1
|
Choi EY, Ailshire JA. Ambient outdoor heat and accelerated epigenetic aging among older adults in the US. SCIENCE ADVANCES 2025; 11:eadr0616. [PMID: 40009659 PMCID: PMC11864172 DOI: 10.1126/sciadv.adr0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025]
Abstract
Extreme heat is well-documented to adversely affect health and mortality, but its link to biological aging-a precursor of the morbidity and mortality process-remains unclear. This study examines the association between ambient outdoor heat and epigenetic aging in a nationally representative sample of US adults aged 56+ (N = 3686). The number of heat days in neighborhoods is calculated using the heat index, covering time windows from the day of blood collection to 6 years prior. Multilevel regression models are used to predict PCPhenoAge acceleration, PCGrimAge acceleration, and DunedinPACE. More heat days over short- and mid-term windows are associated with increased PCPhenoAge acceleration (e.g., Bprior7-dayCaution+heat: 1.07 years). Longer-term heat is associated with all clocks (e.g., Bprior1-yearExtremecaution+heat: 2.48 years for PCPhenoAge, Bprior1-yearExtremecaution+heat: 1.09 year for PCGrimAge, and Bprior6-yearExtremecaution+heat: 0.05 years for DunedinPACE). Subgroup analyses show no strong evidence for increased vulnerability by sociodemographic factors. These findings provide insights into the biological underpinnings linking heat to aging-related morbidity and mortality risks.
Collapse
Affiliation(s)
- Eun Young Choi
- Leonard Davis School of Gerontology, University of Southern California, McClintock Avenue, CA90089, Los Angeles, CA 3715, USA
| | - Jennifer A. Ailshire
- Leonard Davis School of Gerontology, University of Southern California, McClintock Avenue, CA90089, Los Angeles, CA 3715, USA
| |
Collapse
|
2
|
Chen M, Zhou Y, Fu Z, Wu C. Transcription factor occupancy limits DNA methylation and determines ICAM1 expression in breast cancer. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40230289 DOI: 10.3724/abbs.2024237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
The interaction between TF binding and DNA methylation is increasingly recognized as a key player in the regulation of gene expression. However, the role of this interaction in regulating ICAM1 expression in breast cancer has not been elucidated. CpG methylation in the ICAM1 promoter is negatively correlated with ICAM1 expression, and ICAM1 expression is significantly positively correlated with DNMT and TET3 expression in breast cancer. TF binding attenuates ICAM1 promoter CpG methylation and promotes ICAM1 transcription. DNA methylation regulation enhances ICAM1 expression in breast cancer by promoting the transcription of transcription factors. In terms of mechanisms, RELA and STATs recruit TET3 to prevent DNMT-mediated DNA methylation, thereby maintaining CpG island hypomethylation in the ICAM1 promoter. Therefore, TF occupancy limits DNA methylation and affects ICAM1 expression in breast cancer.
Collapse
Affiliation(s)
- Mingcang Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Metabolic Disease Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Zhou
- Department of Peripheral Vascular, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
3
|
Andelova K, Sykora M, Farkasova V, Stankovicova T, Szeiffova Bacova B, Knezl V, Egan Benova T, Pravenec M, Tribulova N. Acclimation of Hairless Spontaneously Hypertensive Rat to Ambient Temperature Attenuates Hypertension-Induced Pro-Arrhythmic Downregulation of Cx43 in the Left Heart Ventricle of Males. Biomolecules 2024; 14:1509. [PMID: 39766216 PMCID: PMC11674011 DOI: 10.3390/biom14121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES Due to poor treatment adherence and lifestyle-based interventions, chronic hypertension is a dominant risk factor predisposing individuals to heart failure and malignant arrhythmias. We investigated the impact of the postnatal acclimation of hairless SHR to ambient temperature that is, for them, below thermoneutrality, on the electrical coupling protein connexin-43 (Cx43) and pro-fibrotic markers in both heart ventricles of male and female hairless SHR rats compared to the wild SHR. METHODS Some 6-month-acclimated male and female hairless SHR as well as age- and sex-matched wild SHR were included and compared with the non-hypertensive Wistar strain. The left and right heart ventricles were examined for Cx43 topology, myocardial structure, and the histochemistry of capillaries. The protein levels of Cx43, relevant protein kinases, and extracellular matrix proteins (ECMs) were determined by immunoblotting. MMP-2 activity was assessed via zymography, and susceptibility to malignant arrhythmias was tested ex vivo. RESULTS Cx43 and its phosphorylated variant pCx43368 were significantly reduced in the left heart ventricles of wild SHR males, while to a lesser extent in the hairless SHR. In contrast, these proteins were not significantly altered in the right heart ventricles of males or in both heart ventricles in females, regardless of the rat strain. Pro-arrhythmic Cx43 topology was detected in the left heart ventricle of wild SHR and to a lesser extent in hairless SHR males. TGFβ protein was significantly increased only in the left ventricle of the wild SHR males. MMP-2 activity was increased in the right ventricle but not in the left ventricles of both males and females, regardless of the rat strain. CONCLUSIONS The findings indicate that the postnatal acclimation of hairless SHR to ambient temperature hampers the downregulation of Cx43 in the left heart ventricle compared to wild SHR males. The decline of Cx43 was much less pronounced in females and not observed in the right heart ventricles, regardless of the rat strain. It may impact the susceptibility of the heart to malignant arrhythmias.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (K.A.); (M.S.); (V.F.); (B.S.B.); (V.K.); (T.E.B.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (K.A.); (M.S.); (V.F.); (B.S.B.); (V.K.); (T.E.B.)
| | - Veronika Farkasova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (K.A.); (M.S.); (V.F.); (B.S.B.); (V.K.); (T.E.B.)
| | - Tatiana Stankovicova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovakia;
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (K.A.); (M.S.); (V.F.); (B.S.B.); (V.K.); (T.E.B.)
| | - Vladimir Knezl
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (K.A.); (M.S.); (V.F.); (B.S.B.); (V.K.); (T.E.B.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (K.A.); (M.S.); (V.F.); (B.S.B.); (V.K.); (T.E.B.)
| | - Michal Pravenec
- Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic;
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (K.A.); (M.S.); (V.F.); (B.S.B.); (V.K.); (T.E.B.)
| |
Collapse
|
4
|
Xue C, Zhu S, Li Y, Chen X, Lu L, Su P, Zhang Q, Liu X, Guan R, Liu Z, Zhao Z, Tang S, Chen J, Zhang J, Zhang W, Lu H, Luo W. Cold exposure accelerates lysine catabolism to promote cold acclimation via remodeling hepatic histone crotonylation. ENVIRONMENT INTERNATIONAL 2024; 192:109015. [PMID: 39312841 DOI: 10.1016/j.envint.2024.109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Cold environments pose serious threats on human health, with increased risk for myocardial infarction, stroke, frostbite, and hypothermia. Acquired cold acclimation is required to minimize cold-induced injures and to improve metabolic health. However, the underlying mechanisms remain to be fully elucidated. OBJECTIVE We aimed to identify critical amino acids involved in cold acclimation and unmask the regulatory mechanisms. METHODS A total of twenty male participants were recruited and followed up after 3 months' natural cold exposure. Cold-induced vasodilation (CIVD) tests and clinical biochemical analysis were performed at baseline and after 3-months cold exposure, whilst blood samples were collected, and plasma amino acids were analyzed by targeted metabolomics. To further confirm the effect of lysine on cold tolerance and explain the latent mechanism, mice were challenged with chronic cold exposure for 7 days with lysine supplement, then core and local surface temperature as well as thermogenesis activity were detected. RESULTS Continuous cold exposure shortened the CIVD onset time and increased the average finger temperature. Levels of the plasma lysine and glycine were decreased in both humans and mice. Venn analysis from three datasets revealed that lysine was the only significantly changed plasma amino acid, which strongly correlated with the altered CIVD. Moreover, mice sustained a relatively higher core temperature and surface temperature in the back, tail and paws upon lysine supplementation. Furthermore, lysine supplementation increased the level of histone H3K18cr and promoted the gene and protein expression of Cpt1a, Cpt2 and Cyp27a1 in liver. CONCLUSION Our work identified lysine as a critical amino acid for the remodeling of hepatic histone crotonylation that facilitates cold acclimation.
Collapse
Affiliation(s)
- Chong Xue
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Sijin Zhu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Su
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xinqin Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Ruili Guan
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zongcai Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zhiwei Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Shan Tang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Wenbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Huanyu Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Chiu KC, Hsieh MS, Huang YT, Liu CY. Exposure to ambient temperature and heat index in relation to DNA methylation age: A population-based study in Taiwan. ENVIRONMENT INTERNATIONAL 2024; 186:108581. [PMID: 38507934 DOI: 10.1016/j.envint.2024.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Climate change caused an increase in ambient temperature in the past decades. Exposure to high ambient temperature could result in biological aging, but relevant studies in a warm environment were lacking. We aimed to study the exposure effects of ambient temperature and heat index (HI) in relation to age acceleration in Taiwan, a subtropical island in Asia. METHODS The study included 2,084 participants from Taiwan Biobank. Daily temperature and relative humidity data were collected from weather monitoring stations. Individual residential exposure was estimated by ordinary kriging. Moving averages of ambient temperature and HI from 1 to 180 days prior to enrollment were calculated to estimate the exposure effects in multiple time periods. Age acceleration was defined as the difference between DNA methylation age and chronological age. DNA methylation age was calculated by the Horvath's, Hannum's, Weidner's, ELOVL2, FHL2, phenotypic (Pheno), Skin & blood, and GrimAge2 (Grim2) DNA methylation age algorithms. Multivariable linear regression models, generalized additive models (GAMs), and distributed lag non-linear models (DLNMs) were conducted to estimate the effects of ambient temperature and HI exposures in relation to age acceleration. RESULTS Exposure to high ambient temperature and HI were associated with increased age acceleration, and the associations were stronger in prolonged exposure. The heat stress days with maximum HI in caution (80-90°F), extreme caution (90-103°F), danger (103-124°F), and extreme danger (>124°F) were also associated with increased age acceleration, especially in the extreme danger days. Each extreme danger day was associated with 571.38 (95 % CI: 42.63-1100.13), 528.02 (95 % CI: 36.16-1019.87), 43.9 (95 % CI: 0.28-87.52), 16.82 (95 % CI: 2.36-31.28) and 15.52 (95 % CI: 2.17-28.88) days increase in the Horvath's, Hannum's, Weidner's, Pheno, and Skin & blood age acceleration, respectively. CONCLUSION High ambient temperature and HI may accelerate biological aging.
Collapse
Affiliation(s)
- Kuan-Chih Chiu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ming-Shun Hsieh
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan; Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Department of Mathematics, College of Science, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Liu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Population Health Research Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Zhang L, Xie Q, Chang S, Ai Y, Dong K, Zhang H. Epigenetic Factor MicroRNAs Likely Mediate Vaccine Protection Efficacy against Lymphomas in Response to Tumor Virus Infection in Chickens through Target Gene Involved Signaling Pathways. Vet Sci 2024; 11:139. [PMID: 38668407 PMCID: PMC11053969 DOI: 10.3390/vetsci11040139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Epigenetic factors, including microRNAs (miRNAs), play an important role in affecting gene expression and, therefore, are involved in various biological processes including immunity protection against tumors. Marek's disease (MD) is a highly contagious disease of chickens caused by the MD virus (MDV). MD has been primarily controlled by vaccinations. MD vaccine efficacy might, in part, be dependent on modulations of a complex set of factors including host epigenetic factors. This study was designed to identify differentially expressed miRNAs in the primary lymphoid organ, bursae of Fabricius, in response to MD vaccination followed by MDV challenge in two genetically divergent inbred lines of White Leghorns. Small RNA sequencing and bioinformatic analyses of the small RNA sequence reads identified hundreds of miRNAs among all the treatment groups. A small portion of the identified miRNAs was differentially expressed within each of the four treatment groups, which were HVT or CVI988/Rispens vaccinated line 63-resistant birds and line 72-susceptible birds. A direct comparison between the resistant line 63 and susceptible line 72 groups vaccinated with HVT followed by MDV challenge identified five differentially expressed miRNAs. Gene Ontology analysis of the target genes of those five miRNAs revealed that those target genes, in addition to various GO terms, are involved in multiple signaling pathways including MAPK, TGF-β, ErbB, and EGFR1 signaling pathways. The general functions of those pathways reportedly play important roles in oncogenesis, anti-cancer immunity, cancer cell migration, and metastatic progression. Therefore, it is highly likely that those miRNAs may, in part, influence vaccine protection through the pathways.
Collapse
Affiliation(s)
- Lei Zhang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA;
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| | - Yongxing Ai
- College of Animal Science, Jilin University, Changchun 130062, China;
| | - Kunzhe Dong
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA;
| | - Huanmin Zhang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA;
| |
Collapse
|
7
|
Leddin D. The Impact of Climate Change, Pollution, and Biodiversity Loss on Digestive Health and Disease. GASTRO HEP ADVANCES 2024; 3:519-534. [PMID: 39131722 PMCID: PMC11307547 DOI: 10.1016/j.gastha.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/26/2024] [Indexed: 08/13/2024]
Abstract
The environment is changing rapidly under pressure from 3 related drivers: climate change, pollution, and biodiversity loss. These environmental changes are affecting digestive health and disease in multiple ways. Heat extremes can cause intestinal and hepatic dysfunction. Access to adequate amounts of food of high nutritional content and to clean water is under threat. Extreme weather is associated with flooding and enteric infections and affects the delivery of care through infrastructure loss. Air, water, and soil pollution from chemicals and plastics are emerging as risk factors for a variety of intestinal diseases including eosinophilic esophagitis, metabolic dysfunction associated fatty liver disease, digestive tract cancers, inflammatory bowel disease, and functional bowel disease. Migration of populations to cities and between countries poses a special challenge to the delivery of digestive care. The response to the threat of environmental change is well underway in the global digestive health community, especially with regard to understanding and reducing the environmental impact of endoscopy. Individuals, and peer societies, are becoming more engaged, and have an important role to play in meeting the challenge.
Collapse
Affiliation(s)
- Desmond Leddin
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Casali C, Galgano L, Zannino L, Siciliani S, Cavallo M, Mazzini G, Biggiogera M. Impact of heat and cold shock on epigenetics and chromatin structure. Eur J Cell Biol 2024; 103:151373. [PMID: 38016352 DOI: 10.1016/j.ejcb.2023.151373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Cells are continuously exposed to various sources of insults, among which temperature variations are extremely common. Epigenetic mechanisms, critical players in gene expression regulation, undergo alterations due to these stressors, potentially leading to health issues. Despite the significance of DNA methylation and histone modifications in gene expression regulation, their changes following heat and cold shock in human cells remain poorly understood. In this study, we investigated the epigenetic profiles of human cells subjected to hyperthermia and hypothermia, revealing significant variations. Heat shock primarily led to DNA methylation increments and epigenetic modifications associated with gene expression silencing. In contrast, cold shock presented a complex scenario, with both methylation and demethylation levels increasing, indicating different epigenetic responses to the opposite thermal stresses. These temperature-induced alterations in the epigenome, particularly their impact on chromatin structural organization, represent an understudied area that could offer important insights into genome function and potential prospects for therapeutic targets.
Collapse
Affiliation(s)
- Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Luca Galgano
- Laboratory of Biochemistry, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Lorena Zannino
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Stella Siciliani
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Margherita Cavallo
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | | | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
9
|
Cardenas A, Fadadu R, Bunyavanich S. Climate change and epigenetic biomarkers in allergic and airway diseases. J Allergy Clin Immunol 2023; 152:1060-1072. [PMID: 37741554 PMCID: PMC10843253 DOI: 10.1016/j.jaci.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Human epigenetic variation is associated with both environmental exposures and allergic diseases and can potentially serve as a biomarker connecting climate change with allergy and airway diseases. In this narrative review, we summarize recent human epigenetic studies examining exposure to temperature, precipitation, extreme weather events, and malnutrition to discuss findings as they relate to allergic and airway diseases. Temperature has been the most widely studied exposure, with the studies implicating both short-term and long-term exposures with epigenetic alterations and epigenetic aging. Few studies have examined natural disasters or extreme weather events. The studies available have reported differential DNA methylation of multiple genes and pathways, some of which were previously associated with asthma or allergy. Few studies have integrated climate-related events, epigenetic biomarkers, and allergic disease together. Prospective longitudinal studies are needed along with the collection of target tissues beyond blood samples, such as nasal and skin cells. Finally, global collaboration to increase diverse representation of study participants, particularly those most affected by climate injustice, as well as strengthen replication, validation, and harmonization of measurements will be needed to elucidate the impacts of climate change on the human epigenome.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif.
| | - Raj Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
10
|
Areal AT, Singh N, Zhao Q, Berdel D, Koletzko S, von Berg A, Gappa M, Heinrich J, Standl M, Abramson MJ, Schikowski T. The Influence of Short-Term Weather Parameters and Air Pollution on Adolescent Airway Inflammation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6827. [PMID: 37835097 PMCID: PMC10572171 DOI: 10.3390/ijerph20196827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Fraction of exhaled Nitric Oxide (FeNO) is a marker of airway inflammation. We examined the main effects and interactions of relative humidity (RH) and air pollution on adolescents' FeNO. Two thousand and forty-two participants from the 15-year follow-up of the German GINIplus and LISA birth cohorts were included. Daily meteorological (maximum [Tmax], minimum [Tmin] and mean [Tmean] temperatures and RH) and air pollution [Ozone (O3), nitrogen dioxide (NO2) and particulate matter < 2.5 µm (PM2.5)] were assessed. Linear models were fitted with Ln(FeNO) as the outcome. Increases in FeNO indicate an increase in lung inflammation. Increased FeNO was associated with an increase in temperature, PM2.5, O3 and NO2. A 5% increase in RH was associated with a decrease in FeNO. Interactions between RH and high (p = 0.007) and medium (p = 0.050) NO2 were associated with increases in FeNO; while interactions between RH and high (p = 0.042) and medium (p = 0.040) O3 were associated with decreases in FeNO. Adverse effects were present for male participants, participants with low SES, participants with chronic respiratory disease, and participants from Wesel. Short-term weather and air pollution have an effect on lung inflammation in German adolescents. Future research should focus on further assessing the short-term effect of multiple exposures on lung inflammation in adolescents.
Collapse
Affiliation(s)
- Ashtyn Tracey Areal
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany; (A.T.A.); (N.S.); (Q.Z.)
- Department of Epidemiology, Medical Research School, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Nidhi Singh
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany; (A.T.A.); (N.S.); (Q.Z.)
| | - Qi Zhao
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany; (A.T.A.); (N.S.); (Q.Z.)
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Dietrich Berdel
- Department of Pediatrics, Research Institute, Marien-Hospital Wesel, 46483 Wesel, Germany; (D.B.); (A.v.B.)
| | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children’s Hospital Munich, University Hospital, LMU Munich, 80539 Munich, Germany;
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Andrea von Berg
- Department of Pediatrics, Research Institute, Marien-Hospital Wesel, 46483 Wesel, Germany; (D.B.); (A.v.B.)
| | - Monika Gappa
- Department of Paediatrics, Evangelisches Krankenhaus, 40217 Düsseldorf, Germany;
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80539 Munich, Germany;
- German Center for Lung Research (DZL), 35392 Gießen, Germany;
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marie Standl
- German Center for Lung Research (DZL), 35392 Gießen, Germany;
- Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Michael J. Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | - Tamara Schikowski
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany; (A.T.A.); (N.S.); (Q.Z.)
| |
Collapse
|
11
|
Bandyopadhayaya S, Yadav P, Sharma A, Dey SK, Nag A, Maheshwari R, Ford BM, Mandal CC. Oncogenic role of an uncharacterized cold-induced zinc finger protein 726 in breast cancer. J Cell Biochem 2023. [PMID: 37192271 DOI: 10.1002/jcb.30417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
The unobtrusive cold environmental temperature can be linked to the development of cancer. This study, for the first time, envisaged cold stress-mediated induction of a zinc finger protein 726 (ZNF726) in breast cancer. However, the role of ZNF726 in tumorigenesis has not been defined. This study investigated the putative role of ZNF726 in breast cancer tumorigenic potency. Gene expression analysis using multifactorial cancer databases predicted overexpression of ZNF726 in various cancers, including breast cancer. Experimental observations found that malignant breast tissues and highly aggressive MDA-MB-231 cells showed an elevated ZNF726 expression as compared to benign and luminal A type (MCF-7), respectively. Furthermore, ZNF726 silencing decreased breast cancer cell proliferation, epithelial-mesenchymal transition, and invasion accompanied by the inhibition of colony-forming ability. Concordantly, ZNF726 overexpression significantly demonstrated opposite outcomes than ZNF726 knockdown. Taken together, our findings propose cold-inducible ZNF726 as a functional oncogene demonstrating its prominent role in facilitating breast tumorigenesis. An inverse correlation between environmental temperature and total serum cholesterol was observed in the previous study. Furthermore, experimental outcomes illustrate that cold stress elevated cholesterol content hinting at the involvement of the cholesterol regulatory pathway in cold-induced ZNF726 gene regulation. This observation was bolstered by a positive correlation between the expression of cholesterol-regulatory genes and ZNF726. Exogenous cholesterol treatment elevated ZNF726 transcript levels while knockdown of ZNF726 decreased the cholesterol content via downregulating various cholesterol regulatory gene expressions (e.g., SREBF1/2, HMGCoR, LDLR). Moreover, an underlying mechanism supporting cold-driven tumorigenesis is proposed through interdependent regulation of cholesterol regulatory pathway and cold-inducible ZNF726 expression.
Collapse
Affiliation(s)
- Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Ankit Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sanjay Kumar Dey
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Rekha Maheshwari
- Department of General Surgery, JLN Medical College, Ajmer, Rajasthan, India
| | - Bridget M Ford
- Department of Biology, University of the Incarnate Word, San Antonio, Texas, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
12
|
Gao Y, Huang W, Yu P, Xu R, Yang Z, Gasevic D, Ye T, Guo Y, Li S. Long-term impacts of non-occupational wildfire exposure on human health: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121041. [PMID: 36639044 DOI: 10.1016/j.envpol.2023.121041] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The intensity and frequency of wildfires is increasing globally. The systematic review of the current evidence on long-term impacts of non-occupational wildfire exposure on human health has not been performed yet. To provide a systematic review and identify potential knowledge gaps in the current evidence of long-term impacts of non-occupational exposure to wildfire smoke and/or wildfire impacts on human health. We conducted a systematic search of the literature via MEDLINE, Embase and Scopus from the database inception to July 05, 2022. References from the included studies and relevant reviews were also considered. The Newcastle-Ottawa Scale (NOS) and a validated quality assessment framework were used to evaluate the quality of observational studies. Study results were synthesized descriptively. A total of 36 studies were included in our systematic review. Most studies were from developed countries (11 in Australia, 9 in Canada, 7 in the United States). Studies predominantly focused on mental health (21 studies, 58.33%), while evidence on long-term impacts of wildfire exposure on health outcomes other than mental health is limited. Current evidence indicated that long-term impacts of non-occupational wildfire exposure were associated with mortality (COVID-19 mortality, cardiovascular disease mortality and acute myocardial disease mortality), morbidity (mainly respiratory diseases), mental health disorders (mainly posttraumatic stress disorder), shorter height of children, reduced lung function and poorer general health status. However, no significant associations were observed for long-term impacts of wildfire exposure on child mortality and respiratory hospitalizations. The population-based high-quality evidence with quantitative analysis on this topic is still limited. Future well-designed studies considering extensive wildfire smoke air pollutants (e.g., particulate matter, ozone, nitrogen oxides) and estimating risk coefficient values for extensive health outcomes (e.g., mortality, morbidity) are warranted to fill current knowledge gaps.
Collapse
Affiliation(s)
- Yuan Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Wenzhong Huang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Zhengyu Yang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Danijela Gasevic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia; Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Tingting Ye
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
13
|
Wu Y, Xu R, Li S, Ming Wong E, Southey MC, Hopper JL, Abramson MJ, Li S, Guo Y. Epigenome-wide association study of short-term temperature fluctuations based on within-sibship analyses in Australian females. ENVIRONMENT INTERNATIONAL 2023; 171:107655. [PMID: 36476687 DOI: 10.1016/j.envint.2022.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Temperature fluctuations can affect human health independent of the effect of mean temperature. However, no study has evaluated whether short-term temperature fluctuations could affect DNA methylation. METHODS Peripheral blood DNA methylation for 479 female siblings of 130 families were analysed. Gridded daily temperatures data were obtained, linked to each participant's home address, and used to calculate nine different metrics of short-term temperature fluctuations: temperature variabilities (TVs) within the day of blood draw and preceding one to seven days (TV 0-1 to TV 0-7), diurnal temperature range (DTR), and temperature change between neighbouring days (TCN). Within-sibship design was used to perform epigenome-wide association analyses, adjusting for daily mean temperatures, and other important covariates (e.g., smoking, alcohol use, cell-type proportions). Differentially methylated regions (DMRs) were further identified. Multiple-testing comparisons with a significant threshold of 0.01 for cytosine-guanine dinucleotides (CpGs) and 0.05 for DMRs were applied. RESULTS Among 479 participants (mean age ± SD, 56.4 ± 7.9 years), we identified significant changes in methylation levels in 14 CpGs and 70 DMRs associated with temperature fluctuations. Almost all identified CpGs were associated with exposure to temperature fluctuations within three days. Differentially methylated signals were mapped to 68 genes that were linked to human diseases such as cancer (e.g., colorectal carcinoma, breast carcinoma, and metastatic neoplasms) and mental disorder (e.g., schizophrenia, mental depression, and bipolar disorder). The top three most significantly enriched gene ontology terms were Response to bacterium (TV 0-3), followed by Hydrolase activity, acting on ester bonds (TCN), and Oxidoreductase activity (TV 0-3). CONCLUSIONS Short-term temperature fluctuations were associated with differentially methylated signals across the human genome, which provides evidence on the potential biological mechanisms underlying the health impact of temperature fluctuations. Future studies are needed to further clarify the roles of DNA methylation in diseases associated with temperature fluctuations.
Collapse
Affiliation(s)
- Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia; Cancer Epidemiology Division, Cancer Council Victoria, VIC 3004, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shuai Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
14
|
Wang Z, Wen S, Zhong M, Yang Z, Xiong W, Zhang K, Yang S, Li H, Guo S. Epigenetics: Novel crucial approach for osteogenesis of mesenchymal stem cells. J Tissue Eng 2023; 14:20417314231175364. [PMID: 37342486 PMCID: PMC10278427 DOI: 10.1177/20417314231175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Bone has a robust regenerative potential, but its capacity to repair critical-sized bone defects is limited. In recent years, stem cells have attracted significant interest for their potential in tissue engineering. Applying mesenchymal stem cells (MSCs) for enhancing bone regeneration is a promising therapeutic strategy. However, maintaining optimal cell efficacy or viability of MSCs is limited by several factors. Epigenetic modification can cause changes in gene expression levels without changing its sequence, mainly including nucleic acids methylation, histone modification, and non-coding RNAs. This modification is believed to be one of the determinants of MSCs fate and differentiation. Understanding the epigenetic modification of MSCs can improve the activity and function of stem cells. This review summarizes recent advances in the epigenetic mechanisms of MSCs differentiation into osteoblast lineages. We expound that epigenetic modification of MSCs can be harnessed to treat bone defects and promote bone regeneration, providing potential therapeutic targets for bone-related diseases.
Collapse
Affiliation(s)
- Zhaohua Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Si Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Meiqi Zhong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ziming Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Kuo Zhang
- College of Humanities and Social Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huizheng Li
- Department of Otorhinolaryngology & Head and Neck Surgery, Dalian Friendship Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
15
|
Straight B, Qiao X, Ngo D, Hilton CE, Olungah CO, Naugle A, Lalancette C, Needham BL. Epigenetic mechanisms underlying the association between maternal climate stress and child growth: characterizing severe drought and its impact on a Kenyan community engaging in a climate change-sensitive livelihood. Epigenetics 2022; 17:2421-2433. [PMID: 36242778 PMCID: PMC9665148 DOI: 10.1080/15592294.2022.2135213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022] Open
Abstract
Pastoralists in East Africa are among the world's most vulnerable communities to climate change, already living near their upper thermal limits and engaging in a climate-sensitive livelihood in a climate change global hot spot. Pregnant women and children are even more at risk. Here, we report the findings of a study characterizing Samburu pastoralist women's experiences of severe drought and outcomes in their children (N = 213, 1.8-9.6 y). First, we examined potential DNA methylation (DNAm) differences between children exposed to severe drought in utero and same-sex unexposed siblings. Next, we performed a high-dimensional mediation analysis to test whether DNAm mediated associations of exposure to severe drought with body weight and adiposity. DNAm was measured using the Infinium MethylationEPIC BeadChip array. After quality control; batch, chip, and genomic inflation corrections; covariate adjustment; and multiple testing correction, 16 CpG sites were differentially methylated between exposed and unexposed children, predominantly in metabolism and immune function pathways. We found a significant indirect effect of drought exposure on child body weight through cg03771070. Our results are the first to identify biological mediators linking severe drought to child growth in a low-income global hot spot for climate change. A better understanding of the mechanisms underlying the association between drought exposure and child growth is important to increasing climate change resilience by identifying targets for intervention.
Collapse
Affiliation(s)
- Bilinda Straight
- Gender & Women’s Studies, Western Michigan University, Kalamazoo, Michigan, USA
| | - Xi Qiao
- Statistics, Western Michigan University, Kalamazoo, Michigan, USA
| | - Duy Ngo
- Statistics, Western Michigan University, Kalamazoo, Michigan, USA
| | - Charles E. Hilton
- Anthropology, University of North Carolina Chapel Hill, Carolina, USA
| | - Charles Owuor Olungah
- Institute of Anthropology, Gender, and African Studies, University of Nairobi, Nairobi, Kenya
| | - Amy Naugle
- Psychology, Western Michigan University, Kalamazoo, Michigan, USA
| | | | | |
Collapse
|
16
|
Liu B, Wen H, Yang J, Li X, Li G, Zhang J, Wu S, Butts IAE, He F. Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (Paralichthys olivaceus). BIOLOGY 2022; 11:biology11081233. [PMID: 36009861 PMCID: PMC9405012 DOI: 10.3390/biology11081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary With global climate change and increased aquaculture production, fishes in natural waters or aquaculture systems are easily subjected to hypoxic stress. However, our understanding about their responsive mechanisms to hypoxia is still limited. Japanese flounder (Paralichthys olivaceus) is a widely cultivated marine economical flatfish, whose hypoxic responsive mechanisms are not fully researched. In this study, responses to hypoxia were investigated at blood physiological, biochemical, hormonal, and molecular levels. Responsive mechanisms of the HIF-1/LDH-A signaling pathway in epigenetic modification and transcriptional regulation were also researched. These results are important for enriching the theory of environmental responsive mechanisms and guiding aquaculture. Abstract Japanese flounder (Paralichthys olivaceus) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene LDH-A were deeply studied. Results showed that HIF-1α and LDH-A genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the LDH-A gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of HIF-1α and LDH-A genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the HIF-1α gene and LDH-A gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture.
Collapse
Affiliation(s)
- Binghua Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Jun Yang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Xiaohui Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Guangling Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Jingru Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Shuxian Wu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Ian AE Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Feng He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
- Correspondence:
| |
Collapse
|
17
|
Natur S, Damri O, Agam G. The Effect of Global Warming on Complex Disorders (Mental Disorders, Primary Hypertension, and Type 2 Diabetes). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159398. [PMID: 35954764 PMCID: PMC9368177 DOI: 10.3390/ijerph19159398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/09/2023]
Abstract
Multiple studies imply a strong relationship between global warming (GW) and complex disorders. This review summarizes such reports concentrating on three disorders-mental disorders (MD), primary hypertension, and type 2 diabetes (T2D). We also attempt to point at potential mechanisms mediating the effect of GW on these disorders. Concerning mental disorders, immediate candidates are brain levels of heat-shock proteins (HSPs). In addition, given that heat stress increases reactive oxygen species (ROS) levels which may lead to blood-brain barrier (BBB) breakdown and, hence, enhanced protein extravasation in the brain, this might finally cause, or exacerbate mental health. As for hypertension, since its causes are incompletely understood, the mechanism(s) by which heat exposure affects blood pressure (BP) is an open question. Since the kidneys participate in regulating blood volume and BP they are considered as a site of heat-associated disease, hence, we discuss hyperosmolarity as a potential mediator. In addition, we relate to autoimmunity, inflammation, sodium excretion, and HSP70 as risk factors that might play a role in the effect of heat on hypertension. In the case of T2D, we raise two potential mediators of the effect of exposure to ambient hot environment on the disease's incidence-brown adipose tissue metabolism and HSPs.
Collapse
|
18
|
Liu Y, Cheng H, Wang S, Luo X, Ma X, Sun L, Chen N, Zhang J, Qu K, Wang M, Liu J, Huang B, Lei C. Genomic Diversity and Selection Signatures for Weining Cattle on the Border of Yunnan-Guizhou. Front Genet 2022; 13:848951. [PMID: 35873486 PMCID: PMC9301131 DOI: 10.3389/fgene.2022.848951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Weining cattle is a Chinese indigenous breed influenced by complex breeding and geographical background. The multi-ethnic breeding culture makes Weining cattle require more attention as livestock resources for its genetic diversity. Here, we used 10 Weining cattle (five newly sequenced and five downloaded) and downloaded another 48 genome data to understand the aspects of Weining cattle: genetic diversity, population structure, and cold-adapted performance. In the current study, a high level of genetic diversity was found in Weining cattle, and its breed comprised two potential ancestries, which were Bos taurus and Bos indicus. The positive selective sweep analysis in Weining cattle was analyzed using composite likelihood ratio (CLR) and nucleotide diversity (θπ), resulting in 203 overlapped genes. In addition, we studied the cold adaptation of Weining cattle by comparing with other Chinese cattle (Wannan and Wenshan cattle) by three methods (FST, θπ-ratio, and XP-EHH). Of the top 1% gene list, UBE3D and ZNF668 were analyzed, and these genes may be associated with fat metabolism and blood pressure regulation in cold adaptation. Our findings have provided invaluable information for the development and conservation of cattle genetic resources, especially in southwest China.
Collapse
Affiliation(s)
- Yangkai Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shikang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoyv Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaohui Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Luyang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Mingjin Wang
- Bijie Animal Husbandry and Veterinary Science Institute, Bijie, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
- *Correspondence: Bizhi Huang, ; Chuzhao Lei,
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- *Correspondence: Bizhi Huang, ; Chuzhao Lei,
| |
Collapse
|
19
|
Tynior W, Ilczuk-Rypuła D, Hudy D, Strzelczyk JK. Is Aberrant DNA Methylation a Key Factor in Molar Incisor Hypomineralization? Curr Issues Mol Biol 2022; 44:2868-2878. [PMID: 35877421 PMCID: PMC9319474 DOI: 10.3390/cimb44070197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Molar incisor hypomineralization (MIH) is a qualitative disturbance of the enamel of the permanent molars and/or incisors. Its etiology is not clearly defined but is connected with different factors occurring before and after birth. It remains difficult to identify a single factor or group of factors, and the problem is further complicated by various overlapping mechanisms. In this study, we attempted to determine whether DNA methylation-an epigenetic mechanism-plays a key role in the etiology of MIH. We collected the epithelium of the oral mucosa from children with MIH and healthy individuals and analyzed its global DNA methylation level in each child using a 5-mC DNA ELISA kit after DNA isolation. There was no statistically significant difference between the global DNA methylation levels in the study and control groups. Then, we also analyzed the associations of the DNA methylation levels with different prenatal, perinatal, and postnatal factors, using appropriate statistical methods. Factors such as number of pregnancies, number of births, type of delivery, varicella infection (under 3 years old), and high fever (under 3 years old) were significantly important. This work can be seen as the first step towards further studies of the epigenetic background of the MIH etiology.
Collapse
Affiliation(s)
- Wojciech Tynior
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (D.H.); (J.K.S.)
- Correspondence: ; Tel.: +48-32-272-21-71
| | - Danuta Ilczuk-Rypuła
- Department of Pediatric Dentistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (D.H.); (J.K.S.)
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (D.H.); (J.K.S.)
| |
Collapse
|
20
|
The Effect of Prenatal Exposure to Climate Anomaly on Adulthood Cognitive Function and Job Reputation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052523. [PMID: 35270216 PMCID: PMC8909085 DOI: 10.3390/ijerph19052523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023]
Abstract
Background: The long-term effect of abnormal climate on cognitive function and socioeconomic status remains elusive. We explored the association between prenatal exposure to climate anomaly and adulthood cognitive function and job reputation. Methods: We obtained repeated cognitive and job reputation measurements from 17,105 subjects for the years 2010, 2014, and 2018, and ascertained their birth date and other covariates. We used sea surface temperature (SST) anomalies in the Southern Pacific Ocean as the indicator for global climate anomaly in the main analyses. We calculated its averaged values for different gestational periods and analyzed its possible nonlinear associations with adulthood cognitive function and job reputation. We also calculated associated economic loss due to prenatal exposure to abnormal climate. Results: We found an inverted U-shaped curve between climate anomaly and adulthood cognition. During the entire pregnancy, for SST anomalies increasing/decreasing 1 °C from 0 °C, newborn individuals will have adulthood cognition (measured by math test) changed by −2.09% (95% confidence interval (CI): −2.31%, −1.88%) and −3.98% (95% CI: −4.32%, −3.65%), respectively. We observed a similar inverted U-shaped pattern for cognitive function measured by word test and job reputation. Such an association is likely to be mediated by regional meteorological conditions, not local ones. Subgroup analyses identified females and people from less-developed regions as even more vulnerable to prenatal abnormal climate, finding an interactive effect with other social factors. The economic loss was assessed as the salary reduction due to declined cognition among all newborn individuals in China. For SST anomalies increasing/decreasing by 1 °C from 0 °C, individuals born each year in China would earn 0.33 (95% CI: 0.40, 0.25) and 1.09 (95% CI: 1.23, 0.94) billion U.S. dollars equivalent less in their annual salary at adulthood because of lowered cognitive function, respectively. Conclusion: Prenatal exposure to abnormal global climate patterns can result in declined adulthood cognitive function, lowered job reputation, and subsequent economic loss.
Collapse
|
21
|
Meevassana J, Nacharoenkul P, Wititsuwannakul J, Kitkumthorn N, Hamill K, Angspatt A, Mutirangura A. B1 repetitive sequence methylation enhances wound healing of second‑degree burns in rats. Biomed Rep 2022; 16:20. [PMID: 35251607 PMCID: PMC8850962 DOI: 10.3892/br.2022.1503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
The accumulation of DNA damage in burn wounds delays wound healing. DNA methylation by short interspersed nuclear element (SINE) small interfering (si)RNA prevents DNA damage and promotes cell proliferation. Therefore, SINE siRNA may be able to promote burn wound healing. Here, a SINE B1 siRNA was used to treat burn wounds in rats. Second-degree burn wounds were introduced on the backs of rats. The rats were then divided into three groups: a B1 siRNA-treated, saline-treated control, and saline + calcium phosphate-nanoparticle-treated control group (n=15/group). The wounds were imaged on days 0, 7, 14, 21 and 28 post-injury. The tissue sections were processed for methylation, histological and immunohistochemical examination, and scored based on the overall expression of histone H2AX phosphorylated on serine 139 (γH2AX) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Burn wound closure improved in the B1 siRNA-treated group compared with that in the control group, especially from days 14-28 post-injury (P<0.001). The overall pathological score and degree of B1 methylation in the B1 siRNA-treated group improved significantly at days 14-28 post-injury, with the maximum improvement observed on day 14 (P<0.01) compared with the NSS and Ca-P nanoparticle groups. Immunohistochemical staining revealed lower expression of γH2AX and 8-OHdG in the B1 siRNA-treated group than in the control groups at days 14-28 post-injury; the maximum improvement was observed on days 14 and 21. These data imply that administering SINE siRNA is a promising therapeutic option for managing second-degree burns.
Collapse
Affiliation(s)
- Jiraroch Meevassana
- Department of Anatomy, Center of Excellence in Molecular Genetics of Cancer and Human Disease, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Nacharoenkul
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jade Wititsuwannakul
- Department of Medicine, Division of Dermatology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Kevin Hamill
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, United Kingdom
| | - Apichai Angspatt
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apiwat Mutirangura
- Department of Anatomy, Center of Excellence in Molecular Genetics of Cancer and Human Disease, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
22
|
Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55981-56002. [PMID: 34498177 PMCID: PMC8425320 DOI: 10.1007/s11356-021-16056-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 05/16/2023]
Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution. Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs' airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand whether certain pollutants influence HP development through such epigenetic modifications.
Collapse
Affiliation(s)
- Suranjana Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
23
|
Xu R, Li S, Li S, Wong EM, Southey MC, Hopper JL, Abramson MJ, Guo Y. Ambient temperature and genome-wide DNA methylation: A twin and family study in Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117700. [PMID: 34380236 DOI: 10.1016/j.envpol.2021.117700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Little is known about the association between ambient temperature and DNA methylation, which is a potential biological process through which ambient temperature affects health. This study aimed to evaluate the association between ambient temperature and DNA methylation across human genome. We included 479 Australian women, including 132 twin pairs and 215 sisters of these twins. Blood-derived DNA methylation was measured using the HumanMethylation450 BeadChip array. Data on average ambient temperature during eight different exposure windows [lag0d (the blood draw day), lag0-7d (the current day and previous seven days prior to blood draw), lag0-14d, lag0-21d, lag0-28d, lag0-90d, lag0-180d, and lag0-365d)] was linked to each participant's home address. For each cytosine-guanine dinucleotide (CpG), we evaluated the association between its methylation level and temperature using generalized estimating equations (GEE), adjusting for important covariates. We used comb-p and DMRcate to identify differentially methylated regions (DMRs). We identified 31 CpGs at which blood DNA methylation were significantly associated with ambient temperature with false discovery rate [FDR] < 0.05. There were 82 significant DMRs identified by both comb-p (Sidak p-value < 0.01) and DMRcate (FDR < 0.01). Most of these CpGs and DMRs only showed association with temperature during one specific exposure window. These CpGs and DMRs were mapped to 85 genes. These related genes have been related to many human chronic diseases or phenotypes (e.g., diabetes, arthritis, breast cancer, depression, asthma, body height) in previous studies. The signals of short-term windows (lag0d and lag0-21d) showed enrichment in biological processes related to cell adhesion. In conclusion, short-, medium-, and long-term exposures to ambient temperature were all associated with blood DNA methylation, but the target genomic loci varied by exposure window. These differential methylation signals may serve as potential biomarkers to understand the health impacts of temperature.
Collapse
Affiliation(s)
- Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3800, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia; Cancer Epidemiology Division, Cancer Council Victoria, VIC, 3004, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
24
|
Pathak N, McKinney A. Planetary Health, Climate Change, and Lifestyle Medicine: Threats and Opportunities. Am J Lifestyle Med 2021; 15:541-552. [PMID: 34646104 PMCID: PMC8504332 DOI: 10.1177/15598276211008127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Global environmental degradation and climate change threaten the foundation of human health and well-being. In a confluence of crises, the accelerating pace of climate change and other environmental disruptions pose an additional, preventable danger to a global population that is both aging and carrying a growing burden of noncommunicable diseases (NCDs). Climate change and environmental disruption function as "threat multipliers," especially for those with NCDs, worsening the potential health impacts on those with suboptimal health. At the same time, these environmental factors threaten the basic pillars of health and prevention, increasing the risk of developing chronic disease. In the face of these threats, the core competencies of lifestyle medicine (LM) present crucial opportunities to mitigate climate change and human health impacts while also allowing individuals and communities to build resilience. LM health professionals are uniquely positioned to coach patients toward climate-healthy behavior changes that heal both people and the planet.
Collapse
Affiliation(s)
- Neha Pathak
- American College of Lifestyle Medicine, Global Sustainability Committee, Atlanta, Georgia
| | - Amanda McKinney
- Institute for Human and Planetary Health-Doane University, Crete, Nebraska
| |
Collapse
|
25
|
Xu R, Li S, Li S, Wong EM, Southey MC, Hopper JL, Abramson MJ, Guo Y. Surrounding Greenness and Biological Aging Based on DNA Methylation: A Twin and Family Study in Australia. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:87007. [PMID: 34460342 PMCID: PMC8404778 DOI: 10.1289/ehp8793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND High surrounding greenness has many health benefits and might contribute to slower biological aging. However, very few studies have evaluated this from the perspective of epigenetics. OBJECTIVES We aimed to evaluate the association between surrounding greenness and biological aging based on DNA methylation. METHODS We derived Horvath's DNA methylation age (DNAmAge), Hannum's DNAmAge, PhenoAge, and GrimAge based on DNA methylation measured in peripheral blood samples from 479 Australian women in 130 families. Measures of DNAmAge acceleration (DNAmAgeAC) were derived from the residuals after regressing each DNAmAge metric on chronological age. Greenness was represented by satellite-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) metrics within 300-, 500-, 1,000-, and 2,000-m buffers surrounding participant addresses. Greenness-DNAmAgeAC associations were estimated using a within-sibship design fitted by linear mixed effect models, adjusting for familial clustering and important covariates. RESULTS Greenness metrics were associated with significantly lower DNAmAgeAC based on GrimAge acceleration, suggesting slower biological aging with higher greenness based on both NDVI and EVI in 300-2,000m buffer areas. For example, each interquartile range increase in NDVI within 1,000m was associated with a 0.59 (95% CI: 0.18, 1.01)-year decrease in GrimAge acceleration. Greenness was also inversely associated with three of the eight components of GrimAge, specifically, DNA methylation-based surrogates of serum cystatin-C, serum growth differentiation factor 15, and smoking pack years. Associations between greenness and biological aging measured by Horvath's and Hannum's DNAmAgeAC were less consistent, and depended on neighborhood socioeconomic status. No significant associations were estimated for PhenoAge acceleration. DISCUSSION Higher surrounding greenness was associated with slower biological aging, as indicated by GrimAge age acceleration, in Australian women. Associations were also evident for three individual components of GrimAge, but were inconsistent for other measures of biological aging. Additional studies are needed to confirm our results. https://doi.org/10.1289/EHP8793.
Collapse
Affiliation(s)
- Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J. Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Priyanka PP, Yenugu S. Coiled-Coil Domain-Containing (CCDC) Proteins: Functional Roles in General and Male Reproductive Physiology. Reprod Sci 2021; 28:2725-2734. [PMID: 33942254 DOI: 10.1007/s43032-021-00595-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 01/10/2023]
Abstract
The coiled-coil domain-containing (CCDC) proteins have been implicated in a variety of physiological and pathological processes. Their functional roles vary from their interaction with molecular components of signaling pathways to determining the physiological functions at the cellular and organ level. Thus, they govern important functions like gametogenesis, embryonic development, hematopoiesis, angiogenesis, and ciliary development. Further, they are implicated in the pathogenesis of a large number of cancers. Polymorphisms in CCDC genes are associated with the risk of lifetime diseases. Because of their role in many biological processes, they have been extensively studied. This review concisely presents the functional role of CCDC proteins that have been studied in the last decade. Studies on CCDC proteins continue to be an active area of investigation because of their indispensable functions. However, there is ample opportunity to further understand the involvement of CCDC proteins in many more functions. It is anticipated that basing on the available literature, the functional role of CCDC proteins will be explored much further.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
27
|
Liu JQ, Hu TY, Diao KY, Yu D, Song YN, Mo LH, Yang G, Liu ZQ, Liu ZG, Yang PC. Cold stress promotes IL-33 expression in intestinal epithelial cells to facilitate food allergy development. Cytokine 2020; 136:155295. [PMID: 32977238 DOI: 10.1016/j.cyto.2020.155295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The causative factors and pathogenesis of food allergy (FA) is not fully understood yet. Cold stress (CS) occurs frequently in human life that influences physiological activities in the body. In this study, we aimed to investigate the chronic CS (CS) effects on promoting the expression of IL-33 in intestinal epithelial cells. METHODS CS was carried out by placing mice at 4 °C for 1 h daily for 7 consecutive days. We developed a mouse model used to test the effects of CS on the FA development. RESULTS We found that, similar to conventional FA mouse model, CS induced the core body temperature to drop markedly in mice, increased intestinal epithelial barrier permeability and facilitated FA development. CS promoted interleukin (IL)-33 expression in intestinal epithelial cells through the adrenocorticotropic hormone (ACTH)/cortisol axis and via inducing the Il33 promoter methylation. CS facilitated the FA development in mice, that could be blocked by depletion of IL-33 expression in intestinal epithelial cells. CONCLUSIONS CS induces IL-33 expression in intestinal epithelial cells to promote Th2 polarization in the intestinal tissues and facilitates FA development.
Collapse
Affiliation(s)
- Jiang-Qi Liu
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Tian-Yong Hu
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Kai-Yuan Diao
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dian Yu
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Yan-Nan Song
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Li-Hua Mo
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China; Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gui Yang
- Department of Otolaryngology, Longgagn Central Hospital, Shenzhen, China
| | - Zhi-Qiang Liu
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| | - Zhi-Gang Liu
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China.
| | - Ping-Chang Yang
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China.
| |
Collapse
|
28
|
Hiatt RA, Beyeler N. Cancer and climate change. Lancet Oncol 2020; 21:e519-e527. [PMID: 33152311 DOI: 10.1016/s1470-2045(20)30448-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
The acute impact of climate change on human health is receiving increased attention, but little is known or appreciated about the effect of climate change on chronic diseases, particularly cancer. This Review provides a synopsis of what is known about climate change and the exposures it generates relevant to cancer. In the context of the world's cancer burden and the probable direction we could expect to follow in the absence of climate change, this scoping review of the literature summarises the effects that climate change is having on major cancers, from environmental exposures to ultraviolet radiation, air pollution, disruptions in the food and water supply, environmental toxicants, and infectious agents. Finally, we explore the effect of climate change on the possible disruption of health systems that have been essential to cancer control practice. We conclude with potential responses and opportunities for intervention.
Collapse
Affiliation(s)
- Robert A Hiatt
- Department of Epidemiology and Biostatistics and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Naomi Beyeler
- Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
29
|
Lauby SC, McGowan PO. Early life variations in temperature exposure affect the epigenetic regulation of the paraventricular nucleus in female rat pups. Proc Biol Sci 2020; 287:20201991. [PMID: 33109014 PMCID: PMC7661289 DOI: 10.1098/rspb.2020.1991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/06/2020] [Indexed: 11/12/2022] Open
Abstract
Early life maternal care received has a profound effect on later-life behaviour in adult offspring, and previous studies have suggested epigenetic mechanisms are involved. Changes in thyroid hormone receptor signalling may be related to differences in maternal care received and DNA methylation modifications. We investigated the effects of variations in temperature exposure (a proxy of maternal contact) and licking-like tactile stimulation on these processes in week-old female rat pups. We assessed thyroid hormone receptor signalling by measuring circulating triiodothyronine and transcript abundance of thyroid hormone receptors and the thyroid hormone-responsive genes DNA methyltransferase 3a and oxytocin in the paraventricular nucleus of the hypothalamus. DNA methylation of the oxytocin promoter was assessed in relation to changes in thyroid hormone receptor binding. Repeated room temperature exposure was associated with a decrease in thyroid hormone receptor signalling measures relative to nest temperature exposure, while acute room temperature exposure was associated with an increase. Repeated room temperature exposure also increased thyroid hormone receptor binding and DNA methylation at the oxytocin promoter. These findings suggest that repeated room temperature exposure may affect DNA methylation levels as a consequence of alterations in thyroid hormone receptor signalling.
Collapse
Affiliation(s)
- Samantha C. Lauby
- Department of Biological Sciences, University of Toronto, Scarborough Campus, SW548, 1265 Military Trail, Scarborough, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick O. McGowan
- Department of Biological Sciences, University of Toronto, Scarborough Campus, SW548, 1265 Military Trail, Scarborough, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|