1
|
Alves J, Sansur Pavón AD, Ricardo D, Alves da Silva A, Natal-da-Luz T, Mina R, Garcia F, Barros P, Cabral JA, Sousa JP. Exposure assessment of metals in cave-dwelling bats: Worldwide relevance of local knowledge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125807. [PMID: 39914559 DOI: 10.1016/j.envpol.2025.125807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/23/2025]
Abstract
Bat populations are decreasing worldwide, mainly due to anthropogenic influence, climate changes, urbanisation, agricultural intensification, and industrial exploitation of natural resources. Colonies have been displaced from caves and other natural roosts, leaving mines (including metal extraction mines) as key remaining roosts for cave-dwelling bats in many regions. Consequently, mines have become important for global conservation efforts. The persistence of metals in these environments might affect biota even after exploitation activities have ceased. This study investigates potential metal exposure in cave-dwelling bats roosting in abandoned mines. Non-invasive samples of fur, wing, and faeces from 140 individuals of four insectivorous cave-dwelling bat species (Rhinolophus ferrumequinum, Rhinolophus euryale, Rhinolophus hipposideros, and Miniopterus schreibersii) were collected in four abandoned mines in northern and central Portugal, frequently used as hibernation roosting sites. Soil, rock, and water samples were also collected in each mine to characterise the exposure source. Concentrations of 13 metals (As, Ag, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Zn, Sn, and W) were measured by ICP-MS spectrophotometer. Metals were detected in the wings and fur of all bat species, confirming metal exposure. The highest concentrations were mainly found in the wing membranes. M. schreibersii presented the highest metal concentrations in fur. Differences in metal concentrations between species might be related to foraging behaviour and habitat use, linked to distinct anthropogenic activities. These results reinforce the importance of monitoring metal exposure in cave-dwelling bats roosting in abandoned mines, as this exposure may help to understand the decreases in bat populations and to support measures to prevent their decline.
Collapse
Affiliation(s)
- Joana Alves
- Centre for Functional Ecology (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| | - Ana Daniela Sansur Pavón
- Centre for Functional Ecology (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Daniel Ricardo
- Centre for Functional Ecology (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - António Alves da Silva
- Centre for Functional Ecology (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| | - Tiago Natal-da-Luz
- Centre for Functional Ecology (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Rúben Mina
- Centre for Functional Ecology (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Fernanda Garcia
- Centre for Functional Ecology (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paulo Barros
- Laboratory of Applied Ecology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - João Alexandre Cabral
- Laboratory of Applied Ecology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - José Paulo Sousa
- Centre for Functional Ecology (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Barillaro J, Soto da Costa L, Gómez-Corea WN, García FJ, Pereira de Souza A, Bovendorp R. Landscape degradation drives metal bioaccumulation in bats from Atlantic Forest cacao region, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63819-63833. [PMID: 39508940 PMCID: PMC11602838 DOI: 10.1007/s11356-024-35478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Agricultural landscapes worldwide are heavily sprayed with agrochemicals to increase crop productivity. These agrochemicals release bio-accumulative pollutants such as heavy metals that often persist in the environment with harmful impacts on biota. In a prime endangered Atlantic Forest biome, in Bahia, Brazil, agroforestry of cacao (Theobroma cacao) provides a livelihood for small farmers and suitable habitats for forest species. However, landscape transformation to pasture and monoculture expose vulnerable communities to scarcely evaluated pollutants with unknown effects on the health of humans and animals. We assessed the bioaccumulation of manganese (Mn), lead (Pb), and copper (Cu) by analyzing hair samples of 326 bats representing 28 species across 15 cacao agroforestry and 2 forest remnants. Bats from regions heavily disturbed by pastures and monocultures showed higher levels of Pb (41.20 µg/g) and Mn (0.44 µg/g) compared to those from areas where forest or cacao agroforestry dominates the landscape. Local grassland covers increased Pb bioaccumulation, while forest cover reduced it. Cacao agroforestry appeared to increase Cu exposure, likely due to fungicide use. This study pioneers the evaluation of heavy metal accumulation in bats inhabiting cacao agroforestry and Atlantic Forest remnants, highlighting the need for sustainable agricultural practices to protect wildlife and ecosystem health.
Collapse
Affiliation(s)
- Julián Barillaro
- Programa de Pós-Graduação Em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil.
| | - Leticia Soto da Costa
- Programa de Pós-Graduação Em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Wilson Noel Gómez-Corea
- Programa de Pós-Graduação Em Zoologia, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Franger J García
- Programa de Pós-Graduação Em Zoologia, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Adailson Pereira de Souza
- Programa de Pós-Graduação Em Ciência Do Solo, Departamento de Solos E Engenharia Rural, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | - Ricardo Bovendorp
- Programa de Pós-Graduação Em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| |
Collapse
|
3
|
Bandouchova H, Novotna Kruzikova K, Zukal J, Linhart P, Sedlackova J, Veitova L, Kalocsanyiova V, Pikula J, Svobodova Z. Natural mercury exposure of European insectivorous bats may exceed a recognized toxicity threshold. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:948-958. [PMID: 39028383 PMCID: PMC11399212 DOI: 10.1007/s10646-024-02785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Heavy metals are an important group of toxic substances harmful for many organisms. Of these, mercury is one of the most monitored in the environment. Several matrices are used for the monitoring of environmental load, including a range of organisms; bats, however, have only been examined rarely. Insectivorous bats are apex predators threatened by several human interventions in their natural environment, including heavy metal pollution. The aim of this study was to analyze the content of total mercury in the fur, flight membrane, and pectoral muscle of greater mouse-eared bats (Myotis myotis). Total mercury concentrations were also measured in carabid beetles from the catch locality Zastávka u Brna. Samples were obtained from 43 bat carcasses at two different localities in the Czech Republic (Zastávka u Brna, Malá Morávka). Total mercury content varied between 1.76-72.20 µg/g in fur, 0.04-0.14 µg/g in skin, and 0.05-0.20 µg/g in muscle. Total mercury values in the fur of some individuals from Malá Morávka exceeded the recognized toxicity limit. Furthermore, there was a significant difference (p < 0.001) in content of total mercury in fur between localities, and there was a clear effect of age on concentrations in fur, skin, and muscle, the concentrations being significantly correlated (fur and skin rs = 0.783; fur and muscle rs = 0.716; skin and muscle rs = 0.884). These findings confirm the usefulness of fur samples from living bats for biomonitoring mercury burden in the environment.
Collapse
Affiliation(s)
- Hana Bandouchova
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Kamila Novotna Kruzikova
- Department of Animal Protection and Welfare & Veterinary Public Health, University of Veterinary Sciences Brno, Brno, Czech Republic.
| | - Jan Zukal
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Linhart
- Department of Animal Protection and Welfare & Veterinary Public Health, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jana Sedlackova
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Lucie Veitova
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Vendula Kalocsanyiova
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
4
|
Giunta F, Hernout BV, Langen TA, Twiss MR. A systematic review of trace elements in the tissues of bats (Chiroptera). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124349. [PMID: 38866315 DOI: 10.1016/j.envpol.2024.124349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Bats constitute about 22% of known mammal species; they have various ecological roles and provide many ecosystem services. Bats suffer from several threats caused by anthropization, including exposure to toxic metals and metalloids. We analyzed 75 papers in a systematic literature review to investigate how species, diet, and tissue type impact bioaccumulation. Most studies documented element accumulation in fur, liver, and kidney; at least 36 metals and metalloids have been measured in bat tissues, among the most studied were mercury and zinc. Comparisons with known toxicological thresholds for other mammals showed concerning values for mercury and zinc in bat hair, lead and some essential metals in liver, and iron and calcium in kidneys. Moreover, accumulation patterns in tissues differed depending on bat diet: insectivorous bats showed higher metal concentrations in fur than in liver and kidney while frugivorous species showed higher values in liver and kidney than in fur. Finally, among the bat species that have been studied in more than two papers, the big brown bat (Eptesicus fuscus) show values of mercury in hair and copper in liver that exceed the known thresholds; as does copper in the liver of the little brown bat (Myotis lucifugus). Most studies have been conducted in temperate North America and Eurasia, areas with the lowest bat species diversity; there is a paucity of data on tropical bat species. This review points out several information gaps in the understanding of metal contamination in bats, including a lack of measured toxicity thresholds specific for bat tissues. Data on trace element bioaccumulation and its associated health effects on bats is important for conservation of bat species, many of which are threatened.
Collapse
Affiliation(s)
- Flavia Giunta
- Department of Biology, Clarkson University, 8 Clarkson Avenue, 13699, otsdam, NY, USA
| | - Beatrice V Hernout
- Department of Biology, Clarkson University, 8 Clarkson Avenue, 13699, otsdam, NY, USA; Institute for a Sustainable Environment, Clarkson University, 8 Clarkson Avenue, 13699, Potsdam, NY, USA; Exponent Inc, 1075 Worcester St, Natick, MA, 01760, USA
| | - Tom A Langen
- Department of Biology, Clarkson University, 8 Clarkson Avenue, 13699, otsdam, NY, USA
| | - Michael R Twiss
- Department of Biology, Clarkson University, 8 Clarkson Avenue, 13699, otsdam, NY, USA; Faculty of Science, Algoma University, 1520 Queen Street East, Sault Ste. Marie, Ontario, P6A 2G4, Canada.
| |
Collapse
|
5
|
Simonis MC, Whitmore K, Dyer KE, Allira M, Demory B, Chumchal MM, Becker DJ. A paired analysis of mercury among non-invasive tissues to inform bat conservation monitoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587502. [PMID: 38617222 PMCID: PMC11014497 DOI: 10.1101/2024.03.31.587502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Contaminant exposure can harm wildlife. However, measuring contaminant exposure in wildlife can be challenging due to accessibility of species and/or sampling tissue matrices needed to answer research questions regarding exposure. For example, in bats and other taxa that roost, it may be best to collect pooled feces from colonies for minimal disturbance to species of conservation concern, but fecal contaminant concentrations do not provide contaminant bioaccumulation estimates. Thus, there is a need for quantifying relationships between sample matrices for measuring contaminant exposure to answer research questions pertaining to wildlife health and addressing conservation needs. Our goal was to determine relationships between fecal and fur total mercury (THg). To do so, we collected paired feces and fur from Mexican free-tailed bats (Tadarida brasiliensis) in summer 2023 in western Oklahoma at a maternity roost with no known Hg point source. We analyzed THg in each sample matrix for each individual (n = 48). We found no relationship between individual fecal and fur THg. However, when averaged, fur THg was 6.11 times greater than fecal THg. This factor can be used as a screening-level risk assessment of under-roost feces, which could then be followed by direct assessments of fur THg concentrations and health impacts. We encourage the use of this conversion factor across other insectivorous bat species and sites for estimating initial risks of contaminant exposure with minimal disturbance to species of conservation concern, when timely research for conservation actions are needed, and when a contaminant point source is not yet known.
Collapse
Affiliation(s)
| | | | - Kristin E Dyer
- School of Biological Sciences, University of Oklahoma, USA
| | - Meagan Allira
- School of Biological Sciences, University of Oklahoma, USA
| | - Bret Demory
- School of Biological Sciences, University of Oklahoma, USA
| | | | | |
Collapse
|
6
|
Destro ALF, Gonçalves DC, Alves TDS, Gregório KP, da Silva VM, Santos VR, de Castro OW, Filho HB, Garbino GST, Gonçalves RV, Oliveira JMD, Freitas MB. Iron and aluminum ore mining pollution induce oxidative and tissue damage on fruit-eating bats from the Atlantic Forest. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133285. [PMID: 38154190 DOI: 10.1016/j.jhazmat.2023.133285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Mining, a vital industry for economic growth, poses significant environmental pollution challenges. Failures in tailings dam containment have caused environmental contamination and raised concerns about preserving the globally significant biodiversity in the Atlantic Forest, which is under severe threat. Fruit-eating bats are key for forest regeneration as essential seed dispersers and pollinators. This study focuses on two keystone species, Artibeus lituratus and Sturnira lilium, exploring the effects of iron ore mining area (FEOA) and aluminum ore mining area (ALOA) on these bats, respectively, and comparing to individuals from a preserved Atlantic Forest fragment (FFA). Bats from FEOA showed higher Aluminum (Al), Calcium (Ca), Iron (Fe) and Barium (Ba) liver accumulation, as well as Ca and Fe muscle accumulation. These animals also showed higher liver and kidney oxidative damage associated with liver fibrosis and kidney inflammation. Brain and muscle also showed oxidative stress. Bats from ALOA showed higher Ca and Ba liver accumulation and Ca, Zinc (Zn), and Ba muscle accumulation, along with higher brain oxidative stress, liver fibrosis, and kidney inflammation. Our findings indicate that iron and aluminum ore mining activities cause adverse effects on bat tissues, posing a potential threat to biodiversity maintenance in the Atlantic Forest.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hernando Baggio Filho
- Department of Geography, Federal University of the Jequitinhonha and Mucuri Valleys, MG, Brazil
| | | | | | - Jerusa Maria de Oliveira
- Rede Nordeste de Biotecnologia (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | | |
Collapse
|
7
|
Kieffer L, Sørås R, Ciesielski TM, Stawski C. Species and reproductive status influence element concentrations in bat fur. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122092. [PMID: 37348695 DOI: 10.1016/j.envpol.2023.122092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
To assess the impact of increasing pollutant levels on wildlife, we measured chemical contaminant loads in bats with different habitat and dietary preferences. Samples were taken from the fur of bats (Eptesicus nilssonii, Myotis brandtii, Myotis mystacinus and Plecotus auritus) to measure concentrations of 55 elements by inductively coupled plasma mass spectrometry (ICP-MS). Variations in element concentrations between different bat groups (species, sex, reproductive status) were analysed with a focus on arsenic (As), mercury (Hg) and lead (Pb) as these are known to cause specific health concerns in wildlife. For M. brandtii we found the highest As concentrations, especially in lactating bats, with a maximum exceeding those from other studies where bats had compromised health. Whereas for M. mystacinus there was a negative correlation between body condition index (BCI) and As concentration, indicating a potential danger for bats in the study area. In M. mystacinus and M. brandtii Hg concentrations were higher for sixteen individuals than in other studies where bats suffered genotoxic effects, although median levels were still below this threshold. Lactating bats from P. auritus and M. brandtii had higher Hg concentrations than bats of other reproductive status, which could endanger offspring as Hg can be transferred through lactation. In females from M. mystacinus Pb concentrations were more than three times higher compared to males. There was also a negative correlation between Pb concentration and BCI, which could mean that Pb has an adverse effect on health. Although many other biotic and abiotic factors should be considered, some of the variations in element concentrations could be due to different behaviours (foraging, roosting, etc.) in the studied species. The high levels of chemical contamination in some of the bats in our study, particularly reproductive individuals, is of conservation concern as bats are important agents for insect control.
Collapse
Affiliation(s)
- Luc Kieffer
- Department of Biology, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
| | - Rune Sørås
- Department of Biology, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway; Department of Arctic Technology, The University Centre in Svalbard (UNIS), P.O. Box 156, 9171, Longyearbyen, Norway
| | - Clare Stawski
- Department of Biology, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway; School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia.
| |
Collapse
|
8
|
Benvindo-Souza M, Sotero DF, Dos Santos CGA, de Assis RA, Borges RE, de Souza Santos LR, de Melo E Silva D. Genotoxic, mutagenic, and cytotoxic analysis in bats in mining area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92095-92106. [PMID: 37480534 DOI: 10.1007/s11356-023-28861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Pollution generated by the mining industry can cause harm to wildlife. This study aimed to evaluate the cytotoxicity, genotoxicity and mutagenicity in bats environmentally exposed to open pit mining. Thus, 62 bats of the following species, Carollia perspicillata, Glossophaga soricina, Phyllostomus hastatus, and Desmodus rotundus exposed to mining activities (ferronickel) were used in the analysis. The animals were obtained in samplings in July and November of 2021, totaling 8 days of sampling in the field. The results indicated that species differ in the frequency of genotoxic damage between sampling points within the mining landscape. Cytotoxicity was observed by scoring of karyorrhexis, pyknosis and karyolysis. The most captured species, C. perspicillata, showed differences in DNA damage between exposed and unexposed populations, but no differences were observed between males (n = 14) and females (n = 20). G. soricina was also a sensitive species for indicating a high frequency of DNA damages compared to the omnivore P. hastatus. Elements such as Mn, Cr, Pb, and Zn observed in water samples were at high levels in the mining area. We conclude that bats in mining areas are susceptible to increased DNA damage as already identified for other species.
Collapse
Affiliation(s)
- Marcelino Benvindo-Souza
- Laboratory of Mutagenesis, Instituto de Ciências Biológicas, ICB I - Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, CEP 74.690-900, Brazil.
- Laboratory of Ecotoxicologia e Sistemática Animal - Instituto Federal Goiano - Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, Goiás, CEP 75.901-970, Brazil.
- Postgraduate Program in Natural Resources of the Cerrado at the State University of Goiás, Anápolis, CEP 75132-903, Brazil.
| | - Daiany Folador Sotero
- Laboratory of Mutagenesis, Instituto de Ciências Biológicas, ICB I - Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, CEP 74.690-900, Brazil
| | - Cirley Gomes Araújo Dos Santos
- Laboratory of Ecotoxicologia e Sistemática Animal - Instituto Federal Goiano - Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, Goiás, CEP 75.901-970, Brazil
- Department of Biology, Universidade Estadual Paulista, Júlio de Mesquita Filho, São José do Rio Preto, São Paulo, CEP 15.054-000, Brazil
| | - Rhayane Alves de Assis
- Laboratory of Ecotoxicologia e Sistemática Animal - Instituto Federal Goiano - Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, Goiás, CEP 75.901-970, Brazil
- Department of Biology, Universidade Estadual Paulista, Júlio de Mesquita Filho, São José do Rio Preto, São Paulo, CEP 15.054-000, Brazil
| | - Rinneu Elias Borges
- Laboratory of Zoology - Universidade de Rio Verde - UniRV, Fazenda Fontes do Saber, Rio Verde, Goiás, CEP 75901-970, Brazil
| | - Lia Raquel de Souza Santos
- Laboratory of Ecotoxicologia e Sistemática Animal - Instituto Federal Goiano - Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, Goiás, CEP 75.901-970, Brazil
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Instituto de Ciências Biológicas, ICB I - Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, CEP 74.690-900, Brazil
| |
Collapse
|
9
|
Timofieieva O, Vlaschenko A, Laskowski R. Could a city-dwelling bat (Pipistrellus kuhlii) serve as a bioindicator species for trace metals pollution? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159556. [PMID: 36270360 DOI: 10.1016/j.scitotenv.2022.159556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Bats are an endangered group of mammals that are very sensitive to environmental stresses. One of such stress factor is trace metals pollution which threatens populations of insectivorous bats due to their top position in the food webs and exceptionally long life span. In our research Pipistrellus kuhlii was tested as a promising indicator species (urban-dwelling, sedentary, with limited daily home-range) for trace metal exposure of bats. We measured concentrations of Pb, Cu, Zn and Cd in internal and external tissues of bats from the industrial city Mariupol and the village Karlovka, Ukraine, to answer the following questions: (1) Do metal concentrations in soil samples differ between urban and rural areas, and between populations of P. kuhlii from those areas? (2) Does metal contamination differ between individuals of different sexes and ages? (3) Whether fur and/or wing membrane, the two tissues that can be collected from live bats, can be used as proxies of metal contamination in internal tissues (liver, kidney, lung, forearm bones) of P. kuhlii? Metal concentrations in soil samples were significantly higher in the city. Bats from the city accumulated significantly more Cd, Pb and Zn in external tissues than those from the rural area. Females accumulated more Cd than males, and this-year-born did not differ significantly from adult individuals. We did not find, however, significant positive correlations between metal concentrations in external and internal tissues, indicating that external tissues cannot serve as an indicator of the metal contamination of internal tissues in P. kuhlii.
Collapse
Affiliation(s)
- Olha Timofieieva
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Anton Vlaschenko
- Bat Rehabilitation Center of Feldman Ecopark, 62340 Lisne, Kharkiv Region, Ukraine; Institute of Natural Sciences, H.S. Skovoroda Kharkiv National Pedagogical University, Valentynivska st., 2, Kharkiv 61168, Ukraine
| | - Ryszard Laskowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
10
|
Sánchez CA, Penrose MT, Kessler MK, Becker DJ, McKeown A, Hannappel M, Boyd V, Camus MS, Padgett-Stewart T, Hunt BE, Graves AF, Peel AJ, Westcott DA, Rainwater TR, Chumchal MM, Cobb GP, Altizer S, Plowright RK, Boardman WSJ. Land use, season, and parasitism predict metal concentrations in Australian flying fox fur. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156699. [PMID: 35710009 DOI: 10.1016/j.scitotenv.2022.156699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Urban-living wildlife can be exposed to metal contaminants dispersed into the environment through industrial, residential, and agricultural applications. Metal exposure carries lethal and sublethal consequences for animals; in particular, heavy metals (e.g. arsenic, lead, mercury) can damage organs and act as carcinogens. Many bat species reside and forage in human-modified habitats and could be exposed to contaminants in air, water, and food. We quantified metal concentrations in fur samples from three flying fox species (Pteropus fruit bats) captured at eight sites in eastern Australia. For subsets of bats, we assessed ectoparasite burden, haemoparasite infection, and viral infection, and performed white blood cell differential counts. We examined relationships among metal concentrations, environmental predictors (season, land use surrounding capture site), and individual predictors (species, sex, age, body condition, parasitism, neutrophil:lymphocyte ratio). As expected, bats captured at sites with greater human impact had higher metal loads. At one site with seasonal sampling, bats had higher metal concentrations in winter than in summer, possibly owing to changes in food availability and foraging. Relationships between ectoparasites and metal concentrations were mixed, suggesting multiple causal mechanisms. There was no association between overall metal load and neutrophil:lymphocyte ratio, but mercury concentrations were positively correlated with this ratio, which is associated with stress in other vertebrate taxa. Comparison of our findings to those of previous flying fox studies revealed potentially harmful levels of several metals; in particular, endangered spectacled flying foxes (P. conspicillatus) exhibited high concentrations of cadmium and lead. Because some bats harbor pathogens transmissible to humans and animals, future research should explore interactions between metal exposure, immunity, and infection to assess consequences for bat and human health.
Collapse
Affiliation(s)
- Cecilia A Sánchez
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | - Michael T Penrose
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | | | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | | | | | - Victoria Boyd
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Health and Biosecurity Business Unit, The Australian Centre for Disease Preparedness (ACDP), Geelong, VIC, Australia
| | - Melinda S Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ticha Padgett-Stewart
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Brooklin E Hunt
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Amelia F Graves
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | | | - Thomas R Rainwater
- Tom Yawkey Wildlife Center and Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC, USA
| | | | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, University of Adelaide, SA, Australia
| |
Collapse
|
11
|
Evans MN, Waller S, Müller CT, Goossens B, Smith JA, Bakar MSA, Kille P. The price of persistence: Assessing the drivers and health implications of metal levels in indicator carnivores inhabiting an agriculturally fragmented landscape. ENVIRONMENTAL RESEARCH 2022; 207:112216. [PMID: 34656630 DOI: 10.1016/j.envres.2021.112216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Patterns and practices of agricultural expansion threaten the persistence of global biodiversity. Wildlife species surviving large-scale land use changes can be exposed to a suite of contaminants that may deleteriously impact their health. There is a paucity of data concerning the ecotoxicological impacts associated with the global palm oil (Elaeis guineensis) industry. We sampled wild Malay civets (Viverra tangalunga) across a patchwork landscape degraded by oil palm agriculture in Sabah, Malaysian Borneo. Using a non-lethal methodology, we quantified the levels of 13 essential and non-essential metals within the hair of this adaptable small carnivore. We robustly assessed the biological and environmental drivers of intrapopulation variation in measured levels. Metal concentrations were associated with civet age, weight, proximity to a tributary, and access to oxbow lakes. In a targeted case study, the hair metal profiles of 16 GPS-collared male civets with differing space use patterns were contrasted. Civets that entered oil palm plantations expressed elevated aluminium, cadmium, and lead, and lower mercury hair concentrations compared to civets that remained exclusively within the forest. Finally, we paired hair metal concentrations with 34 blood-based health markers to evaluate the possible sub-lethal physiological effects associated with varied hair metal levels. Our multi-facetted approach establishes these adaptable carnivores as indicator species within an extensively altered ecosystem, and provides critical and timely evidence for future studies.
Collapse
Affiliation(s)
- Meaghan N Evans
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK; Danau Girang Field Centre, Kota Kinabalu, 88100, Malaysia.
| | - Simon Waller
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Carsten T Müller
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Benoit Goossens
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK; Danau Girang Field Centre, Kota Kinabalu, 88100, Malaysia; Sustainable Places Institute, Cardiff University, Cardiff, CF10 3BA, UK; Sabah Wildlife Department, Kota Kinabalu, 88100, Malaysia
| | - Jeremy A Smith
- School of Applied Sciences, University of South Wales, CF37 4BB, UK
| | | | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
12
|
Cory-Toussaint D, Taylor PJ, Barnhoorn IEJ. Non-invasive sampling of bats reflects their potential as ecological indicators of elemental exposure in a diamond mining area, northern Limpopo Province, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13647-13660. [PMID: 34591248 PMCID: PMC8803726 DOI: 10.1007/s11356-021-16466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Bats have been proposed as reliable bioindicators for monitoring bioaccumulation of elements and chemicals in natural and transformed ecosystems. Non-invasive methods are becoming more popular as research moves away from destructive methodologies. We present the first concentrations of 23 elements in Mops condylurus and Tadarida aegyptiaca (Molossidae) fur and blood from an opencast diamond mine and reference area using inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of B, K, Rb and Cd in the bats' fur were significantly higher in the mining footprint compared to the reference area (P < 0.05). Other elements such as Zn and Hg were significantly higher in the blood of bats from the mining footprint than the reference area (P < 0.05), whereas Mn was significantly higher in the blood of bats from the reference area than from the mining footprint (P < 0.05). Sixteen of the 22 elements above the limit of detection, with the exception of Ba, were significantly higher in the fur samples than in the blood due to elements being incorporated over time into the fur as it grows, whereas blood reveals short-term exposure to elements. Concentrations of most of the elements were reasonably low except Al, Fe and Zn. In general, the element concentrations particularly in the fur samples were comparable with other international studies reporting elemental fur concentrations from anthropogenically impacted and natural areas. Fur and blood have the potential to be viable indicators of environmental toxicity, but research is required on toxic thresholds and physiological and ecological unknowns around element concentrations in bat tissues and organs.
Collapse
Affiliation(s)
- Dawn Cory-Toussaint
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, P. Bag X5050, Thohoyandou, 0950, Republic of South Africa.
| | - Peter J Taylor
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, P. Bag X5050, Thohoyandou, 0950, Republic of South Africa
- Department of Zoology and Entomology, Afromontane Unit, University of the Free State - QwaQwa Campus, P. Bag X13, Phuthaditjhaba, 9866, South Africa
| | - Irene E J Barnhoorn
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, P. Bag X5050, Thohoyandou, 0950, Republic of South Africa
| |
Collapse
|
13
|
Brewer CT, Rauch-Davis WA, Fraser EE. The Use of Intrinsic Markers for Studying the Migratory Movements of Bats. Animals (Basel) 2021; 11:3477. [PMID: 34944252 PMCID: PMC8698158 DOI: 10.3390/ani11123477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Mortality of migratory bat species at wind energy facilities is a well-documented phenomenon, and mitigation and management are partially constrained by the current limited knowledge of bat migratory movements. Analyses of biochemical signatures in bat tissues ("intrinsic markers") can provide information about the migratory origins of individual bats. Many tissue samples for intrinsic marker analysis may be collected from living and dead bats, including carcasses collected at wind energy facilities. In this paper, we review the full suite of available intrinsic marker analysis techniques that may be used to study bat migration, with the goal of summarizing the current literature and highlighting knowledge gaps and opportunities. We discuss applications of the stable isotopes of hydrogen, oxygen, nitrogen, carbon, sulfur; radiogenic strontium isotopes; trace elements and contaminants; and the combination of these markers with each other and with other extrinsic markers. We further discuss the tissue types that may be analyzed for each and provide a synthesis of the generalized workflow required to link bats to origins using intrinsic markers. While stable hydrogen isotope techniques have clearly been the leading approach to infer migratory bat movement patterns across the landscape, here we emphasize a variety of lesser used intrinsic markers (i.e., strontium, trace elements, contaminants) that may address new study areas or answer novel research questions.
Collapse
Affiliation(s)
| | | | - Erin E. Fraser
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, 20 University Drive, Corner Brook, NL A2H 5G4, Canada; (C.T.B.); (W.A.R.-D.)
| |
Collapse
|
14
|
Aeluro S, Kavanagh TJ. Domestic cats as environmental lead sentinels in low-income populations: a One Health pilot study sampling the fur of animals presented to a high-volume spay/neuter clinic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57925-57938. [PMID: 34100205 DOI: 10.1007/s11356-021-14769-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Non-human animals serve as sentinels for numerous issues affecting humans, including exposure to toxic heavy metals like lead. Lead plays a role in perpetuating cycles of poverty in low-income communities due to the inequitable distributions of indoor health risks from lower-quality housing and outdoor health risks from industry and polluters, compounded by inequitable distributions of heath care and education. In this pilot study, we explore the potential for studying lead in low-income populations by partnering with nonprofit veterinary outreach programs. We investigate the lead concentration in fur samples of 85 domestic cats (Felis catus) presented to a high-volume spay/neuter clinic and report a mean of 0.723 μg of lead per gram of fur. This study reveals new information about lead exposure in cats in the USA, including that females had greater lead exposure than males, lead exposure increased with increasing amount of access to the outdoors, and lead exposure increased in cats with decreased body condition. We propose that pet, feral, and free-roaming cats presented to high-volume spay/neuter clinics could serve as a source of data about lead exposure in disadvantaged communities where these clinics already operate. Such a non-invasive surveillance system using inert, unobtrusively obtained samples could be deployed to detect highly exposed cats, prompting to follow up contact to a cat's caretakers to recommend seeking lead testing for themselves, their families, and their neighbors.
Collapse
Affiliation(s)
- Sabrina Aeluro
- Department of Environmental and Occupational Health Sciences, UW Center for One Health Research, University of Washington, Box 357234, Seattle, WA, 98195-7234, USA.
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Box, Seattle, WA, 354695, USA
| |
Collapse
|
15
|
Timofieieva O, Świergosz-Kowalewska R, Laskowski R, Vlaschenko A. Wing membrane and Fur as indicators of metal exposure and contamination of internal tissues in bats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116703. [PMID: 33618113 DOI: 10.1016/j.envpol.2021.116703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
All European bats are protected by the EU and Associated Members legal regulations. Being insectivorous and top predators, they can be particularly exposed to persistent organic and inorganic pollutants. It is surprising how little is known about the impact of environmental pollutants on bats from physiological to populational levels. In this study we focused on contamination with trace metals of first-year bats from Kharkiv city, NE Ukraine. Tissues from the carcasses of two species, Nyctalus noctula (n = 20) and Eptesicus serotinus (n = 20), were used for metal analysis. The samples of external (wing membrane, fur) and internal (liver, lung, kidney, bones) tissues were analysed for contents of Pb, Cu, Zn, and Cd to see whether fur or wing membrane can be used as proxies for metal contamination of the vital internal tissues. In E. serotinus, significant positive correlations in Pb concentrations were found between all external and internal tissues. For Cd only, correlation between the fur and lung was found, for Cu between the fur and liver, and for Zn between the fur and kidney. In contrast, for N. noctula, only one such correlation was found - between Zn concentrations in the fur and kidney. The tissues differed significantly in concentrations of all studied metals, with no difference between the species. The results showed that the fur and wing membrane can be used as good proxies for Pb concentrations in internal organs of E. serotinus, but not necessarily for other metals or for N. noctula. The results for Pb are, however, encouraging enough to conclude that the topic is worth further studies, covering more species, a wider age range and more diverse environments.
Collapse
Affiliation(s)
- Olha Timofieieva
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland; Bat Rehabilitation Center of Feldman Ecopark, 62340, Lisne, Kharkiv Region, Ukraine.
| | | | - Ryszard Laskowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anton Vlaschenko
- Bat Rehabilitation Center of Feldman Ecopark, 62340, Lisne, Kharkiv Region, Ukraine; Institute of Natural Sciences, H.S. Skovoroda Kharkiv National Pedagogical University, Valentynivska st., 2, Kharkiv, 61168, Ukraine
| |
Collapse
|
16
|
Pulscher LA, Gray R, McQuilty R, Rose K, Welbergen J, Phalen DN. Investigation into the utility of flying foxes as bioindicators for environmental metal pollution reveals evidence of diminished lead but significant cadmium exposure. CHEMOSPHERE 2020; 254:126839. [PMID: 32361016 DOI: 10.1016/j.chemosphere.2020.126839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Due to their large range across diverse habitats, flying-foxes are potential bioindicator species for environmental metal exposure. To test this hypothesis, blood spots, urine, fur, liver and kidney samples were collected from grey-headed flying-foxes (Pteropus poliocephalus) and black flying-foxes (P. alecto) from the Sydney basin, Australia. Concentrations of arsenic, cadmium, copper, lead, mercury and zinc and 11 other trace metals were determined using inductively coupled plasma mass spectrometry. As predicted, kidney and fur lead concentrations were lower compared to concentrations found in flying-foxes in the early 1990's, due to reduced environmental lead emissions. Tissue cadmium concentrations in flying-foxes were higher compared to previous studies of flying-foxes and other bat species, suggesting that flying-foxes were exposed to unrecognized cadmium sources. Identification of these sources should be a focus of future research. Urine concentrations of arsenic, cadmium, mercury, and lead were proportional to kidney concentrations. Given that urine can be collected from flying-foxes without handling, this demonstrates that many flying-foxes can be assessed for metal exposure with relative ease. The analysis of blood spots was not viable because of variable metal concentrations in the filter paper used. Fur concentrations of metals correlated poorly with tissue concentrations at the low levels of metals found in this study, but fur could still be a useful sample if flying-foxes are exposed to high levels of metals. Lastly, heat inactivation had minimal impact on metal concentrations in kidney and liver samples and should be considered as a tool to protect personnel working with biohazardous samples.
Collapse
Affiliation(s)
- Laura A Pulscher
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia.
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia.
| | - Robert McQuilty
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Level 7 Building 65, Missenden Rd, Camperdown, NSW, Australia.
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Bradleys Head Road, Mosman, NSW, 2088, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, Queensland 4814, Australia.
| | - Justin Welbergen
- Hawksbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753 Australia.
| | - David N Phalen
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
de Souza MB, de Souza Santos LR, Borges RE, Nunes HF, Vieira TB, Pacheco SM, de Melo E Silva D. Current Status of Ecotoxicological Studies of Bats in Brazil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:393-399. [PMID: 31993678 DOI: 10.1007/s00128-020-02794-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Bats are sensitive to contaminants generated by agricultural activities, mining, and urbanization. In this review, we update the status of bat toxicology in Brazil. Agriculture, for example, in addition to habitat fragmentation and loss, undoubtedly affects non-target organisms through the use of pesticides. Other factors such as trace metals are a neglected problem in the country, as they can deposit on insects and plants reaching bats through the ingestion of these foods. Of the 184 species of bats in the country, only 4.9% have been investigated. The frugivorous species, Artibeus lituratus, has frequently been studied for the effects of pesticide exposure, and impacts at the cellular level on metabolism and reproduction have been observed. Given the scarcity of studies on bat ecotoxicology, we encourage national researchers and scientists elsewhere to increase knowledge of the effects of chemical contaminants on bats in Brazil.
Collapse
Affiliation(s)
- Marcelino Benvindo de Souza
- Laboratório de Mutagênese, Instituto de Ciências Biológicas, ICB I - Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, CEP: 74690-900, Brasil.
- Laboratório de Biologia Animal - Instituto Federal Goiano - IF Goiano, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, CEP: 75.901-970, Brasil.
| | - Lia Raquel de Souza Santos
- Laboratório de Biologia Animal - Instituto Federal Goiano - IF Goiano, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, CEP: 75.901-970, Brasil.
| | - Rinneu Elias Borges
- Laboratório de Zoologia - Universidade de Rio Verde - UniRV, Fazenda Fontes do Saber, Rio Verde, GO, CEP: 75.901-970, Brasil
| | - Hugo Freire Nunes
- Laboratório de Mutagênese, Instituto de Ciências Biológicas, ICB I - Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, CEP: 74690-900, Brasil
| | - Thiago Bernardi Vieira
- Laboratório de Ictiologia de Altamira, Universidade Federal do Pará, Campus Altamira, Rua Coronel José Porfírio 2515, São Sebastião, Altamira, PA, CEP: 68372-040, Brasil
| | - Susi Missel Pacheco
- Departamento de Pesquisa, Instituto Sauver, Av. Pernambuco 2623 sala 404, Floresta, Porto Alegre, RS, CEP: 90240005, Brasil
| | - Daniela de Melo E Silva
- Laboratório de Mutagênese, Instituto de Ciências Biológicas, ICB I - Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, CEP: 74690-900, Brasil
| |
Collapse
|