes G. Persistent organic pollutants in the olive ridley turtle (Lepidochelys olivacea) during the nesting stage in the "La Escobilla" Sanctuary, Oaxaca, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10911-10919. [PMID: 38214861 DOI: 10.1007/s11356-024-31833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Persistent organic pollutants (POPs) are chemical substances widely distributed in the environment by the runoff from anthropic activities and can be distributed and bioaccumulated or biomagnified in the environment, affecting the health of organisms. The sea turtle, Lepidochelys olivacea, is a long-lived organism, with migratory habits and feeding behaviors that allow exposure to various pollutants. This work aimed to determine long-term exposure to POPs in adult olive ridley turtles (L. olivacea), sampled during the nesting season, in "La Escobilla" Sanctuary. Blood samples were collected and processed to obtain plasma. The quantification of POPs in blood was carried out with an extraction technique with a focused ultrasound probe. Twenty-seven POP analytes were determined. The concentrations of hexachlorocyclohexane, endosulfan isomers, dichlorodiphenyltrichloroethane, total polychlorinated biphenyls, and the total sum of POPs found in plasma are higher than those reported in other studies, which reported effects such as hematological and biochemical changes in blood, changes in immune system cells and enzymatic activity related to oxidative stress. These results are important to demonstrate the chronic exposure to POPs in olive ridley turtles in marine ecosystems and to highlight the importance of assessing the associated health risks, considering that these contaminants could be transferred to the offspring and affect future generations of this reptile. It is important to carry out studies that develop conservation strategies for the olive ridley turtle. Also, it is necessary to control the emissions of pollutants into the atmosphere, as well as reduce urban, agricultural, and industrial waste in the environment and marine ecosystems.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Sagrario Paola Mendoza-Rivera
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Jesus García-Grajales
- Universidad del Mar Campus Puerto Escondido, Km. 2.5 Carretera Federal Puerto Escondido-Sola de Vega, 71980, San Pedro Mixtepec, Oaxaca, México
| | - Alejandra Buenrostro-Silva
- Universidad del Mar Campus Puerto Escondido, Km. 2.5 Carretera Federal Puerto Escondido-Sola de Vega, 71980, San Pedro Mixtepec, Oaxaca, México
| | - Eleno Uriel Sanjuan-Meza
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Alejandra Abigail Berumen-Rodríguez
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Guillermo Espinosa-Reyes
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México.
| |
Collapse
|
6
|
Cammilleri G, Galluzzo FG, Pulvirenti A, Pantano L, Calabrese V, Gentile A, Cumbo V, Macaluso A, Macaluso V, Vella A, Ferrantelli V. Toxic metals in Loggerhead sea turtles ( Caretta caretta) stranded freshly dead along Sicilian coasts. Vet Q 2023; 43:1-10. [PMID: 36644861 PMCID: PMC9870007 DOI: 10.1080/01652176.2023.2169781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The Loggerhead sea turtle (Caretta caretta) is a marine reptile belonging to a monophyletic group of chelonians. As these animals are long-lived, they have the ability to accumulate pollutants. AIM To collect epidemiological data on toxic metals in marine Loggerhead sea turtles. MATERIALS AND METHODS Forty Loggerhead sea turtles comprising 25 males and 15 females stranded freshly dead between 2013 and 2018 along the coasts of Sicily, Southern Italy, were examined for arsenic, cadmium, and lead accumulation in muscle and adipose tissues by means of a validated ICP-MS method. A modified K index as a growth condition factor, namely Fulton's K index, was used. Samples were tested in duplicate. A Wilcoxon rank sum test was carried out to evaluate metal contents differences between muscle and adipose tissues and between genders. RESULTS The Fulton's K index suggested a good body condition of the C. caretta recovered with mean values of 5.34 ± 3.40 (n = 40; ±SD). Detectable concentrations of lead were found in 70% of the samples analysed with mean values of 0.65 ± 1.67 mg/kg wet weight and 0.51 ± 1.29 mg/kg wet weight in muscle and adipose tissues, respectively. No significant differences in arsenic, cadmium, and lead were detected between genders. In addition, no significant correlation was found between modified K index and concentrations of arsenic, cadmium, and lead. CLINICAL RELEVANCE Findings on muscle and adipose tissues suggest chronic exposure of Caretta caretta to high concentrations of especially lead which might negatively affect health and welfare of these marine turtles although body condition was good.
Collapse
Affiliation(s)
- Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Francesco Giuseppe Galluzzo
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Modena, Italy,CONTACT Francesco Giuseppe Galluzzo Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121Modena, Italy
| | - Andrea Pulvirenti
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Modena, Italy
| | - Licia Pantano
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Vittorio Calabrese
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Catania, Italy
| | - Antonino Gentile
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Valentina Cumbo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Andrea Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Vito Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Antonio Vella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | | |
Collapse
|
7
|
Fernández-Sanz H, Perrault JR, Stacy NI, Mancini A, Reyes-Bonilla H, Reséndiz E. Blood analyte reference intervals and correlations with trace elements of immature and adult Eastern Pacific green turtles (Chelonia mydas) in coastal lagoons of Baja California Sur, México. MARINE POLLUTION BULLETIN 2023; 195:115547. [PMID: 37717495 DOI: 10.1016/j.marpolbul.2023.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Sea turtles can bioaccumulate high concentrations of potentially toxic contaminants. To better understand trace element effects on sea turtles' health, we established reference intervals for hematological and plasma biochemical analytes in 40 in-water, foraging immature and adult Eastern Pacific green turtles (Chelonia mydas) from two coastal lagoons in Baja California Sur, quantified whole blood concentrations of eight trace elements, and assessed their correlations. Rank-order trace element concentrations in both immature and adult turtles was zinc > selenium > nickel > arsenic > copper > cadmium > lead > manganese. Immature turtles had significantly higher copper and lower nickel and zinc concentrations. Additionally, a number of relationships between trace elements and blood analytes were identified. These data provide baseline information useful for future investigations into this population, or in other geographic regions and various life-stage classes.
Collapse
Affiliation(s)
- Helena Fernández-Sanz
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico; Health Assessments in Sea Turtles From Baja California Sur, Villa Ballena 330, Villas del Encanto, 23085 La Paz, Baja California Sur, Mexico.
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway 1, Juno Beach, FL 33408, USA.
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL 32610, USA.
| | - Agnese Mancini
- Grupo Tortuguero de las Californias A.C., Calle Seis 141, Azaleas, 23098 La Paz, Baja California Sur, Mexico.
| | - Héctor Reyes-Bonilla
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico.
| | - Eduardo Reséndiz
- Health Assessments in Sea Turtles From Baja California Sur, Villa Ballena 330, Villas del Encanto, 23085 La Paz, Baja California Sur, Mexico; Laboratorio de Investigación y Medicina de Organismos Acuáticos, Departamento Académico de Ciencia Animal y Conservación del Hábitat, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico.
| |
Collapse
|
8
|
Fatema K, Auditi TI, Biswas S, Ayesha SB, Helal Uddin M, Sumon KA, Goswami C, Bhandari RK, Rashid H. Investigations of hemato-biochemical and histopathological parameters, and growth performance of walking catfish (Clarias batrachus) exposed to PET and LDPE microplastics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104250. [PMID: 37595935 DOI: 10.1016/j.etap.2023.104250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Fish inhabiting various trophic levels are affected differently as the presence of microplastic (MP) in the water column and their ingestion by fish varies. Walking catfish (Clarias batrachus) inhabits the bottom of the water bodies. To understand the effects of MP, we exposed C. batrachus to two types of MP - polyethylene terephthalate (PET) and low-density polyethylene (LDPE) for 60 days. After exposure, hematological indices, mainly red blood cells and hemoglobin levels decreased, and white blood cells increased significantly compared to the control group (p < 0.05). A significant increase in the levels of blood urea and glucose was observed, and serum glutamic pyruvate transaminase and serum glutamyl oxaloacetic transaminase activity remained elevated (p < 0.05). Histopathological examination of the liver, kidney, intestine, and gills showed morphological alterations. Moreover, MP exposure caused growth retardation (p < 0.05) in C. batrachus. Widespread pollution of water bodies by MP may impose serious ecological risks to bottom-feeding fish in Bangladesh.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; Department of Fisheries Management, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Tasnia Islam Auditi
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shema Biswas
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sumaiya Binte Ayesha
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Helal Uddin
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Chayon Goswami
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Harunur Rashid
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
9
|
Kirchner R, Kirchnerová S, Tirpák F, Halo M, Slanina T, Tokárová K, Kováčik A, Miškeje M, Komárňanská V, Greń A, Formicki G, Massányi P. Biogenic Elements and Heavy Metals in Hermann's Tortoises- Testudo hermanni: Effect on Serum Biochemistry and Oxidative Status Parameters. Animals (Basel) 2023; 13:2218. [PMID: 37444016 DOI: 10.3390/ani13132218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Conservation of species diversity is the need of the hour for preserving life forms on Earth. Extinction of any part of the ecosystem has negative impacts on many processes and systems. The objective of this work was to analyze some biochemical and molecular indicators and their correlations to biogenic elements and heavy metals in Testudo hermanni (n = 16). METHODS Biochemical parameters were analyzed using the commercial kit DiaSys and biochemical analyzer Randox RX Monza. Sodium, potassium, and chlorides were measured using the EasyLite analyzer. Oxidative stress was evaluated using colorimetric and luminometric methods. Quantification of chemical elements in the blood was carried out using inductively coupled plasma mass spectrometry (ICPS). RESULTS Biochemical values of analyzed samples from Hermann's tortoises were almost the same as referential values described by multiple authors, with minor aberrations in the total protein parameter. Values of arsenic (As) and nickel (Ni) showed correlation with biochemical parameters and the parameters of oxidative stress. Cadmium (Cd) exhibited correlation with aspartate aminotransferase (AST). CONCLUSIONS This study reports correlations among four heavy metals, and their levels were again correlated with biochemical and molecular parameters in Hermann's tortoises.
Collapse
Affiliation(s)
- Róbert Kirchner
- Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Institute of Animal Husbandry, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Soňa Kirchnerová
- Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Institute of Animal Husbandry, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Filip Tirpák
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Marko Halo
- Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Slanina
- Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Katarína Tokárová
- Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Anton Kováčik
- Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Michal Miškeje
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Veronika Komárňanská
- Institute of Animal Husbandry, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Agnieszka Greń
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084 Krakow, Poland
| | - Grzegorz Formicki
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084 Krakow, Poland
| | - Peter Massányi
- Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
10
|
Banaee M, Faraji J, Amini M, Multisanti CR, Faggio C. Rainbow trout (Oncorhynchus mykiss) physiological response to microplastics and enrofloxacin: Novel pathways to investigate microplastic synergistic effects on pharmaceuticals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106627. [PMID: 37393734 DOI: 10.1016/j.aquatox.2023.106627] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Enrofloxacin (ENR) is a broad-spectrum antibiotic widely used due to its efficacy against pathogens. Microplastics (MPs) may bind to ENR and reduce its efficiency, whereas there would be an increase in its toxicity, bioavailability, and bio-accumulation rates. Therefore, the hypothesis is that the interaction between MPs and ENR can alter their toxicity and bioavailability. The subjective of this study is to examine the toxicity of various concentrations of ENR (0, 1.35, and 2.7 ml Kg-1 diet) and MPs (0, 1000, and 2000 mg Kg-1 diet) alone and in combination for 21 days. The rainbow trout (Oncorhynchus mykiss) is an economic aquaculture species used as an experimental model in ecotoxicology studies. Blood biochemical analytes indicated that ENR and MPs combination led to increasing enzymatic activity of each biomarker, except for gamma-glutamyl-transferase (GGT). Alterations related to triglycerides, cholesterol, glucose, urea, creatinine, total protein, and albumin blood contents were observed. An elevation in the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glucose 6-phosphate dehydrogenase (G6PDH) was found in the liver. In contrast, catalase (CAT) and glutathione peroxidase (GPx) levels decreased. Furthermore, a decline was observed in the cellular total antioxidant (ANT) levels. These findings suggested that ENR and MPs could affect fish health both independently and together. Consequently, the study determined that when both ENR and MPs were present in high concentrations, the toxicity of ENR was amplified, providing further evidence of the synergistic impact of MPs on ENR toxicity.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Javad Faraji
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mohammad Amini
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
11
|
Shaw KR, Balazs GH, Jones TT, Lynch HW, Liu J, Cobb GP, Klein DM, Lynch JM. Green Sea Turtles (Chelonia mydas) Accumulate Heavy Metals Near a Former Skeet Shooting Range in Kailua, O'ahu, Hawai'i. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1109-1123. [PMID: 36866800 DOI: 10.1002/etc.5601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
The present study determined if green sea turtles (Chelonia mydas) in Kailua Bay, Oahu, in the Hawaiian Islands have elevated blood and scute lead (Pb), arsenic (As), and antimony (Sb) concentrations resulting from lead deposition at a historic skeet shooting range. Blood and scute samples were collected and analyzed for Pb, As, and Sb via inductively coupled plasma-mass spectrometry. Prey, water, and sediment samples were also analyzed. Turtle samples in Kailua Bay (45) have blood Pb concentrations (328 ± 195 ng/g) greater than a reference population (Howick Group of Islands, 29.2 ± 17.1 ng/g). Compared with other green turtle populations, only turtles in Oman, Brazil, and San Diego, CA have blood Pb concentrations greater than turtles in Kailua Bay. The estimated daily exposure of Pb from algae sources in Kailua Bay (0.12 mg/kg/day) was significantly lower than the no observed adverse effect level (100 mg/kg) of red-eared slider turtles. However, the chronic effects of Pb on sea turtles is poorly understood and continued monitoring of this population will increase our understanding of the Pb and As loads of sea turtles in Kailua Bay. Environ Toxicol Chem 2023;42:1109-1123. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Katherine R Shaw
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | | | - T Todd Jones
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, Hawaii, USA
| | | | - Jing Liu
- Environment Research Institute, Shandong University, Qingdao, China
| | - George P Cobb
- Department of Environmental Sciences, Baylor University, Waco, Texas, USA
| | - David M Klein
- Department of Civil Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Jennifer M Lynch
- Chemical Sciences Division, National Institute of Standards and Technology, Waimānalo, Hawaii, USA
- Center for Marine Debris Research, Hawai'i Pacific University, Waimānalo, Hawaii, USA
| |
Collapse
|
12
|
Markowski M, Kaliński A, Wawrzyniak J, Glądalski M, Skwarska J, Bańbura J. Microsatellite Instability Assay as a Potential Approach to Evaluate Genotoxicity: Lead Exposure in a Nestling Passerine Bird at the Stage of Intensive Erythropoiesis. Animals (Basel) 2023; 13:ani13081325. [PMID: 37106888 PMCID: PMC10135023 DOI: 10.3390/ani13081325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Although many avian studies have investigated the toxic effects of lead on important biochemical and physiological processes, organ and system function, and behavior, studies evaluating the specific genotoxic effects of exposure to lead are scarce. Nowadays, rapid technological advances can provide new molecular techniques in this regard. In this study, as a novel approach in bird studies, we used a panel of ten microsatellite loci to investigate the microsatellite instability (MSI) in response to experimental lead intoxication in a common hole-nesting species, the great tit Parus major. For this purpose, an experiment based on an intentional single supplementation of a lead (II) acetate trihydrate compound was conducted, with the use of two different doses, applied to randomly chosen great tit nestlings from randomly selected broods, being at the stage of intensive erythropoiesis. Although this preliminary study did not find any MSI in the seven microsatellite markers retained for the final comparison, it contributes to the examination of this molecular technique in field conditions as being potentially applicable in ecotoxicological bird studies. We believe that certain issues should be considered in finding an explanation for our result. First, the single doses of lead used in this study may have been too weak to induce genetic instability. Second, the panel of microsatellite markers studied may have been unsusceptible to lead genotoxicity in general. Third, the relatively short time interval (5 days) between the experimental procedure (lead exposure) and the sampling of post-exposure material (blood) for genetic analyses could have limited the effect of lead genotoxicity. Further analyzes are needed to verify these findings and to evaluate the scope of application of the MSI analysis in wild bird population studies.
Collapse
Affiliation(s)
- Marcin Markowski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Adam Kaliński
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jarosław Wawrzyniak
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Michał Glądalski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Joanna Skwarska
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jerzy Bańbura
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
13
|
Miguel C, Costa PG, Bianchini A, Luzardo OLP, Vianna MRM, Santos MRDD. Health condition of Chelonia mydas from a foraging area affected by the tailings of a collapsed dam in southeast Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153353. [PMID: 35085636 DOI: 10.1016/j.scitotenv.2022.153353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
In 2015, the failure of the Fundão dam caused the release of 43 million m3 of tailings into the Doce River Basin, in southeast Brazil. It was considered the largest environmental disaster of the world mining industry. The tailings, composed mostly of heavy metals, caused massive destruction of the Doce River ecosystem endangering the organisms that live in the coastal zone where the mud reached the ocean. Among the exposed species are the sea turtles that use the region for food. The aim of this study was to evaluate the effect of contaminants on the health status of juvenile green sea turtles that feed in a coastal area exposed to ore mud (Santa Cruz) and to compare them with animals from an area not directly affected (Coroa Vermelha). A physical examination was performed to determine the health status. Blood samples were analyzed for hematological and biochemical parameters, and metal concentrations (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn). Santa Cruz sea turtles had more ectoparasites and a higher incidence of fibropapillomatosis. Statistically significant differences between sites were found for levels of calcium, phosphorus, glucose, protein, albumin, globulin, cholesterol, triglycerides, urea, CPK, ALT, and AST. The count of leukocytes, thrombocytes, and heterophils, as well as the concentrations of As and Cu were higher in Santa Cruz turtles. Together the results show a worse nutritional status and a greater degree of liver and kidney damage in animals affected by the tailings. The health status may indicate a physiological deficit that can affect their immune system and behavior, which is supported by the higher fibropapillomatosis tumor score and ectoparasite load in these animals. These results support the need for long-term monitoring of the exposed area to quantify the direct and indirect influence of the heavy metals levels on sea turtles and how this reflects the environmental health.
Collapse
Affiliation(s)
- Camila Miguel
- Pontifícia Universidade Católica do Rio Grande do Sul, Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Avenida Ipiranga 6681 (Prédio 12, Bloco D, Sala 301), Porto Alegre, RS, CEP 90619-900, Brazil; Projeto Chelonia mydas - Instituto Marcos Daniel, Av. Eugênio Pachêco de Queirós, s/n, Vitória, ES CEP 29092-170, Brazil.
| | - Patrícia Gomes Costa
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Determinações 2, Av. Italia, s/n, Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Adalto Bianchini
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Determinações 2, Av. Italia, s/n, Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Octavio Luis Pérez Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Monica Ryff Moreira Vianna
- Pontifícia Universidade Católica do Rio Grande do Sul, Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Avenida Ipiranga 6681 (Prédio 12, Bloco D, Sala 301), Porto Alegre, RS, CEP 90619-900, Brazil
| | - Marcelo Renan de Deus Santos
- Projeto Chelonia mydas - Instituto Marcos Daniel, Av. Eugênio Pachêco de Queirós, s/n, Vitória, ES CEP 29092-170, Brazil
| |
Collapse
|
14
|
Morão IFC, Lemos MFL, Félix R, Vieira S, Barata C, Novais SC. Stress response markers in the blood of São Tomé green sea turtles (Chelonia mydas) and their relation with accumulated metal levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118490. [PMID: 34780755 DOI: 10.1016/j.envpol.2021.118490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Metals are persistent worldwide being harmful for diverse organisms and having complex and combined effects with other contaminants in the environment. Sea turtles accumulate these contaminants being considered good bioindicator species for marine pollution. However, very little is known on how this is affecting these charismatic animals. São Tomé and Príncipe archipelago harbours important green sea turtle (Chelonia mydas) nesting and feeding grounds. The main goal of this study was to determine metal and metalloid accumulation in the blood of females C. mydas nesting in São Tomé Island, and evaluate the possible impacts of this contamination by addressing molecular stress responses. Gene expression analysis was performed in blood targeting genes involved in detoxification/sequestration and metal transport (mt, mtf and fer), and in antioxidant and oxidative stress responses (cat, sod, gr, tdx, txrd, selp and gclc). Micronuclei analysis in blood was also addressed as a biomarker of genotoxicity. Present results showed significant correlations between different gene expressions with the metals evaluated. The best GLM models and significant relationships were found for mt expression, for which 78% of the variability was attributed to metal levels (Al, Cu, Fe, Hg, Pb and Zn), followed by micronuclei count (65% - Cr, Cu, Fe, Hg, Mn and Zn), tdx expression (52% - Cd, Fe, Mn, Pb and Se), and cat expression (52% - As, Fe, Se and Cd x Hg). Overall, this study demonstrates that these green sea turtles are trying to adapt to the oxidative stress and damage produced by metals through the increased expression of antioxidants and other protectors, which raises concerns about the impacts on these endangered organisms' fitness. Furthermore, promising biomarker candidates associated to metal stress were identified in this species that may be used in future biomonitoring studies using C. mydas' blood, allowing for a temporal follow-up of the organisms.
Collapse
Affiliation(s)
- Inês F C Morão
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | - Rafael Félix
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | - Sara Vieira
- Associação Programa Tatô, Avenida Marginal 12 de Julho, Cidade de São Tomé, São Tomé e Príncipe, Portugal
| | - Carlos Barata
- Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal.
| |
Collapse
|
15
|
EVALUATION OF IMMUNE FUNCTION IN TWO POPULATIONS OF GREEN SEA TURTLES (CHELONIA MYDAS) IN A DEGRADED VERSUS A NONDEGRADED HABITAT. J Wildl Dis 2021; 57:761-772. [PMID: 34460917 DOI: 10.7589/jwd-d-20-00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
There is a strong correlation between degraded marine habitats and the prevalence of diseases such as green turtle fibropapillomatosis (GTFP) in coastal populations. In GTFP, small to large tumors grow on the turtle's soft tissues and shell, while internal nodules may also occur. The disease primarily affects juvenile green sea turtles (Chelonia mydas) that reside in nearshore waters. As a link has been shown between environmental pollution and immune suppression in a variety of animals, the objective of our research was to compare innate and adaptive immune responsiveness in green sea turtles from a severely degraded and a more pristine habitat, which differ greatly in rates of GTFP. We quantified phagocytosis by flow cytometry and performed in vitro stimulation analysis to measure activity of both the innate and adaptive immune systems in wild-caught Florida green turtles. Sea turtles from the degraded environment, both with and without visible cutaneous tumors, exhibited significantly reduced phagocytosis and stimulation indices than did those from the less polluted environment. Our results suggest that environmental factors may contribute to the development of GTFP and thus can impact the health of sea turtle populations.
Collapse
|
16
|
Canzanella S, Danese A, Mandato M, Lucifora G, Riverso C, Federico G, Gallo P, Esposito M. Concentrations of trace elements in tissues of loggerhead turtles (Caretta caretta) from the Tyrrhenian and the Ionian coastlines (Calabria, Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26545-26557. [PMID: 33484457 DOI: 10.1007/s11356-021-12499-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Toxic trace elements from both, natural and anthropogenic origin, pose a threat to aquatic environments and marine wildlife due to their long-range transport, bioaccumulative nature, and biomagnification through the food chain. Being long-lived and migratory animals, sea turtles can be exposed to elevated levels of toxic elements, and are therefore considered sentinel species for chemical pollution. In this study, concentrations of trace elements (arsenic, cadmium, lead, mercury) were determined in tissues of 46 loggerhead sea turtles (Caretta caretta) stranded along Tyrrhenian and Ionian coasts of Calabria, in Southern Italy, between 2014 and 2020. Curved carapace length (CCL), curved carapace width (CCW), body mass (BM), and sex were determined and the correlations of these parameters with toxic elements concentrations were investigated. During necropsy, kidney, liver, and muscle tissues were collected and the concentration and distribution of metals determined. Muscle tissues showed the lowest toxic element burdens, except for As that showed the highest mean concentrations in this tissue. The kidney was the main accumulation organ for Cd, while similar levels of Hg and Pb were measured in kidney, liver, and muscle tissues. The risk assessment performed for Cd, Hg, and Pb in sea turtles' liver highlighted possible negative effects on sea turtles' health and the need for marine turtle toxicology researches. This is the first study reporting levels and distribution of toxic elements in tissues of Caretta caretta turtles from the Tyrrhenian and Ionian coasts of Calabria.
Collapse
Affiliation(s)
- Silvia Canzanella
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy.
| | - Amalia Danese
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Maria Mandato
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Caterina Riverso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Giovanni Federico
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| |
Collapse
|
17
|
Banaee M, Gholamhosseini A, Sureda A, Soltanian S, Fereidouni MS, Ibrahim ATA. Effects of microplastic exposure on the blood biochemical parameters in the pond turtle (Emys orbicularis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9221-9234. [PMID: 33140300 DOI: 10.1007/s11356-020-11419-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 05/27/2023]
Abstract
The accumulation of microplastics (MPs) is a growing problem in aquatic ecosystems. Despite increased research on MPs in the last decade, their potential threat to freshwater ecosystems remains an open question. In the present study, the negative impacts of MPs were investigated on blood biochemical parameters in the European pond turtle (Emys orbicularis). Pond turtles were distributed into three experimental groups (n = 9 for each group) and were fed diets containing 250, 500, and 1000 mg MPs (PE100 polyethylene) per kg of food for 30 days, and a control group fed with a standard uncontaminated diet. The results indicated that exposure to 500 and 1000 mg kg-1 MPs caused a significant increase in the activities of alanine and aspartate aminotransferases, and in the levels of cholesterol, glucose, creatinine, urea, and calcium (Ca+2) compared with the control group. On the contrary, the activity of gamma-glutamyl transferase and the levels of total protein, albumin, total immunoglobulins, and phosphorus were significantly reduced in E. orbicularis exposed to 500 and 1000 mg kg-1 MPs when compared with the controls. In all the MP-exposed groups, the activity of lactate dehydrogenase and globulin and magnesium (Mg+2) levels were significantly reduced; while creatine phosphokinase and alkaline phosphatase activities were increased with respect to the control turtles. A significant decrease in triglyceride levels was reported in E. orbicularis exposed to 1000 mg kg-1 MPs. MPs intake induced notable alterations in blood biochemical parameters of E. orbicularis. These results suggest that changes in the blood biochemical parameters could be an appropriate bio-indicator to evidence the existence of tissue damage in E. orbicularis.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology, Behbahan, Khuzestan Province, Iran.
| | - Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, and CIBEROBN Fisiopatología de la Obesidad y la Nutrición, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Siyavash Soltanian
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Ahmed Th A Ibrahim
- Zoology Department, Faculty of Science, New Valley University, Kharga Oasis, Egypt
| |
Collapse
|
18
|
Shaw KR, Lynch JM, Balazs GH, Jones TT, Pawloski J, Rice MR, French AD, Liu J, Cobb GP, Klein DM. Trace Element Concentrations in Blood and Scute Tissues from Wild and Captive Hawaiian Green Sea Turtles (Chelonia mydas). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:208-218. [PMID: 33103806 PMCID: PMC8452040 DOI: 10.1002/etc.4911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/06/2020] [Accepted: 10/16/2020] [Indexed: 05/04/2023]
Abstract
Sea turtles are exposed to trace elements through water, sediment, and food. Exposure to these elements has been shown to decrease immune function, impair growth, and decrease reproductive output in wildlife. The present study compares trace element concentrations in green turtles in captivity at Sea Life Park Hawaii (n = 6) to wild green turtles in Kapoho Bay, Hawaii, USA (n = 5-7). Blood and scute samples were collected and analyzed for 11 elements via inductively coupled plasma-mass spectrometry (ICP-MS). Selenium was significantly greater (p < 0.05) in the blood of captive turtles compared with wild turtles, whereas V, Ni, and Pb were significantly greater in the blood of wild turtles. In scute, V, Cu, Se, and Cr were significantly greater in captive turtles, whereas As was significantly greater in wild turtles. Pelleted food fed to the captive turtles and representative samples of the wild turtle diet were analyzed via ICP-MS to calculate trophic transfer factors and daily intake values. Wild turtles had greater estimated daily intake than captive turtles for all elements except Cu and Se. Because captive turtles are fed a diet very different from that of their wild counterparts, captive turtles do not represent control or reference samples for chemical exposure studies in wild turtles. No toxic thresholds are known for sea turtles, but rehabilitation and managed care facilities should monitor sea turtle elemental concentrations to ensure the animals' health. Environ Toxicol Chem 2021;40:208-218. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Katherine R. Shaw
- Texas Tech University, Department of Environmental Toxicology, Lubbock, TX 79416, USA
- Address correspondence to
| | - Jennifer M. Lynch
- National Institute of Standards and Technology, Chemical Sciences Division, Waimanalo, HI 96744, USA
| | | | - T. Todd Jones
- National Oceanic and Atmospheric Administration Pacific Islands Fisheries Science Center, Honolulu, HI 96818, USA
| | | | - Marc R. Rice
- Hawaii Preparatory Academy, Kamuela, HI 96743, USA
| | - Amanda D. French
- Texas Tech University, Department of Environmental Toxicology, Lubbock, TX 79416, USA
| | - Jing Liu
- Baylor University, Department of Environmental Sciences, Waco, TX 76706, USA
| | - George P. Cobb
- Baylor University, Department of Environmental Sciences, Waco, TX 76706, USA
| | - David M. Klein
- Texas Tech University, Department of Environmental Toxicology, Lubbock, TX 79416, USA
| |
Collapse
|
19
|
Nava Montes AD, Espinosa Reyes G, Flores Ramírez R, Ramírez Romero P. Persistent organic pollutants in Kemp's Ridley sea turtle Lepidochelys kempii in Playa Rancho Nuevo Sanctuary, Tamaulipas, Mexico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140176. [PMID: 32758958 DOI: 10.1016/j.scitotenv.2020.140176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POP) are toxic substances for wildlife and people. The Kemp's Ridley sea turtle Lepidochelys kempii is an endangered species with limited distribution in the Gulf of Mexico (GM), a marine ecosystem that has been perturbed by a variety of anthropogenic activities. In this work, the concentrations of ten organochlorine pesticides (OP), eight polychlorinated biphenyls (PCB), and atrazine were determined in the plasma of Kemp's Ridley sea turtles that nest in Playa Rancho Nuevo Sanctuary, Tamaulipas, Mexico. Seventy-nine blood samples were collected from female turtles during the 2015-2016 nesting season. Samples were extracted with a focalized ultrasonic sound technique and analyzed through Gas Chromatography coupled to a Mass Spectrometer. POP with the highest percentage of detection were atrazine > PCB 52 > PCB 153 > DDE > alpha endosulfan > DDD > alpha HCH > DDT. There is no linear correlation between the detected POP levels in the Kemp's Ridley sea turtle plasma and its curve carapace length (CCL). When comparing 2015 and 2016 POP concentrations, there were statistically significant differences in atrazine (p < 0.05, R2 = 0.069), PCB 52 (p < 0.05, R2 = 0.0051) and ∑POP (p < 0.05, R2 = 0.0001) and, no statistically significant differences in alpha endosulfan (p < 0.05, R2 = 0.0294), DDE (p < 0.05, R2 = 0.0315) and PCB 153 (p < 0.05, R2 = 0.0036). The reported POP values of this work are one of the few registered for Kemp's Ridley sea turtle in the GM and the first for atrazine levels. These levels were higher than those reported for other sea turtle species from America, Africa, and Europe, which demonstrates a deteriorated health status of the GM marine ecosystem.
Collapse
Affiliation(s)
- Alma Delia Nava Montes
- Environment and Energy Postgraduate Program, Metropolitan Autonomous University, Iztapalapa, Mexico City 09340, Mexico.
| | - Guillermo Espinosa Reyes
- Center for Applied Research in Environmental Health, Autonomous University of San Luis Potosi, San Luis Potosi 78210, Mexico
| | - Rogelio Flores Ramírez
- Center for Applied Research in Environmental Health, Autonomous University of San Luis Potosi, San Luis Potosi 78210, Mexico
| | - Patricia Ramírez Romero
- Hydrobiology Department, Metropolitan Autonomous University, Iztapalapa, Mexico City 09340, Mexico
| |
Collapse
|
20
|
Arias A, Recabarren Villalón T, Ronda A. Uso de biomarcadores en la evaluación ambiental de ecosistemas marinos en América. ACTA ACUST UNITED AC 2020. [DOI: 10.26359/52462.0719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The use of biomarkers in the assessment of the marine environmental status offers an integrated approach to the effects caused by diverse pollutants. This article compiles and analyzes the original research on the study of possible biomarkers in wild coastal-marine organisms from America. One of the outcomes of this review research is the need for a continuous evaluation of organisms in conjunction with the assessment of environmental vari-ables and the levels of pollutants that may be found in any ecosystem. It is well stated that the use of biomarkers is a practical tool for the environmental management; however, some limitations apply and there are several questions in regards to specificity, sensibility, usability, replicability, and interpretation to be solved, yet. Along the American continent, multiple biomarkers have been used to evaluate specific pollutants or highly impacted zones at marine-coastal environments. The most commonly used organisms are fishes and bivalves and they have been also extensively used in marine turtles. In regards of the type of biomarkers, plenty of authors integrate biomarkers from different groups, sorted in this review as biometric biomarkers (morphologic and corporal in-dexes), histological biomarkers (for tissues), molecular biomarkers (genetic) and biochemical and physiological biomarkers (both at the cellular and molecular levels). Following this classification, the most used biomarkers were biochemical and physiological biomarkers, due to the great advantages and information that they provide. It is of utmost importance to set guidelines and referenced threshold values for each biomarker to allow the early environmental diagnosis and integrated evaluation of harmful pollutants effects.
Keywords: Biomarkers, environmental assessment, America.
Collapse
|
21
|
Markowski M, Kaliński A, Bańbura M, Glądalski M, Wawrzyniak J, Skwarska J, Bańbura J. Effects of experimental lead exposure on physiological indices of nestling great tits Parus major: haematocrit and heterophile-to-lymphocyte ratio. CONSERVATION PHYSIOLOGY 2019; 7:coz067. [PMID: 31687145 PMCID: PMC6821246 DOI: 10.1093/conphys/coz067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/26/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is recognized as one of the most toxic trace elements that can induce a wide range of negative health effects in wildlife. Because the investigation of basic environment-sensitive physiological indicators is easy to perform in wild birds, they have been considered as valuable bioindicators of lead contamination. The harmfulness of lead poisoning can depend on the type of exposure, and in most studies of birds, an effect of chronic lead exposition has been considered. In this study, we investigated whether a single exposure to specific doses of lead affected such physiological indices as haematocrit and the heterophil-to-lymphocyte ratio (H/L ratio). For this purpose, we conducted an experiment based on intentional lead supplementation, with the use of two different doses, applied to randomly chosen great tit (Parus major) nestlings from randomly selected broods. A few days after the exposure (when the nestlings were 15 days old), we determined haematocrit and the H/L ratio as potentially sensitive physiological indicators of lead intoxication. We found that the treatment with lead resulted in a significant decline in haematocrit level. In addition, we found that the age when lead exposure occurred can be considered as an important factor influencing haematocrit variation. A decrease in haematocrit was observed on consecutive days of nestling life. In contrast, the H/L ratio did not show any significant response to lead exposure. These results clearly show that the assessment of haematocrit level for nestling great tits can provide a simple and rapid method of indirect evaluation of physiological effects of lead intoxication caused by a single exposure.
Collapse
Affiliation(s)
- Marcin Markowski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Adam Kaliński
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Mirosława Bańbura
- Museum of Natural History, Faculty of Biology and Environmental Protection, University of Łódź, Kilińskiego 101, 90-011 Łódź, Poland
| | - Michał Glądalski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Jarosław Wawrzyniak
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Joanna Skwarska
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Jerzy Bańbura
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| |
Collapse
|
22
|
Buchweitz JP, Drankhan HR, Lehner AF. Blood arsenic concentrations in felids. Vet Rec 2019; 185:207. [PMID: 31160335 DOI: 10.1136/vr.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/17/2019] [Accepted: 05/15/2019] [Indexed: 11/03/2022]
Abstract
The presence of measurable quantities of arsenic in the blood of most terrestrial species signifies an exposure that often warrants further investigation regarding source and potential veterinary intervention and treatment. However, some species, such as felids, have a genetic predisposition to retain arsenic in their blood; circulating concentrations of the heavy metal, albeit abnormal for most species, may actually present as a normal or expected finding. To make sense of this disparity, the authors queried a veterinary diagnostic laboratory database over a time period of 10 years (2008-2018) to discern the range of arsenic concentrations observed in various felids. All felid whole blood samples tested for heavy metals contained measurable concentrations of arsenic; this contrasts with other companion animals such as dogs which generally had arsenic concentrations below detectability. From these data, the authors present a working reference interval for whole blood arsenic in both domestic and captive-raised big cats. Veterinary diagnostic reference intervals are important parameters for the clinical management of animal health. Reference intervals for enzymes, hormones, minerals, vitamins and therapeutic drugs specific to organ function and health are becoming increasingly well defined for most companion and production animal species, and often dictate the clinician's decisions regarding therapeutic approaches. A conundrum arises, however, when the presence or detection of a heavy metal that is otherwise deemed potentially 'toxic' to most species is an 'expected', or 'normal', finding in another. Such is the case with whole blood heavy metal screens for the feline patient. The presence of blood arsenic is a common finding in both domestic and big cats raised in captivity. If not placed into the context of a range of known results, the finding may be erroneously interpreted as evidence for acute heavy metal intoxication. The current study reviews feline whole blood heavy metal submissions for arsenic concentrations to the Michigan State University Veterinary Diagnostic Laboratory between 2008 and 2018.
Collapse
Affiliation(s)
- John P Buchweitz
- Pathobiology and Diagnostic Investigation, Michigan State University College of Veterinary Medicine, East Lansing, Michigan, USA.,Veterinary Diagnostic Laboratory, Michigan State University College of Veterinary Medicine, East Lansing, Michigan, USA
| | - Holly R Drankhan
- Veterinary Diagnostic Laboratory, Michigan State University College of Veterinary Medicine, East Lansing, Michigan, USA
| | - Andreas F Lehner
- Veterinary Diagnostic Laboratory, Michigan State University College of Veterinary Medicine, East Lansing, Michigan, USA
| |
Collapse
|