1
|
Wang X, Fan X, Chang W, Li K, Zhang M, Pu G, Kurakov AV, Ping Y, Song F. Enhancing soil quality in soybean cultivation: Mycorrhizal technology combined with intercropping under high cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117558. [PMID: 39701866 DOI: 10.1016/j.ecoenv.2024.117558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Cadmium (Cd) contamination presents a serious challenges for sustainable agriculture. This study evaluated the combined impact of arbuscular mycorrhizal fungi (AMF) inoculation and intercropping with Solanum nigrum on soil microbial diversity, enzyme activity, and environmental factors in soybean cultivation under high Cd stress. The combined treatment effectively reduced bioavailable Cd in soil, with the acid-soluble Cd fraction at 19.57 mg/kg and the reducible Cd fraction at 61.35 %, resulting in safe soybean grain Cd levels (2.63 mg/kg, below the 3 mg/kg organic standard). Illumina NovaSeq sequencing analysis revealed that key bacterial taxa, including Bradyrhizobium and PMMR1, were correlated with reduced Cd uptake in grains. Although bacterial α diversity increased, microbial network stability decreased in response to Cd, AMF inoculation, and intercropping. The combined treatment also enhanced soil enzyme activity by regulating the relative abundance of dominant or key genera such as Subgroup_6, Rokubacteriales and Pseudarthrobacter. Notably, catalase activity was 97.25 % higher in the combined treatment compared to monoculture without AMF colonization under high Cd conditions. These findings demonstrate the synergistic potential of AMF inoculation and S. nigrum intercropping as a sustainable approach to mitigate Cd contamination in crops while improving soil health in Cd-contaminated environments.
Collapse
Affiliation(s)
- Xiaohui Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang Province 150080, China; Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Xiaoxu Fan
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, Heilongjiang Province 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang Province 150080, China
| | - Wei Chang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, Heilongjiang Province 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang Province 150080, China
| | - Kun Li
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, Heilongjiang Province 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang Province 150080, China
| | - Mengmeng Zhang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, Heilongjiang Province 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang Province 150080, China
| | - Gaozhong Pu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Alexander V Kurakov
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuan Ping
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, Heilongjiang Province 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang Province 150080, China.
| | - Fuqiang Song
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, Heilongjiang Province 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang Province 150080, China.
| |
Collapse
|
2
|
Tang X, Wang Y, Yin Y, Ding C, Zhou Z, He L, Li L, Guo Z, Li Z, Nie M, Zhang T, Wang X. Deciphering Cadmium Accumulation in Peanut Kernels through Growth Stages and Source Organs: A Multi-Stable Isotope Labeling Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24003-24012. [PMID: 39406201 DOI: 10.1021/acs.jafc.4c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mechanisms of cadmium (Cd) uptake and redistribution throughout the peanut lifecycle remain unclear. This study employed multi-isotope labeling techniques in hydroponic and soil-foliar systems, revealing that Cd uptake during podding (Cdp) constituted 73.7% of kernel Cd content, whereas contributions from the flowering (Cdf) and seedling (Cds) stages were 22.2 and 4.1%, respectively. Stem-stored Cd (Cdstem) contributes 53.2% to kernel Cd accumulation, while leaf-stored Cd (Cdleaf) contributes 46.8%. Prestored Cdf in shoots demonstrated the most efficient transport to pods, approximately twice that of Cds and Cdp. Cds and Cdf were predominantly stored in leaves (51.0%), while Cdp mainly in stems (46.3%), 2.8 times its presence in leaves (16.5%), indicating distinct root-stem-kernel translocation. In the transfer of shoot Cd from stems to pods, 29.3% of Cdleaf and 25.0% of Cdstem were exported. This study provides novel insights into Cd dynamics in peanuts, establishing a foundation for future Cd regulation strategies.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurong Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuepeng Yin
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liqin He
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Guo
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyao Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Nie
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taolin Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zheng J, Yue Y, Zhu Y, Wang Y, Zheng W, Hu L, Hou D, Wang F, Yang L, Zhang H. Zinc Enhances Cadmium Accumulation in Shoots of Hyperaccumulator Solanum nigrum by Improving ATP-Dependent Transport and Alleviating Toxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2528. [PMID: 39274012 PMCID: PMC11397465 DOI: 10.3390/plants13172528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Solanum nigrum is a cadmium (Cd) and zinc (Zn) accumulator with potential for phytoextraction of soil contaminated with heavy metals. However, how Zn affects Cd accumulation in S. nigrum remains unclear. In this study, S. nigrum seedlings were treated with 100 μmol·L-1 Zn (Zn100), 100 μmol·L-1 Cd (Cd100), and the Zn and Cd combination (Zn100+Cd100) for 10 days under hydroponic culture. Compared with Cd100, the Cd content in stems, leaves, and xylem saps was 1.8, 1.6, and 1.3 times more than that in Zn100+Cd100, respectively. In addition, the production of reactive oxygen species in leaves was significantly upregulated in Cd100 compared with the control, and it was downregulated in Zn100. Comparative analyses of transcriptomes and proteomes were conducted with S. nigrum leaves. Differentially expressed genes (DEGs) were involved in Cd uptake, transport, and sequestration, and the upregulation of some transporter genes of Zn transporters (ZIPs), a natural resistance associated macrophage protein (Nramp1), a metal-nicotianamine transporter (YSL2), ATP-binding cassette transporters (ABCs), oligopeptide transporters (OPTs), and metallothionein (MTs) and glutathione S-transferase (GSTs) genes was higher in Zn100+Cd100 than in Cd100. In addition, differentially expressed proteins (DEPs) involved in electron transport chain, ATP, and chlorophyll biosynthesis, such as malate dehydrogenases (MDHs), ATPases, and chlorophyll a/b binding proteins, were mostly upregulated in Zn100. The results indicate that Zn supplement increases Cd accumulation and tolerance in S. nigrum by upregulating ATP-dependent Cd transport and sequestration pathways.
Collapse
Affiliation(s)
- Jia Zheng
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Yukang Yue
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuting Zhu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Yufeng Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenwen Zheng
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Linfeng Hu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hongxiao Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
4
|
Wu M, Xu Q, Tang T, Li X, Pan Y. Integrative physiological, transcriptomic, and metabolomic analysis of Abelmoschus manihot in response to Cd toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1389207. [PMID: 38916029 PMCID: PMC11194374 DOI: 10.3389/fpls.2024.1389207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Rapid industrialization and urbanization have caused severe soil contamination with cadmium (Cd) necessitating effective remediation strategies. Phytoremediation is a widely adopted technology for remediating Cd-contaminated soil. Previous studies have shown that Abelmoschus manihot has a high Cd accumulation capacity and tolerance indicating its potential for Cd soil remediation. However, the mechanisms underlying its response to Cd stress remain unclear. In this study, physiological, transcriptomic, and metabolomic analyses were conducted to explore the response of A. manihot roots to Cd stress at different time points. The results revealed that Cd stress significantly increased malondialdehyde (MDA) levels in A. manihot, which simultaneously activated its antioxidant defense system, enhancing the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) by 19.73%-50%, 22.87%-38.89%, and 32.31%-45.40% at 12 h, 36 h, 72 h, and 7 days, respectively, compared with those in the control (CK). Moreover, transcriptomic and metabolomic analyses revealed 245, 5,708, 9,834, and 2,323 differentially expressed genes (DEGs), along with 66, 62, 156, and 90 differentially expressed metabolites (DEMs) at 12 h, 36 h, 72 h, and 7 days, respectively. Through weighted gene coexpression network analysis (WGCNA) of physiological indicators and transcript expression, eight hub genes involved in phenylpropanoid biosynthesis, signal transduction, and metal transport were identified. In addition, integrative analyses of metabolomic and transcriptomic data highlighted the activation of lipid metabolism and phenylpropanoid biosynthesis pathways under Cd stress suggesting that these pathways play crucial roles in the detoxification process and in enhancing Cd tolerance in A. manihot. This comprehensive study provides detailed insights into the response mechanisms of A. manihot to Cd toxicity.
Collapse
Affiliation(s)
- Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qian Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Tingting Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xia Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanzhi Pan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Gao S, Zheng F, Yue L, Chen B. Chronic cadmium exposure impairs flight behavior by dampening flight muscle carbon metabolism in bumblebees. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133628. [PMID: 38301442 DOI: 10.1016/j.jhazmat.2024.133628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Cadmium pollution affects the global ecosystem because cadmium can be transferred up the food chain. The bumblebee, Bombus terrestris, is an important insect pollinator. Their foraging activity on flowers exposes them to harmful heavy metals, which damages their health and leads to massive population declines. However, the effects of chronic exposure to heavy metals on the flight performance of bumblebees have not yet been characterized. Here, we studied variation in the flight capacity of bumblebees induced by chronic cadmium exposure at field-realistic concentrations using behavioral, physiological, and molecular approaches. Chronic cadmium exposure caused a significant reduction in the duration, distance, and mean velocity of bumblebee flight. Transcriptome analysis showed that the impairment of carbon metabolism and mitochondrial dysfunction in the flight muscle were the primary causes. Physiological, biochemical, and metabolomic analyses validated disruptions in energy metabolism, and impairments in mitochondrial respiratory chain complexes activities. Histological analysis revealed muscle fiber damage and mitochondrial loss. Exogenous decanoic acid or citric acid partially restored sustained flight ability of bumblebees by mitigating muscle fiber damage and increasing energy generation. These findings provide insights into how long-term cadmium stress affects the flight ability of insects and will aid human muscle or exercise-related disease research.
Collapse
Affiliation(s)
- Shen Gao
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fei Zheng
- College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yue
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Bing Chen
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
6
|
Ali W, Mao K, Shafeeque M, Aslam MW, Li W. Effects of selenium on biogeochemical cycles of cadmium in rice from flooded paddy soil systems in the alluvial Indus Valley of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168896. [PMID: 38042182 DOI: 10.1016/j.scitotenv.2023.168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
This study delves into the pollution status, assesses the effects of Se on Cd biogeochemical pathways, and explores their interactions in nutrient-rich paddy soil-rice ecosystems through 500 soil-rice samples in Pakistan. The results showed that 99.6 % and 12.8 % of soil samples exceeded the World Health Organization (WHO) allowable Se and Cd levels (7 and 0.35 mg/kg). In comparison, 23 % and 6 % of the grain samples exceeded WHO's allowable Se and Cd levels (0.3 and 0.2 mg/kg), respectively. Geographically Weighted Regression (GWR) model results further revealed spatial nonstationarity, confirming diverse associations between dependent variables (Se and Cd in rice grain) and independent variables from paddy soil and plant tissues (root and shoot), such as Soil Organic Matter (SOM), pH, Se, and Cd concentrations. High Se:Cd molar ratios (>1) and a negative correlation (r = -0.16, p < 0.01) between the Cd translocation factor (Cd in rice grain/Cd in root) and Se in roots suggest that increased root Se levels inhibit the transfer of Cd from roots to grains. The inverse correlation between Se and Cd in paddy grains was further characterized as Se deficiency, no risk, high Cd risk, Se risk, Cd risk, and Se-Cd co-exposure risk. There was no apparent risk for human co-consumption in 42.6 % of grain samples with moderate Se and low Cd. The remaining categories indicate differing degrees of risk. In the study area, 31 % and 20 % of grain samples with low Se and Cd indicate Se deficiency and risk, respectively. High Se and low Cd levels in rice samples suggest a potential hazard for severe Se exposure due to frequent rice consumption. This study not only systematically evaluates the pollution status of paddy-soil systems in Pakistan but also provides a reference to thoroughly contemplate the development of a scientific approach for evaluating human risks and the potential dangers associated with paddy soils and rice, specifically in regions characterized by low Se and low Cd concentrations, as well as those with moderate Se and high Cd concentrations. SYNOPSIS: This study is significant for understanding the effects of Se on Cd geochemical cycles and their interactions in paddy soil systems in Pakistan.
Collapse
Affiliation(s)
- Waqar Ali
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | | | - Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Li
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400045, China; Chongqing Field Observation Station for River and Lake Ecosystems, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
7
|
Sun J, Yang Y, Luo L. Pb speciation and elemental distribution in leeks by micro X-ray fluorescence and X-ray absorption near-edge structure. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:934-940. [PMID: 37615637 PMCID: PMC10481275 DOI: 10.1107/s1600577523006616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/25/2023]
Abstract
Vegetables are crucial to a human diet as they supply the body with essential vitamins, minerals, etc. Heavy metals that accumulate in plants consequently enter the food chain and endanger people's health. Studying the spatial distribution and chemical forms of elements in plant/vegetable tissues is vital to comprehending the potential interactions between elements and detoxification mechanisms. In this study, leek plants and soil from vegetable gardens near lead-zinc mines were collected and cultivated with 500 mg L-1 PbNO3 solutions for three weeks. Micro X-ray fluorescence was used to map the distribution of Pb and other chemical elements in leek roots, and X-ray absorption near-edge spectroscopy was used to assess the Pb speciation in leek roots and leaves. These findings demonstrated that Pb, Cu, Mn, Cr, Ti and Fe were detected in the outer rings of the root's cross section, and high-intensity points were observed in the epidermis. Zn, K and Ca, on the other hand, were distributed throughout the root's cross section. Leek root and leaf contained significant quantities of lead phosphate and basic lead carbonate at more than 80%, followed by lead sulfide (19%) and lead stearate (11.1%). The capacity of leek roots to convert ambient lead into precipitated lead and fix it on the root epidermis and other inner surfaces is a key mechanism for reducing the toxic effects of Pb.
Collapse
Affiliation(s)
- Jianling Sun
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, People’s Republic of China
- National Engineering Research Centre for Urban Environmental Pollution Control, Beijing 100037, People’s Republic of China
| | - Yongqiang Yang
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, People’s Republic of China
- National Engineering Research Centre for Urban Environmental Pollution Control, Beijing 100037, People’s Republic of China
| | - Liqiang Luo
- National Research Center for Geoanalysis, Beijing 100037, People’s Republic of China
| |
Collapse
|
8
|
Chi Y, Ma X, Wu J, Wang R, Zhang X, Chu S, Zhang D, Zhou P. Plant growth promoting endophyte promotes cadmium accumulation in Solanum nigrum L. by regulating plant homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131866. [PMID: 37329596 DOI: 10.1016/j.jhazmat.2023.131866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
The homeostasis regulating mechanism of endophyte enhancing cadmium (Cd) extraction by hyperaccumulator is poorly understood. Here, an endophyte strain E3 that belonged to Pseudomonas was screened from Cd hyperaccumulator Solanum nigrum L., which significantly improved the Cd phytoextraction efficiency of S. nigrum by 40.26%. The content and translocation factor of nutrient elements indicated that endophyte might regulate Cd accumulation by affecting the uptake and transport of magnesium and iron in S. nigrum. Gene transcriptional expression profile further revealed that SnMGT, SnIRT1, and SnIRT2, etc., were the key genes involved in the regulation of S. nigrum elements uptake by endophyte. However, changes in elemental homeostasis did not negatively affect plant growth. Endophyte inoculation promoted plant growth by fortifying photosynthesis as well as recruiting specific bacteria in S. nigrum endosphere, e.g., Pseudonocardiaceae, Halomonas. Notably, PICRUSt2 analysis and biochemical characterization jointly suggested that endophyte regulated starch degradation in S. nigrum leaves to maintain photosynthetic balance. Our results demonstrated that microecological characteristics of hyperaccumulator could be reshaped by endophyte, also the homeostasis regulation in endophyte enhanced hyperaccumulator Cd phytoextraction was significant.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
The study of EDTA enhanced Cd accumulation and formation in Napier grass using synchrotron μX-ray fluorescence imaging and X-ray absorption spectroscopy. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
10
|
Yi L, Shang XJ, Lv L, Wang Y, Zhang J, Quan C, Shi Y, Liu Y, Zhang L. Cadmium-induced apoptosis of Leydig cells is mediated by excessive mitochondrial fission and inhibition of mitophagy. Cell Death Dis 2022; 13:928. [PMID: 36335091 PMCID: PMC9637113 DOI: 10.1038/s41419-022-05364-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Cadmium is one of the environmental and occupational pollutants and its potential adverse effects on human health have given rise to substantial concern. Cadmium causes damage to the male reproductive system via induction of germ-cell apoptosis; however, the underlying mechanism of cadmium-induced reproductive toxicity in Leydig cells remains unclear. In this study, twenty mice were divided randomly into four groups and exposed to CdCl2 at concentrations of 0, 0.5, 1.0 and 2.0 mg/kg/day for four consecutive weeks. Testicular injury, abnormal spermatogenesis and apoptosis of Leydig cells were observed in mice. In order to investigate the mechanism of cadmium-induced apoptosis of Leydig cells, a model of mouse Leydig cell line (i.e. TM3 cells) was subjected to treatment with various concentrations of CdCl2. It was found that mitochondrial function was disrupted by cadmium, which also caused a significant elevation in levels of mitochondrial superoxide and cellular ROS. Furthermore, while cadmium increased the expression of mitochondrial fission proteins (DRP1 and FIS1), it reduced the expression of mitochondrial fusion proteins (OPA1 and MFN1). This led to excessive mitochondrial fission, the release of cytochrome c and apoptosis. Conversely, cadmium-induced accumulation of mitochondrial superoxide was decreased by the inhibition of mitochondrial fission through the use of Mdivi-1 (an inhibitor of DRP1). Mdivi-1 also partially prevented the release of cytochrome c from mitochondria to cytosol and attenuated cell apoptosis. Finally, given the accumulation of LC3II and SQSTM1/p62 and the obstruction of Parkin recruitment into damaged mitochondria in TM3 cells, the autophagosome-lysosome fusion was probably inhibited by cadmium. Overall, these findings suggest that cadmium induces apoptosis of mouse Leydig cells via the induction of excessive mitochondrial fission and inhibition of mitophagy.
Collapse
Affiliation(s)
- Lingna Yi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xue-Jun Shang
- Department of Urology, Jinling Hospital Affiliated to Nanjing University School of Medicine, Nanjing, 210002, China
| | - Linglu Lv
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yixiang Wang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jingjing Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chao Quan
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yuqin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yunhao Liu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
11
|
Dai H, Wei S, Twardowska I, Hou N, Zhang Q. Cosmopolitan cadmium hyperaccumulator Solanum nigrum: Exploring cadmium uptake, transport and physiological mechanisms of accumulation in different ecotypes as a way of enhancing its hyperaccumulative capacity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115878. [PMID: 36056491 DOI: 10.1016/j.jenvman.2022.115878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The non-essential element cadmium (Cd) is one of the most problematic priority soil pollutants due to multitude of pollution sources, mobility in the environment and high toxicity to all living organisms. This strongly limits also the number and occurrence of species - Cd hyperaccumulators to be used for soil phytoremediation. However, efficient Cd hyperaccumulator Solanum nigrum L. appeared to commonly occur worldwide as a representative of Solanum nigrum complex of a great taxonomic diversity. This led to the idea that the search among different ecotypes of Solanum nigrum L. may result in the identifying the most efficient Cd hyperaccumulator without applying to soil any additional measures such as chemical ligands. In this first pioneering comparative study, three randomly selected ecotypes of S. nigrum L. ssp. nigrum from Shenyang (SY) and Hanzhong (HZ) in China, and Kyoto (KY) in Japan were used in pot experiments at soil treatments from 0 to 50 mg Cd kg-1. The Cd accumulation capacity appeared to represent KY > HZ > SY range, KY ecotype accumulating up to 73%, and HZ ecotype up to 67% bigger total Cd load than SY ecotype. At Cd content in soil up to 10 mg kg-1, no significant effect on the all ecotype biomass, photosynthetic activities, contents of first line defense antioxidant enzymes (CAT, SOD, GPX), and scavenging antioxidants ASA, GSH, was observed. At Cd in soil>10 mg kg-1all these parameters showed decreasing, and cell damage indicator MDA increasing trend, however total accumulated Cd load further increased up to 30 mg kg Cd in soil in all ecotypes in the same KY > HZ > SY sequence. The study proved the great potential of enhancing Cd accumulation capacity of S. nigrum species by selecting the most efficient ecotypes among commonly occurring representatives of S. nigrum complex worldwide. Moreover, these first comparative experiments convinced that the cosmopolitan character and great variety of species/subspecies belonging to Solanum nigrum complex all over the world opens the new area for successful soil phytoremediation with the use of the most appropriate eco/genotypes of S. nigtum as a tool for the best Cd-contaminated soil management practice.
Collapse
Affiliation(s)
- Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Irena Twardowska
- Institute of Environmental Engineering of the Polish Academy of Sciences, 41-819, Zabrze, Poland.
| | - Nan Hou
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Qing Zhang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|