1
|
Pansini A, Berlino M, Mangano MC, Sarà G, Ceccherelli G. Meta-analysis reveals the effectiveness and best practices for the iconic Mediterranean seagrass restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179325. [PMID: 40188723 DOI: 10.1016/j.scitotenv.2025.179325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
Seagrass forest restoration programs have become a global priority to reverse their decline and regain their ecosystem services. However, defining the restoration effectiveness has remained controversial, probably due to the wide selection of procedures experienced mainly on short-term periods and local scales. Here, scientific literature from 40 years of experience on experimental works and active restoration interventions of the Mediterranean foundation seagrass Posidonia oceanica has been systematically summarized through a meta-analysis. Twenty-five variables concerning the characteristics of the site selection, procedural context, and plant performance evidenced the best practices for the seagrass restoration. Results have evidenced the importance of the correct selection of the donor and receiving site, the use of plagiotropic cuttings bearing at least three shoots, and the need of monitoring the total extent of restored area for long term periods, considering more than one plant trait to define the plant performance. Higher biological levels should be also considered to estimate the recovery of the habitat structure and ecosystem functioning.
Collapse
Affiliation(s)
- Arianna Pansini
- University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, via Piandanna 4, 07100 Sassari, Italy.
| | - Manuel Berlino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90142 Palermo, Italy; National Biodiversity Future Centre (NBFC), Palermo Piazza Marina 61, 90133 Palermo, Italy
| | - Maria Cristina Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90142 Palermo, Italy; National Biodiversity Future Centre (NBFC), Palermo Piazza Marina 61, 90133 Palermo, Italy
| | - Gianluca Sarà
- National Biodiversity Future Centre (NBFC), Palermo Piazza Marina 61, 90133 Palermo, Italy; University of Palermo, Department of Earth and Marine Sciences (DiSTeM), Palermo, Italy
| | - Giulia Ceccherelli
- University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, via Piandanna 4, 07100 Sassari, Italy; National Biodiversity Future Centre (NBFC), Palermo Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
2
|
Mesquita YW, Massignani CCVN, Di Domenico M, Nagai RH. Microplastic occurrence, distribution, and zonation at Paraná's beaches-South of Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36491-4. [PMID: 40338430 DOI: 10.1007/s11356-025-36491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Microplastics are emerging pollutants that are increasingly reported on beaches and potentially impacting the environment and ecosystems. This study presents the first assessment of microplastic (MP) abundance and distribution on oceanic beaches of Paraná, South Brazil. Surface sediments samples retrieved from different beach zones across four beaches were analyzed for their MP (in the 1 to 5 mm size fraction-large microplastics) abundance, morphotype, and polymer composition. MP were found on all the studied beaches, totaling 846 particles, with mean concentrations of 51.9 MP/m2 or 2.3 MP/kg dw. The most common morphotypes were fragments (40%), styrofoam (28%), and foams (10%), mainly composed of polyethylene (35%) and polypropylene (29%). MP concentration distribution significantly differed between beach zones, and morphotype distribution showed differences between beaches. MP distribution followed a cross-shore pattern, with the backshore as a main accumulation area. Our study suggests that natural environmental factors such as grain size and beach slope primarily control MP distribution and accumulation along sandy shores. At the same time, the proximity of potential MP sources influences morphotype variation among beaches.
Collapse
Affiliation(s)
- Yan Weber Mesquita
- Graduate Program in Coastal and Oceanic Systems, Federal University of Paraná, Av Beira-Mar, S/N, Pontal Do Sul, Pontal Do Paraná, PR, 83255-976, Brazil
- Oceanographic Institute, University of Sao Paulo, Praça Do Oceanográfico, 191, São Paulo, SP, 05508-120, Brazil
| | | | - Maikon Di Domenico
- Center for Marine Studies, Federal University of Paraná, Pontal Do Sul, Av Beira-Mar, S/N, Pontal Do Paraná, PR, 83255-976, Brazil
| | - Renata Hanae Nagai
- Graduate Program in Coastal and Oceanic Systems, Federal University of Paraná, Av Beira-Mar, S/N, Pontal Do Sul, Pontal Do Paraná, PR, 83255-976, Brazil.
- Oceanographic Institute, University of Sao Paulo, Praça Do Oceanográfico, 191, São Paulo, SP, 05508-120, Brazil.
| |
Collapse
|
3
|
Barthelemy N, Mermillod-Blondin F, Espeyte A, Wazne M, Hervant F, Broillet G, Degli-Esposti D, Chaumot A, Krause S, Simon L, Datry T. Increased assimilation efficiency and mortality rate in Gammarus fossarum exposed to PVC microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126029. [PMID: 40064230 DOI: 10.1016/j.envpol.2025.126029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Shredder organisms play a key role in rivers by feeding and fragmenting coarse organic matter that will then be exploited by other consumers. The effects of microplastics (MPs) on Gammarus sp., an ubiquitous genus of freshwater amphipods, and its shredding activity have been broadly investigated. However, the potential behavioral and physiological effects of different sizes of MPs on Gammarus sp. remain overlooked despite the recognized influence of MP size on MP toxicity. This study investigated the effects of a 28-day exposure to four different concentrations of two size fractions of PVC-microplastics (PVC-MPs), on Gammarus fossarum mortality rate, feeding rate, assimilation efficiency, and expression of proteins involved in key processes. Increased mortality was observed for all treatments exposed to PVC-MPs, with higher mortality in the presence of smaller PVC-MPs at the highest concentration. No protein biomarker modulation was observed in presence of PVC-MPs, suggesting that no metabolic stress but direct physical damages of PVC-MPs might have led to the observed mortalities. No difference was observed for feeding rates, but a higher assimilation efficiency was measured for individuals exposed to PVC-MPs, regardless of the concentration. This could be due to energy reallocation towards defense mechanisms or indicate a potential shift in digestive microbiota. This study highlighted the toxicity of PVC-MPs, particularly of smaller sizes and even at relatively low concentration, for Gammarus fossarum. PVC-MP pollution may therefore alter the functional integrity of river ecosystems by reducing the abundance of shredder organisms and, subsequently, the process of leaf litter decomposition.
Collapse
Affiliation(s)
- Nans Barthelemy
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France; INRAE, Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, Cedex, Villeurbanne, France.
| | | | - Anabelle Espeyte
- INRAE, Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, Cedex, Villeurbanne, France
| | - Mohammad Wazne
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Frédéric Hervant
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Ghislaine Broillet
- Université Claude Bernard Lyon 1, LGL-TPE, UMR 5276, Villeurbanne, 69622, France
| | - Davide Degli-Esposti
- INRAE, Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, Cedex, Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, Cedex, Villeurbanne, France
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Laurent Simon
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Thibault Datry
- INRAE, Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, Cedex, Villeurbanne, France
| |
Collapse
|
4
|
Ding B, Xu D, Wang S, Liu W, Zhang Q. Additive Effects of Multiple Global Change Drivers on Terrestrial Nitrogen Cycling Worldwide. GLOBAL CHANGE BIOLOGY 2025; 31:e70176. [PMID: 40181569 DOI: 10.1111/gcb.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Global change has dramatically altered the Earth's biogeochemical cycles. However, the interactive effects of multiple global change factors (GCFs) on terrestrial nitrogen (N) cycling worldwide remain unclear, limiting the ability to predict how future global change will affect the global N cycle. We conducted a meta-analysis of 108 published articles to evaluate the main and interactive effects of elevated CO2, N addition, warming, and altered precipitation on soil N pools (NH4 +, NO3 -, and organic N) and transformation rates (N mineralization, nitrification, and denitrification) across terrestrial ecosystems. Results showed that single GCFs impacted the soil N cycle in different directions and magnitudes, with N addition and increased precipitation having the strongest positive effects on N pools and transformation rates, respectively. Moreover, the positive effects of N addition on the soil N cycle were generally enhanced when combined with other GCFs. Although the interactions of multiple GCFs were commonly additive (66.2%-83.3%), both synergistic (10.5%-15.1%) and antagonistic (2.8%-18.9%) effects were also observed. The types of treatment and ecosystem, geographic location, and climate all regulated the responses of soil N pools to GCFs to some degree, while only the types of treatment and ecosystem significantly affected the response of soil transformation rates to GCFs. These findings emphasize the importance of considering interactive effects among GCFs on terrestrial N cycling and highlight the necessity of incorporating these interactions into Earth system models for accurate predictions of N cycling responses to global changes.
Collapse
Affiliation(s)
- Bangjing Ding
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Di Xu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhi Liu
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Quanfa Zhang
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Andrade C, Sepúlveda T, Pinto B, Rivera C, Aldea C, Urbina M. The feeding mode effect: influence on particle ingestion by four invertebrates from Sub-Antarctic and Antarctic waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8318-8339. [PMID: 40069477 PMCID: PMC11953159 DOI: 10.1007/s11356-025-36144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/17/2025] [Indexed: 03/29/2025]
Abstract
Microplastic (MP) pollution is a significant threat to marine environments not only due to its widespread presence but also because of the alarming emergence of ingestion records among benthic organisms. In this study, MP prevalence was assessed in the stomach of the crustaceans Lithodes santolla and Grimothea gregaria and the gastropods Nacella deaurata and N. concinna. Particles were analyzed with Fourier-transform infrared (FTIR) spectroscopy. Overall, the analysis revealed that the particles were mainly microfibers composed of cellulose/rayon (60%), followed by MPs (30%), and undetermined not registered in the library (10%). Higher prevalence was found in marine benthic grazers compared to scavengers, with the latter showing low particle prevalence in their stomach contents. Grazers presented a significantly higher abundance per individual but a lower size of ingested particles compared to scavengers. When grouped by trophic levels, tertiary consumers presented significantly lower abundances per individual but larger sizes of the ingested particles. Pearson's correlations showed no significant associations between particle abundance/size and species body size. The results of this study may suggest that continued MP pollution in marine environments and the associated accidental ingestion by marine organisms will alter the energy flow and organic matter availability in benthic food webs, with species that perform certain functional traits more susceptible to being affected.
Collapse
Affiliation(s)
- Claudia Andrade
- Laboratorio de Ecología Funcional, Instituto de La Patagonia, Universidad de Magallanes, Av. Pdte. Manuel Bulnes #01890, Punta Arenas, Chile.
| | - Taryn Sepúlveda
- Laboratorio de Ecología Funcional, Instituto de La Patagonia, Universidad de Magallanes, Av. Pdte. Manuel Bulnes #01890, Punta Arenas, Chile
| | - Bárbara Pinto
- Laboratorio de Ecología Funcional, Instituto de La Patagonia, Universidad de Magallanes, Av. Pdte. Manuel Bulnes #01890, Punta Arenas, Chile
| | - Cristóbal Rivera
- Laboratorio de Ecología Funcional, Instituto de La Patagonia, Universidad de Magallanes, Av. Pdte. Manuel Bulnes #01890, Punta Arenas, Chile
| | - Cristian Aldea
- Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias, Universidad de Magallanes, Punta Arenas, Chile
- Centro de Investigación Gaia-Antártica, Instituto de La Patagonia, Universidad de Magallanes, Punta Arenas, Chile
| | - Mauricio Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| |
Collapse
|
6
|
Gonzalez-Pineda M, Avila C, Lacerot G, Lozoya JP, Teixeira de Mello F, Faccio R, Pignanelli F, Salvadó H. Experimental ingestion of microplastics in three common Antarctic benthic species. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106879. [PMID: 39622123 DOI: 10.1016/j.marenvres.2024.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 02/09/2025]
Abstract
Microplastics (MP) have spread to every corner of the globe, reaching remote areas like Antarctica. Recent studies detected MP in marine environments, including biota. Benthic organisms suffer negative effects upon MP ingestion, leading to impacts on their populations. To address the current knowledge gap on how Antarctic benthic invertebrates interact with MP, we conducted an experiment exposing a bivalve (Aequiyoldia eightsii) and two ascidians (Cnemidocarpa verrucosa and Molgula pedunculata) to polyethylene microbeads (mb). Specimens of each species were exposed for 48 h to two different concentrations of microbeads, a low dose (100 mb/l) and a high dose (1000 mb/l), with the same proportion of four different microbead size fractions (Fine (10-20 μm), Small (45-53 μm), Medium (106-125 μm), and Large (850-1000 μm)). After exposure, all three species had ingested microbeads. Significant differences between doses were observed in A. eightsii and C. verrucosa but not in M. pedunculata. Both ascidians ingested microbeads of all size fractions, whereas the bivalve did not ingest the largest microbeads. No significant differences were found between species in the number nor sizes of microbeads ingested. Minor variations between taxa may be attributed to the specific biology and anatomy of each species. Our study highlights the need for a deeper understanding of Antarctic benthic ecosystems, suggesting that the interaction with MP is species-specific. We believe that this study provides a baseline for assessing MP pollution in Antarctic benthic invertebrates and will help to inform policy-makers in protecting and preserving Antarctic marine ecosystems from MP pollution.
Collapse
Affiliation(s)
- Mariona Gonzalez-Pineda
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Gissell Lacerot
- Departamento Interdisciplinario de Sistemas Costeros y Marinos, Centro Universitario Regional del Este, Universidad de la República, Av. Cachimba del Rey entre Bvar. Artigas y Av. Aparicio Saravia, CP 20000, Maldonado, Uruguay
| | - Juan Pablo Lozoya
- Departamento Interdisciplinario de Sistemas Costeros y Marinos, Centro Universitario Regional del Este, Universidad de la República, Av. Cachimba del Rey entre Bvar. Artigas y Av. Aparicio Saravia, CP 20000, Maldonado, Uruguay
| | - Franco Teixeira de Mello
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este, Universidad de la República, Av. Cachimba del Rey entre Bvar. Artigas y Av. Aparicio Saravia, CP 20000, Maldonado, Uruguay
| | - Ricardo Faccio
- Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, C.P. 11800, Uruguay
| | - Fernando Pignanelli
- Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, C.P. 11800, Uruguay
| | - Humbert Salvadó
- Department of Evolutionary Biology, Ecology and Environmental Sciences, & Water Research Institute (IdRA), University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain
| |
Collapse
|
7
|
Sbarberi R, Magni S, Ponti B, Tediosi E, Neri MC, Binelli A. Multigenerational effects of virgin and sampled plastics on the benthic macroinvertebrate Chironomus riparius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107205. [PMID: 39667267 DOI: 10.1016/j.aquatox.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Although sediments are important reservoirs of plastics, most of the ecotoxicological studies on these contaminants are focused on the organisms living in the water column, while only a smaller number of evidence concerns the plastic impact on benthic species. Therefore, this study compared the multigenerational effects on the sediment-dwelling midge Chironomus riparius exposed to both virgin polystyrene microbeads (22,400-224,000 plastics/kg sediments dry weight), and plastic mixtures (40-420 plastics/kg dry weight) collected from four of the main tributaries of Po River (Ticino, Adda, Oglio and Mincio Rivers, Northern Italy) to evaluate the role played by other characteristics related to these physical contaminants in determining their toxicity as opposed to concentration alone. The modified Chironomid Life-Cycle Toxicity Test (OECD 233) was used to evaluate the multigenerational effects on the Emergence and Development Rates, Fecundity and Fertility. In addition, a biomarkers' suite of cellular stress, neurotoxicity, and energetic metabolism was applied in the 2nd generation (2nd/3rd instar of larvae) to investigate the potential mechanisms associated to the apical effects. Our results showed no significant (p > 0.05) multigenerational effect for any of the endpoints tested for the virgin plastics' exposures. Coherently, no significant effects on biomarkers were measured. Concerning the sampled plastics, the particles collected in Adda River instead induced a significant decrease (p < 0.05) of the Emergence Rate in the 2nd generation, suggesting that this parameter was the most susceptible among those measured. These results highlight that the different plethora of polymers, sizes and shapes of plastics sampled in natural ecosystems, compared to homogeneous characteristics of virgin polystyrene microbeads, appears to have considerable importance over concentration alone in determining the toxicity of these emerging contaminants.
Collapse
Affiliation(s)
- Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Benedetta Ponti
- LabAnalysis group, Via Saronnino 86/A, 21040 Origgio, Varese, Italy
| | - Erica Tediosi
- LabAnalysis group, Via Saronnino 86/A, 21040 Origgio, Varese, Italy
| | | | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
8
|
Pantó G, Vanreusel A, Vercauteren M, Asselman J, Van Colen C. Seabed microplastics in the European continental shelf: Unravelling physical and biological transport pathways and reciprocal fauna-Polymer relationships. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125392. [PMID: 39608744 DOI: 10.1016/j.envpol.2024.125392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Marine sediments are recognized as major sinks for microplastics, including remote areas which were previously considered "plastic-free". The understanding of microplastic dynamics in marine sediments is however limited due to the numerous pelagic and benthic pathways involved, and how these are influenced by physico-chemical interactions with the particles. European continental shelves border densely populated areas and face a high risk of microplastic contamination. In this study we quantified microplastics in soft-sediments of European coastal seas and characterized their polymer composition separating surface sediments from deeper layers. We then analyzed the influence of water column and sediment properties on spatial variability of seabed microplastics and investigated the relationship with macrofauna communities. A higher proportion of negatively buoyant polymers in surface sediments (0-1 cm) across stations was explained by seawater salinity and sediment microalgal detritus, highlighting the role of riverine input and possibly the formation of hetero-aggregates in defining polymer deposition. Additionally, we found that seawater temperature influenced polymer composition in deeper sediment layers (0-3 cm), likely together with biological activities performed by macrobenthos such as ingestion and burial. Finally, we demonstrate that seabed microplastics contribute to the spatial variability in macrobenthos, highlighting that marine ecosystem functioning effects of microplastic pollution are likely mediated via the benthos.
Collapse
Affiliation(s)
- G Pantó
- University of Ghent, Marine Biology Research Group (MarBiol), Krijgslaan 281 - s8, 9000, Gent, Belgium
| | - A Vanreusel
- University of Ghent, Marine Biology Research Group (MarBiol), Krijgslaan 281 - s8, 9000, Gent, Belgium
| | - M Vercauteren
- University of Ghent, Blue Growth Research Lab, Wetenschapspark 1, 8400, Ostend, Belgium
| | - J Asselman
- University of Ghent, Blue Growth Research Lab, Wetenschapspark 1, 8400, Ostend, Belgium
| | - C Van Colen
- University of Ghent, Marine Biology Research Group (MarBiol), Krijgslaan 281 - s8, 9000, Gent, Belgium.
| |
Collapse
|
9
|
Antacli JC, Rimondino GN, Di Mauro R, Alurralde G, Servetto N, Garcia MD, González GA, Morales S, Sahade R, Vodopivez C, Schloss IR. Microplastic pollution in marine sediments of the Antarctic coastal environment of Potter Cove and nearby areas (25 de Mayo/King George Island, South Shetlands). MARINE POLLUTION BULLETIN 2024; 209:117236. [PMID: 39547068 DOI: 10.1016/j.marpolbul.2024.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Plastic contamination in the Southern Ocean is a growing issue. This study provides the first comprehensive analysis of marine microplastics (MPs) (0.1-5 mm) in surface sediments in Potter Cove and nearby areas around Argentina's Carlini station (25 de Mayo/King George Island, South Shetlands). Sediment samples from 31 sites (2020-2022) were collected to examine whether MP pollution originates from station activities or ocean currents. All samples contained MPs, averaging 0.18 ± 0.12 MPs/g of sediment, mainly microfibers (MFs) and irregular microfragments (MFRs) (0.11-6.23 mm) and irregular microfragments (MFRs) (0.09-4.57 mm). Infrared spectroscopy identified 13 polymer types, including cellulosic materials, polyester, and polyamide, with most MPs < 1 mm, showing aging signs, similar to laundry wear. This widespread distribution suggests contamination may stem from both local activities and external sources. Findings underscore the urgent need for MP pollution management and further research to identify sources and develop effective mitigation strategies.
Collapse
Affiliation(s)
- J C Antacli
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Av. Vélez Sarsfield 299, 5000, Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), CONICET, Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - R Di Mauro
- Gabinete de Zooplancton, Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA. Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - G Alurralde
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden; Baltic Marine Environment Protection Commission HELCOM, Helsinki, FI-00160, Finland
| | - N Servetto
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Av. Vélez Sarsfield 299, 5000, Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - M D Garcia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Agencia de Investigación Científica del Ministerio Público de La Pampa, Corona Martínez y Constituyentes, Santa Rosa, La Pampa, Argentina
| | - G A González
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Av. Vélez Sarsfield 299, 5000, Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - S Morales
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Av. Vélez Sarsfield 299, 5000, Córdoba, Argentina
| | - R Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Av. Vélez Sarsfield 299, 5000, Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - C Vodopivez
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín, Buenos Aires, Argentina
| | - I R Schloss
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín, Buenos Aires, Argentina; Centro Austral de Investigaciones Científicas (CADIC, CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina; Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
10
|
Zhu T, Yao C, Hong S, Song W, Zanuri NM, Lv W, Jiang Q. Multi-omics reveal toxicity mechanisms underpinning nanoplastic in redclaw crayfish (Cherax quadricarinatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175680. [PMID: 39173758 DOI: 10.1016/j.scitotenv.2024.175680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
We investigated the effects of different nanoplastic (NP, size = 100 nm) concentrations on red crayfish (Cherax quadricarinatus) and examined toxicity mechanisms. We established four concentration groups (control (CK): 0 μg/L; Low: 100 μg/L; Medium: 500 μg/L; and High: 1000 μg/L) and analyzed toxicity effects in C. quadricarinatus hepatopancreas using histopathological, transcriptomic, metabolomic, and fluorescence methods. NP exposure caused histological lesions and oxidative stress in hepatopancreas, and also significantly decreased glutathione (GSH) (P < 0.05) but significantly increased malondialdehyde content (MDA) (P < 0.05) in NP-treated groups. By analyzing different metabolic indicators, total cholesterol (T-CHO) content significantly increased (P < 0.05) and triglyceride (TG) content significantly decreased in Medium and High (P < 0.05). Transcriptomic analyses revealed that NPs influenced apoptosis, drug metabolism-cytochrome P450, and P53 signaling pathways. Metabolomic analyses indicated some metabolic processes were affected by NPs, including bile secretion, primary bile acid biosynthesis, and cholesterol metabolism. Caspase 3, 8, and 9 distribution levels in hepatopancreatic tissues were also determined by immunofluorescence; positive caspase staining increased with increased NP concentrations. Additionally, by examining relative Bcl-2, Bax, Apaf-1, and p53 mRNA expression levels, Bcl-2 expression was significantly decreased with increasing NP concentrations; and the expression of Bcl-2 was increasing significantly with the NPs concentration increasing. Bax expression in Low, Medium, and High groups was also significantly higher when compared with the CK group (P < 0.05); with High group levels significantly higher than in Low and Medium groups (P < 0.05). P53 expression was significantly increased in Low, Medium, and High groups (P < 0.05). Thus, NPs induced apoptosis in C. quadricarinatus hepatopancreatic cells, concomitant with increasing NP concentrations. Therefore, we identified mechanisms underpinning NP toxicity in C. quadricarinatus and provide a theoretical basis for exploring NP toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Tian Zhu
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Penang 11700, Malaysia
| | - Chunxia Yao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shuang Hong
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Norlaila Mohd Zanuri
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Penang 11700, Malaysia
| | - Weiwei Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, No. 79 Chating East Rd, Nanjing 210017, China.
| |
Collapse
|
11
|
Zhang Y, Shi P, Cui L. Microplastics in riverine systems: Recommendations for standardized sampling, separation, digestion and characterization. MARINE POLLUTION BULLETIN 2024; 207:116950. [PMID: 39243470 DOI: 10.1016/j.marpolbul.2024.116950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Microplastic (MP) pollution has emerged as a global concern, prompting numerous studies on MP detection. Due to the remaining methodological challenges, it affects the accuracy and reliability of MP's impact assessment on river systems. To address this, the establishment of standardized operating protocols is crucial, encompassing sampling, separation, digestion, and characterization methods. This study evaluates the current tools used for identifying and quantifying MPs in riverine ecosystems, aiming to offer harmonized guidelines for future protocols. Recommendations include adopting a consistent format for reporting MP concentrations and providing improved information on sampling, separation, and digestion for enhanced cross-study comparisons. The importance of quality assurance and quality control is also discussed. Furthermore, we highlight unresolved issues, proposing avenues for further investigation. Suggestions encompass standardizing river sampling methods, optimizing technical steps and analysis processes, and enhancing the accuracy, reliability, and comparability of detection data to advance our understanding of MPs in river environments.
Collapse
Affiliation(s)
- Yan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Peng Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China.
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
12
|
Pantó G, Aguilera Dal Grande P, Vanreusel A, Van Colen C. Fauna - Microplastics interactions: Empirical insights from benthos community exposure to marine plastic waste. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106664. [PMID: 39098304 DOI: 10.1016/j.marenvres.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Microplastic deposition in soft marine sediments raises concerns on their role in sediment habitats and unknown effects on resident macrobenthic communities. To assess the reciprocal influence that MPs and macrobenthos might have on each other, we performed a mesocosm experiment with ambient concentrations of environmental Polyethylene (PE) and a non-manipulated, natural macrobenthic community from the Belgian part of the North Sea (BPNS). Our results show that PE fragments increase mortality of abundant bivalves (specifically Abra alba) after 30 days of exposure but not for the most abundant polychaete Owenia fusiformis, possibly due to its predominant suspension feeding behavior. Fast burial of surface MPs exposes deep-dwelling burrowers to the pollutant, however reducing the amount of MPs interacting with (sub) surface living fauna. We conclude that macrobenthos promotes the sequestration of deposited MPs, counteracting resuspension, and can have cascading effects on biodiversity due to their effect on abundant and functionally important species.
Collapse
Affiliation(s)
- G Pantó
- Ghent University, Marine Biology Research Group, Belgium.
| | | | - A Vanreusel
- Ghent University, Marine Biology Research Group, Belgium
| | - C Van Colen
- Ghent University, Marine Biology Research Group, Belgium
| |
Collapse
|
13
|
Lee YM, Choi KM, Mun SH, Yoo JW, Jung JH. Gut microbiota composition of the isopod Ligia in South Korea exposed to expanded polystyrene pollution. PLoS One 2024; 19:e0308246. [PMID: 39110709 PMCID: PMC11305568 DOI: 10.1371/journal.pone.0308246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024] Open
Abstract
Plastics pose a considerable challenge to aquatic ecosystems because of their increasing global usage and non-biodegradable properties. Coastal plastic debris can persist in ecosystems; however, its effects on resident organisms remain unclear. A metagenomic analysis of the isopoda Ligia, collected from clean (Nae-do, ND) and plastic-contaminated sites (Maemul-do, MD) in South Korea, was conducted to clarify the effects of microplastic contamination on the gut microbiota. Ligia gut microbiota's total operational taxonomic units were higher in ND than in MD. Alpha diversity did not differ significantly between the two Ligia gut microbial communities collected from ND and MD, although richness (Observed species) was lower in MD than in ND. Proteobacteria (67.47%, ND; 57.30%, MD) and Bacteroidetes (13.63%, ND; 20.76%, MD) were the most abundant phyla found at both sites. Significant different genera in Ligia from EPS-polluted sites were observed. Functional gene analysis revealed that 19 plastic degradation-related genes, including those encoding hydrogenase, esterase, and carboxylesterase, were present in the gut microbes of Ligia from MD, indicating the potential role of the Ligia gut microbiota in plastic degradation. This study provides the first comparative field evidence of the gut microbiota dynamics of plastic detritus consumers in marine ecosystems.
Collapse
Affiliation(s)
- Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, Republic of Korea
| | - Kwang-Min Choi
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Seong Hee Mun
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
- Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Witczak A, Przedpełska L, Pokorska-Niewiada K, Cybulski J. Microplastics as a Threat to Aquatic Ecosystems and Human Health. TOXICS 2024; 12:571. [PMID: 39195673 PMCID: PMC11359092 DOI: 10.3390/toxics12080571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
The threat posed by microplastics has become one of the world's most serious problems. Recent reports indicate that the presence of microplastics has been documented not only in coastal areas and beaches, but also in water reservoirs, from which they enter the bodies of aquatic animals and humans. Microplastics can also bioaccumulate contaminants that lead to serious damage to aquatic ecosystems. The lack of comprehensive data makes it challenging to ascertain the potential consequences of acute and chronic exposure, particularly for future generations. It is crucial to acknowledge that there is still a substantial need for rapid and effective techniques to identify microplastic particles for precise evaluation. Additionally, implementing legal regulations, limiting plastic production, and developing biodegradation methods are promising solutions, the implementation of which could limit the spread of toxic microplastics.
Collapse
Affiliation(s)
- Agata Witczak
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland; (L.P.); (K.P.-N.); (J.C.)
| | | | | | | |
Collapse
|
15
|
Sahu N, Bhowmik M, Lakra RK, Haldar S. Tracing microplastic pollution in Mahi River estuary, Gulf of Khambhat, Gujarat, and their influence on functional traits of macrobenthos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47882-47898. [PMID: 39012532 DOI: 10.1007/s11356-024-34342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/06/2024] [Indexed: 07/17/2024]
Abstract
Most maritime habitats contain microplastic (MPs) contamination. The quality of the benthic ecosystem's habitat is declining as MPs accumulate in marine system. The contamination of MPs must therefore be investigated. We studied MPs pollution in the Mahi River, estuary, and macrobenthos. In the present study, the abundance of MPs fragments gradually decreased from the high tide zone to the low tide zone and muddy sediment has high MPs concentrations due to sediment characteristics and particle size. The majority of sediment and biota MPs were fibrous and black. MPs in both silt and biota have identical chemical compositions (modified cellulose), shapes, and colors. A significant source of pollutants and MPs fluxing into the ocean is well within the river system. Perinereis aibuhitensis ingested the most MPs out of 11 species, whereas Amphipods did not show any presence of MPs. Our findings showed that functional characteristics are essential for macrobenthos MPs intake. MPs in macrobenthos are high due to biological functions such as feeding, ecological groups, feeding mechanisms, body size, and bioturbation. MPs in marine sediment and organisms are tracked down to the Mahi River exceeding 50 km. The present work has investigated the idea that the macrobenthos that live in the sediment are ingesting the MPs that are building up there and this ingestion relies on the macrobenthos' functional characteristics.
Collapse
Affiliation(s)
- Nosad Sahu
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
- Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Kochi, 682508, India
| | - Moumita Bhowmik
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Raj Kiran Lakra
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair, 744112, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Gautam K, Dwivedi S, Verma R, Vamadevan B, Patnaik S, Anbumani S. Combined effects of polyethylene microplastics and carbendazim on Eisenia fetida: A comprehensive ecotoxicological study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123854. [PMID: 38527586 DOI: 10.1016/j.envpol.2024.123854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Microplastic (MP) pollution is becoming an emerging environmental concern across aquatic and terrestrial ecosystems. Plastic mulching and the use of pesticides in agriculture can lead to microplastics and agrochemicals in soil, which can result in unintended exposure to non-target organisms. The combined toxicity of multiple stressors represents a significant paradigm shift within the field of ecotoxicology, and its exploration within terrestrial ecosystems involving microplastics is still relatively limited. The present study investigated the combined effects of polyethylene MP (PE-MP) and the agrochemical carbendazim (CBZ) on the earthworm Eisenia fetida at different biological levels of organization. While E. fetida survival and reproduction did not exhibit significant effects following PE-MP treatment, there was a reduction in cocoon and hatchling numbers. Notably, prolonged exposure revealed delayed toxicity, leading to substantial growth impairment. Exposure to CBZ led to significant alterations in the endpoints mentioned above. While there was a decrease in cocoon and hatchling numbers, the combined treatment did not yield significant effects on earthworm reproduction except at higher concentrations. However, lower concentrations of PE-MP alongside CBZ induced a noteworthy decline in biomass content, signifying a form of potentiation interaction. In addition, concurrent exposure led to synergistic effects, from oxidative stress to modifications in vital organs such as the body wall, intestines, and reproductive structures (spermathecae, seminal vesicles, and ovarian follicles). The comparison of multiple endpoints revealed that seminal vesicles and ovarian follicles were the primary targets during the combined exposure. The research findings suggest that there are variable and complex responses to microplastic toxicity in terrestrial ecosystems, especially when combined with other chemical stressors like agrochemicals. Despite these difficulties, the study implies that microplastics can alter earthworms' responses to agrochemical exposure, posing potential ecotoxicological risks to soil fauna.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow, 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shreya Dwivedi
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow, 226 008, Uttar Pradesh, India
| | - Rahul Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Water Analysis Laboratory, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Beena Vamadevan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Central Pathology Laboratory, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Water Analysis Laboratory, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow, 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Langknecht T, Pelletier M, Robinson S, Burgess RM, Ho KT. The distribution of sediment microplastics assemblages is driven by location and hydrodynamics, not sediment characteristics, in the Gulf of Maine, USA. MARINE POLLUTION BULLETIN 2024; 202:116393. [PMID: 38669855 PMCID: PMC11162549 DOI: 10.1016/j.marpolbul.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Microplastics (MP) are found in marine sediments across the globe, but we are just beginning to understand their spatial distribution and assemblages. In this study, we quantified MP in Gulf of Maine, USA sediments. MP were extracted from 20 sediment samples, followed by polymer identification using Raman spectroscopy. We detected 27 polymer types and 1929 MP kg-1 wet sediment, on average. Statistical analyses showed that habitat, hydrodynamics, and station proximity were more important drivers of MP assemblages than land use or sediment characteristics. Stations closer to one another were more similar in their MP assemblages, tidal rivers had higher numbers of unique plastic polymers than open water or embayment stations, and stations closer to shore had higher numbers of MP. There was little evidence of relationships between MP assemblages and land use, sediment texture, total organic carbon, or contaminants.
Collapse
Affiliation(s)
- Troy Langknecht
- ORAU c/o U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA; Rhode Island Department of Environmental Management, Bureau of Natural Resources, 235 Promenade Street, Providence, RI 02908, USA
| | - Marguerite Pelletier
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Sandra Robinson
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA.
| | - Kay T Ho
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| |
Collapse
|
18
|
Alves NM, Rodriguez J, Di Mauro R, Rodríguez JS, Maldonado D, Braverman MS, Temperoni B, Diaz MV. Like noodles in a soup: Anthropogenic microfibers are being ingested by juvenile fish in nursery grounds of the Southwestern Atlantic Ocean. MARINE POLLUTION BULLETIN 2024; 202:116368. [PMID: 38678732 DOI: 10.1016/j.marpolbul.2024.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
The balance between marine health and ecosystem sustainability confronts a pressing threat from anthropogenic pollution. Estuaries are particularly susceptible to contamination, notably by anthropogenic microfibers originated from daily human activities in land and in fishing practices. This study examines the impact of anthropogenic microfibers on the whitemouth croaker in an estuarine environment of the Southwestern Atlantic Ocean during cold and warm seasons. The presence of anthropogenic microfibers was revealed in 64 % of juvenile gastrointestinal tracts, and 94 % of water samples, and concentrations were influenced by factors such as temperature, bay zone, and fish body length. Blue and black anthropogenic microfibers, with a rather new physical aspect, were dominant. This study highlights the impact of microfibers in a heavily anthropized body of water, subject to federal and local regulations due to the presence of commercially significant fish species inhabiting this area.
Collapse
Affiliation(s)
- Nadia M Alves
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| | - Julieta Rodriguez
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| | - Rosana Di Mauro
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina.
| | - Julieta S Rodríguez
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina
| | - David Maldonado
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina
| | - Mara S Braverman
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina
| | - Brenda Temperoni
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| | - Marina V Diaz
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| |
Collapse
|
19
|
Hu X, Chen Y. Response mechanism of non-biodegradable polyethylene terephthalate microplastics and biodegradable polylactic acid microplastics to nitrogen removal in activated sludge system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170516. [PMID: 38307283 DOI: 10.1016/j.scitotenv.2024.170516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/30/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
The issue of microplastics (MPs) has gained more attention among researchers and the public; however, there is still a lot to be studied about its impact on biological wastewater treatment. In this study, the effects of non-biodegradable polyethylene terephthalate (PET) and biodegradable polylactic acid (PLA) on wastewater treatment by sequencing batch reactor (SBR) were compared. The results showed that PET and PLA reduced the removal efficiency of NH4+-N by 1.7 % and 21.2 %, respectively. Structural equation functional model (SEM) analysis was used to infer the potential mechanism of PLA affecting ammonia oxidation. PLA primarily inhibits the activity of ammonia monooxygenase (AMO), while promoting an increase in reactive oxygen species (ROS) and antioxidant enzyme activity. Accordingly, the toxic effect of PLA further reduced the abundance of ammonia-oxidizing bacteria. This study showed that biodegradable MPs have a greater potential impact on wastewater treatment than non-biodegradable MPs, which warrants further investigation.
Collapse
Affiliation(s)
- Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
20
|
Li G, Liu X, Sun X, Huang L, Kuang W, Ou J, Zhang J, Zhang Z, Li H, Tang H, Feng C, Gu L, Yang C, Peili W, Wang J. Polystyrene microplastics induce anxiety via HRAS derived PERK-NF-κB pathway. ENVIRONMENT INTERNATIONAL 2024; 185:108543. [PMID: 38452464 DOI: 10.1016/j.envint.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Exposure to environmentally hazardous substances is recognized as a significant risk factor for neurological associated disorders. Among these substances, polystyrene microplastics (PS-MPs), widely utilized in various consumer products, have been reported to exhibit neurotoxicity. However, the potential association of PS-MPs with abnormal anxiety behaviors, along with the underlying molecular mechanisms and key proteins involved, remains insufficiently explored. Here, we delineated the potential mechanisms of PS-MPs-induced anxiety through proteomics and molecular investigations. We characterized the PS-MPs, observed their accumulation in the brain, leading to anxiety-like behavior in mice, which is correlated with microglia activation and pro-inflammatory response. Consistent with these findings, our studies on BV2 microglia cells showed that PS-MPs activated NF-κB-mediated inflammation resulting in the upregulation of pro-inflammatory cytokines such as TNFα and IL-1β. Of particular significance, HRAS was identified as a key factor in the PS-MPs induced pro-inflammatory response through whole proteomics analysis, and knockdown of H-ras effectively inhibited PS-MPs induced PERK-NF-κB activation and associated pro-inflammatory response in microglia cells. Collectively, our findings highlight that PS-MPs induce anxiety of mice via the activation of the HRAS-derived PERK-NF-κB pathway in microlglia. Our results contribute valuable insights into the molecular mechanisms of PS-MPs-induced anxiety, and may offer implications for addressing neurotoxicity and prevention the adverse effects of environmentally hazardous substances, including microplastics.
Collapse
Affiliation(s)
- Guanjun Li
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xueyan Liu
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Ling Huang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Wenhua Kuang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Jinhuan Ou
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ziyue Zhang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Huiying Li
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenran Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chuanbin Yang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Wang Peili
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jigang Wang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
21
|
Hou D, Cui X, Liu M, Qie H, Tang Y, Xu R, Zhao P, Leng W, Luo N, Luo H, Lin A, Wei W, Yang W, Zheng T. The effects of iron-based nanomaterials (Fe NMs) on plants under stressful environments: Machine learning-assisted meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120406. [PMID: 38373376 DOI: 10.1016/j.jenvman.2024.120406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mitigating the adverse effects of stressful environments on crops and promoting plant recovery in contaminated sites are critical to agricultural development and environmental remediation. Iron-based nanomaterials (Fe NMs) can be used as environmentally friendly nano-fertilizer and as a means of ecological remediation. A meta-analysis was conducted on 58 independent studies from around the world to evaluate the effects of Fe NMs on plant development and antioxidant defense systems in stressful environments. The application of Fe NMs significantly enhanced plant biomass (mean = 25%, CI = 20%-30%), while promoting antioxidant enzyme activity (mean = 14%, CI = 10%-18%) and increasing antioxidant metabolite content (mean = 10%, CI = 6%-14%), reducing plant oxidative stress (mean = -15%, CI = -20%∼-10%), and alleviating the toxic effects of stressful environments. The observed response was dependent on a number of factors, which were ranked in terms of a Random Forest Importance Analysis. Plant species was the most significant factor, followed by Fe NM particle size, duration of application, dose level, and Fe NM type. The meta-analysis has demonstrated the potential of Fe NMs in achieving sustainable agriculture and the future development of phytoremediation.
Collapse
Affiliation(s)
- Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenpeng Leng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Nan Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Huilong Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenxia Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| | - Wenjie Yang
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China.
| | - Tianwen Zheng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| |
Collapse
|
22
|
Li J, Zheng X, Liu X, Zhang L, Zhang S, Li Y, Zhang W, Li Q, Zhao Y, Chen X, Wang X, Huang H, Fan Z. Effect and mechanism of microplastics exposure against microalgae: Photosynthesis and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167017. [PMID: 37717764 DOI: 10.1016/j.scitotenv.2023.167017] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
The occurrence of microplastics (MPs) within aquatic ecosystems attracts a major environmental concern. It was demonstrated MPs could cause various ecotoxicological effects on microalgae. However, existing data on the effects of MPs on microalgae showed great variability among studies. Here, we performed a meta-analysis of the latest studies on the effects of MPs on photosynthesis and oxidative stress in microalgae. A total of 835 biological endpoints were investigated from 55 studies extracted, and 37 % of them were significantly affected by MPs. In this study, the impact of MPs against microalgae was concentration-dependent and size-dependent, and microalgae were more susceptible to MPs stress in freshwater than marine. Additionally, we summarized the biological functions of microalgae that are primarily affected by MPs. Under MPs exposure, the content of chlorophyll a (Chl-a) was reduced and electron transfer in the photosynthetic system was hindered, causing electron accumulation and oxidative stress damage, which may also affect biological processes such as energy production, carbon fixation, lipid metabolism, and nucleic acid metabolism. Finally, our findings provide important insights into the effects of MPs stress on photosynthesis and oxidative stress in microalga and enhance the current understanding of the potential risk of MPs pollution on aquatic organisms.
Collapse
Affiliation(s)
- Jue Li
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China
| | - Xiaowei Zheng
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| | - Xianglin Liu
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China
| | - Liangliang Zhang
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China
| | - Shun Zhang
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| | - Yanyao Li
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Qihui Li
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yuqiang Zhao
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xiangrong Wang
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| | - Honghui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China.
| | - Zhengqiu Fan
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| |
Collapse
|
23
|
Porter A, Godbold JA, Lewis CN, Savage G, Solan M, Galloway TS. Microplastic burden in marine benthic invertebrates depends on species traits and feeding ecology within biogeographical provinces. Nat Commun 2023; 14:8023. [PMID: 38049431 PMCID: PMC10696022 DOI: 10.1038/s41467-023-43788-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
The microplastic body burden of marine animals is often assumed to reflect levels of environmental contamination, yet variations in feeding ecology and regional trait expression could also affect a species' risk of contaminant uptake. Here, we explore the global inventory of individual microplastic body burden for invertebrate species inhabiting marine sediments across 16 biogeographic provinces. We show that individual microplastic body burden in benthic invertebrates cannot be fully explained by absolute levels of microplastic contamination in the environment, because interspecific differences in behaviour and feeding ecology strongly determine microplastic uptake. Our analyses also indicate a degree of species-specific particle selectivity; likely associated with feeding biology. Highest microplastic burden occurs in the Yellow and Mediterranean Seas and, contrary to expectation, amongst omnivores, predators, and deposit feeders rather than suspension feeding species. Our findings highlight the inadequacy of microplastic uptake risk assessments based on inventories of environmental contamination alone, and the need to understand how species behaviour and trait expression covary with microplastic contamination.
Collapse
Affiliation(s)
- Adam Porter
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Jasmin A Godbold
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, Southampton, SO14 3ZH, UK
| | - Ceri N Lewis
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK
| | - Georgie Savage
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK
| | - Martin Solan
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, Southampton, SO14 3ZH, UK
| | - Tamara S Galloway
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK
| |
Collapse
|
24
|
Cui X, Hou D, Tang Y, Liu M, Qie H, Qian T, Xu R, Lin A, Xu X. Effects of the application of nanoscale zero-valent iron on plants: Meta analysis, mechanism, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165873. [PMID: 37517727 DOI: 10.1016/j.scitotenv.2023.165873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
In order to determine the ideal conditions for the application of nanoscale zero-valent iron (nZVI) in agricultural production, this review studies the effects of nZVI application on plant physiological parameters, presents its mechanism and prospective outcomes. In this research, it was observed that the application of nZVI had both favorable and unfavorable effects on plant growth, photosynthesis, oxidative stress, and nutrient absorption levels. Specifically, the application of nZVI significantly increased the biomass and length of plants, and greatly reduced the germination rate of seeds. In terms of photosynthesis, there was no significant effect for the application of nZVI on the synthesis of photosynthetic pigments (chlorophyll and carotenoids). In terms of oxidative stress, plants respond by increasing the activity of antioxidant enzyme under mild nZVI stress and trigger oxidative burst under severe stress. In addition, the application of nZVI significantly increased the absorption of nutrients (B, K, P, S, Mg, Zn, and Fe). In summary, the application of nZVI can affect the plant physiological parameters, and the degree of influence varies depending on the concentration, preparation method, application method, particle size, and action time of nZVI. These findings are important for evaluating nZVI-related risks and enhancing nZVI safety in agricultural production.
Collapse
Affiliation(s)
- Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tuzheng Qian
- Wellington college, Duke's Ride, Berkshire, Crowthorne RG45 7PU, England, United Kingdom
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
25
|
Genovese M, Mangano MC, Papa F, Romeo T, Greco S. Local businesses' consumption and perception of Single-Use Plastics: A preliminary assessment for conservation and mitigation plans in the Egadi Islands Marine Protected Area. MARINE POLLUTION BULLETIN 2023; 194:115252. [PMID: 37437520 DOI: 10.1016/j.marpolbul.2023.115252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Modern society depends on plastic, especially through single-use plastic products (SUPs), which can affect ecological systems after use. Local policymakers can strategically adopt measures against SUPs pollution by setting effective local governance. This work was designed to evaluate SUPs consumption inside the Marine Protected Area of the Egadi Islands. A questionnaire mixed approach to understanding stakeholders' consumption, attitudes and perceptions about the uses and impacts of SUPs in the third sector was used. Results show a significant seasonal consumption of SUPs and uncertainty in the behaviour to discard them. These provide valuable insights to fill research gaps in estimating the use of SUPs and consumers' perceptions. The main aim of this work has been to understand the critical issues regarding the use of SUPs, considering the target area's patterns, in support of designing action plans for changing behaviour and the mitigation of critical issues in favour of environmental conservation.
Collapse
Affiliation(s)
- Martina Genovese
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Calabria Marine Centre (CRIMAC), C.da Torre Spaccata, 87071 Amendolara, CS, Italy; Department of Veterinary Science, University of Messina, Polo Universitario Annunziata, 98168, Italy.
| | - Maria Cristina Mangano
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy
| | - Federica Papa
- Department of Health Science, University "Magna Graecia" of Catanzaro, 88100, Italy
| | - Teresa Romeo
- Sicily Marine Centre, Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Milazzo, Italy
| | - Silvestro Greco
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Calabria Marine Centre (CRIMAC), C.da Torre Spaccata, 87071 Amendolara, CS, Italy
| |
Collapse
|
26
|
Berlino M, Sarà G, Mangano MC. Functional Trait-Based Evidence of Microplastic Effects on Aquatic Species. BIOLOGY 2023; 12:811. [PMID: 37372096 PMCID: PMC10294819 DOI: 10.3390/biology12060811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Microplastics represent an ever-increasing threat to aquatic organisms. We merged data from two global scale meta-analyses investigating the effect of microplastics on benthic organisms' and fishes' functional traits. Results were compared, allowing differences related to vertebrate and invertebrate habitat, life stage, trophic level, and experimental design to be explored. Functional traits of aquatic organisms were negatively affected. Metabolism, growth, and reproduction of benthic organisms were impacted, and fish behaviour was significantly affected. Responses differed by trophic level, suggesting negative effects on trophic interactions and energy transfer through the trophic web. The experimental design was found to have the most significant impact on results. As microplastics impact an organism's performance, this causes indirect repercussions further up the ecological hierarchy on the ecosystem's stability and functioning, and its associated goods and services are at risk. Standardized methods to generate salient targets and indicators are urgently needed to better inform policy makers and guide mitigation plans.
Collapse
Affiliation(s)
- M. Berlino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90149 Palermo, Italy;
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo, Ed. 16, 90128 Palermo, Italy
| | - G. Sarà
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo, Ed. 16, 90128 Palermo, Italy
| | - M. C. Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90149 Palermo, Italy;
| |
Collapse
|
27
|
Owowenu EK, Nnadozie CF, Akamagwuna F, Noundou XS, Uku JE, Odume ON. A critical review of environmental factors influencing the transport dynamics of microplastics in riverine systems: implications for ecological studies. AQUATIC ECOLOGY 2023; 57:557-570. [DOI: 10.1007/s10452-023-10029-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/02/2023] [Indexed: 09/05/2024]
Abstract
AbstractMicroplastics (MPs) in rivers present an ecological risk. In this paper, we review hydro-geomorphological, biological, and allochthonous factors that may influence the distribution and transport of MPs in riverine systems. We also review MPs characteristics that may impact their distribution and transport. At the reach scale, hydraulic biotopes and their key features such as flow velocity, bed roughness, depth, and channel morphology are important features that shape the distribution and transport of MPs in riverine systems and should be considered in the design of MPs studies. Microbial-MPs interaction may impact MPs density, aggregation and thus transport dynamics. Instream vegetation may act as a physical trap of MPs, which may impact their horizontal transport and aggregation. Lateral transport of MPs is impacted mostly by precipitation, run-off, point and non-point discharges. The polymer density, size and shapes of MPs are critical factors that influence their transport dynamics in riverine systems. Microplastic sampling protocols should be designed to reflect hydro-geomorphological considerations. The unique interaction of MPs physical characteristics and hydraulic biotopes creates differential exposure of riverine organisms to MPs and should be used to unravel potential impacts. Biomonitoring studies should integrate the complex MPs-hydraulic interaction for ecologically meaningful investigation into organismal exposure to MPs in their preferred biotopes. Overall, our review indicates the influences of hydro-geomorphological features on the transport dynamics of MPs and their ecological significance for the study of MPs in rivers.
Collapse
|
28
|
Yuan F, Chen H, Ding Y, Wang Y, Liao Q, Wang T, Fan Q, Feng Z, Zhang C, Fu G, Zou X. Effects of microplastics on the toxicity of co-existing pollutants to fish: A meta-analysis. WATER RESEARCH 2023; 240:120113. [PMID: 37235892 DOI: 10.1016/j.watres.2023.120113] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Aquatic ecosystems are among the main destination for microplastics (MPs) in the environment. MPs that enter aquatic ecosystems can contribute to pollution together with other co-existing pollutants. However, whether such pollution results in higher or lower toxicity to fish than that caused by co-existing pollutants alone remains controversial. This study aimed at closing this research gap based on 1380 biological endpoints under the background of environmental MP concentrations collected from 55 laboratory studies. Overall, MPs in co-existing pollutant solutions significantly increased the toxicity to fish. Specifically, MPs elevated negative effects on the immune system, metabolism, and oxidative damage. Subgroup analysis indicated that changes in toxicity were related to fish life stage and MP size, but not to co-existing pollutant or MP type. Meta-regression analysis indicated that changes in toxicity were not related to the logarithm of the octanol-water partition coefficient (logKow) or exposure time. Finally, the differences between laboratory research and the actual aquatic environment were discussed from four aspects: MPs, co-existing pollutants, environmental factors, and experimental objects. Our study provides a basis for further understanding the potential impact of MPs on aquatic organisms from a combined pollution perspective. Moreover, our results can provide a reference for the conservation and management of aquatic ecosystems.
Collapse
Affiliation(s)
- Feng Yuan
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Hongyu Chen
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Yongcheng Ding
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Ying Wang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Qihang Liao
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing 210098, China
| | - Qinya Fan
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Ziyue Feng
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Chuchu Zhang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Guanghe Fu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
29
|
Liu W, Zhang B, Yao Q, Feng X, Shen T, Guo P, Wang P, Bai Y, Li B, Wang P, Li R, Qu Z, Liu N. Toxicological effects of micro/nano-plastics on mouse/rat models: a systematic review and meta-analysis. Front Public Health 2023; 11:1103289. [PMID: 37275491 PMCID: PMC10233117 DOI: 10.3389/fpubh.2023.1103289] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/11/2023] [Indexed: 06/07/2023] Open
Abstract
Micro/nano-plastics (MNPs) are considered a heterogeneous class of environmental contaminants that cause multiple toxic effects on biological species. As the commonly used mammalian models to study the effects of MNPs with regard to their toxic effects, the mouse and rat models are making a great contribution to the disciplines of environmental toxicology and medical health. However, the toxic effects of MNPs have not been systematically summarized. Therefore, a systematic review and a meta-analysis of the toxic effects of MNPs on mouse/rat models were conducted. A total of seven main categories were established in this systematic review, and 24 subcategories were further divided according to the specific physiological significance of the endpoint or the classification of the physiological system, which covered all the selected pieces of literature. A total of 1,762 biological endpoints were found, and 52.78% of them were significantly affected. This fact indicates that there are relative factors, including the size, polymer type, concentration, and exposure time of MNPs and different sexes of mouse/rat models that could significantly affect the biological endpoints. These biological endpoints can be classified into various factors, such as the dose-response relationships between MNP concentration and physiological categories of the nervous system, growth, reproduction, digestive tract histopathology, and inflammatory cytokine level, among others. MNPs negatively affected the blood glucose metabolism, lipid metabolism, and reproductive function in mice. The reproductive function in male mice is more sensitive to the toxic effects of MNPs. These findings also provide insights into and directions for exploring the evidence and mechanisms of the toxic effects of MNPs on human health. It is clear that more research is required on the pathological mechanisms at the molecular level and the long-term effects of tissue accumulation.
Collapse
Affiliation(s)
- Weijia Liu
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
| | - Bowen Zhang
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Qianqian Yao
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Xihua Feng
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tianling Shen
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peisen Guo
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Panpan Wang
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yitong Bai
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
| | - Bo Li
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Peixi Wang
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Ruiling Li
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Zhi Qu
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Nan Liu
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Chelomin VP, Slobodskova VV, Kukla SP, Mazur AA, Dovzhenko NV, Zhukovskaya AF, Karpenko AA, Karpenko MA, Odintsov VS. Dietary Exposure to Particles of Polytetrafluoroethylene (PTFE) and Polymethylmethacrylate (PMMA) Induces Different Responses in Periwinkles Littorina brevicula. Int J Mol Sci 2023; 24:ijms24098243. [PMID: 37175949 PMCID: PMC10179660 DOI: 10.3390/ijms24098243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The marine and ocean water pollution with different-sized plastic waste poses a real threat to the lives of the next generations. Plastic, including microplastics, is found in all types of water bodies and in the organisms that live in them. However, given the chemical diversity of plastic particles, data on their toxicity are currently incomplete. Moreover, it is clear that different organisms, depending on their habitat and feeding habits, are at different risks from plastic particles. Therefore, we performed a series of experiments on feeding the gastropod scraping mollusk Littorina brevicula with two types of polymeric particles-polymethylmethacrylate (PMMA) and polytetrafluoroethylene (PTFE)-using a special feeding design. In the PMMA-exposed group, changes in gastrointestinal biochemical parameters such as increases in malondialdehyde (MDA) and protein carbonyls (PC) were detected, indicating the initiation of oxidative stress. Similarly, a comet assay showed an almost twofold increase in DNA damage in digestive gland cells compared to the control group. In mollusks fed with PTFE-containing food, no similar changes were recorded.
Collapse
Affiliation(s)
- Victor Pavlovich Chelomin
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | - Sergey Petrovich Kukla
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Andrey Alexandrovich Mazur
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | - Avianna Fayazovna Zhukovskaya
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Alexander Alexandrovich Karpenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Maxim Alexandrovich Karpenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vyacheslav Sergeevich Odintsov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
31
|
Li B, Li B, Jia Q, Hong B, Xie Y, Yuan X, Peng J, Cai Y, Yang Z. Source or sink role of an urban lake for microplastics from Guangdong-Hong Kong-Macao greater bay area, China. ENVIRONMENTAL RESEARCH 2023; 224:115492. [PMID: 36796614 DOI: 10.1016/j.envres.2023.115492] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Plastic production and consumption in China are larger than others in the world, and the challenge of microplastic pollution is widespread. With the development of urbanization in the Guangdong-Hong Kong-Macao Greater Bay Area, China, the environmental pollution of microplastics is becoming an increasingly prominent issue. Here, the spatial and temporal distribution characteristics, sources, and ecological risks of microplastics were analyzed in water from an urban lake, Xinghu Lake, as well as the contribution of rivers. Importantly, the roles of urban lakes for microplastics were demonstrated through the investigations of contributions and fluxes for microplastic in rivers. The results showed that the average abundances of microplastics in water of Xinghu Lake were 4.8 ± 2.2 and 10.1 ± 7.6 particles/m3 in wet and dry seasons, and the average contribution degree of the inflow rivers was 75%. The size of microplastics in water from Xinghu Lake and its tributaries was concentrated in the range of 200-1000 μm. In general, the average comprehensive potential ecological risk indexes of microplastics in water were 247 ± 120.6 and 273.1 ± 353.7 in wet and dry seasons, which the high ecological risks of them were found through the adjusted evaluation method. There were also mutual effects among microplastic abundance, the concentrations of total nitrogen and organic carbon. Finally, Xinghu Lake has been a sink for microplastics both in wet and dry seasons, and it would be a source of microplastics under the influence of extreme weather and anthropogenic factors.
Collapse
Affiliation(s)
- Bo Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bowen Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qunpo Jia
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bin Hong
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yulei Xie
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao Yuan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jinping Peng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
32
|
Wang S, Zheng L, Shen M, Zhang L, Wu Y, Li G, Guo C, Hu C, Zhang M, Sui Y, Dong X, Lv L. Habitual feeding patterns impact polystyrene microplastic abundance and potential toxicity in edible benthic mollusks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161341. [PMID: 36603620 DOI: 10.1016/j.scitotenv.2022.161341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
That increasing microplastics (MPs, <5 mm) eventually end up in the sediment which may become a growing menace to diverse benthic lives is worthy of attention. In this experiment, three edible mollusks including one deposit-feeding gastropod (Bullacta exarate) and two filter-feeding bivalves (Cyclina sinensis and Mactra veneriformis) were exposed to polystyrene microplastic (PS-MP) for 7 days and depurated for 3 days. PS-MP numbers in the digestive system and non-digestive system, digestive enzymes, oxidative stress indexes, and a neurotoxicity index of three mollusks were determined at day 0, 3, 7, 8 and 10. After seven-day exposure, the PS-MP were found in all three mollusks' digestive and non-digestive systems. And PS-MP in M. veneriformis (9.57 ± 2.19 items/individual) was significantly higher than those in C. sinensis (3.00 ± 2.16 items/individual) and B. exarate (0.83 ± 1.07 items/individual) at day 7. Three-day depuration could remove most of the PS-MP in the mollusks, and higher PS-MP clearance rates were found in filter-feeding C. sinensis (77.78 %) and M. veneriformis (82.59 %) compared to surface deposit-feeding B. exarate (50.00 %). The digestive enzymes of B. exarate significantly reacted to PS-MP exposure, while oxidative responses were found in C. sinensis. After three-day depuration, the changes of digestive enzymes and the oxidative states were fixed, but neurotoxicity induced by PS-MP was not recoverable. Besides, it is noteworthy that changes of digestive enzymes and acetylcholinesterase are related to feeding patterns.
Collapse
Affiliation(s)
- Senyang Wang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liang Zheng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Mengyan Shen
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| | - Longsheng Zhang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| | - Yiting Wu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanbo Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Cunzhi Hu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| | - Mingming Zhang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China; Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Germany.
| | - Xuexing Dong
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China.
| | - Linlan Lv
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| |
Collapse
|
33
|
Yin Z, Zhao Y. Microplastics pollution in freshwater sediments: The pollution status assessment and sustainable management measures. CHEMOSPHERE 2023; 314:137727. [PMID: 36603683 DOI: 10.1016/j.chemosphere.2022.137727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) pollution in freshwater sediments has brought hidden dangers to food and drinking water supply. Implementing sustainable management measures for MPs pollution in freshwater sediments has become an inevitable trend for sustainable development of society. Existing studies still lacked sufficient discussion in sustainable management of MPs pollution in freshwater sediments. This makes it difficult to formulate sustainable management measures for MPs pollution in freshwater sediments. This study analyzed the pollution status of MPs in freshwater sediments from 84 study areas. The results showed that current studies on MPs pollution in freshwater sediments were mainly concentrated in densely populated and economically developed areas. The average abundance of MPs in freshwater sediments from collected study areas was 1290.88 items/kg, this brought a potential threat to sustainable development in surrounding areas. The pollution load level and potential ecological risk level of MPs in freshwater sediments from these study areas were low. Reducing MPs discharge and restricting the use of high-risk polymers are effective ways to prevent the deterioration of MPs pollution status in freshwater sediments. The abundance and types of MPs in freshwater sediments from these study areas were affected by human activities. Sustainable management of MPs pollution in freshwater sediments from collected study areas requires establishing a lifecycle management system for plastic products, and the industrial structures should be optimized. In addition, legislation and market regulation are effective ways to restrict the discharge of plastic wastes. Sustainable management of MPs in freshwater sediments requires the synergy of legislation and market regulation.
Collapse
Affiliation(s)
- Zhenzhou Yin
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China.
| | - Yi Zhao
- Wuhai Energy Investment Co. LTD, China Energy Investment Corporation, Wuhai, 016000, China
| |
Collapse
|
34
|
Porter A, Barber D, Hobbs C, Love J, Power AL, Bakir A, Galloway TS, Lewis C. Uptake of microplastics by marine worms depends on feeding mode and particle shape but not exposure time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159287. [PMID: 36209888 DOI: 10.1016/j.scitotenv.2022.159287] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The uptake of microplastics into marine species has been widely documented across trophic levels. Feeding mode is suggested as playing an important role in determining different contamination loads across species, but this theory is poorly supported with empirical evidence. Here we use the two distinct feeding modes of the benthic polychaete, Hediste diversicolor (The Harbour Ragworm) (O.F. Müller, 1776), to test the hypothesis that filter feeding will lead to a greater uptake of microplastic particles than deposit feeding. Worms were exposed to both polyamide microfragments and microfibres in either water (as filter feeders) or sediment (as deposit feeders) for 1 week. No effect of exposure time was found between 1 day and 1 week (p > 0.19) but feeding mode was found to significantly affect the number of microfibres recovered from each worm (p < 0.001). When exposed to microfibers, filter feeding worms took up ≈15,000 % more fibres than deposit feeding worms (p < 0.001), whereas when feeding on microfragments there was no difference between feeding modes. Our data demonstrate that both feeding mode and particle characteristics significantly influence the uptake of microplastics by H. diversicolor. Using imaging flow cytometry, filter feeders were found to take up a broader size range of particles, with significantly more smaller and larger particles than deposit feeders (p < 0.05), commensurate with the range of plastics isolated from the guts of ragworms recovered from the environment. These results demonstrate that biological traits are useful in understanding the uptake of plastics into marine worms and warrant further exploration as a tool for understanding the bioaccessibility of plastics to marine organisms.
Collapse
Affiliation(s)
- Adam Porter
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| | - Dan Barber
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Catherine Hobbs
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - John Love
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Ann L Power
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Adil Bakir
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Pakefield Road, Lowestoft NR33 0HT, United Kingdom
| | - Tamara S Galloway
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Ceri Lewis
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
35
|
Baraza T, Hernandez NF, Sebok JN, Wu CL, Hasenmueller EA, Knouft JH. Integrating land cover, point source pollution, and watershed hydrologic processes data to understand the distribution of microplastics in riverbed sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119852. [PMID: 35940489 DOI: 10.1016/j.envpol.2022.119852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are emerging contaminants ubiquitously distributed in the environment, with rivers acting as their main mode of transport in surface freshwater systems. However, the relative importance of hydrologic processes and source-related variables for benthic microplastic distribution in river sediments is not well understood. We therefore sampled and characterized microplastics in river sediments across the Meramec River watershed (eastern Missouri, United States) and applied a hydrologic modeling approach to estimate the relative importance of river discharge, river sediment load, land cover, and point source pollution sites to understand how these environmental factors affect microplastic distribution in benthic sediments. We found that the best model for the Meramec River watershed includes both source-related variables (land cover and point sources) but excludes both hydrologic transport-related variables (discharge and sediment load). Prior work has drawn similar and dissimilar conclusions regarding the importance of anthropogenic versus hydrologic variables in microplastic distribution, though we acknowledge that comparisons are limited by methodological differences. Nevertheless, our findings highlight the complexity of microplastic pollution in freshwater systems. While generating a universal predictive model might be challenging to achieve, our study demonstrates the potential of using a modeling approach to determine the controlling factors for benthic microplastic distribution in fluvial systems.
Collapse
Affiliation(s)
- Teresa Baraza
- Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, Missouri, 63108, United States; WATER Institute, Saint Louis University, St. Louis, Missouri, 63103, United States
| | - Natalie F Hernandez
- Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, Missouri, 63108, United States; WATER Institute, Saint Louis University, St. Louis, Missouri, 63103, United States.
| | - Jack N Sebok
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, United States
| | - Chin-Lung Wu
- Department of Biology, Saint Louis University, St. Louis, Missouri, 63103, United States
| | - Elizabeth A Hasenmueller
- Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, Missouri, 63108, United States; WATER Institute, Saint Louis University, St. Louis, Missouri, 63103, United States
| | - Jason H Knouft
- WATER Institute, Saint Louis University, St. Louis, Missouri, 63103, United States; Department of Biology, Saint Louis University, St. Louis, Missouri, 63103, United States; National Great Rivers Research and Education Center, Alton, IL, 62024, United States
| |
Collapse
|
36
|
Sun T, Ji C, Li F, Shan X, Wu H. The legacy effect of microplastics on aquatic animals in the depuration phase: Kinetic characteristics and recovery potential. ENVIRONMENT INTERNATIONAL 2022; 168:107467. [PMID: 35985106 DOI: 10.1016/j.envint.2022.107467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of microplastics (MPs) in global aquatic environments has received considerable attention. Currently, concerns have been raised regarding reports that the adverse effect of MPs on aquatic animals in the exposure phase may not be (completely) reversed in the depuration phase. In order to provide insights into the legacy effect of MPs from the depuration phase, this study evaluated the kinetic characteristics and recovery potential of aquatic animals after the exposure to MPs. More specifically, a total of 68 depuration kinetic curves were highly fitted to estimate the retention time of MPs. It was shown that the retention time ranged from 1.26 to 3.01 days, corresponding to the egestion of 90 % to 99 % of ingested MPs. The retention time decreased with the increased retention rate. Furthermore, variables potentially affecting the retention time were ranked by the decision tree-based eXtreme Gradient Boosting (XGBoost) algorithm, suggesting that the particle size and tested species were of great importance for explaining the difference in retention time of MPs. Moreover, a biomarker profile was recompiled to determine the toxic changes. Results indicated that the MPs-induced toxicity significantly reduced in the depuration phase, evidenced by the recovery of energy reserves and metabolism, hepatotoxicity, immunotoxicity, hematological parameters, neurotoxicity and oxidative stress. However, the continuous detoxification and remarkable genotoxicity implied that the toxicity was not completely alleviated. In addition, the current knowledge gaps are also highlighted, with recommendations proposed for future research.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
37
|
Song X, Zhuang W, Cui H, Liu M, Gao T, Li A, Gao Z. Interactions of microplastics with organic, inorganic and bio-pollutants and the ecotoxicological effects on terrestrial and aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156068. [PMID: 35598660 DOI: 10.1016/j.scitotenv.2022.156068] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
As emerging contaminants, microplastics (MPs) have attracted global attention. They are a potential risk to organisms, ecosystems and human health. MPs are characterized by small particle sizes, weak photodegradability, and are good environmental carriers. They can physically adsorb or chemically react with organic, inorganic and bio-pollutants to generate complex binary pollutants or change the environmental behaviors of these pollutants. We systematically reviewed the following aspects of MPs: (i) Adsorption of heavy metals and organic pollutants by MPs and the key environmental factors affecting adsorption behaviors; (ii) Enrichment and release of antibiotic resistance genes (ARGs) on MPs and the effects of MPs on ARG migration in the environment; (iii) Formation of "plastisphere" and interactions between MPs and microorganisms; (iv) Ecotoxicological effects of MPs and their co-exposures with other pollutants. Finally, scientific knowledge gaps and future research areas on MPs are summarized, including standardization of study methodologies, ecological effects and human health risks of MPs and their combination with other pollutants.
Collapse
Affiliation(s)
- Xiaocheng Song
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Zhuang
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China; Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| | - Huizhen Cui
- Public (Innovation) Center of Experimental Teaching, Shandong University, Qingdao, Shandong 266237, China
| | - Min Liu
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Teng Gao
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ao Li
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhenhui Gao
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
38
|
Wang J, Liu Q, Zhang C, Wang Y, Yang F, Zhao Y, Jiang Y. Microplastics shift macrobenthic community structures near a coastal nuclear power plant under construction in North East China. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129335. [PMID: 35714540 DOI: 10.1016/j.jhazmat.2022.129335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Coastal sediments are considered to be a potential sink for microplastics, which mainly derived from the land-based sources. This study investigated microplastic pollution in the sediments of 20 stations near a nuclear power plant under construction in North East China and analyzed its impacts on macrobenthic communities. The average abundance of microplastics in three stations close to the nuclear power plant was 0.33 items/g, which was approximately 10 times higher than those in the distant stations. The clustering of microplastic characteristics (sizes, shapes, and colors) showed that the three stations near the plant were in one group, and the distant stations were in another group. A total of 105 macroinvertebrate species belonging to 7 phyla were identified in all stations, and the dominant phyla were Annelida and Arthropoda. Spearman rank correlation showed that rare taxa (83 species with a contribution <1 %) were positively correlated with microplastics and As, and redundancy analysis demonstrated that the distribution patterns of macrobenthic communities were similar to those of microplastics. Moreover, co-occurrence networks showed that the rare taxa were positively correlated with microplastics. Therefore, microplastics released from the nuclear power plant under construction might shift the structure of macrobenthic communities, especially the rare taxa.
Collapse
Affiliation(s)
- Jun Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qian Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Chenru Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yaxin Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Fan Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yanan Zhao
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
39
|
Genotoxic Properties of Polystyrene (PS) Microspheres in the Filter-Feeder Mollusk Mytilus trossulus (Gould, 1850). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microplastic pollution of the aquatic environment is one of the most serious environmental problems today. The potential environmental risks of such particles have become growing concerns in recent years, as direct or indirect exposure to these particles leads to adverse effects on marine organisms. In this study, we investigated the potential risk of polystyrene (PS) microspheres on the genome integrity of cells of different tissues (gills and digestive gland) of the filter-feeder mollusk Mytilus trossulus, using a comet assay. With the help of the comet assay, we estimated the level of genome destruction in the cells of two different mussel tissues after short-term exposure to polystyrene. It was discovered that, despite their chemical inertness, PS microspheres that are 0.9 µm in diameter, at a concentration of 106 particles/L, exhibit genotoxic properties, which are expressed as a two-fold increase in the level of cell DNA damage of the mussel’s digestive gland. It is noted that, after exposure to PS, about half of the mussel’s digestive gland cells experienced damage in 25–35% of their DNA. In addition, the proportion of cells with significant DNA damage (50%) was about 5%. Given the unique role of the genome, DNA damage in these cells may be the earliest stage in the development of biochemical events that lead to toxic effects. These findings provide a basis for studying specific biomarkers of microplastic contamination.
Collapse
|
40
|
Lang X, Ni J, He Z. Effects of polystyrene microplastic on the growth and volatile halocarbons release of microalgae Phaeodactylum tricornutum. MARINE POLLUTION BULLETIN 2022; 174:113197. [PMID: 34875478 DOI: 10.1016/j.marpolbul.2021.113197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Volatile halocarbons (VHCs) are trace greenhouse gases that can damage the ozone layer. Trihalomethanes are one of the most common VHCs and play an important role in global climate change. Due to their steadily increasing abundance, microplastics pollutants have attracted growing concern from scientists. However, their impacts on the growth of marine microalgae and the release of VHCs remain unknown. The influence of polystyrene microplastic (PS, 0.1 μm) at different concentrations (25-200 mg/L) on the growth of P. tricornutum and their release of trihalomethanes were studied over 96 h. The results showed that PS can inhibit P. tricornutum growth. At 200 mg/L PS, cell growth, chlorophyll a concentration and photosynthetic efficiency of P. tricornutum were inhibited by 53.53%, 25.45% and 12.50%, respectively. PS concentrations of 25-50 mg/L promoted the release of the three trihalomethanes by P. tricornutum during the 96 h culture as a response to oxidative stress. However, 100-200 mg/L PS severely altered the physiological state of the P. tricornutum cells after 48 h, which reduced the release of trihalomethanes. Our study also demonstrated that the production and release of trihalomethanes served as a protective mechanism against oxidative stress and the toxic effects caused by PS.
Collapse
Affiliation(s)
- Xiaoping Lang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jie Ni
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhen He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
41
|
Nikolić M, Milošković A, Jakovljević M, Radenković M, Veličković T, Đuretanović S, Kojadinović N, Nikolić M, Simić V. The first observation of the presence of microplastics in wild common bleak (Alburnus alburnus L.) and standardization of extraction protocols. KRAGUJEVAC JOURNAL OF SCIENCE 2022. [DOI: 10.5937/kgjsci2244267n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The presence of microplastics (MPs) in the gastrointestinal tract, muscle, and whole-body samples of common bleak Alburnus alburnus L. from Gruža Reservoir (Central Serbia) was studied for the first time. Different protocols for MPs extraction were applied to determine the most efficient one. The study aimed to modify existing protocols to be cost-effective, efficient in digestion, and with no detrimental effect on potentially present MPs polymers. In this study, the digestion with 10% KOH during 48 h at 40°C was efficient for the gastrointestinal tract and muscle. Digestion with 10% KOH during 72 h at 40°C was the most efficient for whole-body samples. The usage of NaClO proved successful in digestion of the gastrointestinal tract overnight at room temperature. Fibers detected in the samples are assumed to be of plastic origin. The general goal was to establish a protocol for extracting MPs from fish tissue in wild populations to obtain results and determine the degree of pollution.
Collapse
|