1
|
Gong X, Xu G, Yuan C, Xu X, Wang J, Cao X. Tidal fluctuations induce accumulation and transformation of seawater Cr(Ⅵ) in coastal sediments. WATER RESEARCH 2025; 278:123382. [PMID: 40049097 DOI: 10.1016/j.watres.2025.123382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 04/14/2025]
Abstract
Tidal fluctuations play a critical role in regulating the transport and fate of contaminants in coastal environments. This study explored the dynamic redistribution of chromium (Cr) from seawater to sediment under tidal influence, as well as the accumulation and transformation of Cr in sediment through laboratory experiments and numerical simulations. After 35 tidal cycles, Cr concentrations in seawater declined rapidly and stabilized at approximately 27 % of the initial level. Notably, Cr migrated into sediment, ultimately accumulating in the bottom layer. Colloidal particles (350-800 nm) composed of clay minerals served as the primary transport vectors for Cr within sediment. During tidal fluctuations, 94.5 %-98.2 % of Cr(VI) in sediment was reduced to Cr(III), predominantly mediated by Fe(II) in the top sediment and by sulfur-reducing bacteria in the bottom layers. Consistent with experimental findings, numerical reactive transport modeling demonstrated that Cr(III) initially peaked in the middle sediment layer before stabilizing in the bottom layer, whereas Cr(VI) remained confined to the top layer. These findings elucidate tide-induced mobilization and natural reduction mechanisms governing Cr-contaminated seawater infiltration into sediment, offering novel insights into the fate of Cr discharged from coastal wastewater sources within seawater-sediment systems.
Collapse
Affiliation(s)
- Xuanang Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaoyang Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengpeng Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Shandong 271018, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China; Shanghai Institute of Pollution Control and Ecology Security, Shanghai 200029, China.
| |
Collapse
|
2
|
Wang W, Lin Y, Pan Z, Liu Y, Wang L, Dong X, Chen B, Lin C, Zhu Z. Deciphering multi-media occurrence and anthropogenic drivers of potentially toxic elements in a rapidly urbanized estuary: A neural network-enhanced source apportionment. MARINE POLLUTION BULLETIN 2025; 218:118178. [PMID: 40398017 DOI: 10.1016/j.marpolbul.2025.118178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Estuaries and adjacent waters are the most important and vulnerable areas to human activities in coastal seawater, and potentially toxic elements (PTEs) pollution have long received global attention. This study presents a multi-media occurrence to assess the distribution, sources, and ecological risks of PTEs (Cu, Pb, Zn, Cd, Cr, Hg, and As) in the Modaomen Estuary, a rapidly urbanizing coastal zone in southern China. Results revealed that the most abundant elements in seawater, surface sediment, and marine organisms was Zn, while the element with the lowest concentration was Hg. The PTEs in seawater is at a low pollution level according to the comprehensive pollution index (CPI). Sediment analysis highlighted significant enrichment of Cd and Hg, with potential ecological risk index (PERI) identifying these elements as the primary contributors to ecological hazards. Zn in seawater is the most easily enriched element by marine organisms. By integrating advanced Self-organizing maps (SOM) and Positive matrix factorization (PMF) model, we conducted a comprehensive source analysis of PTEs. The SOM-PMF model successfully delineated three major anthropogenic sources-industrial wastewater discharge, fossil fuel combustion, and agricultural activities-accounting for 62.5 % of the total PTEs contributions. This study not only provides a robust framework for understanding PTE dynamics in estuarine environments but also introduces an innovative methodological approach for source apportionment and risk assessment.
Collapse
Affiliation(s)
- Weili Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Beihai 536000, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yuhong Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Lingqing Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Dong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Baohong Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Cai Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Zuhao Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Beihai 536000, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China.
| |
Collapse
|
3
|
Cardoso FD, Ramos EADP, Fonseca AL, Costa PG, Bianchini A, Padial AA. Arsenic and heavy metals contamination by effluent dam rupture in a subtropical coastal lagoon. MARINE POLLUTION BULLETIN 2025; 214:117794. [PMID: 40064132 DOI: 10.1016/j.marpolbul.2025.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Dam accidents, often resulting from inadequate structural monitoring, pose significant environmental risks. In southern Brazil, the rupture of an evaporation-infiltration lagoon released over 500,000 m3 of treated domestic effluent into a coastal lagoon, raising concerns about potential contamination from nutrients and heavy metals. This study aimed to (1) assess the environment's self-purification capacity regarding dissolved nutrients, (2) determine total heavy metal concentrations in water and sediments throughout the coastal lagoon using inductively coupled plasma mass spectrometry, (3) correlate variables influencing heavy metal availability to identify potential sources, and (4) evaluate environmental risks by comparing concentrations to established water and sediment quality guidelines. Potential sources of contamination included natural origins, boat traffic associated with fuel leaks and antifouling paints, and the irregular discharge of domestic effluents into the lagoon. The results revealed nutrient self-purification and elevated arsenic levels in the water, likely from natural sources. However, manganese and zinc concentrations exceeded water quality limits, while zinc and copper levels were notably high in northern sediments, with no definitive association to the dam's sludge. These findings highlight significant toxicity risks to biota and emphasize the need for continuous monitoring. Mitigation strategies should be implemented, particularly in the most contaminated areas, given the lagoon's intense use for recreation and seafood harvesting. Overall, the results reinforce the threat of pollution to biodiversity, ecosystem services, the livelihoods of fishing communities, and the local economy, emphasizing the importance of this study in guiding management actions amidst significant challenges.
Collapse
Affiliation(s)
- Fernanda Dittmar Cardoso
- Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Jardim das Américas, Curitiba, Paraná, Brazil; Universidade Federal de Santa Catarina, Rua Roberto Sampaio Gonzaga, 94, Trindade, Florianópolis, Santa Catarina, Brazil.
| | - Egon Abraão de Paula Ramos
- Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Jardim das Américas, Curitiba, Paraná, Brazil
| | - Alessandra Larissa Fonseca
- Universidade Federal de Santa Catarina, Rua Roberto Sampaio Gonzaga, 94, Trindade, Florianópolis, Santa Catarina, Brazil
| | - Patrícia Gomes Costa
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Campus Carreiros - Av. Itália, km 8, Rio Grande, Rio Grande do Sul, Brazil
| | - Adalto Bianchini
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Campus Carreiros - Av. Itália, km 8, Rio Grande, Rio Grande do Sul, Brazil.
| | - Andre Andrian Padial
- Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Jardim das Américas, Curitiba, Paraná, Brazil.
| |
Collapse
|
4
|
Mascarenhas RB, Gloaguen TV, Hadlich GM, Gomes NS, Almeida MDC, Souza EDS, Bomfim MR, Costa ODV, Gonzaga Santos JA. The challenge of establishing natural geochemical backgrounds in human-impacted mangrove soils of Northeastern Brazil. CHEMOSPHERE 2025; 376:144261. [PMID: 40073730 DOI: 10.1016/j.chemosphere.2025.144261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Mangroves are delicate ecosystems constantly pressured by urbanization, pollution, and climate change. Establishing natural geochemical backgrounds (GB) or geochemical baseline levels (GBL) for metals in these soils is challenging due to the dynamic coastal conditions and the combined influence of anthropogenic and natural geological factors. This study aims to establish the natural geochemical background of trace elements in mangrove soils, a more complex task than establishing GBL. A total of 360 soil samples were collected from the mangrove environments of Todos os Santos Bay, Northeast Brazil, specifically from the estuaries of the Jaguaripe, Paraguaçu, and Subaé rivers. The samples were analyzed using handheld X-ray fluorescence spectrometry (XRF), and the data were processed using the Tukey-Inner Fence (TIF) and Cumulative Distribution Function (CDF) methods, with results compared to the multiple regression method based on geochemical data. The Subaé estuary has the highest trace element concentrations, primarily due to its unique geological context, independent of diffuse metal contamination sources. CDF effectively proposed GBL values, providing a comprehensive view of trace element distribution. However, multiple regression outperformed both TIF and CDF methods in managing environmental complexity and modelled precise estimated individual background values, independently of anthropic contamination or variation of soil texture. The predicted background values were 19% and 43% lower than CDF and TIF values, respectively. Some samples showed particularly low modelled background values, up to 75, 25 or 11 times lower than CDF values for V, Mo, Pb respectively. This study enhances the understanding of geochemical dynamics in mangrove estuaries, demonstrating the potential to estimate reliable natural soil backgrounds using advanced statistical methods, even in contaminated and highly changing coastal environments. The findings provide valuable guidelines for assessing and preserving environmental quality in mangrove soils under anthropic pressures.
Collapse
Affiliation(s)
- Renata Barreto Mascarenhas
- Institute of Geosciences, Federal University of Bahia (UFBA), rua Barão de Jeremoabo, s/n, Ondina - Salvador, Bahia, Brazil.
| | - Thomas Vincent Gloaguen
- Center for Exact and Technological Sciences, Federal University of Recôncavo da Bahia (CETEC - UFRB), 710, rua Rui Barbosa, Centro - Cruz das Almas, Bahia, Brazil.
| | - Gisele Mara Hadlich
- Institute of Geosciences, Federal University of Bahia (UFBA), rua Barão de Jeremoabo, s/n, Ondina - Salvador, Bahia, Brazil.
| | - Nara Santana Gomes
- Institute of Geosciences, Federal University of Bahia (UFBA), rua Barão de Jeremoabo, s/n, Ondina - Salvador, Bahia, Brazil.
| | - Maria da Conceição Almeida
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia (CCAAB - UFRB), 710, rua Rui Barbosa, Centro - Cruz das Almas, Bahia, Brazil.
| | - Edna de Souza Souza
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia (CCAAB - UFRB), 710, rua Rui Barbosa, Centro - Cruz das Almas, Bahia, Brazil.
| | - Marcela Rebouças Bomfim
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia (CCAAB - UFRB), 710, rua Rui Barbosa, Centro - Cruz das Almas, Bahia, Brazil.
| | - Oldair Del'Arco Vinhas Costa
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia (CCAAB - UFRB), 710, rua Rui Barbosa, Centro - Cruz das Almas, Bahia, Brazil.
| | - Jorge Antônio Gonzaga Santos
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia (CCAAB - UFRB), 710, rua Rui Barbosa, Centro - Cruz das Almas, Bahia, Brazil.
| |
Collapse
|
5
|
Portugal MCS, Altafim GL, de Jesus SB, Alves AV, Rojas LAV, Zanardi-Lamardo E, Castro IB, Gallucci F, Choueri RB. Toxicity of PAHs-enriched sediments on meiobenthic communities under ocean warming and CO 2-driven acidification scenarios. MARINE POLLUTION BULLETIN 2025; 212:117489. [PMID: 39729829 DOI: 10.1016/j.marpolbul.2024.117489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
This study aimed to assess the interactive effects of CO2-driven acidification, temperature rise, and PAHs toxicity on meiobenthic communities. Laboratory microcosms were established in a full factorial experimental design, manipulating temperature (25 °C and 27 °C), pH (8.1 and 7.6), and PAH contamination (acenaphthene + benzo(a)pyrene spiked sediments and negative control). Temperature rise and CO2-driven acidification led to a decrease in the densities of Copepoda. The density of nematodes Pseudochromadora and Daptonema also decreased, while Sphaerotheristus and Sabatieria densities increased, particularly in the absence of CO2-driven acidification. Ostracoda densities increased in the acidified scenario. PAH contamination resulted in decreased Daptonema densities but increased Turbellaria and certain Nematoda genera (e.g. Pseudochromadora). Overall, the results indicate that the changes of meiobenthic communities caused by CO2 acidification, warming, and PAH contamination are shaped by the vulnerability and tolerance of each taxonomic group, alongside indirect effects observed in Nematoda assemblages.
Collapse
Affiliation(s)
| | - Giam Luca Altafim
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Simone Brito de Jesus
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Aline Vecchio Alves
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Lino Angel Valcárcel Rojas
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR) - Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR) - Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Italo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Fabiane Gallucci
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | | |
Collapse
|
6
|
Wu H, Zhi Y, Xiao Q, Yu F, Cao G, Xu X, Zhang Y. Source-oriented health risk of heavy metals in sediments: A case study of an industrial city in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117929. [PMID: 39983512 DOI: 10.1016/j.ecoenv.2025.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The heavy metals (HMs) pollution caused by accelerated urbanization poses a significant risk to environmental and human health. Sediments, as an important component of aquatic ecosystems, have become a global environmental problem due to their HMs pollution. In this paper, 53 surface water and sediment samples were carried out in the industrial city of Changzhou to analyze and evaluate the pollution characteristics. A comprehensive source risk source allocation and source health risk integrated method based on positive matrix factorization (PMF) and health risk assessment models is applied. We found that the average concentration of most HMs accumulated in sediments greatly exceeds the soil background value in Changzhou, posing a high ecological risk. Pollution sources contribution to the HMs contents ranked as: electronic industry and mechanical manufacturing (29.18 %) > metal smelting industry (20.97 %) > atmospheric deposition and transportation (20.07 %) > natural source (16.32 %) > agricultural source (13.46 %). The hazard index (HI) values and carcinogenic risk (CR) for adults are within an acceptable risk level range. The average HI for children is 1.589, which is an unacceptable risk. Source-oriented health risks indicate that metal mining is the main source of health risks due to the large number of arsenic emissions from metallurgical processes. This study identified pollution levels, sources, and risks of HMs and can provide supporting information for effective source regulation.
Collapse
Affiliation(s)
- Huihui Wu
- Chinese Academy of Environmental Planning, Beijing 100041, PR China
| | - Yan Zhi
- Chinese Academy of Environmental Planning, Beijing 100041, PR China
| | - Qingcong Xiao
- Chinese Academy of Environmental Planning, Beijing 100041, PR China
| | - Fang Yu
- Chinese Academy of Environmental Planning, Beijing 100041, PR China
| | - Guozhi Cao
- Chinese Academy of Environmental Planning, Beijing 100041, PR China
| | - Xiangen Xu
- Changzhou Research Academy of Environmental Sciences, Changzhou 213022, PR China
| | - Yanshen Zhang
- Chinese Academy of Environmental Planning, Beijing 100041, PR China.
| |
Collapse
|
7
|
Wang Y, Zhang J, Yan Q, Guo J, Liu G, Hu H, Zhao Y. Spatial distribution, sediment‒water partitioning, risk assessment and source apportionment of heavy metals in the Golmud River-Dabson Salt Lake ecosystem. ENVIRONMENTAL RESEARCH 2025; 268:120792. [PMID: 39793872 DOI: 10.1016/j.envres.2025.120792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The occurrence of heavy metals is important for understanding their behavior in the sediments of river-salt lake ecosystems due to dramatically changes in salinity and flow velocity at the confluence area. Sediments and surface water samples were collected from the Golmud River-Dabson Salt Lake ecosystem, northwest China, to investigate the spatial distribution, sediment-water partitioning, risk assessment and source apportionment of heavy metals. Higher concentrations of heavy metals were observed in surface water from Dabson Salt Lake than in other regions. Additionally, a lower partition coefficient (Kd) for heavy metals was observed in Dabson Salt Lake, indicating their pronounced release from the sediments into the surface water. Elevated levels of heavy metals were detected at the confluence area between the Golmud River and southeast Dabson Salt Lake because of industrial activities. The assessment indices indicated that almost all heavy metals in the sediments of the Golmud River and Dabson Lake posed no pollution or low potential ecological risk. Notably, Pb in some samples from the Freshwater Zone reached heavy pollution levels. The results of APCS-MLR revealed that except Pb, other heavy metals were grouped into the first principal component, which originated primarily from rock parent materials. The second principal components (industrial source), explaining 46.97% of the variance, only included Pb. The natural, industrial and unidentified sources explained 76.56%, 14.95% and 8.49%, respectively, of the heavy metal sources. These findings can significantly contribute to the management of heavy metal pollution and enhance our understanding of heavy metal behavior in river-salt lake ecosystems.
Collapse
Affiliation(s)
- Yuhao Wang
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Juan Zhang
- Qinghai Salt Lack Industry Co., Ltd, Golmud, Qinghai, 816099, China
| | - Qunxiong Yan
- Qinghai Salt Lack Industry Co., Ltd, Golmud, Qinghai, 816099, China
| | - Jiaqi Guo
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Guannan Liu
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China.
| | - Han Hu
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Yuanyi Zhao
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China
| |
Collapse
|
8
|
Liang H, Wang G, Guo H, Niu L, Yang Q. Evaluation of heavy metal accumulation and sources in surface sediments of the Pearl River Estuary (China). MARINE ENVIRONMENTAL RESEARCH 2025; 204:106948. [PMID: 39778254 DOI: 10.1016/j.marenvres.2025.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
The Pearl River Estuary (PRE) has experienced an influx of metals and nutrients, predominantly from the Pearl River, which has led to a potential threat to the estuarine ecosystem. In this study, sediment samples were densely collected to clarify the accumulation, and source contributions of heavy metals (namely Hg, Zn, Cu, As, Pb, Cd, and Cr) in the PRE. The spatial distributions of these metals exhibited significant differences, with higher values detected in the offshore areas and lower values further away. The metal values along the western coast tended to be significantly elevated compared to that of the eastern seaboard, which may relate to anthropogenic pollution, the discharge of industrial and domestic effluents in the region. The geological accumulation index (Igeo) was utilized to evaluate the pollution status, categorized as ranging from light to moderate pollution levels. The homology of metal elements was determined through Pearson correlation analysis and principal component analysis (PCA). A receptor model of positive matrix factorization (PMF) was developed to quantify the contributions of various sources to the accumulation of metal elements in the PRE. Industrial sources contributed the most to sediment metals (37.07%), followed by agricultural and natural sources, with transportation sources contributing the least (11.17%).
Collapse
Affiliation(s)
- Haihan Liang
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China
| | - Guojuan Wang
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China
| | - Hongying Guo
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China
| | - Lixia Niu
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China.
| | - Qingshu Yang
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China
| |
Collapse
|
9
|
Skierszkan EK, Dockrey JW, Lindsay MBJ. Metal Mobilization from Thawing Permafrost Is an Emergent Risk to Water Resources. ACS ES&T WATER 2025; 5:20-32. [PMID: 39816976 PMCID: PMC11731297 DOI: 10.1021/acsestwater.4c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025]
Abstract
Metals are ubiquitous in Earth's Critical Zone and play key roles in ecosystem function, human health, and water security. They are essential nutrients at low concentrations, yet some metals are toxic at a high dose. Permafrost thaw substantially alters all the physical and chemical processes governing metal mobility, including water movement and solute transport and (bio)geochemical interactions involving water, organic matter, minerals, and microbes. The outcomes of these interconnected changes are nonintuitive yet hold global implications for water resources and ecosystem health. This Perspective outlines the primary factors affecting metal mobility in thawing permafrost and underscores the urgent need and priorities for interdisciplinary research to better understand this emerging issue.
Collapse
Affiliation(s)
- Elliott K. Skierszkan
- Department
of Earth Sciences, Carleton University, 2115 Herzberg Laboratories, 1125
Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
- Department
of Geological Sciences, University of Saskatchewan, 114 Science Pl, Saskatoon, Saskatchewan, Canada, S7N 5E2
| | - John W. Dockrey
- Lorax
Environmental Services Ltd., 2289 Burrard St, Vancouver, British Columbia, Canada, V6J 3H9
| | - Matthew B. J. Lindsay
- Department
of Geological Sciences, University of Saskatchewan, 114 Science Pl, Saskatoon, Saskatchewan, Canada, S7N 5E2
| |
Collapse
|
10
|
Dey G, Maity JP, Banerjee P, Sharma RK, Das K, Gnanachandrasamy G, Wang CW, Lin PY, Wang SL, Chen CY. Evaluation and mitigation of potentially toxic elements contamination in mangrove ecosystem: Insights into phytoremediation and microbial perspective. MARINE POLLUTION BULLETIN 2024; 209:117035. [PMID: 39393228 DOI: 10.1016/j.marpolbul.2024.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Mangroves, essential coastal ecosystems, are threatened by human-induced Potentially-toxic-elements (PTEs) pollution. This study analyzed PTEs distribution, phytoremediation potential, and rhizosphere microbial communities in Taiwan's Xinfeng mangrove forest. Significant variations in physicochemical and PTEs concentrations were observed across adjacent water bodies, with moderate contamination in the river, estuary, and overlying water of mangroves sediment. The partition-coefficient showed the mobility of Bi, Pb, Co, and Sr at the water-sediment interface. The geochemical-indices revealed high Bi and Pb contamination and moderate Zn, Sr, Cu, and Cd contamination in sediment. The overall pollution indices indicated the significant contamination, while moderate ecological risk was found for Cd (40 ≤ Eri < 80). Mangroves Kandelia obovata and Avicennia marina exhibited promising PTEs phytoremediation potential (Bi, Cd, Mn, Sr, and Co). Metagenomics indicated a diverse microbial community with N-fixation, P-solubilization, IAA synthesis, and PTEs-resistance genes. These findings underscore the need for targeted conservation to protect these critical habitats.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, Biological Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Gopalakrishnan Gnanachandrasamy
- Department of Earth Sciences, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry 605104, India
| | - Chin-Wen Wang
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan.
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan; You-Cheng Engineering & Technology Co., Ltd, Chiayi 62102, Taiwan.
| |
Collapse
|
11
|
Sun Z, Yao X, Sang D, Wang S, Lü W, Sun X, Zhang Y, Deng H, Li T. Effects of photodegradation on the composition characteristics and metal binding behavior of sediment-derived dissolved organic matter (SDOM) in nansi lake, China. ENVIRONMENTAL RESEARCH 2024; 261:119682. [PMID: 39067800 DOI: 10.1016/j.envres.2024.119682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Sediment-derived dissolved organic matter (SDOM) is instrumental in the cycling of nutrients and heavy metals within lakes, influencing ecological balance and contaminant distribution. Given the influence of photodegradation on the alteration and breakdown of SDOM, further understanding of this process is essential. In this research, the properties of the SDOM photodegradation process and its metal-binding reactions in Nansi Lake were analyzed using the EEM-PARAFAC and 2D-SF/FTIR-COS techniques. Our study identified three sorts of humic-like components and one protein-like component in SDOM, with the humic-like material accounting for 71.3 ± 5.19% of the fluorescence intensity (Fmax). Photodegradation altered the abundance and structure of SDOM, with a 41.6 ± 5.82% decrease in a280 and a 29.1 ± 9.31% reduction in Fmax after 7 days, notably reducing the protein-like component C4 by 54.0 ± 5.17% and the humic-like component C2 by 48.5 ± 2.54%, which led to SDOM being formed with lower molecular weight and aromaticity. After photodegradation, the LogKCu values for humic-like and protein-like substances decreased (humic-like C2: LogKCu: 1.35 ± 0.10-1.11 ± 0.15, protein-like C4: 1.49 ± 0.14-1.29 ± 0.34), yet the preferential binding sequence of protein-like materials and specific functional groups with Cu2+ such as aliphatic C-OH, amide (I) C=O and polysaccharide C-O groups remained unaltered. Our results enhance the knowledge of light-induced SDOM alterations and offer insights into SDOM-metal interactions in aquatic ecosystems.
Collapse
Affiliation(s)
- Zhaoli Sun
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China; Institute of Huanghe Studies, Liaocheng University, Liaocheng, 252000, China
| | - Xin Yao
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China; Institute of Huanghe Studies, Liaocheng University, Liaocheng, 252000, China.
| | - Dongling Sang
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China
| | - Shanshan Wang
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China
| | - Weiwei Lü
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China
| | - Xiao Sun
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China
| | - YingHao Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China
| | - Huanguang Deng
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China
| | - Tingting Li
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China
| |
Collapse
|
12
|
Andreu V, Gimeno E, Pascual JA, Campo J. The Anthropocene fingerprint: Hazardous elements in waters of a coastal Mediterranean alluvial plain (Valencia, Spain). Heliyon 2024; 10:e36044. [PMID: 39296082 PMCID: PMC11409034 DOI: 10.1016/j.heliyon.2024.e36044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
This study focuses on the alluvial plain spanning between the Turia and Jucar rivers (486 km2) in Valencia, Spain - a highly productive agricultural area that also involves a Natural Park (La Albufera). Thirty-five points across different water sources and land uses were sampled to map the spatial distribution of 14 heavy metals (Al, As, B, Cd, Co, Cr, Cu, Fe, Li, Ni, Pb, Sr, Tl, and Zn), and to study the potential influence of water characteristics and environmental factors on them. Two pollution indexes were applied, Heavy Metal Evaluation Index (HEI) and Water Pollution Index (WPI), to assess the water quality state in the area. High levels were predominantly found in the southern region, particularly within rice farming areas. For B, Sr, and Tl, all samples exceeded WHO limits, EU legislation, or EPA benchmarks, with 61.76 % and 85.71 % of samples surpassing standards for Al and Li, respectively. Water salinization parameters greatly influenced the dynamics of Al, As, B, Li, Sr, and Tl. Analysis using both indexes (HEI and WPI) revealed poor water quality in the area, particularly in rice fields, posing potential toxic effects on ecosystems and human health. The findings of this work are valuable for understanding elements of concern in coastal wetlands under global change.
Collapse
Affiliation(s)
- Vicente Andreu
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Eugenia Gimeno
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Juan Antonio Pascual
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Julián Campo
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| |
Collapse
|
13
|
Wang W, Huo Y, Lin C, Lian Z, Wang L, Liu Y, Sun X, Chen J, Lin H. Occurrence, accumulation, ecological risk, and source identification of potentially toxic elements in multimedia in a subtropical bay, Southeast China. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135110. [PMID: 38970976 DOI: 10.1016/j.jhazmat.2024.135110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Potentially toxic elements (PTEs) in seawater and sediments may be amplified along the aquatic food chain, posing a health threat to humans. This study comprehensively analyzed the concentrations, distribution, potential sources, and health risk of 7 PTEs in multimedia (seawater, sediment and organism) in typical subtropical bays in southern China. The results indicated that Zn was the most abundant element in seawater, and the average concentration of Cd in sediment was 3.93 times higher than the background value. Except for As, the seasonal differences in surface seawater were not significant. The content of Zn in fishes, crustacea, and shellfish was the highest, while the contents of Hg and Cd were relatively low. Bioaccumulation factor indicated that Zn was a strongly bioaccumulated element in seawater, while Cd was more highly enriched by aquatic organisms in sediment. According to principal component analysis (PCA), and positive matrix factorization (PMF), the main sources of PTEs in Quanzhou Bay were of natural derivation, industrial sewage discharge, and agricultural inputs, each contributing 40.4 %, 24.2 %, and 35.4 %, respectively. This study provides fundamental and significant information for the prevention of PTEs contamination in subtropical bays, the promotion of ecological safety, and the assessment of human health risk from PTEs in seafood.
Collapse
Affiliation(s)
- Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Beihai 536000, China
| | - Yunlong Huo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Cai Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Zhonglian Lian
- Zhanjiang Marine Center, Ministry of Natural Resources, Zhanjiang 524005, China.
| | - Lingqing Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiuwu Sun
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jinmin Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
14
|
Ke Y, Ou C, Guo X, Liu S, Yao C, Shi B, Que H. Heavy Metal Accumulation in Oysters from an Aquaculture Area in the Luoyangjiang River Estuary. TOXICS 2024; 12:645. [PMID: 39330573 PMCID: PMC11436002 DOI: 10.3390/toxics12090645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Oysters are a group of economically important bivalves in China, with estuaries serving as one of their primary cultivation areas. However, heavy metal pollution in these estuarine environments poses a potential threat to aquaculture by leading to the accumulation of heavy metals in farmed oysters, which could impact their safety and marketability. This study was conducted in the aquaculture area of the Luoyangjiang River estuary, where eight sampling sites were selected. Water, sediment, and oysters categorized by shell length were collected from each site. The concentrations of heavy metals (Ag, As, Cd, Cr, Cu, Ni, Pb, and Zn) were determined in both the environmental samples and oyster tissues. Additionally, multiplex species-specific PCR was used to identify oyster species. The results showed significant variations in dissolved-phase and suspended particulate matter (SPM) metal concentrations across different sampling sites, while sediment metal concentrations were more consistent but similar to those in SPM. The large oysters were comprised of 50% Magallana angulata and 50% Magallana gigas, while small oysters were identified as Magallana sikamea. The Cd, Cu, Pb, and Zn levels in both size groups of oysters exceeded data from previous studies, indicating contamination in the estuary. The observed differences in heavy metal concentrations between large and small oysters primarily reflect species-specific variability in metal accumulation, which may also be influenced by factors such as growth and exposure duration. Furthermore, the lack of significant correlation between metal concentrations in environmental media and oysters suggests that oysters may be exposed to multiple sources of metal contamination.
Collapse
Affiliation(s)
- Yizhou Ke
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China; (C.O.); (S.L.); (C.Y.); (B.S.)
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Changchun Ou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China; (C.O.); (S.L.); (C.Y.); (B.S.)
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Xiaoyu Guo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China;
| | - Shuyi Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China; (C.O.); (S.L.); (C.Y.); (B.S.)
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Chenlu Yao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China; (C.O.); (S.L.); (C.Y.); (B.S.)
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Bo Shi
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China; (C.O.); (S.L.); (C.Y.); (B.S.)
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Huayong Que
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China; (C.O.); (S.L.); (C.Y.); (B.S.)
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| |
Collapse
|
15
|
Mishra R, Sahu C, Basti S, Sahu SK. Evaluation of heavy metal speciation in waters of Hirakud reservoir: a Ramsar site in India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:840. [PMID: 39180609 DOI: 10.1007/s10661-024-13012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The growing concern of aquatic heavy metal (HM) pollution is dependent on the toxic nature of its bio-available form. Thus, bio-availability is guided by the HM fractionation in water. This study was therefore conducted to evaluate the spatial impact on physicochemical fractionation of HM (Zn, Mn, Cu, and Fe) in the waters of the Hirakud reservoir in India. Speciation along different pores using a filtration technique was adopted to fractionate the HMs in water samples. The result suggests that the water of the study area is polluted with Cu (0.22-0.35 mg/L), Mn (0.15-0.23 mg/L), and Fe (1.90-3.10 mg/L) that have crossed their permissible limits while Zn (0.17-0.97 mg/L) was within the permissible standard. When studied for physical partitioning, the right dyke was comparatively more polluted than the left dyke. While the water samples were dominated by the dissolved fraction of heavy metals, it was construed that a large proportion of the HMs are in bio-available form. Further, a distinct impact of spatial variation on metal fractionation was also evident in the study with PCA revealing site-specific behaviour. Therefore, it can be concluded that multiple anthropogenic activities lead to the distribution and fractionation of HMs in water.
Collapse
Affiliation(s)
- Rajesh Mishra
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| | - Chandan Sahu
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India.
- Gangadhar Meher University, Amruta Vihar, Sambalpur, 768004, India.
| | - Sradhanjali Basti
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| | - Sanjat Kumar Sahu
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| |
Collapse
|
16
|
Ahmed B, Islam S, Quraishi SB, Alam MNE, Ahsan MS, Kabir A. A probabilistic risk assessment of heavy metal in water and sediment: An industrially affected urban river in Bangladesh. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11097. [PMID: 39155848 DOI: 10.1002/wer.11097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024]
Abstract
Human welfare and biodiversity are at risk due to the deterioration of water and sediment quality. Particularly, in last few decades, global water and sediment quality degraded due to the rapid industrialization and urbanization. This study aimed to determine the concentration of nine heavy metals and metalloid (Pb, Cr, Cd, Hg, As, Mn, Ni, Cu, and Zn) and assess the ecological risks using different pollution indices (e.g., heavy metal pollution index [HPI], Nemerow pollution index [NI], geo-accumulation index [Igeo], contamination factor [CF], degree of contamination [CD] and pollution load index [PLI], ecological risk index [ERI]) in water and sediment of the Shitalakshya River, an industrially affected urban river of Bangladesh. For the first time, 20 water and sediment samples were collected across a wider geographical area of the Shitalakshya River during both monsoon and dry seasons and analyzed using the atomic absorption spectrometer. Average concentrations of heavy metals and metalloid in water were within the Bangladesh standard except for Cr (51.69 ppb) and Mn (228.20 ppb) during monsoon season, portraying potential ecological and human health risks. Besides, average concentration of Mn (549.75 and 370.93 ppb), Ni (549.75 and 370.93 ppb), and Cu (45.34 and 36.09 ppb) in sediment during both seasons were above international standard, implying risk to aquatic sediment biota. The average HPI values indicated moderate to high contamination, whereas the NI values implied polluted water in monsoon season with severe pollution in port area of the river. Similarly, Igeo, CF, CD, and PLI elucidated different levels of contamination in the sediment, particularly during dry season. The ERI values also referred moderate ecological risk in the sediment during dry season. Overall, our findings highlight the alarming level of heavy metal pollution in the Shitalakshya River, necessitating immediate action to protect the aquatic environment, sediment biota, and human health. PRACTITIONER POINTS: This study determined the concentration of heavy metals and metalloid in water and sediment of the Shitalakshya River, Bangladesh. The study revealed that the average concentration of Cr and Mn in water exceeded national standard, whereas Mn, Ni, and Cu in sediment exceeded international limit. Potential ecological risk of heavy metals was also assessed using different pollution indices. Calculated pollution indices indicated different degree of pollution, implying critical ecological condition due to heavy metal pollution in aquatic environment and sediment biota.
Collapse
Affiliation(s)
- Booshra Ahmed
- Department of Ecology, Faculty of Environmental Science and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Department of Environmental Science, Bangladesh University of Professional, Dhaka, Bangladesh
| | - Shamaila Islam
- Department of Environmental Science, Bangladesh University of Professional, Dhaka, Bangladesh
| | | | | | - Md Sabbir Ahsan
- Nuclear Power Plant Company Bangladesh Limited, Dhaka, Bangladesh
| | - Alamgir Kabir
- Department of Environmental Science, Bangladesh University of Professional, Dhaka, Bangladesh
| |
Collapse
|
17
|
Silva MC, do Nascimento Monte C, de Souza JR, Selfe ACC, Ishihara JH. Mapping of metals contamination in coastal sediments around the world in the last decades: A bibliometric analysis and systematic review. MARINE POLLUTION BULLETIN 2024; 205:116572. [PMID: 38878414 DOI: 10.1016/j.marpolbul.2024.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
The quality of coastal sediments contaminated by metals has been discussed for decades worldwide. However, there is a lack of information on the current situation and trends in this research field. For this reason, this is the first study to present an integrated analysis of bibliometric mapping and systematic review, using the Scopus database. The subject has grown exponentially, with a notable increase in citations and predicted increases for the coming years. The Chinese Academy of Sciences and Chinese authors were highlighted. The main areas of study were the Yellow Sea, Adriatic Sea and Persian Gulf. The main metals related were Cu, Pb, Zn, Cr and Cd, linked to anthropogenic sources such as agriculture, domestic sewage and mining and industry activities. The IGEO proved to be the main index for assessing pollution. This research is useful for pointing out the needs of future research, supporting the development of this topic.
Collapse
Affiliation(s)
- Matheus Cavalcante Silva
- Postgraduate Program in Geosciences (Geochemistry), Fluminense Federal University, R. Mario Santos Braga, 30, Niterói, RJ CEP 24020-140, Brazil.
| | | | - Jadelene Ramos de Souza
- Faculty of Sanitary and Environmental Engineering, Federal University of Pará, Rodovia BR 422 km 13 - Vila Permanente, Tucuruí, PA CEP 68464-000, Brazil
| | - Ana Cristina Cavalcante Selfe
- Faculty of Sanitary and Environmental Engineering, Federal University of Pará, Rodovia BR 422 km 13 - Vila Permanente, Tucuruí, PA CEP 68464-000, Brazil
| | - Junior Hiroyuki Ishihara
- Centre for Amazonian Development in Engineering, Federal University of Pará, Rodovia BR 422 km 13 - Vila Permanente, Tucuruí, PA CEP 68464-000, Brazil
| |
Collapse
|
18
|
Zhang L, Wu Y, Li J, Ni Z, Ren Y, Lin J, Huang X. Hydrodynamics and dissolved organic matter components shaped the fate of dissolved heavy metals in an intensely anthropogenically disturbed estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173293. [PMID: 38759925 DOI: 10.1016/j.scitotenv.2024.173293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/31/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Anthropogenic activities and natural erosion caused abundant influx of heavy metals (HMs) and organic matter (OM) into estuaries characterized by the dynamic environments governed by tidal action and river flow. Similarities and differences in the fate of HM and OM as well as the influences of OM on HMs remain incomplete in estuaries with seasonal human activity and hydrodynamic force. To address this gap, dissolved HMs (dHMs) and fluorescence dissolved OM (FDOM) were investigated in the Pearl River Estuary, a highly seasonally anthropogenic and dynamic estuary. It aimed to elucidate the effects of hydrodynamic conditions and DOM on the seasonal fate of dHMs via the multivariate statistical methods. Our findings indicated dHMs and FDOM exhibited consistently higher levels in the upper estuarine and coastal waters in both seasons, predominantly controlled by the terrestrial/anthropogenic discharge. In the wet season, dHMs and humic-like substances (HULIS) were positively correlated, showing that dHMs readily combined with HULIS. This association led to a synchronous decrease offshore along the axis of the estuary and the transport following the river plume in the surface affected by the salt wedge. Contrarily, dHMs were prone to complex with protein-like components impacted by the hydrodynamics during the dry season. Principal component analysis (PCA) results revealed the terrestrial/anthropogenic inputs and the fresh-seawater mixing process were the most crucial factors responsible for the fate of dHM in wet and dry seasons, respectively, with DOM identified as a secondary but significant influencing factor in both seasons. This study holds significance in providing valuable insights into the migration, transformation, the ultimate fate of dHMs in anthropogenically influenced estuaries, as well as the intricate dynamics governing coastal ecosystems.
Collapse
Affiliation(s)
- Ling Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Yunchao Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Jinlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixin Ni
- Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; South China Sea Environmental Monitoring Center, South China Sea Bureau, Ministry of Natural Resources, Guangzhou 510300, China
| | - Yuzheng Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jizhen Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Paparazzo FE, Fernandez-Severini MD, Pierattini-Martinez R, Silva R, Ardusso M, Bermejo P, Reta R. Marine coastal chemistry related to inland inputs in San Jorge gulf and the adjacent north coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174488. [PMID: 38969121 DOI: 10.1016/j.scitotenv.2024.174488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Coastal regions are sectors where human activities impact the marine ecosystem, and if necessary control measures are not taken, they can generate negative consequences for health and ecosystem services. Within the framework of the Pampa Azul initiative and under the One Health paradigm, the interconnection between the terrestrial and marine environments of the San Jorge Gulf and the adjacent north coast has been studied. In November, 2022, a campaign was carried out aboard the R/V "Mar Argentino" at thirty-four stations near the coast. There, for the first time, simultaneously with in-situ measurements of physical variables, macronutrients (NO3-, PO4-3, Si(OH)4 and NH4+), particulate silica (BSi and LSi), trace metals in the particulate material (Cd, Cu, Cr, Fe and Pb) and the phytoplankton community were analyzed. The results showed a high nutrient dynamic, with a significant influence of natural stratification and anthropogenic condition due to the discharge of effluents off the cities of Comodoro Rivadavia and Caleta Olivia. Under natural conditions, NO3- and Si(OH)4 limited the surface primary production by 47 % and 41 %, respectively. Additionally, due to the anthropogenic contribution, NH4+ concentration reached 3 μM, increasing the proliferation of nanophytoplankton, among other consequences. As a result of nutrient dynamics, the uptake of Si(OH)4, the growth rate of diatoms and their production of BSi were decoupled. Furthermore, a significant correlation between LSi and Fe in particulate matter was evidenced, opening new lines of research that relate dust storms to primary productivity in this marine environment. The measured concentrations of trace metals do not appear to be a biological risk; however, contamination by Cd (37.6 μg g- 1 d.w.) and Cu (214.97 μg g- 1 d.w.) off Camarones poses a significant concern that must be addressed in the immediate future.
Collapse
Affiliation(s)
- Flavio E Paparazzo
- Centro para el Estudio de Sistemas Marinos, CESIMAR-CONICET, Boulevard Brown 2915, U9120ACD Puerto Madryn, Argentina; Instituto Patagónico del Mar, IPaM-UNPSJB, Boulevard Brown 3051, U9120ACD Puerto Madryn, Argentina.
| | - Melisa D Fernandez-Severini
- Instituto Argentino de Oceanografía, IADO-CONICET, Camino La Carrindanga km 7,5, B8000FWB Bahía Blanca, Argentina
| | - Regina Pierattini-Martinez
- Centro para el Estudio de Sistemas Marinos, CESIMAR-CONICET, Boulevard Brown 2915, U9120ACD Puerto Madryn, Argentina; Instituto Patagónico del Mar, IPaM-UNPSJB, Boulevard Brown 3051, U9120ACD Puerto Madryn, Argentina
| | - Ricardo Silva
- Instituto Nacional de Investigación y Desarrollo Pesquero-INIDEP, Paseo Victoria Ocampo, Escollera N 1, B7602HSA Mar del Plata, Argentina
| | - Maialen Ardusso
- Instituto Argentino de Oceanografía, IADO-CONICET, Camino La Carrindanga km 7,5, B8000FWB Bahía Blanca, Argentina
| | - Paula Bermejo
- Centro para el Estudio de Sistemas Marinos, CESIMAR-CONICET, Boulevard Brown 2915, U9120ACD Puerto Madryn, Argentina
| | - Raúl Reta
- Instituto Nacional de Investigación y Desarrollo Pesquero-INIDEP, Paseo Victoria Ocampo, Escollera N 1, B7602HSA Mar del Plata, Argentina
| |
Collapse
|
20
|
Jia Z, Liu Q, Hu J, Li S, Chen H. A microcosm evaluation of metal cycling in an urbanized contaminated estuary varying with oxic-hypoxic-anoxic-reoxic transition: Behavior, fluxes, and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172769. [PMID: 38670363 DOI: 10.1016/j.scitotenv.2024.172769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/31/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Water hypoxia and metal pollution are commonly co-existed in urbanized estuaries. This study focuses on the effect of an extended dissolved oxygen (DO) full-life dynamics (86 days) on metal behavior across the sediment-water interface through laboratory microcosms from two typical zones in Pearl River Estuary. Combining our time-series results of concentrations and fluxes, it showed that Co, Ni, and Zn consistently presented a release-precipitation-release trajectory with an oxic-hypoxic-anoxic-reoxic transition, characterized with highly variable behavior in the hypoxic-anoxic hotmoments. In parallel, changing DO dynamics significantly activated a repartitioning process of Co, Ni, and Zn among several species and elevated their risk in sediments, promoting the formation of more labile species in the 0-10 mm hotspots, where metals sensitively responded. Over DO transition, metal cycling was tightly co-related with Fe, Mn, and S elements. It was found that Mn was dominated in low oxygen-hypoxic period, but switched to S and Fe in anoxic stage, limiting sustained metal liberation to overlying water. Enlarging this experiment to practice, released Zn fluxes from sediments in hypoxic summer could contribute about ∼2.0% to their stocks in water column, while increase to 20% (1 m bottom water) in highly-stratified zones. This study has certain significance in understanding the long-term metal behavior and fate in estuarine regions, even lakes and reservoirs.
Collapse
Affiliation(s)
- Zhenzhen Jia
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qiuxin Liu
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Jiatang Hu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Shiyu Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hujunjie Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Yang J, Ren L, Hua C, Tian Y, Yong X, Fang S. Identification of toxic metal contamination in surface sediments of the Xiaoqing River under a long-term perspective (1996-2020): Risks, sources and driving factors. ENVIRONMENTAL RESEARCH 2024; 251:118613. [PMID: 38432570 DOI: 10.1016/j.envres.2024.118613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The contamination of sediments by toxic metals poses a significant threat to both river ecosystems and human health. In this study, the geo-accumulation index (Igeo), biotoxicity evaluation method, and potential ecological risk index (RI) were employed to analyze the contamination level, biotoxicity risk, and potential ecological risk of toxic metals in surface sediments of the Xiaoqing River. To identify toxic metal sources, Spearman correlation and principal component analysis with multiple linear regression analysis (PCA-MLR) were employed. Additionally, redundancy analysis (RDA) was utilized to investigate potential driving factors affecting toxic metal accumulation in sediments. The results revealed that the levels of the five investigated metals (Cr, Pb, As, Hg, and Cd) showed constant fluctuations during the period 1996-2020. The midstream was found to be more polluted than the upstream and downstream. In the research area, Hg was identified as the primary contaminant with high levels of contamination, posing a biotoxicity risk and potential ecological risk. Pollution sources were identified for two periods: A (1996-2010) and B (2011-2020), with industrial, agricultural, traffic, and natural sources being the main contributors. During period A, industrial sources accounted for the highest proportion (40.8%), followed by agricultural sources (36.6%), and geological natural sources (22.6%). During period B, agricultural sources accounted for the highest proportion (42%), followed by industrial and traffic sources (32.4%), and geological natural sources (25.6%). The distribution of toxic metals in the basin was significantly influenced by water pH, sediment organic matter, population density, and per capita GDP. The study results provide fundamental data for preventing pollution and managing water resources contaminated with toxic metals in the sediments of the Xiaoqing River in Jinan. Additionally, it serves as a reference for analyzing related ecological and environmental issues in the basin.
Collapse
Affiliation(s)
- Jiaying Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Lijun Ren
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Chunyu Hua
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yueru Tian
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xian Yong
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Shumin Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
22
|
Cai N, Wang X, Zhu H, Hu Y, Zhang X, Wang L. Isotopic insights and integrated analysis for heavy metal levels, ecological risks, and source apportionment in river sediments of the Qinghai-Tibet Plateau. ENVIRONMENTAL RESEARCH 2024; 251:118626. [PMID: 38467358 DOI: 10.1016/j.envres.2024.118626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The research was carried out to examine the pollution characteristics, ecological risk, and origins of seven heavy metals (Hg, As, Pb, Cu, Cd, Zn, and Ni) in 51 sediment samples gathered from 8 rivers located on the Qinghai-Tibet Plateau (QTP) in China. The contents of Hg and Cd were 5.0 and 1.1 times higher than their background values, respectively. The mean levels of other measured heavy metals were below those found naturally in the local soil. The enrichment factor showed that the study area exhibited significantly enriched Hg with 70.6% sampling sites. The Cd contents at 19.6% of sampling sites were moderately enriched. The other sampling sites were at a less enriched level. The sediments of all the rivers had a medium level of potential ecological risk. Hg was the major ecological risk factor in all sampling sites, followed by Cd. The findings from the positive matrix factorization (PMF) analysis shown agricultural activities, industrial activities, traffic emissions, and parent material were the major sources. The upper, middle, and low reaches of the Quanji river had different Hg isotope compositions, while sediments near the middle reaches were similar to the δ202Hg of the industrial source. At the upstream sampling sites, the Hg isotope content was very close to the background level. The results of this research can establish a strong scientific sound to improve the safety of the natural circumstances of rivers on the QTP.
Collapse
Affiliation(s)
- Na Cai
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueping Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Haixia Zhu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Hu
- Qaidam Comprehensive Geological and Mineral Exploration Institute of Qinghai Province, Golmud, 816099, China; Qinghai Provincial Key Laboratory of Exploration and Research of Salt Lake Resources in Qaidam Basin, Golmud, 816099, China
| | - Xiying Zhang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China.
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Jiwarungrueangkul T, Sompongchaiyakul P, Tipmanee D, Kumsopar S, Khammanee N, Sangmanee C, Charoenpong C. Equilibrium partitioning approach for metal toxicity assessment in tropical estuarine sediment of Bandon Bay, Thailand. MARINE POLLUTION BULLETIN 2024; 203:116418. [PMID: 38677218 DOI: 10.1016/j.marpolbul.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
An equilibrium partitioning approach (EqPA) was employed to evaluate the metal toxicity and define sediment quality guidelines (SQGs) for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), and mercury (Hg) in the cockle cultivated areas located in Bandon Bay, Thailand. An assessment of metal toxicity using the [∑SEM]-[AVS] and [∑SEM]-[AVS]/foc models indicated no adverse effect on benthic organisms. The normalized total metal concentrations in this area were below the established SQG values for As, Cd, Cu, Ni, Pb, Zn, and Hg, namely respectively 21.3, 0.8, 84.6, 36.0, 34.6, 440.9 mg/kg dry weight, and 49.3 μg/kg dry weight on sand and calcium carbonate free with 1 % total organic carbon basis, suggesting low metal toxicity. This study provides locality adapted SQG values for supporting sediment quality management specifically in Bandon Bay, potentially serving as a model for other coastal areas.
Collapse
Affiliation(s)
- Thanakorn Jiwarungrueangkul
- Marine Environment and Geoinformatics Technology Research Unit, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Phuket 83120, Thailand; Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand.
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Danai Tipmanee
- Marine Environment and Geoinformatics Technology Research Unit, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Phuket 83120, Thailand
| | - Suriyapong Kumsopar
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Naranun Khammanee
- Major in Natural Resources and Environment, Faculty of Science and Technology, Suratthani Rajabhat University, Suratthani 84100, Thailand
| | - Chalermrat Sangmanee
- Phuket Marine Biological Center, Department of Marine and Coastal Resources, Phuket 83000, Thailand
| | - Chawalit Charoenpong
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
24
|
Niampradit S, Kiangkoo N, Mingkhwan R, Kliengchuay W, Worakhunpiset S, Limpananont Y, Hongsibsong S, Inthorn D, Tantrakarnapa K. Occurrence, distribution, and ecological risk assessment of heavy metals in Chao Phraya River, Thailand. Sci Rep 2024; 14:8366. [PMID: 38600294 PMCID: PMC11006942 DOI: 10.1038/s41598-024-59133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
Understanding heavy metals in rivers is crucial, as their presence and distribution impact water quality, ecosystem health, and human well-being. This study examined the presence and levels of nine heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) in 16 surface water samples along the Chao Phraya River, identifying Fe, Mn, Zn, and Cr as predominant metals. Although average concentrations in both rainy and dry seasons generally adhered to WHO guidelines, Mn exceeded these limits yet remained within Thailand's acceptable standards. Seasonal variations were observed in the Chao Phraya River, and Spearman's correlation coefficient analysis established significant associations between season and concentrations of heavy metals. The water quality index (WQI) demonstrated varied water quality statuses at each sampling point along the Chao Phraya River, indicating poor conditions during the rainy season, further deteriorating to very poor conditions in the dry season. The hazard potential index (HPI) was employed to assess heavy metal contamination, revealing that during the dry season in the estuary area, the HPI value exceeded the critical threshold index, indicating the presence of heavy metal pollution in the water and unsuitable for consumption. Using the species sensitivity distribution model, an ecological risk assessment ranked the heavy metals' HC5 values as Pb > Zn > Cr > Cu > Hg > Cd > Ni, identifying nickel as the most detrimental and lead as the least toxic. Despite Cr and Zn showing a moderate risk, and Cu and Ni posing a high risk to aquatic organisms, the main contributors to ecological risk were identified as Cu, Ni, and Zn, suggesting a significant potential ecological risk in the Chao Phraya River's surface water. The results of this study provide fundamental insights that can direct future actions in preventing and managing heavy metal pollution in the river ecosystem.
Collapse
Affiliation(s)
- Sarima Niampradit
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, 10400, Thailand
- Environment, Health & Social Impact Unit, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, Thailand
| | - Nuttapohn Kiangkoo
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, 10400, Thailand
- Environment, Health & Social Impact Unit, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, Thailand
| | - Rachaneekorn Mingkhwan
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, 10400, Thailand
- Environment, Health & Social Impact Unit, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, Thailand
| | - Wissanupong Kliengchuay
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, 10400, Thailand
- Environment, Health & Social Impact Unit, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, Thailand
| | - Suwalee Worakhunpiset
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, 10400, Thailand
- Environment, Health & Social Impact Unit, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, Thailand
| | - Yanin Limpananont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, 10400, Thailand
- Environment, Health & Social Impact Unit, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, Thailand
| | - Surat Hongsibsong
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Duangrat Inthorn
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Krung Thep Maha Nakhon, Thailand
- Center of Excellence on Environmental Health and Toxicity (EHT), Krung Thep Maha Nakhon, Thailand
| | - Kraichat Tantrakarnapa
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, 10400, Thailand.
- Environment, Health & Social Impact Unit, Faculty of Tropical Medicine, Mahidol University, Krung Thep Maha Nakhon, Thailand.
| |
Collapse
|
25
|
Li D, He H, Yang M, Zhang X, Guan T, Dai W, Li Y, Shao H, Ding S, Li X. Arsenic distribution and partitioning in multiple media in a typical catchment in the Qinghai-Tibetan plateau: A comparison between freshwater and saltwater lakes. ENVIRONMENTAL RESEARCH 2024; 246:118132. [PMID: 38218526 DOI: 10.1016/j.envres.2024.118132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Arsenic (As) has been widely detected in surface media on the Qinghai-Tibetan Plateau (QTP); however, the differences in the As distribution and partitioning characteristics between freshwater and saltwater lakes remain poorly understood. To determine the distribution and partitioning characteristics of As, multimedia environmental samples were collected from a typical small watershed consisting of a river, wetland, and both freshwater and saltwater lakes on the QTP. Results showed that freshwater systems, represented by Hurleg Lake, were high in particulate arsenic (PAs) and low in dissolved arsenic (DAs), whereas the saltwater system represented by Tosen Lake, exhibited the reverse distribution. This discrepancy in As distribution was primarily attributed to evaporation enrichment, competitive adsorption of HCO3- and pH variations, as suggested by correlation analysis and stable isotopic composition of water. In the stratified Tosen Lake, an increasing trend of DAs in the water column was observed, potentially driven by the reductive dissolution of Fe (hydr)oxides and bacterial sulfate reduction in the anoxic bottom hypolimnion. Conversely, Hurleg Lake maintained oxic conditions with stable DAs concentrations. Notably, PAs was elevated in the bottom layer of both lakes, possibly due to uptake/adsorption by biogenic particles, as indicated by high levels of chl.α and suspended particulate matter. These findings offer insights into the potential future impact of climate change on As mobilization/redistribution in arid plateau lakes, with implications for management policies that regulate As pollution.
Collapse
Affiliation(s)
- Dongli Li
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China
| | - Mengdi Yang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Xuecheng Zhang
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Tianhao Guan
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Wenjing Dai
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yan Li
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Hang Shao
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Shiyuan Ding
- School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Xiaodong Li
- School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
26
|
Santos TTL, Mounier JLS, Marins RV. Trace metal partitioning in the parnaíba delta in dry season, equatorial coast of Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123500. [PMID: 38320685 DOI: 10.1016/j.envpol.2024.123500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/08/2024]
Abstract
Trace metal concentrations in the particulate fractions (MP), dissolved fractions (MD) and sediments (MS), such as Ba, Cu, Co, Cr, Pb, Ni and Zn, were determined during the dry season of the largest open sea delta of Americas, the Parnaíba River Delta (Brazil). This study aimed to comprehend the distribution, dynamic changes of metal speciation and environmental quality index of trace metals in the particulate fractions and subsurface sediments in scenario of major marine influence over the delta. The trace metals bound to suspended particulate material (SPM) from weathering the drainage basin exhibited a removal trend under increases in salinity and pH. Desorption influenced the partitioning of BaMP, ZnMP, NiMP, CoMP, CuMP, and the adsorption and precipitation of PbMP and CrMP to the surface sediments. The organic matter contents in the sediments acts as an important geochemical carrier of these contaminants, and the dissolved organic carbon influences the binding of PbMD in the subsurface waters. The geoaccumulation index (Igeo) plays a crucial role in revealing potential contamination with ZnMP contents and weak association to this fraction. These results make possible the assessment of ecological risk by metal contamination and global pollution mitigation in coastal tidal estuaries under intensive physical mixing along the equatorial coast.
Collapse
Affiliation(s)
- Thays Thayanne Luz Santos
- Federal University of Ceará, Marine Science Institute/LABOMAR, Av. da Abolição, 3207, 60.165-081, Fortaleza, CE, Brazil; Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS, 60584, 83041, Toulon, France.
| | - Jean Louis Stéphane Mounier
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS, 60584, 83041, Toulon, France.
| | - Rozane Valente Marins
- Federal University of Ceará, Marine Science Institute/LABOMAR, Av. da Abolição, 3207, 60.165-081, Fortaleza, CE, Brazil.
| |
Collapse
|
27
|
He F, Luo X, Heman A, Chen Z, Jia J. Anthropogenic perturbations on heavy metals transport in sediments in a river-dominated estuary (Modaomen, China) during 2003-2021. MARINE POLLUTION BULLETIN 2024; 199:115970. [PMID: 38171160 DOI: 10.1016/j.marpolbul.2023.115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Heavy metal pollutants in sediment greatly impact the estuarine environment and ecosystems, increasingly influenced by anthropogenic perturbations. Here, we examined the surface sediments of the Modaomen estuary in 2003, 2015, and 2021 to understand how human-induced changes influence the fate of heavy metals in the estuary's sediments. The potential ecological risk index (RI) suggests Cd should be the priority pollutant for environmental pollution control due to its high toxicity coefficient. In each sampling period, two main sources were identified through normalized heavy metals and PCA-MLR: natural and mixed anthropogenic sources (agricultural, industrial, and traffic activities), reflecting an increase in heavy metals pollution, later mitigated by successful environmental protection measures. Moreover, anthropogenic activities have not only impacted the sources discharge of heavy metals but have also influenced their spatial and temporal distribution through factors such as land reclamation, leading to sediment coarsening and reduced heavy metal content in specific areas.
Collapse
Affiliation(s)
- Fangting He
- State Key Laboratory of Estuarine and Coastal Research, School of Marine Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangxin Luo
- Institute of Estuarine and Coastal Research/State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, School of Ocean Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ali Heman
- Institute of Estuarine and Coastal Research/State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, School of Ocean Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenkai Chen
- Institute of Estuarine and Coastal Research/State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, School of Ocean Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianjun Jia
- State Key Laboratory of Estuarine and Coastal Research, School of Marine Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
28
|
Saha A, Das BK, Sarkar DJ, Samanta S, Vijaykumar ME, Khan MF, Kayal T, Jana C, Kumar V, Gogoi P, Chowdhury AR. Trace metals and pesticides in water-sediment and associated pollution load indicators of Netravathi-Gurupur estuary, India: Implications on coastal pollution. MARINE POLLUTION BULLETIN 2024; 199:115950. [PMID: 38183833 DOI: 10.1016/j.marpolbul.2023.115950] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
Various environmental indicators were used to evaluate the water and sediment quality of the Netravathi-Gurupur estuary, India, for trace metals and pesticide pollution. The descended order of studied metal concentrations (μg/L) in the water was Fe (592.71) > Mn (98.35) > Zn (54.69) > Cu (6.64) > Cd (3.24) > Pb (2.38) > Cr (0.82) and in sediment (mg/kg) was Fe (11,396.53) > Mn (100.61) > Cr (75.41) > Zn (20.04) > Cu (12.77) > Pb (3.46) > Cd (0.02). However, pesticide residues were not detected in this estuarine environment. The various metal indexes categorised the water as uncontaminated, whereas contamination factor, enrichment factor, geo-accumulation index, degree of contamination and pollution load index indicated low to moderate sediment contamination. Multivariate statistics showed that the dominance of natural sources of trace metals with little anthropogenic impact. Improvement in water/sediment quality during the study period might be due to COVID-19 imposed lockdown.
Collapse
Affiliation(s)
- Ajoy Saha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India.
| | - B K Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - D J Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - S Samanta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - M E Vijaykumar
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - M Feroz Khan
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - Tania Kayal
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Chayna Jana
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Vikas Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Pranab Gogoi
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | | |
Collapse
|
29
|
Li D, Liu B, Lu Y, Fu J. The characteristic of compound drought and saltwater intrusion events in the several major river estuaries worldwide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119659. [PMID: 38029500 DOI: 10.1016/j.jenvman.2023.119659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/22/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Compound Drought and Saltwater intrusion Events (CDSEs) refer to hydrologic drought and saltwater intrusion occurring simultaneously or consecutively in estuaries, and exacerbate the negative impacts resulting from an individual extreme event. CDSEs have been drawing increasing attention due to their potential adverse impacts on water resources, crop production, and food security. A new Standardized compound Drought and Saltwater intrusion Index (SDSI) was developed in this study to systematically detect changes in the severity of CDSEs in six estuaries (Little Back, Ebro, Rhine, Orange, Pearl River and Murray). The results illustrated that (1) compared to the Standardized Runoff Index (SRI), SDSI effectively characterizes and quantifies the occurrences and severity of CDSEs in major river estuaries worldwide. (2) Temporally, the SDSI trend varied across estuaries. Specifically, a decreasing trend was observed in the Little Back, Ebro, and Orange estuaries, with corresponding Zs values of -2.43, -3.63, and -3.23. (3) Spatially, moderate CDSEs occurred more frequently among different estuaries, and their frequency, duration and severity varied in different estuaries. Notably, Ebro, Rhine and Murray River estuaries had the highest probability of CDSEs, nearing 60%. Among them, the Murray Estuary had the longest average duration, spanning 7.68 months, and the highest severity was 5.94. (4) According to the contributions analysis, saltwater intrusion plays a dominant role in influencing SDSI severity, accounting for a substantial percentage (54%-95.30%) compared to runoff. Notably, the Orange Estuary experienced the greatest impact from saltwater intrusion (81.54%-95.30%), while the Murray Estuary had relatively equal contributions from hydrological drought and saltwater intrusion.
Collapse
Affiliation(s)
- Dan Li
- School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bingjun Liu
- School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yang Lu
- School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianyu Fu
- School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Li C, Zhang Y, Chen R, Wang N, Liu J, Liu F. Influence of mineralized organic carbon in marine sediments on ecological heavy metal risk: Bohai Bay case study. ENVIRONMENTAL RESEARCH 2024; 240:117542. [PMID: 37914009 DOI: 10.1016/j.envres.2023.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
The organic matter in sediments can mineralize over time, which impacts the morphology of the heavy metals therein, which in turn affects the assessment of the risks posed by heavy metals. We used the sediments of Bohai Bay as the study object and analyzed the effects of different organic carbon mineralization levels on the concentrations of heavy metals (Cr, Pb, Cu, Zn, and Cd) using water extraction and potassium permanganate oxidation. The mean concentrations of Cd, Pb, Cu, and Zn in Bohai Bay were within the limits recommended by the World Health Organization. The proportions of the active and inert organic carbon fractions were 61.72% and 32.94%, respectively. Organic carbon mineralization most strongly impacted Cd and Pb levels, with releases accounting for 47.92% and 25.75%, respectively, of the oxidizable fractions. The release of all heavy metals, except for Cr, increased with increases in organic carbon mineralization, and heavy metals were released at a maximum rate of 12.94% when the organic carbon was highly mineralized, whereas Cr was released at a maximum of 0.023% during the first stage of organic carbon mineralization. In terms of spatial distribution, the concentration of mineralizable organic carbon in the sediments of the estuaries was substantially higher than that in other marine areas. Estuary sediments were more easily affected by organic carbon mineralization; therefore, the heavy metals in the oxidizable fraction of the estuarine region were more easily transformed into unstable heavy metal forms, posing high risk levels. Therefore, this study highlights the effects of organic carbon mineralization on heavy metal morphology and stability, when evaluating the ecological risk of heavy metals in marine sediments.
Collapse
Affiliation(s)
- Congxiao Li
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology / School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China
| | - Yan Zhang
- Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China.
| | - Rui Chen
- Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China
| | - Nayu Wang
- State Environmental Protection Engineering Center (Tianjin) for Hazardous Waste Disposal, Tianjin, 300457, China
| | - Jingjing Liu
- Tianjin Lishen Battery Joint-Stock Co., Ltd., Tianjin, 300392, China
| | - Fude Liu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology / School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
31
|
Liu X, Liu Q, Sheng Y. Nutrients in overlying water affect the environmental behavior of heavy metals in coastal sediments. ENVIRONMENTAL RESEARCH 2023; 238:117135. [PMID: 37714367 DOI: 10.1016/j.envres.2023.117135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Excessive nutrients in aquatic ecosystems are the main driving factors for eutrophication and water quality deterioration. However, the influence of nutrients in overlying water on sediment heavy metals is not well understood. In this study, the effects of nitrate nitrogen (NO3-N) addition and phosphate addition in the overlying water on the environmental behaviors of chromium (Cr), copper (Cu), and cadmium (Cd) in coastal river sediments were investigated. Fresh estuary sediments and synthetic saltwater were used in microcosm studies conducted for 13 d. To determine the biological effect, unsterilized and sterilized treatments were considered. The results showed that the diffusion of Cr and Cu was inhibited in the unsterilized treatments with increased NO3-N. However, under the NO3-N sterilized treatments, Cr and Cu concentrations in the overlying water increased. This was mostly related to changes in the microbial regulation of dissolved organic carbon and pH in the unsterilized treatments. Further, in the unsterilized treatments, NO3-N addition considerably increased the concentrations of the acid-soluble (Cr, Cu, and Cd increased by 5%-8%, 29%-41%, and 31%-42%, respectively) and oxidizable (Cr, Cu, and Cd increased by 10%, 5%, and 14%, respectively) fractions. Additionally, compared with that in the unsterilized treatments, Cu and Cd concentrations in P-3 treatments decreased by 7% and 63%, respectively. By producing stable metal ions, microorganisms reduced the amount of unstable heavy metals in the sediment and heavy metal concentration in the overlying water, by considerably enhancing the binding ability of phosphate and heavy metal ions. This study provides a theoretical basis for investigating the coupling mechanisms between heavy metals and nutrients.
Collapse
Affiliation(s)
- Xiaozhu Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qunqun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yanqing Sheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
32
|
Ghosh D, Saha SK, Kaviraj A, Saha S. Transfer of chromium from environment to fish in East Kolkata wetlands - evaluation by structural equation modeling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1463. [PMID: 37955763 DOI: 10.1007/s10661-023-12002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
Chromium (Cr) is a significant pollutant in the effluents from leather industries and domestic city sewage. Cr was determined in water, sediment, and different tissues (gill, muscle, intestine, liver, and kidney) of Nile tilapia, Oreochromis niloticus harvested from wastewater-fed aquaculture (WFA) situated at Bamonghata, Bantala, Chowbaga and Chingrighata of East Kolkata Wetlands (EKW), a Ramsar site in West Bengal, India. The results showed that Cr concentration in surface water ranged between 0.05 to 0.15 mg/L, while Cr was detected at high concentration (100-300 mg/kg) in the sediment soil of the first three WFAs and in moderate concentration (50-110 mg/kg) in Chingrighata WFA. Average Cr concentrations in the tissues were ranked in the following sequence: kidney>liver>intestine>gill>muscle. However, the extent of accumulation of Cr in different tissues varied between the WFAs. We used Structural Equation Modeling (SEM) to determine the route of Cr transfer. The fitness of the model was evaluated by the performance measures. Cr accumulation pathways varied between the sites depending upon the level of Cr in water or sediment. Except for Bamonghata WFA, sediment was found as the principal source of accumulation of Cr in different tissues of O. niloticus. Cr refluxed from sediment into overlying water and accumulated in fish either through the food chain or through direct accumulation from water. In Bamonghata WFA, the role of sediment in the transfer of Cr could not be established due to the high water depth or biological non-availability of Cr in the sediment. It is concluded from this study that fish reared in the WFAs of EKW are still not hazardous in respect to Cr but require proper management to avoid the influx of Cr-containing effluents into the WFAs.
Collapse
Affiliation(s)
- Debkanta Ghosh
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, W.B., 700126, India
- Department of Zoology, Vidyasagar College for Women, 39, Sankar Ghosh lane, Kolkata, WB, 700006, India
| | - Samir Kumar Saha
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, W.B., 700126, India
| | - Anilava Kaviraj
- Department of Zoology, University of Kalyani, Kalyani, W.B., 741235, India
| | - Subrata Saha
- Department of Materials and Production, Aalborg University, 9220, Alborg, DK, Denmark.
- Symbiosis Institute of Geoinformatics (SIG), Symbiosis International (Deemed University) (SIU), Model Colony, Pune, Maharashtra, India.
| |
Collapse
|
33
|
Ndhlovu A, Human LRD, Adams JB, Rishworth GM, Olisah C, Bornman TG. Ecological risk assessment of metal pollutants in two agriculturally impacted estuaries. MARINE POLLUTION BULLETIN 2023; 195:115572. [PMID: 37757718 DOI: 10.1016/j.marpolbul.2023.115572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
A focused diagnosis of ecosystem health in two South African estuaries (Kromme and Gamtoos) was conducted. Four pollution indices were used, i.e., geoaccumulation (Igeo), ecological risk (RI), contamination factor (CF) and pollution load index (PLI), to assess toxicity levels of metal contaminants in relation to background values. The Igeo results (11.1 %) can be classified as contaminated, with Cd, the only element with high values in both estuaries. Likely sources (herbicides, pesticides) of Cd are used in the agricultural dominated catchments. There was a high concentration of Mn (13.4 ± 2.51 and 12.3 ± 1.13 μg·g-1) and Fe (1289 ± 243 and 1291 ± 130 μg·g-1) at site 4 for Gamtoos and Kromme estuary respectively compared to the other metal elements. Although results indicate low metal contamination, with increasing global anthropogenic pressure, continuous monitoring should be prioritised to assist in managing estuarine systems that support a wide range of socio-economic and ecosystem services.
Collapse
Affiliation(s)
- Aldwin Ndhlovu
- Department of Zoology, Nelson Mandela University, Gqeberha 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystem, Institute of Coastal and Marine Research, Nelson Mandela University, Gqeberha 6031, South Africa; South African Environmental Observation Network, Elwandle Node, Gqeberha 6031, South Africa; Scientific Services, South African National Parks, Sedgefield 6573, South Africa.
| | - Lucienne R D Human
- Department of Botany, Nelson Mandela University, Gqeberha 6031, South Africa; South African Environmental Observation Network, Elwandle Node, Gqeberha 6031, South Africa
| | - Janine B Adams
- Department of Botany, Nelson Mandela University, Gqeberha 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystem, Institute of Coastal and Marine Research, Nelson Mandela University, Gqeberha 6031, South Africa
| | - Gavin M Rishworth
- Department of Zoology, Nelson Mandela University, Gqeberha 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystem, Institute of Coastal and Marine Research, Nelson Mandela University, Gqeberha 6031, South Africa
| | - Chijioke Olisah
- Department of Botany, Nelson Mandela University, Gqeberha 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystem, Institute of Coastal and Marine Research, Nelson Mandela University, Gqeberha 6031, South Africa; South African Environmental Observation Network, Elwandle Node, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Thomas G Bornman
- Department of Botany, Nelson Mandela University, Gqeberha 6031, South Africa; South African Environmental Observation Network, Elwandle Node, Gqeberha 6031, South Africa
| |
Collapse
|
34
|
Zarei S, Karbassi A, Sadrinasab M, Sarang A. Investigating heavy metal pollution in Anzali coastal wetland sediments: A statistical approach to source identification. MARINE POLLUTION BULLETIN 2023; 194:115376. [PMID: 37549529 DOI: 10.1016/j.marpolbul.2023.115376] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/25/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
In this study, the pollution and bioavailability of heavy metals in the sediments of Anzali Wetland were measured by analyzing data from sequential chemical extraction of sediments, risk assessment code (RAC), and sediment pollution indices. The average RAC results indicated that the risk from Zn, Cr, Cu, and Hg was low, while the risk from Pb, Ni, As, and Cd was moderate. To identify the sources of heavy metal pollution in the sediments of Anzali Wetland, multivariate statistical techniques such as Pearson correlation analysis, cluster analysis (CA), and principal component analysis (PCA) were employed. The results of the statistical analyses at a high significance level revealed that Zn, Cr, Cu, Pb, Ni, and As were attributed to natural sources. Additionally, the statistical analyses demonstrated that the concentrations of Cd and Hg in the sediments of Anzali Wetland were influenced by non-oil organic sources and atmospheric deposition, respectively.
Collapse
Affiliation(s)
- Sina Zarei
- Faculty of Environment, College of Engineering, University of Tehran, P.O. Box 1417853111, Tehran, Iran.
| | - Abdolreza Karbassi
- Faculty of Environment, College of Engineering, University of Tehran, P.O. Box 1417853111, Tehran, Iran
| | - Masoud Sadrinasab
- Faculty of Environment, College of Engineering, University of Tehran, P.O. Box 1417853111, Tehran, Iran
| | - Amin Sarang
- Faculty of Environment, College of Engineering, University of Tehran, P.O. Box 1417853111, Tehran, Iran
| |
Collapse
|
35
|
Zhang C, Wu P, Yang Z, Liu F, Luo H, Luo J. Effect of iron cyclic transformation on the natural purification of antimony in contaminated reservoirs of mines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162510. [PMID: 36868284 DOI: 10.1016/j.scitotenv.2023.162510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
To further understand the purification mechanism of antimony (Sb) in reservoirs, samples of stratified water and bottom interface sediment were collected in this study. The cross-flow ultrafiltration technique was used to separate the truly dissolved (<1 kDa) and colloidal (1 kDa-0.45 μm) phases of water, and two modified sequential extraction techniques were used to determine the Sb and Fe mineral forms in sediment, respectively. The results showed that the total Sb concentration could decrease from 142.2 μg/L in surface water to 98.6 μg/L at 16 m; this was contributed to by the removal of truly dissolved Sb. In comparison to particulate Sb (>0.45 μm), the formation of colloidal Sb played a greater role in the purification process. There was a positive correlation between Sb and Fe in the colloidal phase (r = 0.45, P < 0.05). The generation of colloidal Fe could be promoted by higher temperatures, pH values, DO, and DOC in the upper layer (0-5 m). However, the complexation of DOC with colloidal Fe inhibited the adsorption of truly dissolved Sb. After entering the sediment, the secondary release of Sb could not increase the Sb concentration in the lower layer obviously, while the supplementation of Fe(III) could further enhance Sb natural purification.
Collapse
Affiliation(s)
- Chipeng Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zeyan Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Fengzhu Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Huan Luo
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jianglan Luo
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
36
|
Cao J, Guo Z, Ran H, Xu R, Anaman R, Liang H. Risk source identification and diffusion trends of metal(loid)s in stream sediments from an abandoned arsenic-containing mine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121713. [PMID: 37105463 DOI: 10.1016/j.envpol.2023.121713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/25/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Stream sediments from mine area are a converging source of water and soil pollution. The risk and development trends of metal(loid)s pollution in sediments from an abandoned arsenic-containing mine were studied using modelling techniques. The results showed that the combined techniques of geographic information system (GIS), random forest (RF), and numerical simulation (NS) could identify risk sources and diffusion trends of metal(loid)s in mine sediments. The median values of As, Cd, Hg, and Sb in sediments were 5.01, 3.02, 5.67, and 3.20 times of the background values of stream sediments in China, respectively. As (14.09%) and Hg (18.64%) pollution in mine stream sediments were severe while As is the main potential risk source with a strong spatial correlation. High-risk blocks were concentrated in the landfill area, with the surrounding pollution shows a decreasing trend of "step-type" pollution. The risk correlation between Hg and As (55.37%) in the landfill area is high. As a case of arsenic, the diffusion capacity of As within 500m is strong and stabilizes at 1 km when driven by the flows of 0.05, 0.5, and 5 m3/s, respectively. With the worst-case scenario flow (86 m3/s), it would take only 147 days for the waters within 3 km to become highly polluted. The high pollution levels in a stream under forecast of different distance intervals (500, 1500, 2000 m) within 6.5 km is arrived at approximate 344, 357, and 384 days, respectively. The study suggested the combined technique of GIS, RF, and NS can serve the risk source identification of contaminated sites and risk forecast of toxic element diffusion in emergency situations.
Collapse
Affiliation(s)
- Jie Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Hongzhen Ran
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Rui Xu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Huizhi Liang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
37
|
Zhang L, Wu Y, Ni Z, Li J, Ren Y, Lin J, Huang X. Saltwater intrusion regulates the distribution and partitioning of heavy metals in water in a dynamic estuary, South China. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105943. [PMID: 36907080 DOI: 10.1016/j.marenvres.2023.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The mixing processes of fresh-salt water in estuarine and coastal regions have a substantial impact on the characteristics of heavy metals. A study was conducted in the Pearl River Estuary (PRE), located in South China, to examine the distribution and partitioning of heavy metals and the factors that influence their presence. Results showed that the hydrodynamic force, caused by the landward intrusion of the salt wedge, was the major contributor to the aggregation of heavy metals in the northern and western PRE. Conversely, metals were diffused seaward at lower concentrations along the plume flow in surface water. The study found that some metals, including Fe, Mn, Zn and Pb, were significantly higher in surface water than in bottom water in eastern waters, but the reverse was true in the southern offshore area, where limited mixing hindered the vertical transfer of metals in the water column. The partitioning coefficients (KD) of metals varied, with Fe exhibiting the highest KD (1038 ± 1093 L/g), followed by Zn (579 ± 482 L/g) and Mn (216 ± 224). The highest KD values of metals in surface water were observed in the west coast, while the highest KD in bottom water was found in eastern areas. Furthermore, re-suspension of sediment and the mixing of seawater and freshwater offshore, caused by seawater intrusion, resulted in the partitioning of Cu, Ni and Zn towards particulate phases in offshore waters. This study provides valuable insights into the migration and transformation of heavy metals in dynamic estuaries influenced by the interaction of freshwater and saltwater and highlights the importance of continued research in this field.
Collapse
Affiliation(s)
- Ling Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Yunchao Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Zhixin Ni
- Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China; South China Sea Environmental Monitoring Center, South China Sea Bureau, Ministry of Natural Resources, Guangzhou, 510300, China
| | - Jinlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuzheng Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jizhen Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Zou J, Qiu YY, Li H, Jiang F. Sulfur disproportionation realizes an organic-free sulfidogenic process for sustainable treatment of acid mine drainage. WATER RESEARCH 2023; 232:119647. [PMID: 36738555 DOI: 10.1016/j.watres.2023.119647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Biological sulfidogenic processes (BSPs) have been considered effective biotechnologies for the treatment of organic-deficit acid mine drainage (AMD) and heavy metal recovery. However, high-rate sulfide production relies on the continuous addition of exogenous organic substrates as electron donors to facilitate dissimilatory sulfate reduction, which substantially increases the operational cost and CO2 emission and also limits the wide application of BSPs in AMD treatment. In this study, we proposed a novel chemoautotrophic elemental sulfur disproportionation (SD) process as an alternative to conventional BSPs for treating AMD, in which sulfur-disproportionating bacteria (SDB) disproportionates sulfur to sulfide and sulfate without organic substrate supplementation. During the 393-day lab-scale test, we observed that the sulfur-disproportionating reactor (SDR) achieved a stable high-rate sulfide production, with a maximal rate of 21.10 mg S/L-h at an organic-substrate-free condition. This high rate of sulfide production suggested that the SD process could provide sufficient sulfide to precipitate metal ions from AMD. Thermodynamics analysis and batch tests further revealed that alkalinity rather than sulfate was the critical factor influencing the SD process, suggesting that the abundant sulfate present in AMD would not inhibit the SD process. The critical condition of SD in the SDR was therefore determined. Microbial community analysis showed that Dissulfurimicrobium sp. was the dominant SDB during the long-term operation regardless of dynamic sulfate and/or alkalinity concentrations, which provides evidence that SDB can be employed for sustainable and high-rate sulfide production for engineering purposes. A multi-stage AMD treatment system equipped with a SDR removed over 99% of the influent metals (i.e., Fe, Al, Zn, Cu, Pb) from AMD except for Mn. This study demonstrated that the novel SD process is a green and promising biotechnology for the sustainable treatment of organic-deficient metal-laden wastewater, such as AMD.
Collapse
Affiliation(s)
- Jiahui Zou
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Yan-Ying Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Hao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial International Joint Research Center on Urban Water Management and Treatment, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Li Y, Liao Z, Lin X, Ding J, Qin W. In Situ Continuous Measurement of Salinity in Estuarine and Coastal Sediments by All-Solid Potentiometric Sensors. ACS Sens 2023; 8:1568-1578. [PMID: 36926846 DOI: 10.1021/acssensors.2c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Salinity is crucial for understanding the environmental and ecological processes in estuarine and coastal sediments. In situ measurements in sediments are scarce due to the low water content and particulate adsorption. Here, a new potentiometric sensor principle is proposed for the real-time in situ measurement of salinity in sediments. The sensor system is based on paper sampling and two all-solid electrodes, a cation-selective electrode (copper hexacyanoferrate, CuHCF) and an anion-selective electrode (Ag/AgCl). The spontaneous aqueous electrolyte extraction and redox reaction can produce a Nernstian response on both electrodes that is directly related to salinity. This potentiometric sensor allows for salinity acquisition in a wide salinity range (1-50 ppt), with high resolution (<1 ppt), and at a low water content (<30%), and it has been applied for the in situ measurement of salinity and the interpretation of cycling processes of metals in estuarine and coastal sediments. Moreover, the sensor coupled to a wireless monitoring system exhibited remote-sensing capability and successfully captured the salinity dynamic processes of the overlying water and pore water during the tidal period. This sensor with its low cost, versatility, and applicability represents a valuable tool to advance the comprehension of salinity and the salinity-driven dissolved-matter variations in estuarine and coastal sediments.
Collapse
Affiliation(s)
- Yinhao Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhibo Liao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China
| | - Xindong Lin
- College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100049, China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
40
|
You M, Hu Y, Meng Y. Chemical speciation and bioavailability of potentially toxic elements in surface sediment from the Huaihe River, Anhui Province, China. MARINE POLLUTION BULLETIN 2023; 188:114616. [PMID: 36701971 DOI: 10.1016/j.marpolbul.2023.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In order to understand the characteristics of speciation and ecological risk of potentially toxic element (PTE) pollution in the surface sediment of huaihe river (Anhui province), 23 surface sediment samples were collected. The occurrence characteristics of PTEs (As, Cr, Zn, Cu, Cd, Pb, Mn) were analyzed by modified continuous extraction method (BCR), and the pollution status and potential ecological risk of PTEs were comprehensively evaluated by Pollution Load Index (PLI), Geoaccumulation Index (Igeo), Enrichment Factor (EF) and the risk assessment code (RAC). Results showed that the total concentrations of As, Mn, Cd, Cr, Cu, Pb, and Zn in sediment were 14.98 ± 2.32, 936.02 ± 144.48, 0.32 ± 0.08, 161.73 ± 124.83, 40.44 ± 9.67, 15.46 ± 6.67, and 74.85 ± 26.43 mg/kg, respectively. The mean concentrations of PTEs with the increasing order of Zn < Mn < Cr < Pb < Cu < As < Cd. Most PTEs appeared to mainly associate with a dominant proportion of residual fraction suggesting lower mobility whereas Cd and Mn presented a relative higher exchangeable fraction indicating a great degree of bioavailability and easily ingested by aquatic organism. Results of pollution degree showed that 3 sampling sites belong to the pollution degree of strong pollution, and the other sampling sites belonged to the medium pollution level. The indexes EF revealed moderately enrichment of Cr, minor enrichment of Cd, Mn and As, no enrichment of Cu, Zn and Pb. The values of the Igeo and RAC demonstrated that Cd and Mn pose a high ecological risk, which deserves further attention.
Collapse
Affiliation(s)
- Mu You
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan normal university, Huainan 232001, China; National Center for Quality Supervision and Inspection of Coal Chemical Products (Anhui), Huainan 232001, China
| | - Yunhu Hu
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan normal university, Huainan 232001, China.
| | - Ying Meng
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan normal university, Huainan 232001, China
| |
Collapse
|
41
|
Li J, Leng Z, Jia H, Wei L, Yuguda TK, Du D. Effect of Seawall Embankment Reclamation on the Distribution of Cr, Cu, Pb and Zn Pollution in Invasive Spartina alterniflora and Native Phragmites australis Coastal Saltmarshes of East China. BIOLOGY 2023; 12:253. [PMID: 36829530 PMCID: PMC9953283 DOI: 10.3390/biology12020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Coastal reclamation by seawall embankments and the spread of invasive C4 perennial grass Spartina alterniflora have recently become more prevalent in eastern China's coastal wetlands. While trace metals (TMs), carbon, and nitrogen dynamics concerning reclamation have extensively been explored across China's coastal wetlands, to date, the impact of reclamation by coastal embankment and exotic plant invasion on TMs' pollution dynamics in coastal marshes remains largely unexplored. We compared TMs Cr, Cu, Pb, and Zn cumulation in coastal embankment-reclaimed versus unreclaimed S. alterniflora and Phragmites australis saltmarshes in eastern China coastal wetlands. In both S. alterniflora and P. australis marshes, coastal embankment reclamation spurred an increase in Cr, Cu, Pb, and Zn concentrations by 31.66%, 53.85%, 32.14%, 33.96% and by 59.18%, 87.50%, 55.55%, 36.84%, respectively, in both marsh types. Reclamation also reduced plant biomass, soil moisture, and soil salinity in both plants' marshes. Our findings suggest that the impact of coastal embankment reclamation and replacement of native saltmarshes by invasive S. alterniflora had a synergistic effect on TM accumulation in the P. australis marshes, as corroborated by bioaccumulation and translocation factors. Reclamation by coastal embankments and invasive alien plants could significantly impair the physico-chemical properties of native plant saltmarsh and essentially weaken the accumulation of Cr, Cu, Pb, and Zn potential of the coastal saltmarshes. Our findings provide policymakers with an enhanced knowledge of the relationship between reclamation, plant invasiveness, and TM pollution dynamics in coastal wetlands, providing a baseline for attaining future goals and strategies related to the tradeoffs of various wetland reclamation types.
Collapse
Affiliation(s)
- Jian Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Zhanrui Leng
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Jia
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lili Wei
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Taitiya Kenneth Yuguda
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
42
|
Nishitha D, Sudheer AK, Arun K, Amrish VN, Mahesh G, Udayashankar HN, Balakrishna K. Risk assessment and spatio-temporal distribution of dissolved trace metals in Swarna, Sharavati and Kali estuaries, South-West Coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9914-9931. [PMID: 36066797 PMCID: PMC9898361 DOI: 10.1007/s11356-022-22812-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/27/2022] [Indexed: 06/03/2023]
Abstract
Trace metals act as a limiting nutrient and prerequisite for primary productivity in marine environments. The distribution of metals in dissolved phase along the salinity gradients of Swarna, Sharavati and Kali estuaries in southwestern India, during post and pre-monsoon seasons, were studied. We have investigated the behaviour of trace metals in the estuarine environment and their extent of impact on human health and ecosystem. The study revealed, non-conservative behaviour of dissolved Mn, Fe, Ni, Cd and Co in the estuaries. Whereas Cu behaved non-conservatively in post-monsoon and conservatively in pre-monsoon seasons. Risk assessment studies revealed that higher chronic daily intake (CDI) in humans, through dermal pathway, in Swarna and Sharavati estuaries during post-monsoon, whereas it was during pre-monsoon season in the Kali estuary. Hazard Index values for the studied metals in adults and children are below risk thresholds, though children are more prone to health risk through the dermal pathway.
Collapse
Affiliation(s)
- D'Souza Nishitha
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India
| | | | - Kumar Arun
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Vadakkeveedu Narayan Amrish
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Gaddam Mahesh
- Geosciences Division, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009, India
| | - Harikripa Narayana Udayashankar
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Keshava Balakrishna
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India.
| |
Collapse
|
43
|
Hu T, Shi M, Mao Y, Liu W, Li M, Yu Y, Yu H, Cheng C, Zhang Z, Zhang J, Xing X, Qi S. The characteristics of polycyclic aromatic hydrocarbons and heavy metals in water and sediment of dajiuhu subalpine wetland, shennongjia, central China, 2018-2020: Insights for sources, sediment-water exchange, and ecological risk. CHEMOSPHERE 2022; 309:136788. [PMID: 36220429 DOI: 10.1016/j.chemosphere.2022.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are persistent environmental issues. Secondary emissions are produced as a result of climate change and human activity. To observe spatio-temporal variations of PAHs and HMs and to discuss the sources as well as the source or sink of PAHs for sediment and peat, twelve surface sediment and surface water sites were chosen along the direction of the flow to down hole in the Dajiuhu area, simultaneously, surface peat and water samples were collected in peatland. Samples were continuously taken for three years (Sep. 2018, Sep. 2019, and Sep. 2020, respectively). The results showed that PAHs and HMs are common in sediment and peat. PAHs concentration is generally higher in peat and water, while HMs concentration is relatively higher in water and relatively low in sediment and peat, and the ecological risk of sediment was low. HMs in sediment are mainly affected by rock weathering, while PAHs are mainly affected by atmospheric deposition, biomass and coal combustion and vehicle emission. HMs and PAHs can be used as an indicator of rock weathering and human activity in Dajiuhu area, respectively. A water-sediment fugacity analysis revealed that peat is a sink for PAHs, confirming that it has a high capacity for adsorbing organic contaminants, and that sediments are secondary sources of PAHs that can release them into water. Attention should be paid to the increased fugacity fraction (ff) value in peatland, indicating that peat might be converted from a sink to a source of PAHs.
Collapse
Affiliation(s)
- Tianpeng Hu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Mingming Shi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Weijie Liu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Miao Li
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yue Yu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Haikuo Yu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Cheng Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhiqi Zhang
- Shennongjia National Park Administration, Shennongjia, 442400, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xinli Xing
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
| | - Shihua Qi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
44
|
Wang X, Zhong L, Zhang H, Li D, Xu K, Zhou Y. Dissolved metal assessment in surface seawater: A spatial-seasonal evaluation in the Zhejiang coastal waters, the East China Sea. MARINE POLLUTION BULLETIN 2022; 185:114226. [PMID: 36272319 DOI: 10.1016/j.marpolbul.2022.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The spatial-seasonal distributions and variations, correlations with environmental variables and the pollution degrees of dissolved metals in the Zhejiang coastal seawater were investigated. The concentrations of six dissolved metals (i.e. Cu, Pb, Zn, Cd, As and Hg) were in the ranges of 0.10-6.40 (1.6 ± 0.8), 0.16-3.60 (1.2 ± 0.7), 2.50-24.0 (8.5 ± 4.8), 0.011-0.180 (0.07 ± 0.03), 0.85-4.20 (2.1 ± 0.8) and 0.001-0.110 (0.06 ± 0.02) μg/L, throughout the four seasons, respectively. Significant differences in all the dissolved metals were found among seasons, whereas no significant differences were found among stations. The average concentrations of metals were in the following order: Zn > As>Cu > Pb > Cd > Hg. Single metal contamination factor was in the following order: Pb > Hg > Zn > Cu > As>Cd. The pollution level of dissolved metals in the Zhejiang coastal waters (ZCW) was low. Most of the dissolved metals were correlated to temperature, indicating seasonal differences. The redundancy analysis (RDA) indicated that depth, temperature, nitrate and phosphate could best explain the variance pattern of dissolved metals in the ZCW.
Collapse
Affiliation(s)
- Xiaoyan Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316004, PR China.
| | - Lanping Zhong
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316004, PR China
| | - Hongliang Zhang
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan 316022, PR China
| | - Dewei Li
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan 316022, PR China
| | - Kaida Xu
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan 316022, PR China
| | - Yongdong Zhou
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan 316022, PR China.
| |
Collapse
|
45
|
Pan Y, Xie J, Yan W, Zhang TC, Chen C. Response of microbial community to different land-use types, nutrients and heavy metals in urban river sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115855. [PMID: 35994962 DOI: 10.1016/j.jenvman.2022.115855] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 05/27/2023]
Abstract
Nutrients and heavy metals (HM) in the sediment have an impact on microbial diversity and community structure. In this study, the distribution characteristics of nutrients, HM, and microbial community in the sediments along the Longsha River, a tributary of the Pearl River (or Zhu Jiang), China were investigated by analyzing samples from 11 sites. On the basis of the HM-contamination level, the 11 sampling sites were divided into three groups to explore the changes in microbial communities at different ecological risk levels. Results indicated that nutrient concentrations were higher near farmlands and residential lands, while the ecological risk of HM at the 11 sampling sites was from high to low as S10 > S2 > S9 > S6 > S11 > S7 > S5 > S8 > S3 > S4 > S1. Among these HM, Cu, Cr, and Ni had intense ecological risks. In addition, the results of Variance Partitioning Analysis (VPA) revealed a higher contribution of HM (35.93%) to microbial community variation than nutrients (12.08%) and pH (4.08%). Furthermore, the HM-tolerant microbial taxa (Clostridium_sensu_stricto_1, Romboutsia, norank_o__Gaiellales, and etc.) were the dominant genera, and they were more dynamic around industrial lands, while microbes involved in the C, N, and S cycles (e.g., Smithella, Thiobacillus, Dechloromonas, Bacter oidetes_vadinHA17, and Syntrophorhabdus) were inhibited by HM, while their abundance was lower near industrial lands and highway but higher around residential lands. A three-unit monitoring program of land-use types, pollutants, and microbial communities was proposed. These results provide a new perspective on the control of riparian land-use types based on contaminants and microbes, and different microbial community response patterns may provide a reference for contaminant control in sediments with intensive industrial activities.
Collapse
Affiliation(s)
- Yuwei Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Weixing Yan
- Foshan Nanhai Suzhou University of Science and Technology Environmental Research Institute, Foshan 528226, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept., University of Nebraska-Lincoln (Omaha Campus), Omaha, NE 68182-0178, USA
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Foshan Nanhai Suzhou University of Science and Technology Environmental Research Institute, Foshan 528226, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| |
Collapse
|
46
|
Jin DR, Lee M, Yang HJ, Kim S, Lee JS, Moon SD. Evaluation of metal contamination in brackish area sediments South Korea, using receiver operation characteristic curve. MARINE POLLUTION BULLETIN 2022; 184:114175. [PMID: 36215759 DOI: 10.1016/j.marpolbul.2022.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Brackish areas are where freshwater and seawater meet and possess high geographical and biological importance. However, no unified evaluation method exists for brackish sediments. Therefore, this study applies both the fresh water-sediment quality guidelines (F-SQGs) and the marine-sediment quality guidelines (M-SQGs) to evaluate metal contamination in brackish areas of Korea. The predicted reliability was examined using a receiver operation characteristic (ROC) curve. In the threshold effect level (TEL) evaluation of F-SQGs and M-SQGs, some metals (Cu, Zn, Hg, and Cd) showed significant differences according to guideline characteristics. The ROC curve showed that the predicted reliability of F-SQGs was 97.8 %, which was higher than M-SQGs (91.7 %). From the results of TEL evaluation and ROC curve prediction, F-SQGs are more suitable for the evaluation of brackish sediments in South Korea than M-SQGs.
Collapse
Affiliation(s)
- Dal Rae Jin
- Water Environmental Engineering Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Mikyung Lee
- Water Environmental Engineering Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Hae Jong Yang
- Yeongsan River Environment Research Center, NIER, Gwangju 61011, Republic of Korea
| | - Shin Kim
- Nakdong River Environment Research Center, NIER, Daegu 43008, Republic of Korea
| | - Jung-Suk Lee
- NeoEnBiz Co., Institute of Environmental Safety and Protection, Bucheon 14523, Republic of Korea
| | - Seong-Dae Moon
- NeoEnBiz Co., Institute of Environmental Safety and Protection, Bucheon 14523, Republic of Korea.
| |
Collapse
|
47
|
Li X, Bing J, Zhang J, Guo L, Deng Z, Wang D, Liu L. Ecological risk assessment and sources identification of heavy metals in surface sediments of a river-reservoir system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156683. [PMID: 35700786 DOI: 10.1016/j.scitotenv.2022.156683] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 05/16/2023]
Abstract
Heavy metal contamination of river water and sediments is a global issue affecting ecological health. To reveal heavy metals' ecological risks and biological toxicity in the middle and lower Han River (MLHR), sediment samples collected in this area were analyzed based on a modified ecological risk assessment method (NIRI) and a biological toxicity assessment method. Also, Spearman correlation analysis and Positive Matrix Factorization (PMF) methods were applied to identify the potential sources of heavy metals. The results indicated that the heavy metal content significantly exceeded the background concentrations in Hubei Province. The average potential risk of heavy metals at sampling sites was: Cd > Hg > As > Pb > Cu > Zn. Consequently, high biological toxicity occurred along the MLHR due to the heavy metal enrichment. River damming and water diversion significantly enhanced the hydrologic regime variations and ecological risk in the MLHR. Moreover, two possible pollution sources of the MLHR were identified: one is a combined source of traffic pollution, agricultural pollution, and partial industrial pollution consisting of five heavy metals, Pb, Hg, Zn, Cu, and As, the other is an industrial pollution source dominated by Cd and As. This study provides insights into sediment heavy metal pollution management and ecological risk control in the MLHR and similar rivers worldwide.
Collapse
Affiliation(s)
- Xincheng Li
- College Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China
| | - Jianping Bing
- Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan 430010, China
| | - Junhong Zhang
- College Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China.
| | - Liquan Guo
- College Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China
| | - Zhimin Deng
- Changjiang Water Resources Protection Institute, Wuhan 430010, China
| | - Dangwei Wang
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Linshuang Liu
- Changjiang Waterway Institute of Planning, Design & Research, Wuhan, Hubei Province 430040, China
| |
Collapse
|
48
|
Mai Y, Peng S, Lai Z, Wang X. Saltwater intrusion affecting NO 2- accumulation in demersal fishery species by bacterially mediated N-cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154371. [PMID: 35259379 DOI: 10.1016/j.scitotenv.2022.154371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
To investigate the underlying effects of saltwater intrusion (SWI) on bottom aquatic ecosystems, a set of environmental parameters and the bacterial community were determined and analyzed by sampling bottom water and surface sediments at the Modaomen waterway of the Pearl River Estuary. Biodiversity of fishery species and their relationship with the environment variables were analyzed together. NO3- and NO2- concentration down-regulation and NH4+ concentration up-regulation in water and sediment were observed along the resulting salinity gradient, indicating that SWI affected N-cycling. Further investigation via 16 s sequencing revealed that taxonomic and functional composition of the bacterial community in the sediment displayed greater discretization than in water, implying that SWI exerted a greater impact on the sedimentary bacterial community. Metagenomic sequencing showed that the sedimentary bacterial community was associated with NO3-, NO2-, and NH4+ transformation under SWI, and that this was driven by salinity and conductivity. Nitrogen metabolism and denitrification related genes were expressed at higher levels in high salinity than in low salinity, consistent with the increased enzymatic activities of NiR and NR. The NO2- concentration in the muscle of six selected fishery species was significantly decreased by 11.15-65.74% (P < 0.05) along the salinity gradient, indicating that SWI reduced NO2- accumulation. The results suggest that SWI alleviates NO2- accumulation in demersal fishery species via bacterial mediation of N-cycling.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Songyao Peng
- Pearl River Water Resources Research Institute, Guangzhou 510611, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
49
|
Akhtar S, Equeenuddin SM, Roy PD. Role of intrinsic physicochemical parameters on multi-element distribution in surface sediment of the Devi River estuary, eastern India. CHEMOSPHERE 2022; 297:134195. [PMID: 35248595 DOI: 10.1016/j.chemosphere.2022.134195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Multi-element composition including rare earth elements (REE) of surface sediment from the Devi river estuary, eastern coast of India, have been analysed in order to study the weathering characteristics and provenance of sediment along with their behaviour under different physicochemical conditions. These sediments with dominantly felsic provenance have undergone low to moderate chemical alterations. Bulk chemical composition is mainly represented by SiO2, Al2O3, Fe2O3 and K2O. Concentrations of Ba, Nb, Pb, Rb, Th and Zr are above their respective upper crustal abundances. High LREE/HREE ratio, negative Eu anomalies, and (La/Yb)n and (Tb/Yb)n values confirm that sediments are dominantly derived from the Eastern Ghat Group of rocks. Upper estuary sediments show negative Eu anomalies which is similar to that of the source. However, positive Eu anomaly is mostly observed in lower estuary. Contrasting Eu anomalies between upper- and lower-estuarine sediments are uncharacteristic of previously studied major global estuaries. Strong negative correlation between Mn and Eu suggests control of redox conditions over distribution of Eu. Concentration of REEs, Sc, Fe, Mo, V, Zn, Zr, Nb, U, Ti, Na and P increases up to 20 ppt salinity, and followed by declining trend towards mouth. This is mostly due to removal through flocculation of colloidal particles from water column during fresh- and saline-water interaction. This could be the first report about coagulation-based behaviour of Mo in estuarine environment. There is gradual decline in concentration of Cr, Co, Ni, Cu, Rb, Sr, Sb, Cs, Ba, Pb, Al, Mn, Mg, Ca and K with increase in salinity which is attributed to saline induced desorption of elements from sediments. The SiO2 content shows increasing trend towards mouth. Findings of this study highlight the importance of intrinsic physicochemical parameters, mainly salinity and redox condition, on governing geochemical behaviour of different elements including REE in mangrove dominated estuarine sediment.
Collapse
Affiliation(s)
- Shaheen Akhtar
- Department of Earth and Atmospheric Sciences, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sk Md Equeenuddin
- Department of Earth and Atmospheric Sciences, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, CP 04510, CDMX, Mexico
| |
Collapse
|
50
|
Fan T, Yao X, Ren H, Ma F, Liu L, Huo X, Lin T, Zhu H, Zhang Y. Multi-spectroscopic investigation of the molecular weight distribution and copper binding ability of dissolved organic matter in Dongping Lake, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118931. [PMID: 35121017 DOI: 10.1016/j.envpol.2022.118931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The properties and metal-binding abilities of dissolved organic matter (DOM) rely on its molecular weight (MW) structure. In this study, the spatial differences of DOM in compositions, MW structures, and binding mechanisms with copper (Cu2+) in Dongping Lake were investigated by applying excitation-emission matrix combining parallel factor analysis (EEM-PARAFAC), synchronous fluorescence (SF) spectra, two-dimensional correlation spectra (2D-COS), and Fourier transform infrared (FTIR) spectra. The EDOM for the entrance of the Dawen River and PDOM for the macrophyte-dominated region were divided from DOM of Dongping Lake based on hierarchical clustering analysis (HCA) and principal component analysis (PCA) and were size-fractioned into MW < 500 kDa and <100 kDa fractions. According to EEM-PARAFAC, Dongping Lake was dominated by tryptophan-like substances with MW < 500 kDa. The concentration of PDOM was higher than that of EDOM (p < 0.05). 2D-COS showed that protein-like components preceded humic-like components binding to Cu2+ regardless of sample type (215 nm > 285 nm > 310-360 nm). The Cu2+ binding capacity of DOM exhibited specific differences in space, components, and molecular weights. The humic-like component 1 (C1) and tryptophan-like component 4 (C4) of PDOM showed stronger binding abilities than those of EDOM. Endogenous tryptophan-like component 4 (C4) had a higher binding affinity for Cu2+ than humic-like components (logKa: C4 > C1 > C2) in PDOM irrespective of MW. Humic-like components with MW < 500 kDa displayed higher binding potentials for Cu2+. FTIR spectra showed that the main participants of DOM-Cu complexation included aromatic hydrocarbons, aliphatic groups, amide Ⅰ bands, and carboxyl functional groups. This study provides spatial-scale insights into the molecular weight structure of DOM in influencing the behavior, fate, and bioavailability of heavy metals in lakes.
Collapse
Affiliation(s)
- Tuantuan Fan
- School of Geography and Environment, University of Liaocheng, Liaocheng, 252000, China
| | - Xin Yao
- School of Geography and Environment, University of Liaocheng, Liaocheng, 252000, China; Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Feiyang Ma
- School of Geography and Environment, University of Liaocheng, Liaocheng, 252000, China
| | - Li Liu
- School of Geography and Environment, University of Liaocheng, Liaocheng, 252000, China
| | - Xiaojia Huo
- School of Geography and Environment, University of Liaocheng, Liaocheng, 252000, China
| | - Tong Lin
- School of Geography and Environment, University of Liaocheng, Liaocheng, 252000, China
| | - Haiyan Zhu
- School of Geography and Environment, University of Liaocheng, Liaocheng, 252000, China
| | - Yinghao Zhang
- School of Geography and Environment, University of Liaocheng, Liaocheng, 252000, China
| |
Collapse
|