1
|
Zhu FJ, Wang LF, Qu LZ, Ma WL, Ren GB, Li BH, Ma XD. Modelling the dynamic gas/particle partitioning process of semi-volatile organic compounds emitted from point sources: Quantitative analysis and impact assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172935. [PMID: 38703859 DOI: 10.1016/j.scitotenv.2024.172935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The deleterious impact of pollution point sources on the surrounding environment and human has long been a focal point of environmental research. When considering the local atmospheric dispersion of semi-volatile organic compounds (SVOCs) around the emission sites, it is essential to account the dynamic process for the gas/particle (G/P) partitioning, which involves the transition from an initial state to a steady state. In this study, we have developed a model that enables the prediction of the dynamic process for G/P partitioning of SVOCs, particularly considering the influence from emission. It is important to note that the dynamic processes of the concentrations of SVOCs in particle phase (CP) and in gas phase (CG) differ significantly. These differences arise due to the influence of two critical factors: particulate proportion of SVOCs in the emissions (ϕ0) and octanol-air partitioning coefficient (KOA). The validity of our model was assessed by comparing its predictions of the extremum value of the G/P partitioning quotient (KP) with the results obtained from the steady-state model. Remarkably, the characteristic time (tC), used to evaluate the timescale required for SVOCs to reach steady state, demonstrated different variations with KOA for CP and CG. Additionally, the values of tC were quite different for CP and CG, which were markedly influenced by ϕ0. For some SVOCs with high KOA values, it took approximately 35 h to reach steady state. Furthermore, it was found that the time to achieve 95 % of steady state (t95 ≈ 3tC) could reach approximately 105 h. This duration is sufficient for chemicals to disperse from their emission site to the surrounding areas. Therefore, it is crucial to consider the dynamic process of G/P partitioning in local atmospheric transport studies. Moreover, the influence of ϕ0 should be incorporated into future investigations examining the dynamic process of G/P partitioning.
Collapse
Affiliation(s)
- Fu-Jie Zhu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Fu Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Long-Ze Qu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Geng-Bo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ben-Hang Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiao-Dong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
2
|
Wang S, Jin J, Ma Y, Stubbings WA, Gbadamosi MR, Abou-Elwafa Abdallah M, Harrad S. Organophosphate triesters and their diester degradation products in the atmosphere-A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123653. [PMID: 38402940 DOI: 10.1016/j.envpol.2024.123653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
Organophosphate triesters (tri-OPEs) have found substantial use as plasticizers and flame retardants in commercial and industrial products. Despite upcoming potential restrictions on use of OPEs, widespread environmental contamination is likely for the foreseeable future. Organophosphate diesters (di-OPEs) are known biotic or abiotic degradation products of tri-OPEs. In addition, direct use of di-OPEs as commercial products also contributes to their presence in the atmosphere. We review the available data on contamination with tri-OPEs and di-OPEs in both indoor and outdoor air. Concentrations of tri-OPEs in indoor air exceed those in outdoor air. The widespread discovery of tri-OPE traces in polar regions and oceans is noteworthy and is evidence that they undergo long-range transport. There are only two studies on di-OPEs in outdoor air and no studies on di-OPEs in indoor air until now. Current research on di-OPEs in indoor and outdoor air is urgently needed, especially in countries with potentially high exposure to di-OPEs such as the UK and the US. Di-OPE concentrations are higher at e-waste dismantling areas than at surrounding area. We also summarise the methods employed for sampling and analysis of OPEs in the atmosphere and assess the relative contribution to atmospheric concentrations of di-OPEs made by environmental degradation of triesters, compared to the presence of diesters as by-products in commercial triester products. Finally, we identify shortcomings of current research and provide suggestions for future research.
Collapse
Affiliation(s)
- Shijie Wang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Jingxi Jin
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Yulong Ma
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - William A Stubbings
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Muideen Remilekun Gbadamosi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom.
| |
Collapse
|
3
|
Wang M, Li Y, Lv Y, Tang J, Wei P, Lu P, Zhao L, Li G, Cao Z, An T. Quantitative characterization of resident' exposure to typical semi-volatile organic compounds (SVOCs) around a non-ferrous metal smelting plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133353. [PMID: 38154186 DOI: 10.1016/j.jhazmat.2023.133353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
To comprehensively characterize residents' exposure to major semi-volatile organic compounds (SVOCs), samples of indoor floor wipes, size-segregated airborne particles, gaseous air, food, and paired skin wipes were simultaneously collected from residential areas around a large non-ferrous metal smelting plant as compared with the control areas, and three typical SVOCs (including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and halogenated PAHs (HPAHs)) were determined. Comparison and correlation analysis among matrices indicated PAHs were the major contaminants emitted from metal smelting activities compared to HPAHs and PCBs, with naphthalene verified as the most important characteristic compound, and their accumulation on skin may be a comprehensive consequence of contact with floor dust and air. While patterns of human exposure pathways for the SVOCs were found to be clearly correlated to their vapor pressure, dermal absorption was the major contributor (51.1-76.3%) to total carcinogenic risk (TCR) of PAHs and HPAHs for surrounding residents, especially for low molecular weight PAHs, but dietary ingestion (98.6%) was the dominant exposure pathway to PCBs. The TCR of PAHs exceeded the acceptable level (1 × 10-4), implying smelting activities obviously elevated the health risk. This study will serve developing pertinent exposure and health risk prevention measures.
Collapse
Affiliation(s)
- Mengmeng Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyi Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yinyi Lv
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Ping Lu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Zhu H, Zheng N, Chen C, Li N, An Q, Zhang W, Lin Q, Xiu Z, Sun S, Li X, Li Y, Wang S. Multi-source exposure and health risks of phthalates among university students in Northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169701. [PMID: 38159748 DOI: 10.1016/j.scitotenv.2023.169701] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/19/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The endocrine disruptor phthalates (PAEs) are widely used as important chemical additives in a variety of areas around the globe. PAEs are toxic to reproduction and development and may adversely affect the health of adolescents. Risk assessments of exposure to PAEs from different sources are more reflective of actual exposure than single-source assessments. We used personal exposure parameters to estimate the dose of PAEs to 107 university students from six media (including dormitory dust, dormitory air, clothing, food, disposable food containers, and personal care products (PCPs)) and three exposure routes (including ingestion, inhalation, and dermal absorption). Individual factors and lifestyles may affect PAE exposure to varying degrees. Based on a positive matrix factorization (PMF) model, the results indicated that the main sources of PAEs in dust were indoor building materials and plastics, while PCPs and adhesives were the major sources of airborne PAEs. The relative contribution of each source to PAE exposure showed that food and air were the primary sources of dimethyl phthalate (DMP) and dibutyl phthalate (DBP). Air source contributed the most to diethyl phthalate (DEP) exposure, followed by PCPs. Food was the most significant source of diisobutyl phthalate (DiBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) exposure. Additionally, the exposure of DEHP to dust was not negligible. The ingestion pathway was the most dominant among the three exposure pathways, followed by dermal absorption. The non-carcinogenic risk of PAEs from the six sources was within acceptable limits. DEHP exhibits a low carcinogenic risk. We suggest university students maintain good hygienic and living habits to minimize exposure to PAEs.
Collapse
Affiliation(s)
- Huicheng Zhu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- College of New Energy and Environment, Jilin University, Changchun 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Changcheng Chen
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Ning Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Qirui An
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenhui Zhang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Qiuyan Lin
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhifei Xiu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Siyu Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiaoqian Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Sujing Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Guo Z, Wang L, Li Y, Wu Z, Wang K, Duan J. Dust phase and window film phase phthalates in dormitories: profile characteristics, source screening, and estimated gas-phase concentration and dermal exposure comparison. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15257-15270. [PMID: 38291205 DOI: 10.1007/s11356-024-32019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Recently, phthalate exposure has become a major public health concern. However, gaps still remain in our understanding of phthalate profile characteristics, source screening, and gas-phase estimation. This study measured phthalate concentrations in dust and window films in 101 dormitories at 13 universities in Beijing, China, from October to December 2019. Based on the phthalate concentrations in the dust and window films, we estimated the gas-phase phthalate concentrations using steady-state and instantaneous equilibrium models, respectively, and male and female students' dermal exposure using the Monte Carlo simulation. Commonly used materials and supplies were screened for phthalate sources and evaluated using the positive matrix factorization (PMF) model. The results showed that the detection frequency of ten phthalates ranged from 79.2 to 100% in dust and from 84.2 to 100% in window films. Dicyclohexyl phthalate (DCHP), di-(2-ethylhexyl) phthalate (DEHP), and dibutyl phthalate (DBP) were the most abundant phthalates in both indoor media and were also predominant in the indoor materials and supplies. The PMF results indicated that the potential sources of phthalates in dust and window films had both similarities and differences. Indoor door seals, paint, coatings, cables, air-conditioning rubber cable ties, wallpaper, and window seals were highly probable sources of phthalates. The gas-phase phthalate concentrations estimated using the two methods differed, especially for phthalates with high octanol-air partition coefficients (Koa), varying by 1-2 orders of magnitude. Moreover, compared with related studies, the gas-phase concentrations were significantly underestimated for phthalates with high Koa values, while the estimated gas-phase concentrations of phthalates with low Koa values were closer to the measured values. The estimated dermal exposure using the two methodologies also considerably differed. Such findings suggest that more attention should be focused on the exposure risk from the dust phase and window film phase phthalates.
Collapse
Affiliation(s)
- Zichen Guo
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yatai Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zaixing Wu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Kexin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jiahui Duan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
6
|
Li X, Zheng N, Zhang W, An Q, Ji Y, Chen C, Wang S, Peng L. Comprehensive assessment of phthalates in indoor dust across China between 2007 and 2019: Benefits from regulatory restrictions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123147. [PMID: 38101532 DOI: 10.1016/j.envpol.2023.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/18/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
China is the largest producer and consumer of phthalates in the world. However, it remains unclear whether China's phthalate restrictions have alleviated indoor phthalate pollution. We extracted the concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) in indoor dust at 2762 sites throughout China between 2007 and 2019 from the published literature. Based on these data, we investigated the effects of phthalate restrictions and environmental factors on the temporal-spatial distribution and sources of phthalates and estimated human exposure and risk of phthalates. The results revealed that the mean concentrations of phthalates in indoor dust throughout China decreased in the following order: DEHP > DBP > DIBP > DMP > DEP > BBP. The concentrations of six phthalates were generally higher in northern and central-western China than in southern regions. BBP and DEHP concentrations decreased by 73.5% and 17.9%, respectively, from 2007 to 2019. Sunshine was a critical environmental factor in reducing phthalate levels in indoor dust. Polyvinyl chloride materials, personal care products, building materials, and furniture were the primary sources of phthalates in indoor dust. The phthalates in indoor dust posed the most significant threat to children and older adults. This study provides a picture of phthalate pollution, thus supporting timely and effective policies and legislation.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Wenhui Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Foster SA, Kile ML, Hystad P, Diamond ML, Jantunen LM, Mandhane PJ, Moraes TJ, Navaranjan G, Scott JA, Simons E, Subbarao P, Takaro TK, Turvey SE, Brook JR. Organophosphate ester flame retardants and plasticizers in house dust and mental health outcomes among Canadian mothers: A nested prospective cohort study in CHILD. ENVIRONMENTAL RESEARCH 2024; 240:117451. [PMID: 37871788 PMCID: PMC10841641 DOI: 10.1016/j.envres.2023.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Organophosphate ester flame retardants and plasticizers (OPEs) are common exposures in modern built environments. Toxicological models report that some OPEs reduce dopamine and serotonin in the brain. Deficiencies in these neurotransmitters are associated with anxiety and depression. We hypothesized that exposure to higher concentrations of OPEs in house dust would be associated with a greater risk of depression and stress in mothers across the prenatal and postpartum periods. We conducted a nested prospective cohort study using data collected on mothers (n = 718) in the CHILD Cohort Study, a longitudinal multi-city Canadian birth cohort (2008-2012). OPEs were measured in house dust sampled at 3-4 months postpartum. Maternal depression and stress were measured at 18 and 36 weeks gestation and 6 months and 1 year postpartum using the Centre for Epidemiologic Studies for Depression Scale (CES-D) and Perceived Stress Scale (PSS). We used linear mixed models to examine the association between a summed Z-Score OPE index and continuous depression and stress scores. In adjusted models, one standard deviation increase in the OPE Z-score index was associated with a 0.07-point (95% CI: 0.01, 0.13) increase in PSS score. OPEs were not associated with log-transformed CES-D (β: 0.63%, 95% CI: -0.18%, 1.46%). The effect of OPEs on PSS score was strongest at 36 weeks gestation and weakest at 1 year postpartum. We observed small increases in maternal perceived stress levels, but not depression, with increasing OPEs measured in house dust during the prenatal and early postpartum period in this cohort of Canadian women. Given the prevalence of prenatal and postpartum anxiety and the ubiquity of OPE exposures, additional research is warranted to understand if these chemicals affect maternal mental health.
Collapse
Affiliation(s)
- Stephanie A Foster
- School of Biological and Population Health Sciences, College of Health, Oregon State University, 160 SW 26th St, Corvallis, OR, 97331, USA.
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Health, Oregon State University, 160 SW 26th St, Corvallis, OR, 97331, USA.
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Health, Oregon State University, 160 SW 26th St, Corvallis, OR, 97331, USA.
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, 149 College Street, Suite 410, Fourth Floor, Toronto, ON, M5T 1P5, Canada.
| | - Liisa M Jantunen
- Environment and Climate Change Canada, Government of Canada, Canada.
| | - Piush J Mandhane
- Pediatric Respiratory Medicine, University of Alberta, 11405-87 Avenue Edmonton, Alberta, T6G 1C9, Canada.
| | - Theo J Moraes
- Department of Pediatrics, University of Toronto, 555 University Avenue, Black Wing Room 1436, Toronto, ON, M5G 1X8, Canada.
| | - Garthika Navaranjan
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Sixth Floor, Toronto, ON, MST 3M7, Canada.
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Sixth Floor, Toronto, ON, MST 3M7, Canada.
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, 840 Sherbrook Street, University of Manitoba, Winnipeg, MB, R3A 1S1, Canada.
| | - Padmaja Subbarao
- Department of Pediatrics, University of Toronto, 555 University Avenue, Black Wing Room 1436, Toronto, ON, M5G 1X8, Canada; Dalla Lana School of Public Health, University of Toronto, 155 College Street, Sixth Floor, Toronto, ON, MST 3M7, Canada.
| | - Tim K Takaro
- Department of Health Sciences, Simon Fraser University, 8888 University Drive, Blusson Hall, Room 11300, Burnaby, B.C, V5A 1S6, Canada.
| | - Stuart E Turvey
- Pediatric Immunology, The University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Sixth Floor, Toronto, ON, MST 3M7, Canada.
| |
Collapse
|
8
|
Liu B, Ding L, Lv L, Yu Y, Dong W. Organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) in indoor dust: A systematic review on concentration, spatial distribution, sources, and human exposure. CHEMOSPHERE 2023; 345:140560. [PMID: 37898464 DOI: 10.1016/j.chemosphere.2023.140560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
In recent years, the indoor exposure of organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) has received widespread attention worldwide. Using published data on 6 OPEs in 23 countries (n = 1437) and 2 NBFRs in 18 countries (n = 826) in indoor dust, this study systematically reviewed the concentrations, spatial distribution, sources and exposure risk of 8 flame retardants (FRs) worldwide. Tris(chloroisopropyl)phosphate (TCIPP) is the predominant FR with a median concentration of 1050 ng g-1 ΣCl-OPEs are significantly higher than Σnon-Cl-OPEs (p < 0.05). ΣOPEs in indoor dust from industrially-developed countries are higher than those from the countries lacking industrial development. Household appliances, electronics and plastic products are the main sources of non-Cl-OPEs and NBFRs, while interior decorations and materials contribute abundant Cl-OPEs in indoor dust. The mean hazard index (HI) of TCIPP for children is greater than 1, possibly posing non-cancer risk for children in some countries. The median ILCRs for 3 carcinogenic OPEs are all less than 10-6, suggesting no cancer risk induced by these compounds for both adults and children. This review helps to understand the composition, spatial pattern and human exposure risk of OPEs and NBFRs in indoor dust worldwide.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Weihua Dong
- College of Geographical Sciences, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
9
|
Zhang Y, Tong Y, Cheng F, Shi J, Huang J, Yu M, You J. Occurrence of emerging contaminants in pet hair and indoor air: integrative health risk assessment using multiple ToxCast endpoints. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1839-1849. [PMID: 37427597 DOI: 10.1039/d3em00182b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Indoor exposome is a growing concern, including a mixture of legacy and emerging contaminants. Recent studies suggest that indoor pollutants may accumulate in pet hair, a part of indoor exposome, increasing health risks to pet owners; however, the source and hazards of pollutants associated with pet hair are largely unknown. Here, we found that hydrophobic pollutants often had higher indoor concentrations than hydrophilic ones, and polycyclic aromatic hydrocarbons (PAHs) were the most dominant fractions (61.1%) in indoor air exposome while polycyclic musks (PCMs) had the highest concentrations among all contaminant classes in indoor dust (1559 ± 1598 ng g-1 dw) and pet hair (2831 ± 2458 ng g-1 dw). The levels of hygiene-related contaminants (PCMs, current-use pesticides (CUPs), and antibiotics) were higher in pet hair than dust due to direct contact during applications. Health risk assessment using toxicity thresholds from high-throughput screening data showed that human health risks from the five classes of indoor contaminants (PAHs, PCMs, organophosphate esters, CUPs, and antibiotics) via inhalation, ingestion, and dermal contact were within acceptable limits, but the children may be exposed to a higher risk than the adults. The thresholds estimated from the ToxCast data using endpoint sensitivity distribution make the exposome risk assessment feasible in the absence of benchmarks, which is beneficial for including a mixture of emerging pollutants in risk assessment.
Collapse
Affiliation(s)
- Ying Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Yujun Tong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Fei Cheng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Jingwen Shi
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Jiehui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Minqi Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
10
|
Sun Y, Liu LY, Lv LL, Zhou XX, Luo YY, Qu JZ, Ma WL, Zhang ZF, Song L, Wang L, Li YF. Distribution of polycyclic aromatic hydrocarbons in indoor/outdoor window films and the indoor film/air partition of northeastern Chinese college dormitories. CHEMOSPHERE 2023; 322:138136. [PMID: 36796526 DOI: 10.1016/j.chemosphere.2023.138136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/11/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Indoor window films can represent short-term air pollution conditions of indoor environment through rapidly capturing organic contaminants as effective passive air samplers. To investigate the temporal variation, influence factors of polycyclic aromatic hydrocarbons (PAHs) in indoor window films, and the exchange behavior with gas phase in college dormitories, 42 pairs window films of interior and exterior window surfaces and corresponding indoor gas phase and dust samples were collected monthly in six selected dormitories, Harbin, China, from August to December 2019 and September 2020. The average concentration of ∑16PAHs in indoor window films (398 ng/m2) was significantly (p < 0.01) lower than that in outdoors (652 ng/m2). In addition, the median indoor/outdoor ∑16PAHs concentration ratio was close to 0.5, showing that outdoor air acted as a major PAH source to indoor environment. The 5-ring PAHs were mostly dominant in window films whereas the 3-ring PAHs contributed mostly in gas phase. 3-ring PAHs and 4-ring PAHs were both important contributors for dormitory dust. Window films showed stable temporal variation, i.e. PAH concentrations in heating months were higher than those in non-heating months. The atmospheric O3 concentration was the main influence factor of PAHs in indoor window films. PAHs with low molecular weight in indoor window films rapidly reached film/air equilibrium phase within in dozens of hours. The large deviation in the slope of the log KF-A versus log KOA regression line from that in reported equilibrium formula might be the difference between the window film composition and octanol.
Collapse
Affiliation(s)
- Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lin-Lin Lv
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xi-Xi Zhou
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu-Yan Luo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jin-Ze Qu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li Song
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Li Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| |
Collapse
|
11
|
Sun Y, Kan Z, Zhang ZF, Song L, Jiang C, Wang J, Ma WL, Li YF, Wang L, Liu LY. Association of occupational exposure to polycyclic aromatic hydrocarbons in workers with hypertension from a northeastern Chinese petrochemical industrial area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121266. [PMID: 36780976 DOI: 10.1016/j.envpol.2023.121266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Elevated urinary polycyclic aromatic hydrocarbon metabolites have been linked to an increased risk of cardiovascular diseases (CVDs). However, for petrochemical workers with potentially high PAH exposure, it remains largely unknown whether the link will be amplified. Thus, this work aimed to investigate 14 urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in 746 petrochemical workers working in a Chinese petrochemical industrial area and their association with the risk of hypertension using the binary logistic regression. Metabolites of naphthalene, fluorene, phenanthrene, and pyrene were frequently detected in the 746 urine samples analyzed (>98%), with Σ10OH-PAH concentration in the range of 0.906-358 ng/mL. 2-hydroxynaphthalene accounted for the largest proportion of ten detected OH-PAHs (60.8% of Σ10OH-PAHs). There were significant correlations between these metabolites and other factors, including gender, age, and body mass index. Diastolic blood pressure, not systolic blood pressure, was significant positively associated with the urinary Σ10OH-PAH concentrations of the petrochemical workers. Elevated urinary 2/3-OH-Flu was significantly associated with an increased risk of hypertension (adjusted odds ratio: 1.96, 95% confidence interval: 1.20-3.18, p = 0.007), suggesting that PAH exposure in petrochemical workers was a driving factor of hypertension. In the stratified analysis, the association was more pronounced in those who were overweight with older age. Although the PAH exposure risk in petrochemical workers based on the estimated daily intakes was relatively low. Given the long-term impact, we call attention to CVDs of petrochemical workers.
Collapse
Affiliation(s)
- Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ze Kan
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li Song
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Chao Jiang
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Ji Wang
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Li Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
12
|
Yan Z, Feng C, Leung KMY, Luo Y, Wang J, Jin X, Wu F. Insights into the geographical distribution, bioaccumulation characteristics, and ecological risks of organophosphate esters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130517. [PMID: 36463749 DOI: 10.1016/j.jhazmat.2022.130517] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Organophosphate esters (OPEs), as flame retardants and plasticizers, have been numerously explored regarding the occurrence and ecotoxicology. Given their toxicity, persistency and bio-accumulative potential, however, they may pose negative effects on ecosystems, regarding which is a growing global concern. Accordingly, the present review systematically analyses the recent literature to (1) elucidate their worldwide distribution, bioaccumulation, and biomagnification potential, (2) determine their interim water quality criteria (i.e., effect thresholds), and (3) preliminarily assess the ecological risks for 32 OPEs in aquatic ecosystems. The results showed that the spatiotemporal distribution of OPEs was geographically specific and closely related to human activities (i.e., megacities), especially halogenated-OPEs. We also found that precipitation of airborne particulates could affect the concentrations of OPEs in soil, and there was a positive correlation between the bioaccumulation and hydrophobicity of OPEs. Tris(2-ethylhexyl) phosphate may exhibit high bioaccumulation in aquatic organisms. A substantial difference was found among interim water quality criteria for OPEs, partly attributable to the variation of their available toxicity data. Tris(phenyl) phosphate (TPHP) and tris(1,3-dichloroisopropyl) phosphate with the lowest predicted no-effect concentration showed the strongest toxicity of growth and reproduction. Through the application of the risk quotient and joint probability curve, TPHP and tris(chloroethyl) phosphate tended to pose moderate risks, which should receive more attention for risk management. Future research should focus on knowledge gaps in the mechanism of biomagnification, derivation of water quality criteria, and more precise assessment of ecological risks for OPEs.
Collapse
Affiliation(s)
- Zhenfei Yan
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Ying Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jindong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Fengchang Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
13
|
Fan L, Wang L, Wang K, Liu F. Phthalates in glass window films are associated with dormitory characteristics, occupancy activities and habits, and environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32550-32559. [PMID: 36469278 DOI: 10.1007/s11356-022-24536-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Phthalates are environmental endocrine disruptors that enter the human body through a variety of pathways and harm human health. The study aimed to explore the associations between phthalate concentrations in glass window films with dormitory characteristics, occupancy activities and habits, and environmental factors, of university dormitories. We surveyed these associations and measured the indoor environmental parameters of 144 dormitories from 13 universities in Beijing. Based on the results, we further explored the factors affecting phthalate concentrations using multivariate logistic regression. The results showed that phthalate concentrations in glass window films were associated with dormitory type, duration of occupancy, daily ventilation duration, window cleaning frequency, indoor relative humidity, light intensity, temperature, and particulate matter (PM10) concentration. To date, there have only been a few studies on the factors that influence phthalate concentrations in glass window films; therefore, further study is needed. Our findings determined the influence of external factors on the different types of phthalates in window films, which helps understand indoor phthalate pollution and evaluate human exposure based on phthalate concentrations in glass window films.
Collapse
Affiliation(s)
- Liujia Fan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Kexin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Fang Liu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
14
|
Wang X, Wang X, Qi J, Gong S, Wang C, Li L, Fan L, Liu H, Cao Y, Liu M, Han X, Su L, Yao X, Tysklind M, Wang X. Levels, distribution, sources and children health risk of PAHs in residential dust: A multi-city study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160760. [PMID: 36513232 DOI: 10.1016/j.scitotenv.2022.160760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are typical residential pollutants mainly from biofuel combustion that impose inevitable risk to children. The PAHs in residential dust is universal in most Chinese households with an obvious public health concern. METHODS In this observational study, a total of 235 residential dust samples from 8 Chinese cities (Panjin, Shijiazhuang, Lanzhou, Luoyang, Xi'an, Wuxi, Mianyang, and Shenzhen) were collected from April 2018 to March 2019, which were extracted and analyzed for 16 priority PAHs by HPLC/FD-UV. Diagnostic ratios, hierarchical clustering analysis and principal component analysis were applied simultaneously for source apportionments. Incremental lifetime cancer risk was employed to estimate children's health risks based on the assumed exposure scenarios. Spearman correlation, Mann-Whitney U test, Kruskal-Wallis H test and Partial Least Squares were used to screen the factors affecting the concentration of PAHs in residential dust. RESULTS The median concentration of ∑16PAHs in residential dust from 8 cities was 44.11 μg/g (0.04 - 355.79 μg/g). ∑16PAHs were found both higher in dust samples in heating season and from downwind households only in Mianyang (p < 0.05). The leading two sources of PAHs were combustion processes and automobile exhaust emissions based on four principal components that accounted for 74.29 % of the total variance. Indoor air environmental factors, household characteristics, and residents' behavioral lifestyles may be the influencing factors of residential dust PAHs. The carcinogenic risk of children aged 0 - 5 years, under the moderate exposure level of PAHs in residential dust, exceeded the acceptable level (10-5 - 10-4 for dermal contact and 10-6 - 10-5 for ingestion). CONCLUSIONS There was serious PAHs pollution in residential dust under actual living conditions in eight cities across China. More evidence-based measures were needed to control PAHs pollution to safeguard children's health according to appointed sources and influencing factors in residential dust.
Collapse
Affiliation(s)
- Xinqi Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xiaoli Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Jing Qi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Shuhan Gong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Chong Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Lin Fan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Yun Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Mengmeng Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xu Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Liqin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xiaoyuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Mats Tysklind
- Department of Chemistry, Umea University, SE-901 87 Umea, Sweden.
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
15
|
Bai L, Lv K, Li J, Gao W, Liao C, Wang Y, Jiang G. Evaluating the dynamic distribution process and potential exposure risk of chlorinated paraffins in indoor environments of Beijing, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129907. [PMID: 36099735 DOI: 10.1016/j.jhazmat.2022.129907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Chlorinated paraffins (CPs) are typical semi-volatile chemicals (SVOCs) that have been used in copious quantities in indoor material additives. SVOCs distribute dynamically between the gas phase and various condensate phases, especially organic films. Investigating the dynamic behaviors of existing CPs in indoor environments is necessary for understanding their potential risk to humans from indoor exposure. We investigate the distribution profiles of CPs in both gas phase and organic films in indoor environments of residential buildings in Beijing, China. The concentrations of CPs were in the range of 32.21-1447 ng/m3 in indoor air and in the range of 42.30-431.1 μg/m2 and in organic films. Cooking frequency was identified as a key factor that affected the distribution profiles of CPs. Furthermore, a film/gas partitioning model was constructed to explore the transportation and fate of CPs. Interestingly, a re-emission phenomenon from organic films was observed for chemical groups with lower log Koa components, and, importantly, their residue levels in indoor air were well predicted. The estimated exposure risk of CPs in indoor environment was obtained. For the first time, these results produced convincing evidence that the co-exposure risk of short-chain CPs (SCCPs), medium-chain CPs (MCCPs), and long-chain CPs (LCCPs) in indoor air could be further increased by film/gas distribution properties, which is relevant for performing risk assessments of exposure to these SVOCs in indoor environments.
Collapse
Affiliation(s)
- Lu Bai
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wei Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
16
|
Yoshida T, Mimura M, Sakon N. Exposure to organophosphorus compounds of Japanese children and the indoor air quality in their residences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158020. [PMID: 35973537 DOI: 10.1016/j.scitotenv.2022.158020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Several organophosphorus compounds such as organophosphate pesticides (OPPs) and trialkylphosphates (TAPs) are suspected to inhibit cholinesterase activities, to affect endocrine systems or to possibly be carcinogenic. To evaluate their adverse effects on health with chronic exposure in the general population, especially in children, we measured the household exposure to OPPs and TAPs by Japanese children via all exposure pathways and the contribution of indoor air quality. First-morning void urine was collected from subjects aged 6 to 15 years (n = 132), and airborne organophosphorus compounds were sampled in the subject's bedroom for 24 h. Airborne levels of nine OPPs and three TAPs and their urinary metabolites were determined. No significant correlations were detected for any compounds between their airborne concentrations and the urinary excretion amounts of their corresponding metabolites. The estimated daily intakes were as follows (median, μg/kg b.w./d): chlorpyrifos, 0.042; diazinon, 0.067; tri-n-butylphosphate, 0.094. The 95th percentiles of the intakes for fenthion, fenitrothion and the above three compounds did not exceed their reference limit values, although one subject had a daily intake of tri-n-butylphosphate that was about twice its reference limit value. The concentration levels of the urinary metabolite of tri-n-butylphosphate in our subjects tended to be higher than those for children in many other countries. The fractions of the amounts absorbed by inhalation to the amounts absorbed via all of the exposure pathways was only 2.3 % (median) for tri-n-butylphosphate. Inhalation did not seem to contribute very much as an absorption pathway of the organophosphorus compounds in these Japanese children while they were at home. The exposure amounts of OPPs were not suggested to be high enough to adversely affect the health of these children at present on the basis of their daily intakes compared to their reference limit values.
Collapse
Affiliation(s)
- Toshiaki Yoshida
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan.
| | - Mayumi Mimura
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Naomi Sakon
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| |
Collapse
|
17
|
Huo CY, Liu LY, Hung H, Sun Y, Guo JQ, Wu YK, Sverko E, Li WL. Accumulations and equilibrium conditions of organophosphate esters (OPEs) in the indoor window film and the estimation of concentrations in air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157724. [PMID: 35914606 DOI: 10.1016/j.scitotenv.2022.157724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The study of the fate of organophosphate esters (OPEs) in the interior environment is vital because of the growing use of OPEs. Organic films on glass are both sink and sources of indoor pollutants. Indoor window films have been employed as passive air samplers to collect OPEs in the indoor air. Nevertheless, little is known about the development and equilibrium condition of OPEs on indoor window films during the film formation process. In this study, the concentrations of twelve OPEs in indoor window films from different buildings on a university campus and the growth thickness of the films as a function of sampling time were investigated in different seasons. Ten out of the 12 OPEs were detected in window film with >50 % frequency. Tris (2-chloroethyl) phosphate (TCEP) and tris (1-chloro-2-propyl) phosphate (TCPP), which are chlorinated and toxic OPEs, were the dominant OPEs found in the winter. The majority of OPEs in window films exhibited linear growth patterns within 77 days. Temperature, humidity, ventilation, and seasonality all affected the concentrations of various OPEs in the window films. Low molecular weight OPEs, such as tri-n-butyl phosphate and TCEP, attained equilibrium between indoor air and window films within 49 or 77 days. The indoor air concentrations of OPEs were estimated from their film concentrations based on the theoretical approach for the passive air sampler. In winter, the predicted gas-phase air concentrations of OPEs (3.7 ng/m3 for TECP) were significantly lower than or comparable to summer (11 ng/m3, p < 0.05). To the best of our knowledge, this is the first attempt to combine uncertainty and sensitivity analysis to understand the behaviors of OPEs in indoor film and air.
Collapse
Affiliation(s)
- Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia-Qi Guo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yong-Kai Wu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ed Sverko
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, Xiamen, China; Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|
18
|
Fan L, Wang L, Wang K, Liu F, Wang G. Phthalates in Glass Window Films of Chinese University Dormitories and Their Associations with Indoor Decorating Materials and Personal Care Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15297. [PMID: 36430022 PMCID: PMC9696275 DOI: 10.3390/ijerph192215297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are widely used as plasticizers in the production of various consumer products used daily. We analyzed phthalate concentrations in window film samples from 144 dormitories in 13 universities and combined them with the results of questionnaires to explore the associations of phthalate concentrations with indoor decorating materials and personal care products. The phthalate pollution levels discovered in this study were much higher than those in previous studies of baby rooms and university buildings. Moreover, it was found that phthalate concentrations in glass window films were associated with laminated wood or polyvinyl chloride (PVC) flooring, iron furniture, medium density fiberboard (MDF) furniture, and the usage frequency of bottled skincare products. Laminated wood or PVC flooring, wallpaper, and iron furniture are very likely sources of specific phthalates, and the large surface areas of MDF furniture can act as sinks of phthalates. Transport of phthalates from the packaging of bottled skincare products into cosmetics should be given more attention. Our results provide a deep understanding of the sources of phthalates in glass window films.
Collapse
|
19
|
Li HL, Yang PF, Liu LY, Gong BB, Zhang ZF, Ma WL, Macdonald RW, Nikolaev AN, Li YF. Steady-State Based Model of Airborne Particle/Gas and Settled Dust/Gas Partitioning for Semivolatile Organic Compounds in the Indoor Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8373-8383. [PMID: 35635317 DOI: 10.1021/acs.est.1c07819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Indoor semivolatile organic compounds (SVOCs), present in the air, airborne particles, settled dust, and other indoor surfaces, can enter the human body through several pathways. Knowing the partitioning between gaseous and particulate phases is important in identifying specific pathway contributions and thereby accurately assessing human exposure. Numerous studies have developed equilibrium equations to predict airborne particle/gas (P/G) partitioning in air (KP) and dust/gas (D/G) partitioning in settled dust (KD). The assumption that P/G and D/G equilibria are instantaneous for airborne and settled dust phases, commonly adopted by current indoor fate models, is not likely valid for compounds with high octanol-air partition coefficients (KOA). Here, we develop steady-state based equations to predict KP and KD in the indoor environment. Results show that these equations perform well and are verified by worldwide monitoring data. It is suggested that instantaneous steady state could work for P/G and D/G partitioning of SVOCs in indoor environments, and the equilibrium is just a special case of the steady state when log KOA < 11.38 for P/G partitioning and log KOA < 10.38 for D/G partitioning. These newly developed equations and methods provide a tool for more accurate assessment for human exposure to SVOCs in the indoor environment.
Collapse
Affiliation(s)
- Hai-Ling Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, HIT, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), HIT, Harbin 150090, China
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, HIT, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), HIT, Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, HIT, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), HIT, Harbin 150090, China
| | - Bei-Bei Gong
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, HIT, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), HIT, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, HIT, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), HIT, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, HIT, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), HIT, Harbin 150090, China
| | - Robie W Macdonald
- Department of Fisheries and Oceans, Institute of Ocean Sciences, P.O. Box 6000, Sidney, British Columbia V8L 4B2, Canada
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Anatoly N Nikolaev
- Institute of Natural Sciences, North-Eastern Federal University, Yakutsk 677007, Russia
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, HIT, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), HIT, Harbin 150090, China
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| |
Collapse
|
20
|
Lv K, Bai L, Song B, Ma X, Hou M, Fu J, Shi Y, Wang Y, Jiang G. Presence of organophosphate flame retardants (OPEs) in different functional areas in residential homes in Beijing, China. J Environ Sci (China) 2022; 115:277-285. [PMID: 34969455 DOI: 10.1016/j.jes.2021.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 06/14/2023]
Abstract
The production and application of organophosphate esters (OPEs) have dramatically increased in recent years due to their use as a replacement for brominated flame retardants. In this study, 13 OPEs (Σ13OPEs) were analyzed in indoor air samples from kitchens and living rooms in 14 residential homes in Beijing, China. The concentrations of Σ13OPEs in kitchen air samples (mean: 13 ng/m3) were significantly (p < 0.05) higher than in living room air samples (5.0 ng/m3). In addition, paired window surface organic film samples were collected and analyzed to investigate film-air partitioning, exhibiting a mean concentration of Σ13OPEs of 4100 ng/m2. The congener profiles showed that tris(2-chloroisopropyl) phosphate (TCPP) was the predominant compound in both window film samples (48%) and the corresponding indoor air sample (56%). The estimated daily intakes (EDI) of OPEs via indoor air inhalation were 2.8 and 1.4 ng/kg/day for infants and adults, respectively, both of which are below the reference dose values (RfDs). Overall, these findings indicate that OPEs in the indoor air environment of residential homes in Beijing are not likely to pose a health risk to the general population.
Collapse
Affiliation(s)
- Kun Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lu Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyu Song
- Ministry of Ecology and Environment of the People's Republic of China, Foreign Environmental Cooperation Center, Beijing 100035, China
| | - Xindong Ma
- State Oceanic Administration Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Minmin Hou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| | - Guibin Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Moore S, Paalanen L, Melymuk L, Katsonouri A, Kolossa-Gehring M, Tolonen H. The Association between ADHD and Environmental Chemicals-A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2849. [PMID: 35270544 PMCID: PMC8910189 DOI: 10.3390/ijerph19052849] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023]
Abstract
The role of environmental chemicals in the etiology of attention deficit hyperactivity disorder (ADHD) has been of interest in recent research. This scoping review aims to summarize known or possible associations between ADHD and environmental exposures to substances selected as priority chemicals of the European Human Biomonitoring Initiative (HBM4EU). Literature searches were performed in PubMed to identify relevant publications. Only meta-analyses and review articles were included, as they provide more extensive evidence compared to individual studies. The collected evidence indicated that lead (Pb), phthalates and bisphenol A (BPA) are moderately to highly associated with ADHD. Limited evidence exists for an association between ADHD and polycyclic aromatic hydrocarbons (PAHs), flame retardants, mercury (Hg), and pesticides. The evidence of association between ADHD and cadmium (Cd) and per- and polyfluoroalkyl substances (PFASs) based on the identified reviews was low but justified further research. The methods of the individual studies included in the reviews and meta-analyses covered in the current paper varied considerably. Making precise conclusions in terms of the strength of evidence on association between certain chemicals and ADHD was not straightforward. More research is needed for stronger evidence of associations or the lack of an association between specific chemical exposures and ADHD.
Collapse
Affiliation(s)
- Sonja Moore
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
- Institute of Public Health and Clinical Nutrition, Kuopio Campus, University of Eastern Finland (UEF), 70210 Kuopio, Finland
| | - Laura Paalanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | | | | | - Hanna Tolonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
| |
Collapse
|
22
|
Hong Y, Chen CY, Wu CC, Bao LJ, Zeng EY. A Novel Personal Passive Sampler for Collecting Gaseous Phthalates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15961-15968. [PMID: 34793136 DOI: 10.1021/acs.est.1c06611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dermal absorption of gaseous chemicals is an important contributor to increased health risk and has yet to be adequately addressed due to the lack of available sampling techniques. In the present study, a novel personal passive sampler consisting of a housing (embracing a polydimethylsiloxane (PDMS) disk as the sorbent phase, a membrane filter, and a stainless-steel mesh) and a watchband (traditional wristband) was constructed and used to characterize gaseous phthalates (PAEs) near the air-skin interface. In a real-life setting, the utility of the passive sampler was validated by comparing the composition profiles of PAEs in the PDMS disks and in active samples and watchbands. The compositions of PAEs were consistent in disks and gaseous constituents from ambient air, with low-molecular-weight (<306 g mol-1) PAEs accounting for 87-100% and approximately 100%, respectively. Appreciable amounts of diisononyl phthalate, diisodecyl phthalate, dinonyl phthalate, and skin lipid (e.g., squalene) were detected in watchbands but not in disks. Apparently, the passive sampler can prevent particles and skin-related chemicals from adhering to the disk and collect gaseous PAEs only. The vast majority of PAEs in watchbands was associated with nongaseous constituents. The present study demonstrated that the sampling strategy is a key factor in exposure assessment.
Collapse
Affiliation(s)
- Yun Hong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chun-Yan Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
23
|
Feng JJ, Sun XF, Zeng EY. Measurement of octanol-air partition coefficients for liquid crystals based on gas chromatography-retention time and its implication in predicting long-range transport potential. CHEMOSPHERE 2021; 282:131109. [PMID: 34470161 DOI: 10.1016/j.chemosphere.2021.131109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Liquid crystals (LCs) are widely used in the modern society, but their environmental fate and related human health effects remain inadequately recognized. To assist in better understanding the environmental fate of LCs, the octanol-air partition coefficients (KOA) of 21 target LCs were determined with a gas chromatography-retention time (GC-RT) approach. Four classes of traditional organic pollutants, including polycyclic aromatic hydrocarbons, organochlorides, polybrominated diphenyl ethers, and polychlorinated biphenyls were employed as reference or calibration compounds. Cluster analysis indicated that the reference and calibration compounds somewhat influenced the relative and absolute magnitudes of GC-RT results. A quantitative structure-property relationship (QSPR) model was constructed from the experimental results and outperformed a widely-used model, KOAWIN, in estimating log KOA of LCs. This model was used to predict log KOAs for 116 LCs with the same element compositions and similar structures as the target LCs. Overall persistence and long-range transport potential were predicted based on the measured and estimated log KOA values, yielding consistent results. Several LCs were shown to have comparable characteristic travel distances and transport efficiencies as the traditional organic pollutants, suggesting they are potential environmental pollutants and the QSPR model is applicable in predicting the environmental fate of LCs.
Collapse
Affiliation(s)
- Jing-Jing Feng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiang-Fei Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
24
|
Al-Harbi M, Al-Enzi E, Al-Mutairi H, Whalen JK. Human health risks from brominated flame retardants and polycyclic aromatic hydrocarbons in indoor dust. CHEMOSPHERE 2021; 282:131005. [PMID: 34087561 DOI: 10.1016/j.chemosphere.2021.131005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/15/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Exposure to dust particles containing toxic compounds is linked to serious health outcomes, including cancer. The purpose of this study was to determine if indoor dust from houses and cars contained harmful levels of brominated flame retardants (polybrominated diphenyl ethers, PBDEs) and polycyclic aromatic hydrocarbons (PAHs), and to assess their potential toxicity to adults and children. In Kuwait, the median concentration of total PBDEs (Ʃ14- PBDEs) was 408.55 μg PBDEs/kg dust in houses and twice as high in cars (838.52 μg PBDEs/kg dust), while total PAHs (Ʃ16-PAHs) were similar in houses (992.81 μg PAHs/kg) and cars (900.42 μg PAHs/kg). The PBDEs and PAHs concentrations in indoor dust were related to house age and square footage, car model year, and natural ventilation. Furthermore, a higher PBDEs concentration was associated with electronic devices that operate continuously, furniture containing foam treated with PBDEs, and cars that are parked outdoors, since PBDEs tend to be volatilized under these conditions. The PAHs concentration in indoor dust increased with smoking and proximity to major roads and industrial facilities, which are major PAHs sources. The hazard quotient and total cancer risk for PBDEs in indoor dust were within safe limits, but indoor dust with higher PAHs concentrations had hazard quotients from 5.51 to 11.23 and total cancer risk of 10-3 for adults and children. We conclude that exposure to PAHs-contaminated indoor dust from houses and cars where smoking occurs can increase the cancer risk of adults and children.
Collapse
Affiliation(s)
- Meshari Al-Harbi
- Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait.
| | - Eman Al-Enzi
- Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait
| | - Hessa Al-Mutairi
- Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
25
|
Wang Y, Yang M, Wang F, Chen X, Wu M, Ma J. Organophosphate Esters in Indoor Environment and Metabolites in Human Urine Collected from a Shanghai University. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9212. [PMID: 34501802 PMCID: PMC8431728 DOI: 10.3390/ijerph18179212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
In China, organophosphate esters (OPEs) are widely used in indoor environments. However, there is little information regarding the internal and external exposure of university students to OPEs. Therefore, in this study, nine OPEs and eight OPE metabolites (mOPEs) were measured in indoor dust and atmospheric PM2.5 samples from a university campus in Shanghai, as well as in urine samples collected from the university students. The total concentration of OPEs in the indoor dust in female dormitories (1420 ng/g) was approximately twice that in male dormitories (645 ng/g). In terms of indoor PM2.5, the highest OPE concentration was found in meeting rooms (105 ng/m3, on average), followed by chemical laboratories (51.2 ng/m3), dormitories (44.9 ng/m3), and offices (34.9 ng/m3). The total concentrations of the eight mOPEs ranged from 279 pg/mL to 14,000 pg/mL, with a geometric mean value of 1590 pg/mL. The estimated daily intake values based on the indoor dust and PM2.5 OPE samples (external exposure) were 1-2 orders of magnitude lower than that deduced from the concentration of urinary mOPEs (internal exposure), indicating that dermal contact, dust ingestion, and inhalation do not contribute significantly to OPE exposure in the general population. Moreover, additional exposure routes lead to the accumulation of OPEs in the human body.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (Y.W.); (M.Y.); (F.W.); (X.C.); (M.W.)
| |
Collapse
|
26
|
Gabriel MF, Felgueiras F, Batista R, Ribeiro C, Ramos E, Mourão Z, de Oliveira Fernandes E. Indoor environmental quality in households of families with infant twins under 1 year of age living in Porto. ENVIRONMENTAL RESEARCH 2021; 198:110477. [PMID: 33197420 DOI: 10.1016/j.envres.2020.110477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Exposure to air pollution in early years can exacerbate the risk of noncommunicable diseases throughout childhood and the entire life course. This study aimed to assess temperature, relative humidity (RH), carbon dioxide (CO2) and monoxide (CO), particulate matter (PM2.5, PM10), ultrafine particles, nitrogen dioxide (NO2), ozone (O3), formaldehyde, acetaldehyde and volatile organic compounds (VOC) levels in the two rooms where infant twins spend more time at home (30 dwellings, Northern Portugal). Findings showed that, in general, the worst indoor environmental quality (IEQ) settings were found in bedrooms. In fact, although most of the bedrooms surveyed presented adequate comfort conditions in terms of temperature and RH, several children are sleeping in a bedroom with improper ventilation and/or with a significant degree of air pollution. In particular, mean concentrations higher than recommended limits were found for CO2, PM2.5, PM10 and total VOC. Additionally, terpenes and decamethylcyclopentasiloxane were identified as main components of emissions from indoor sources. Overall, findings revealed that factors related to behaviors of the occupants, namely related to a conscientious use of cleaning products, tobacco and other consumer products (air-fresheners, incenses/candles and insecticides) and promotion of ventilation are essential for the improvement of air quality in households and for the promotion of children's health.
Collapse
Affiliation(s)
- Marta Fonseca Gabriel
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal.
| | - Fátima Felgueiras
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal
| | - Raúl Batista
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal
| | - Cláudia Ribeiro
- EPIUnit, Institute of Public Health, University of Porto, Rua Das Taipas 135, 4050-600, Porto, Portugal; Department of Clinical Epidemiology, Predictive Medicine and Public Health, University of Porto Medical School, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Elisabete Ramos
- EPIUnit, Institute of Public Health, University of Porto, Rua Das Taipas 135, 4050-600, Porto, Portugal; Department of Clinical Epidemiology, Predictive Medicine and Public Health, University of Porto Medical School, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Zenaida Mourão
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal
| | | |
Collapse
|
27
|
Olivero-Verbel R, Moreno T, Fernández-Arribas J, Reche C, Minguillón MC, Martins V, Querol X, Johnson-Restrepo B, Eljarrat E. Organophosphate esters in airborne particles from subway stations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145105. [PMID: 33485201 DOI: 10.1016/j.scitotenv.2021.145105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
For the first time, the concentrations of 19 organophosphate esters (OPEs) were measured in airborne fine particulate matter (PM2.5) from subway stations in Barcelona (Spain) to investigate their occurrence, contamination profiles and associated health risks. OPEs were detected in all PM2.5 samples with levels ranging between 1.59 and 202 ng/m3 (mean value of 39.9 ng/m3). Seventeen out of 19 tested analytes were detected, with TDClPP, TClPP and TCEP being those presenting the highest concentrations. OPE concentrations are not driven by the same factors that determine the ambient PM2.5 concentrations of other constituents in the subway. Newer stations presented higher OPE levels, probably due to the materials used in the design of the platforms, with greater use of modern plastic materials versus older stations with tiles and stones. Estimated daily intakes via airborne particles inhalation during the time expended in subway stations were calculated, as well as the carcinogenic and non-carcinogenic health risks (CR and non-CR), all being much lower than the threshold risk values. Thus, subway inhalation exposure when standing on the platform to OPE's per se is not considered to be dangerous for commuters.
Collapse
Affiliation(s)
- R Olivero-Verbel
- University of Atlántico, Engineering School, Agroindustrial Engineering Program, Barranquilla, Colombia; Environmental Chemistry Research Group, School of Exact and Natural Sciences, San Pablo University Campus, University of Cartagena, 130015 Cartagena, Colombia
| | - T Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - J Fernández-Arribas
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - C Reche
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M C Minguillón
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - V Martins
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - B Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, San Pablo University Campus, University of Cartagena, 130015 Cartagena, Colombia
| | - E Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
28
|
Wang Y, Zhang Z, Tan F, Rodgers TFM, Hou M, Yang Y, Li X. Ornamental houseplants as potential biosamplers for indoor pollution of organophosphorus flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144433. [PMID: 33422958 DOI: 10.1016/j.scitotenv.2020.144433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
We investigated the occurrence, compositions, and partitioning behaviors of organophosphorus flame retardants (OPFRs) in indoor dust, air, and ornamental plants in Dalian, China, to evaluate the possibility of using houseplants as indoor biosamplers of OPFRs. The mean concentrations of OPFRs in the indoor air, dust, and plant samples were 14.9 ng/m3, 18,000 ng/g, and 345 ng/g, respectively. Tris(2-chloroisopropyl) phosphate (TCIPP) was the dominant congener in all kinds of samples. Significant correlation was found between the concentrations of tris(1,3-dichloroisopropyl) phosphate (TDCIPP) in indoor air and plants, suggesting that ornamental plant can be used as a sentinel for certain OPFRs in the indoor air. We developed a predictive model to assess the partitioning coefficients of OPFRs between indoor air and plant. The lipid content in leaf cuticle instead of leaf organic matter was used to improve the accuracy and reliability of this assessment. Using this model, we can estimate the OPFR concentrations in the indoor air based on their concentrations measured in the corresponding indoor plant. The estimated air concentrations were generally comparable with the measured concentrations, especially for those with octanol-air partition coefficient log Koa <11.6. Indoor plants can also provide a more holistic understanding of OPFR occurrence within a home due to the relatively long-term air-foliage partitioning. The results suggest that under certain conditions indoor ornamental plants have the potential to be used as the biosamplers of OPFRs in the indoor environment due to their convenience and low-cost.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Zihao Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Timothy F M Rodgers
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Minmin Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ya Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
29
|
Source, Characterization of Indoor Dust PAHs and the Health Risk on Chinese Children. Curr Med Sci 2021; 41:199-210. [PMID: 33877536 DOI: 10.1007/s11596-021-2337-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in indoor dust are one of the common exposure sources for children worldwide. The aim of this study is to explore PAHs pollution status in indoor dust and estimate health risk on Chinese children with big data. Weighted average concentration was used to analyze source and characterization of PAHs in indoor dust based on peer-reviewed literature. According to specific inclusion criteria, 17 studies were included finally to analyze weighted average concentration. The national average concentration of Σ16PAHs was approximately 25.696 µg/g. The highest concentration of Σ16PAHs was in Shanxi (2111.667 µg/g), and the lowest was in Hong Kong (1.505 µg/g). The concentrations in Shanxi and Guangdong were higher than national level and the over standard rate was 18.18%. The concentrations of individual PAHs varied greatly across the country, and Flu in Shanxi was the highest (189.400 µg/g). The sources of PAHs varied in different regions and combustion processes played a leading role. PAHs exposure through ingestion and dermal contact was more carcinogenic than inhalation. The incremental lifetime cancer risk model indicated that children lived in Shanxi were found in the highest health risk coupled with the highest BaPE concentration (54.074 µg/g). Although PAHs concentrations of indoor dust showed a downward trend from 2005 to 2018, indoor environmental sanitation should be improved with multidisciplinary efforts. Health standard should be possibly established to minimize children exposure to PAHs in indoor dust in China.
Collapse
|
30
|
Zhang YJ, Huang C, Lv YS, Ma SX, Guo Y, Zeng EY. Polycyclic aromatic hydrocarbon exposure, oxidative potential in dust, and their relationships to oxidative stress in human body: A case study in the indoor environment of Guangzhou, South China. ENVIRONMENT INTERNATIONAL 2021; 149:106405. [PMID: 33516990 DOI: 10.1016/j.envint.2021.106405] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 05/25/2023]
Abstract
A comparative study of internal and external exposure is a good method to comprehensively understand human exposure to environmental contaminants that may trigger oxidative stress in human body. Information is limited regarding the influences of reactive oxygen species (ROS) on human health from the environment. In addition, data on the contribution of polycyclic aromatic hydrocarbons (PAHs) from indoor environments, especially air, to total human exposure are still insufficient. The present study measured PAHs in paired indoor dust (n = 101), gas (polyurethane foams, n = 100), and particle samples (quartz fiber filters, n = 100) and their hydroxy metabolites (OH-PAHs) in 205 urine samples from 101 families in Guangzhou, South China. The oxidative potential (OP) in dust samples was quantified with a dithiothreitol (DTT) assay to reflect the oxidizability of ROSs, and explore the relationship between environmental ROSs and oxidative stress in humans (using urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker). The estimated daily intakes (EDIs) of Σ16PAH via air inhalation were much higher than those from gas dermal contact, dust dermal contact, and dust ingestion (mean: 19.5 > 4.27 > 3.75 > 1.60 ng/kg_bw/day). Generally, approximately 16% of naphthalene, 28% of fluorene, 9% of phenanthrene, and 3% of pyrene were derived from indoor environments for all residents when compared with the total PAH exposure amount from all sources. Significantly positive relationships were found between OH-PAHs and 8-OHdG (coefficients β: 0.129-0.366, p < 0.05) checked by linear mixed effect models, and males seemed to be more susceptible than females to the DNA oxidative damage related to PAH exposure. The mean OP value in dust was 7.14 ± 6.68 pmol/(min·μg). Individual PAHs in dust gradually intensified the oxidizability of dust particles as their molecular weight increased. A potential but not significant dose-relationship was found between dusty OP and urinary 8-OHdG. Further work should determine the impact of chemical profiles on OP in different environmental media and continuously explore the potential to use OP as a useful indicator to reflect the total oxidizability of several groups of environmental pollutants.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Cong Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yan-Shan Lv
- State Environmental Protection Key Laboratory of Environmental Protection Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong 510535, China
| | - She-Xia Ma
- State Environmental Protection Key Laboratory of Environmental Protection Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong 510535, China.
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
31
|
Yang L, Zhang H, Zhang X, Xing W, Wang Y, Bai P, Zhang L, Hayakawa K, Toriba A, Tang N. Exposure to Atmospheric Particulate Matter-Bound Polycyclic Aromatic Hydrocarbons and Their Health Effects: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2177. [PMID: 33672189 PMCID: PMC7926315 DOI: 10.3390/ijerph18042177] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
Particulate matter (PM) is a major factor contributing to air quality deterioration that enters the atmosphere as a consequence of various natural and anthropogenic activities. In PM, polycyclic aromatic hydrocarbons (PAHs) represent a class of organic chemicals with at least two aromatic rings that are mainly directly emitted via the incomplete combustion of various organic materials. Numerous toxicological and epidemiological studies have proven adverse links between exposure to particulate matter-bound (PM-bound) PAHs and human health due to their carcinogenicity and mutagenicity. Among human exposure routes, inhalation is the main pathway regarding PM-bound PAHs in the atmosphere. Moreover, the concentrations of PM-bound PAHs differ among people, microenvironments and areas. Hence, understanding the behaviour of PM-bound PAHs in the atmosphere is crucial. However, because current techniques hardly monitor PAHs in real-time, timely feedback on PAHs including the characteristics of their concentration and composition, is not obtained via real-time analysis methods. Therefore, in this review, we summarize personal exposure, and indoor and outdoor PM-bound PAH concentrations for different participants, spaces, and cities worldwide in recent years. The main aims are to clarify the characteristics of PM-bound PAHs under different exposure conditions, in addition to the health effects and assessment methods of PAHs.
Collapse
Affiliation(s)
- Lu Yang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Wanli Xing
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Lulu Zhang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Z.); (K.H.)
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Z.); (K.H.)
| | - Akira Toriba
- School of Pharmaceutical Sciences, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan;
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Z.); (K.H.)
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
32
|
Hou M, Shi Y, Na G, Cai Y. A review of organophosphate esters in indoor dust, air, hand wipes and silicone wristbands: Implications for human exposure. ENVIRONMENT INTERNATIONAL 2021; 146:106261. [PMID: 33395927 DOI: 10.1016/j.envint.2020.106261] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 05/14/2023]
Abstract
The ubiquity of organophosphate esters (OPEs) in various environmental matrices inevitably pose human exposure risks. Numerous studies have investigated human exposure pathways to OPEs, including air inhalation, dust ingestion, dermal contact, and dietary and drinking water intake, and have indicated that indoor dust and indoor air routes are frequently the two main human exposure pathways. This article reviews the literature on OPE contamination in indoor air and dust from various microenvironments and on OPE particle size distributions and bioavailability in dust conducted over the past 10 years. Ways in which sampling strategies are related to the uncertainty of exposure assessment results and comparability among different studies in terms of sampling tools, sampling sites, and sample types are addressed. Also, the associations of OPEs in indoor dust/air with human biological samples were summarized. Studies on two emerging matrices, hand wipes and silicone wristbands, are demonstrated to be more comprehensive and accurate in reflecting personal human exposure to OPEs in microenvironments and are summarized. Given the direct application of some diester OPEs (di-OPEs) in numerous products, research on their existence in indoor dust and food and on their effects on human urine are also discussed. Finally, related research trends and avenues for future research are prospected.
Collapse
Affiliation(s)
- Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangshui Na
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Yang Y, Wang Y, Tan F, Zhang Z, Rodgers TFM, Chen J. Pet hair as a potential sentinel of human exposure: Investigating partitioning and exposures from OPEs and PAHs in indoor dust, air, and pet hair from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140934. [PMID: 32721615 DOI: 10.1016/j.scitotenv.2020.140934] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
We investigated the levels, compositions, and partitioning behaviors of organophosphate esters (OPEs) and polycyclic aromatic hydrocarbons (PAHs) in indoor air, dust, and pet hair from North China, as well as their potential exposures for humans and pets. The mean OPE concentrations in the indoor air (n = 19), dust (n = 26), and pet hair (n = 29) samples were 52.1 ng/m3, 3510 ng/g, and 1440 ng/g; while the mean PAH concentrations were 369 ng/m3, 6000 ng/g, and 22.6 ng/g, respectively. The matrix-air partitioning of OPEs and PAHs may reach equilibrium for compounds with octanol-air partition coefficients (logKoa) between 7 and 11 for dust and logKoa < 12 for pet hair. Correlation analysis suggested that pet hair could be used as a sentinel for the exposure to certain PAHs, e.g., phenanthrene (PHE) or fluoranthene (FLA), via exposure to indoor air. This work suggests that pet hair may be a better sentinel than air and dust for human exposure to OPEs and PAHs across different indoor microenvironments. Estimated daily intakes (EDIs) to OPEs and PAHs via air inhalation, dust ingestion, and dermal absorption were calculated for children, adults, and pets. The median ΣEDIs for children, adults, and pets were 26.7, 5.40, and 55.0 ng/kg/day for ΣOPEs, and 68.8, 19.1, and 130 ng/kg/day for ΣPAHs, respectively. Air inhalation was the main exposure route to PAHs and OPEs with logKoa < 10, whereas dust ingestion was the main exposure route to those with logKoa > 10.
Collapse
Affiliation(s)
- Ya Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zihao Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Timothy F M Rodgers
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
34
|
Guo JQ, Li YF, Liu LY, Huo CY, Sun Y, Ma WL, Zhang ZF, Li YF. Occurrence and partitioning of brominated flame retardants (BFRs) in indoor air and dust: a 15-month case study in a test home. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35126-35136. [PMID: 32588303 DOI: 10.1007/s11356-020-09788-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Ten polybrominated diphenyl ethers (PBDEs) and 16 novel brominated flame retardants (NBFRs) were measured in air and dust samples collected in a test home in Harbin, China, from January 2017 to June 2018. The PBDE and NBFR concentrations in indoor air were in the ranges of 0.598-14.5 pg m-3 and 9.28-686 pg m-3, respectively. The ranges of the PBDE and NBFR concentrations in indoor dust were 221-1060 ng g-1 and 71.9-1160 ng g-1, respectively. Brominated flame retardant (BFR) concentrations in indoor air were affected by the temperature, relative humidity (RH), and ventilation. The BFR concentrations in indoor dust did not show temperature dependence. All dust samples were sieved into 6 size fractions (F1-F6: 1000-2000 μm, 500-1000 μm, 250-500 μm, 125-250 μm, 63-125 μm, and < 63 μm). The mass percentage of BFRs in F6 was the highest. The BFR concentrations did not increase constantly with a particle size decrease, and the concentrations in F2 were higher than those in F3. The partitioning behavior of BFRs illustrates that the dust-air partitioning coefficient approximately approached equilibrium within F5, F6, and the total dust fraction (FA) in the test home when logKOA was between 9.1 and 11.32. Air-dust fugacity fractions were calculated, and the results suggested that most of the BFRs were mainly transferred from air to dust in the indoor environment for F1-F6.
Collapse
Affiliation(s)
- Jia-Qi Guo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Yong-Feng Li
- School of Forestry, Northeast Forestry University, Harbin, 150060, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China.
- University Corporation for Polar Research, Beijing, 100875, China.
| | - Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
- IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| |
Collapse
|
35
|
Wania F, Shunthirasingham C. Passive air sampling for semi-volatile organic chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1925-2002. [PMID: 32822447 DOI: 10.1039/d0em00194e] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During passive air sampling, the amount of a chemical taken up in a sorbent from the air without the help of a pump is quantified and converted into an air concentration. In an equilibrium sampler, this conversion requires a thermodynamic parameter, the equilibrium sorption coefficient between gas-phase and sorbent. In a kinetic sampler, a time-averaged air concentration is obtained using a sampling rate, which is a kinetic parameter. Design requirements for kinetic and equilibrium sampling conflict with each other. The volatility of semi-volatile organic compounds (SVOCs) varies over five orders of magnitude, which implies that passive air samplers are inevitably kinetic samplers for less volatile SVOCs and equilibrium samplers for more volatile SVOCs. Therefore, most currently used passive sampler designs for SVOCs are a compromise that requires the consideration of both a thermodynamic and a kinetic parameter. Their quantitative interpretation depends on assumptions that are rarely fulfilled, and on input parameters, that are often only known with high uncertainty. Kinetic passive air sampling for SVOCs is also challenging because their typically very low atmospheric concentrations necessitate relatively high sampling rates that can only be achieved without the use of diffusive barriers. This in turn renders sampling rates dependent on wind conditions and therefore highly variable. Despite the overall high uncertainty arising from these challenges, passive air samplers for SVOCs have valuable roles to play in recording (i) spatial concentration variability at scales ranging from a few centimeters to tens of thousands of kilometers, (ii) long-term trends, (iii) air contamination in remote and inaccessible locations and (iv) indoor inhalation exposure. Going forward, thermal desorption of sorbents may lower the detection limits for some SVOCs to an extent that the use of diffusive barriers in the kinetic sampling of SVOCs becomes feasible, which is a prerequisite to decreasing the uncertainty of sampling rates. If the thermally stable sorbent additionally has a high sorptive capacity, it may be possible to design true kinetic samplers for most SVOCs. In the meantime, the passive air sampling community would benefit from being more transparent by rigorously quantifying and explicitly reporting uncertainty.
Collapse
Affiliation(s)
- Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | | |
Collapse
|
36
|
Balci E, Genisoglu M, Sofuoglu SC, Sofuoglu A. Indoor air partitioning of Synthetic Musk Compounds: Gas, particulate matter, house dust, and window film. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138798. [PMID: 32361436 DOI: 10.1016/j.scitotenv.2020.138798] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Due to diversity of contaminants indoors and complexity in the physical structure of particulate matter, partition process of chemicals affects indoor concentration distribution. Synthetic Musk Compounds (SMCs) are ubiquitously found in household and personal care products, thus, in the environment. Exposure to SMCs is important for human health, therefore, their partitioning in indoor environmental media is a key issue. In this study, gas - particle, house dust, and window film partitioning of SMCs were investigated in an indoor micro-environment. In a sealed and unoccupied room, a polycyclic and nitro musk mixture was left for volatilization for an hour. Then, samples were collected using XAD-2 sandwiched between two PUF plugs, glass-fiber filter, and wipes for gas, PM10, window-film, house dust phases, respectively, for 145 h. Collected samples were analyzed using a GC-MS. Results demonstrated that SMC concentrations decreased over time, non-linearly. Six of the SMCs partitioned to PM10 with at least 10% at beginning of the experiment, whereas the number of compounds dropped to two at the end, showing that SMCs may partition well between the two phases but they tend to be in the gas phase. They were also detected in the film and dust phases but a decrease pattern similar to gas-particle was not observed. Spearman correlations indicate that the dust and film-associated concentrations were governed by similar processes but PM-associated concentrations were not. SMCs may be found in all phases, mainly in house dust in terms of mass among the studied media and unaccounted surface reservoirs. Therefore, their partitioning between indoor media has key implications for human exposure.
Collapse
Affiliation(s)
- Esin Balci
- Izmir Institute of Technology, Dept. of Environmental Engineering, Urla, Turkey
| | - Mesut Genisoglu
- Izmir Institute of Technology, Dept. of Environmental Engineering, Urla, Turkey
| | - Sait C Sofuoglu
- Izmir Institute of Technology, Dept. of Environmental Engineering, Urla, Turkey
| | - Aysun Sofuoglu
- Izmir Institute of Technology, Dept. of Chemical Engineering, Urla, Turkey.
| |
Collapse
|
37
|
Na G, Hou C, Li R, Shi Y, Gao H, Jin S, Gao Y, Jiao L, Cai Y. Occurrence, distribution, air-seawater exchange and atmospheric deposition of organophosphate esters (OPEs) from the Northwestern Pacific to the Arctic Ocean. MARINE POLLUTION BULLETIN 2020; 157:111243. [PMID: 32469743 DOI: 10.1016/j.marpolbul.2020.111243] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Eleven organophosphate esters (OPEs) in air and seawater were investigated from the Northwestern Pacific to the Arctic Ocean. The concentration of Σ11OPEs in air and seawater ranged from 231.56 to 1884.25 pg/m3 and from 8.47 to 143.45 ng/L, respectively. Halogenated OPEs dominated in both two media. The slight decreasing trend was observed for OPEs in gaseous air, no obvious trend for particle-bound OPEs and in seawater. The net air-seawater exchange flux ranged from -792.68 to 590.29 pg/m2/day. The dry deposition flux ranged from 16.4 to 185 ng/m2/day with high value observed at the Bering Strait (64.70 ng/m2/day). The relationship between temperature and OPEs particle-bound fractions suggests that temperature might be a driving factor of OPEs long-range atmospheric transport (LRAT). This research highlighted that OPEs are subject to LRAT from the Asian continent to the northwestern Pacific and Arctic Oceans and demonstrated the "sink" in polar regions of OPEs atmospheric transportation.
Collapse
Affiliation(s)
- Guangshui Na
- College of Marine Environment and Ecology, Shanghai Ocean University, Shanghai 201306, China; National Marine Environmental Monitoring Center, Dalian 116023, China; Hainan Tropical Ocean University, Sanya 572022, China.
| | - Chao Hou
- College of Marine Environment and Ecology, Shanghai Ocean University, Shanghai 201306, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ruijing Li
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuaichen Jin
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yunze Gao
- College of Marine Environment and Ecology, Shanghai Ocean University, Shanghai 201306, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Liping Jiao
- Third Institute Of Oceanography, Ministry of Natural Resources, P.R.C, Xiamen 361005, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|