1
|
Ji Q, Wang X, Shi A, Cao M, Lian J, He J, Guo H, Li X, Zhang Z, Yu J, Ye J. Insights into the potential enhanced cadmium toxicity in marine fish Centroprostis striata in the context of global warming. MARINE POLLUTION BULLETIN 2025; 216:118013. [PMID: 40267795 DOI: 10.1016/j.marpolbul.2025.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/11/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Cadmium (Cd2+), a pollutant from industrial activities, poses significant health risks to aquatic organisms, especially fish. Combined with global warming, its impact on marine ecosystems requires further investigation. This research examined the combined toxic effects of Cd2+ exposure and heat stress on the liver of black sea bass (Centropristis striata). Fish were subjected to varying Cd2+ concentrations (0, 0.83, and 6.4 mg/L) and temperatures (17 and 30 °C). Results indicated that heat stress markedly augmented Cd2+ bioaccumulation in the liver, exacerbating hepatotoxicity. Histological analysis revealed more severe liver damage under combined exposure than Cd2+ alone. Furthermore, a significant decrease in antioxidant enzyme activities (T-AOC, SOD, CAT, GSH) and a concomitant increase in oxidative stress marker (MDA) levels indicated enhanced oxidative stress. The co-exposure resulted in aberrant levels of apoptotic genes (e.g., P53, Bax etc.), disrupting the liver apoptotic process, as confirmed by TUNEL staining. Additionally, elevated TNF-α, IL-6, and HSP90 mRNA expression, coupled with decreased TGF-β levels, suggested an inflammatory response. These findings demonstrate that heat stress exacerbates Cd2+ toxicity in fish, highlighting a synergistic interaction between the two stressors. This research provides insights for managing heavy metal pollution under global warming.
Collapse
Affiliation(s)
- Qing Ji
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xingqiang Wang
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Anxin Shi
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mei Cao
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Lian
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingchao He
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Honglu Guo
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangyuan Li
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ziyi Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiachen Yu
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jiansheng Ye
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| |
Collapse
|
2
|
Felismino MEL, Chevallier Rufigny S, Gonzalez-Fleurant SE, Brown GE. Ingestion of polyethylene microplastics impacts cichlid behaviour despite having low retention time. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107248. [PMID: 39862685 DOI: 10.1016/j.aquatox.2025.107248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Microplastics, particles between 0.001 and 5 mm in diameter, are ubiquitous in the environment and their consumption by aquatic organisms is known to lead to a variety of adverse effects. However, studies on the effects of microplastics on prey fish have not shown consistent trends, with results varying across species and plastic type used. Here, we manipulated the levels of microplastic (MP) exposure among juvenile convict cichlids (Archocentrus nigrofasciatus) by feeding them brine shrimp (Artemia spp.) exposed to 0, 10, or 100 MP ml-1 of virgin polyethylene microspheres (10-20 μm) for a 10-day period. We then tested groups of 3 cichlids in a 2-day maze trial, in which we measured the latency to explore and time to complete a novel maze. We found no impacts of microplastic exposure on foraging rate, growth, or competitive aggression. However, our results demonstrate that microplastics exposure shaped exploratory behaviour and maze performance. Despite these effects, we found very little microplastics remaining in the fish's bodies after the experiment. A companion experiment demonstrates that most plastic particles were egested within 24 h. Our current results show that pristine microplastics at non-lethal levels have consequences on cichlid behaviour and decision-making but not growth.
Collapse
Affiliation(s)
- Miguel Eduardo L Felismino
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Québec H4B 1R6, Canada.
| | | | | | - Grant E Brown
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Québec H4B 1R6, Canada
| |
Collapse
|
3
|
Perkins DM, Müller HL, Grünewald S, Reiss J, Restrepo-Sulez K, Robertson A, Perna A. Microplastic ingestion by an aquatic ciliate: Functional response, modulation, and reduced population growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178272. [PMID: 39818146 DOI: 10.1016/j.scitotenv.2024.178272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025]
Abstract
Microplastic particles are ubiquitous in aquatic environments and are considered a major threat to the large range of heterotrophic organisms that involuntarily consume them. However, there is current uncertainty around the mechanisms underpinning microplastic uptake by aquatic consumers and the consequences for both the fate of the microplastics and the growth potential of consumer populations. We performed a feeding experiment, exposing a model freshwater ciliate, Tetrahymena pyriformis, to six different microplastic concentrations and measured microplastic uptake and population growth over the course of several generations. Microplastic uptake increased in a saturating fashion with concentration, consistent with a Type II functional response, with a maximum feeding rate of 22 microplastic particles individual-1 h-1. Interestingly, microplastic uptake decreased through time and we observed that, after egestion, microplastic particles aggregated, rendering them too large for re-consumption. We built and tested a simulation model which matched rates of microplastic uptake when incorporating functional response parameters and assuming 50 % immobilisation of microplastics after egestion. Nevertheless, ciliate population growth was compromised by the presence of microplastics, decreasing by 43 % over the full microplastic concentration range. Taken together, our results demonstrate the potential for aquatic ciliates to play an important role in the uptake, transfer, and modification of microplastics in freshwater environments with associated negative impacts on population fitness.
Collapse
Affiliation(s)
- Daniel M Perkins
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom; Centre for Pollution Research and Policy, Brunel University of London, Uxbridge, UB8 3PH, United Kingdom.
| | - Hedda L Müller
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Susanne Grünewald
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Julia Reiss
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom; Centre for Pollution Research and Policy, Brunel University of London, Uxbridge, UB8 3PH, United Kingdom
| | - Katherin Restrepo-Sulez
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Anne Robertson
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Andrea Perna
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom; Networks Unit, IMT School for Advanced Studies Lucca, Italy
| |
Collapse
|
4
|
Suleiman SB, Esa Y, Aziz D, Ani Azaman SN, Hassan NH, Syukri F. Exploring the detrimental effects of microplastics on Asian seabass (Lates calcarifer) fingerlings survival and health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125103. [PMID: 39401561 DOI: 10.1016/j.envpol.2024.125103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
Microplastics (MPs) are widely used and disposed of indiscriminately, posing a potential threat to aquatic life. Herein, Asian seabass (Lates calcarifer) fingerlings were exposed to various concentrations (1, 10 and 100 ppt or g/kg) of dietary polyethylene MPs for 16 days. The results indicated a significant increase in mortality among the fish fed with dietary MPs compared to the control. Furthermore, histological analysis of the liver revealed moderate-to-severe morphological alterations, hepatocyte necrosis and vacuolisation as the concentration gradient of MPs increased. The severity of the alterations was highest at a concentration of 100 ppt, indicating a direct correlation between MP and liver damage. In addition, RNA sequencing and Gene Ontology term enrichment analysis revealed that a total of 4137 genes were significantly differentially expressed, with 1958 upregulated and 2179 downregulated genes. The significantly enriched terms included 'oxidoreductase activity', 'endocytosis', 'mitochondrial', 'immune system process' and 'lipid catabolic process'. Moreover, the Kyoto Encyclopaedia of Genes and Genomes enrichment analysis demonstrated that dietary MPs triggered oxidative stress, immune response and adaptive mechanism pathways in fish. Thus, MPs can induce metabolic disorders in L. calcarifer, highlighting their potential threat to aquatic organisms.
Collapse
Affiliation(s)
- Saadu Bala Suleiman
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Fisheries, Faculty of Agriculture, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State, Nigeria
| | - Yuzine Esa
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Dania Aziz
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Nor Ani Azaman
- Centre for Foundation Studies in Sciences of Universiti Putra Malaysia, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nadiatul Hafiza Hassan
- Centre for Foundation Studies in Sciences of Universiti Putra Malaysia, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Fadhil Syukri
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Latchere O, Métais I, Perrein-Ettajani H, Lemoing M, Feurtet-Mazel A, Gonzalez P, Daffe G, Gigault J, Catrouillet C, Châtel A, Baudrimont M. Trophic transfer effects of PS nanoplastics and field-derived nanoplastics in the freshwater clam Corbicula fluminea. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107160. [PMID: 39566259 DOI: 10.1016/j.aquatox.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/18/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Plastic pollution is of global concern. Many studies investigated the effect of micro and nanoplatics towards aquatic organisms. However, relatively few studies were assessed on freshwater organisms. Another aspect of this pollution is the impact of trophic transfer on plastic distribution and on food chain in order to evaluate its potential risk towards environmental and human health. In this context, the objective of this study was to assess the ecotoxicological impacts of different types of nanoplastics (NPs) on freshwater organisms exposed through trophic transfer. Freshwater microalgae Scenedesmus subspicatus were contaminated for 48 h with realistic concentrations of NPs (0.008, 10 and 100 µg/L). Two types of NPs were tested: commercial PS NPs and NPs generated from macro-sized plastics collected in the field (ENV NPs). Freshwater Corbicula fluminea bivalves were then fed with the contaminated algae every 48 h for 21 days. Results showed that trophic exposure led to the induction of oxidative stress (CAT activity). Overall, NPs trophic exposure caused downregulations of genes implicated in many cellular processes (immunity, oxidative stress, neurotoxicity, endocytosis, apoptosis). This present study allowed to demonstrate the relevance of investigating the trophic transfer effects of NPs on a freshwater trophic chain. Further studies should focus more on larger levels of the food chain.
Collapse
Affiliation(s)
- Oihana Latchere
- Université Catholique de l'Ouest, laboratoire BIOSSE, 3 place André Leroy, Angers, France.
| | - Isabelle Métais
- Université Catholique de l'Ouest, laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | | | - Magalie Lemoing
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Agnès Feurtet-Mazel
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Patrice Gonzalez
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Guillemine Daffe
- Observatoire Aquitain des Sciences de l'Univers, UAR 2567 POREA Université de Bordeaux (Bordeaux,France) - F-33615, Pessac, France
| | - Julien Gigault
- Université Laval, Département de Biologie, Pavillon Alexandre-Vachon, 1045, Av. de La Médecine, Local 2064, Québec, Québec, G1V0A6, Canada; Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Charlotte Catrouillet
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France; Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - Amélie Châtel
- Université Catholique de l'Ouest, laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | - Magalie Baudrimont
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| |
Collapse
|
6
|
Hutton SJ, Kashiwabara L, Anderson E, Siddiqui S, Harper B, Harper S, Brander SM. Behavioral and molecular effects of micro and nanoplastics across three plastic types in fish: weathered microfibers induce a similar response to nanosized particles. FRONTIERS IN TOXICOLOGY 2024; 6:1490223. [PMID: 39659702 PMCID: PMC11628497 DOI: 10.3389/ftox.2024.1490223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Micro and nanoplastics (MNPs) are ubiquitous in the environment and have been detected in most ecosystems, including remote regions. The class of contaminants under the MNP umbrella is quite broad and encompasses variable polymer types, shapes, and sizes. Fibers are the most frequently detected in the environment, followed by fragments, but still represent only a small fraction of laboratory studies. Many toxicity studies have been done using polystyrene microbeads which represent neither the polymer nor shape most present in the environment. Additionally, most of these studies are done using virgin particles when the majority of MNP pollution is from secondary microplastics which have weathered and broken down over time. To address these data gaps, we exposed the model fish Inland Silverside, Menidia beryllina, for 21-days to micro and nano cryo-milled tire particles, micro and nano polylactic acid, and polyester microfibers, both weathered and unweathered treatments were tested. We evaluated the impacts of these particles on growth, behavior, and gene expression to compare the relative toxicities of the different particles. We found that overall, the nanoparticles and weathered fibers had the greatest effect on behavior and gene expression. Gene ontology analysis revealed strong evidence suggesting MNP exposure affected pathways involved in muscle contraction and function. Unweathered microfibers decreased growth which may be a result of food dilution. Our results also suggest that under weathering conditions polyester microfibers breakdown into smaller sizes and induce toxicity similar to nanoparticles. This study highlights the variable effects of MNPs in fish and emphasizes the importance of considering particle shape and size in toxicity studies.
Collapse
Affiliation(s)
- Sara J. Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Lauren Kashiwabara
- Fisheries, Wildlife, and Conservation Sciences Department; Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, Newport, OR, United States
| | - Erin Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Samreen Siddiqui
- Fisheries, Wildlife, and Conservation Sciences Department; Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, Newport, OR, United States
| | - Bryan Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Susanne M. Brander
- Fisheries, Wildlife, and Conservation Sciences Department; Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, Newport, OR, United States
| |
Collapse
|
7
|
Zhou F, Wang Y, Liu X, Xu S, Chen D, Wang X. The effects of polystyrene microplastics on feeding, growth, and trophic upgrading of protozoan grazers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175986. [PMID: 39233088 DOI: 10.1016/j.scitotenv.2024.175986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Microplastics have become ubiquitous in the global marine environment, posing substantial influences on marine organism health, food web function and marine ecosystem structure. Protozoan grazers are known for their ability to improve the biochemical constituents of poor-quality algae for subsequent use by higher trophic levels. However, the effects of microplastics on the trophic upgrading of protozoan grazers remain unknown. To address this knowledge gap, the ciliate Euplotes vannus and the heterotrophic dinoflagellate Oxyrrhis marina were exposed to microplastic particles (5 μm) for four days with various concentrations (1-20 mg/L). Both O. marina and E. vannus ingested microplastics. At the exposure level of 20 mg/L, the ingestion rate, growth rate, biovolume, and carbon biomass of E. vannus were significantly decreased by 28.18 %, 32.01 %, 30.46 %, and 82.27 %, respectively, while such effects were not observed for O. marina. The contents of highly unsaturated fatty acids in O. marina and E. vannus on a mixed diet of microplastic particles and green algae significantly reduced by 8.66 % and 41.49 % relative to feeding only on green algae, respectively. Besides, we also observed an increase in the composition of C18:3 (ω-3) and C20:3 (ω-3) concurrence with a significant decrease in C16:0 and C18:0 in E. vannus after 96 h exposure at 20 mg/L. These results indicate that microplastics can weaken trophic upgrading of the nutritional quality by protozoan grazers, which may consequently alter the function of food webs.
Collapse
Affiliation(s)
- Fengli Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, China; College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Yan Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaotu Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Shuaishuai Xu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Da Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Xiaodong Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Brander SM, Senathirajah K, Fernandez MO, Weis JS, Kumar E, Jahnke A, Hartmann NB, Alava JJ, Farrelly T, Almroth BC, Groh KJ, Syberg K, Buerkert JS, Abeynayaka A, Booth AM, Cousin X, Herzke D, Monclús L, Morales-Caselles C, Bonisoli-Alquati A, Al-Jaibachi R, Wagner M. The time for ambitious action is now: Science-based recommendations for plastic chemicals to inform an effective global plastic treaty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174881. [PMID: 39047828 DOI: 10.1016/j.scitotenv.2024.174881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The ubiquitous and global ecological footprint arising from the rapidly increasing rates of plastic production, use, and release into the environment is an important modern environmental issue. Of increasing concern are the risks associated with at least 16,000 chemicals present in plastics, some of which are known to be toxic, and which may leach out both during use and once exposed to environmental conditions, leading to environmental and human exposure. In response, the United Nations member states agreed to establish an international legally binding instrument on plastic pollution, the global plastics treaty. The resolution acknowledges that the treaty should prevent plastic pollution and its related impacts, that effective prevention requires consideration of the transboundary nature of plastic production, use and pollution, and that the full life cycle of plastics must be addressed. As a group of scientific experts and members of the Scientists' Coalition for an Effective Plastics Treaty, we concur that there are six essential "pillars" necessary to truly reduce plastic pollution and allow for chemical detoxification across the full life cycle of plastics. These include a plastic chemical reduction and simplification, safe and sustainable design of plastic chemicals, incentives for change, holistic approaches for alternatives, just transition and equitable interventions, and centering human rights. There is a critical need for scientifically informed and globally harmonized information, transparency, and traceability criteria to protect the environment and public health. The right to a clean, healthy, and sustainable environment must be upheld, and thus it is crucial that scientists, industry, and policy makers work in concert to create a future free from hazardous plastic contamination.
Collapse
Affiliation(s)
- Susanne M Brander
- Oregon State University, Dept. Fisheries, Wildlife, Conservation Sciences; Coastal Oregon Marine Experiment Station, Newport, OR, USA.
| | - Kala Senathirajah
- School of Engineering, University of Newcastle, Callaghan, Australia
| | - Marina O Fernandez
- Laboratory of Neuroendocrinology, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Argentina
| | - Judith S Weis
- Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Eva Kumar
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Annika Jahnke
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr, Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, Germany
| | - Nanna B Hartmann
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Lyngby, Denmark
| | - Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
| | - Trisia Farrelly
- School of People, Environment and Planning, Massey University, New Zealand
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Ksenia J Groh
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Duebendorf, Switzerland
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Johanna Sophie Buerkert
- Centre for Climate Change Law and Governance, Faculty of Law, University of Copenhagen, Denmark
| | - Amila Abeynayaka
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Lyngby, Denmark; Moore Institute for Plastic Pollution Research, Long Beach, CA, USA
| | | | - Xavier Cousin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Dorte Herzke
- NILU & Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Laura Monclús
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA, USA
| | - Rana Al-Jaibachi
- Department of Bioscience, University of Sheffield, Sheffield, United Kingdom
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
9
|
Tepe Y, Aydın H, Ustaoğlu F, Kodat M. Occurrence of microplastics in the gastrointestinal tracts of four most consumed fish species in Giresun, the Southeastern Black Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55336-55345. [PMID: 39227534 DOI: 10.1007/s11356-024-34814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Microplastic studies investigating concentrations in water are numerous, but the majority of microplastics settle and are retained in sediment, and higher concentrations are regularly reported in sediments. Thus, MPs accumulation may be more threatening to benthic fish living in sediments than to pelagic fish. The presence, abundance and diversity of microplastics were investigated by collecting samples from two pelagic, European anchovy, and horse mackerel and two benthic fish species, red mullet, and whiting that are popularly consumed in Giresun province of Türkiye, located on the southern coast of the Black Sea. Visual classification and chemical compositions of microplastics was performed using a light microscope and ATR-FTIR spectrophotometry, consecutively. The overall incidence and mean microplastics abundance in sampled fishes were 17 and 1.7 ± 0.18 MP fish-1, respectively. MPs were within the range of 0.026-5 mm in size. In most of the cases, the MP was black in color with 41%. With the rates of 56%, polypropylene was the predominant polymer type. The most dominant MP type was identified as fiber followed by fragments and pellets. The relationship between MP amounts in fish and Fulton condition factor was not strong enough to establish a cause-effect relationship.
Collapse
Affiliation(s)
- Yalçın Tepe
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye.
| | - Handan Aydın
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye
| | - Fikret Ustaoğlu
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye
| | - Murat Kodat
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye
| |
Collapse
|
10
|
Mondellini S, Schwarzer M, Völkl M, Jasinski J, Jérôme V, Scheibel T, Laforsch C, Freitag R. Size dependent uptake and trophic transfer of polystyrene microplastics in unicellular freshwater eukaryotes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172470. [PMID: 38621530 DOI: 10.1016/j.scitotenv.2024.172470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Microplastics (MP) have become a well-known and widely investigated environmental pollutant. Despite the huge amount of new studies investigating the potential threat posed by MP, the possible uptake and trophic transfer in lower trophic levels of freshwater ecosystems remains understudied. This study aims to investigate the internalization and potential trophic transfer of fluorescent polystyrene (PS) beads (0.5 μm, 3.6 × 108 particles/mL; 6 μm, 2.1 × 105 particles/mL) and fragments (<30 μm, 5 × 103 particles/mL) in three unicellular eukaryotes. This study focuses on the size-dependent uptake of MP by two freshwater Ciliophora, Tetrahymena pyriformis, Paramecium caudatum and one Amoebozoa, Amoeba proteus, serving also as predator for experiments on potential trophic transfer. Size-dependent uptake of MP in all three unicellular eukaryotes was shown. P. caudatum is able to take up MP fragments up to 27.7 μm, while T. pyriformis ingests particles up to 10 μm. In A. proteus, small MP (PS0.5μm and PS6μm) were taken up via pinocytosis and were detected in the cytoplasm for up to 14 days after exposure. Large PS-MP (PS<30μm) were detected in A. proteus only after predation on MP-fed Ciliophora. These results indicate that A. proteus ingests larger MP via predation on Ciliophora (PS<30μm), which would not be taken up otherwise. This study shows trophic transfer of MP at the base of the aquatic food web and serves as basis to study the impact of MP in freshwater ecosystems.
Collapse
Affiliation(s)
- Simona Mondellini
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
| | - Michael Schwarzer
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
| | - Matthias Völkl
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Julia Jasinski
- Biomaterials, University of Bayreuth, 95447 Bayreuth, Germany
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, University of Bayreuth, 95447 Bayreuth, Germany; Bayerisches Polymerinstitut (BPI), University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Materialzentrum (BayMAT), University of Bayreuth, 95447 Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany.
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
11
|
Biefel F, Geist J, Connon RE, Harper B, Brander SM. Interactive effects between water temperature, microparticle compositions, and fiber types on the marine keystone species Americamysis bahia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123906. [PMID: 38561036 DOI: 10.1016/j.envpol.2024.123906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Recently, there has been an increasing emphasis on examining the ecotoxicological effects of anthropogenic microparticles (MPs), especially microplastic particles, and related issues. Nevertheless, a notable deficiency exists in our understanding of the consequences on marine organisms, specifically in relation to microfibers and the combined influence of MPs and temperature. In this investigation, mysid shrimp (Americamysis bahia), an important species and prey item in estuarine and marine food webs, were subjected to four separate experimental trials involving fibers (cotton, nylon, polyester, hemp; 3 particles/ml; approximately 200 μm in length) or fragments (low-density Polyethylene: LDPE, polylactic acid: PLA, and their leachates; 5, 50, 200, 500 particles/ml; 1-20 μm). To consider the effects in the context of climate change, three different temperatures (22, 25, and 28 °C) were examined. Organismal growth and swimming behavior were measured following exposure to fragments and microfibers, and reactive oxygen species and particle uptake were investigated after microfiber exposure. To simulate the physical characteristics of MP exposure, such as microfibers obstructing the gills, we also assessed the post-fiber-exposure swimming behavior in an oxygen-depleted environment. Data revealed negligible fragment, but fiber exposure effects on growth. PLA leachate triggered higher activity at 25 °C and 28 °C; LDPE exposures led to decreased activity at 28 °C. Cotton exposures led to fewer behavioral differences compared to controls than other fiber types. The exposure to hemp fibers resulted in significant ROS increases at 28 °C. Microfibers were predominantly located within the gastric and upper gastrointestinal tract, suggesting extended periods of residence and the potential for obstructive phenomena over the longer term. The combination of increasing water temperatures, microplastic influx, and oxidative stress has the potential to pose risks to all components of marine and aquatic food webs.
Collapse
Affiliation(s)
- F Biefel
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, 85354, Germany; School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California Davis, 95616, CA, USA; Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, College of Agricultural and Life Sciences, Oregon State University, 97365, OR, USA.
| | - J Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, 85354, Germany
| | - R E Connon
- School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California Davis, 95616, CA, USA
| | - B Harper
- Environmental and Molecular Toxicology, College of Agricultural and Life Sciences, Oregon State University, 97331, OR, USA
| | - S M Brander
- Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, College of Agricultural and Life Sciences, Oregon State University, 97365, OR, USA
| |
Collapse
|
12
|
Wang S, Ma L, Chen L, Sokolova IM, Huang W, Li D, Hu M, Khan FU, Shang Y, Wang Y. The combined effects of phenanthrene and micro-/nanoplastics mixtures on the cellular stress responses of the thick-shell mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122999. [PMID: 37995954 DOI: 10.1016/j.envpol.2023.122999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Pollution with complex mixtures of contaminants including micro- and nano-plastics (MNPs) and organic pollutants like polycyclic aromatic hydrocarbons (PAH) poses a major threat to coastal marine ecosystems. Toxic mechanisms of contaminant mixtures are not well understood in marine organisms. We studied the effects of single and combined exposures to polycyclic aromatic hydrocarbon phenanthrene (Phe) and MNPs mixture with sizes of 70 nm, 5 μm and 100 μm on the immune health and oxidative stress parameters in the thick-shell mussel Mytilus coruscus. Immune cells (hemocytes) were more sensitive to the pollutant-induced oxidative stress than the gills. In hemocytes of co-exposed mussels, elevated mortality, lower lysosomal content, high production of reactive oxygen species (ROS) and decrease mitochondrial were found. Disparate responses of antioxidant enzymes in the hemolymph (e.g. increased superoxide dismutase (SOD) activity without a corresponding increase in catalase (CAT) in Phe exposures and an increase in CAT without a change in SOD in MNPs exposures) suggests misbalance of the antioxidant defense in the pollutant-exposed mussels. Gill lacked pronounced oxidative stress response showing a decline in ROS and antioxidant levels. Tissue-specific single and combined effects of Phe and MNPs suggest variation in bioavailability and/or different sensitivity to these pollutants in the studied tissues. Notably, the combined effects of MNPs and Phe were additive or antagonistic, showing that MNPs do not enhance and occasionally mitigate the toxic effects of Phe on the hemocytes and the gills of the mussels. Overall, our study sheds light on the impact of long-term exposure to MNPs and Phe mixtures on mussels, showing high sensitivity of the immune system and modulation of the Phe toxicity by MNPs co-exposure. These findings that may have implications for understanding the impacts of combined PAH and MNPs pollution on the health of mussel populations from polluted coastal habitats.
Collapse
Affiliation(s)
- Shixiu Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Lukuo Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
13
|
Budziak M, Fyda J. Effect of microplastic particles on the population growth rate and clearance rate of selected ciliates (Protista, Ciliophora). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6907-6921. [PMID: 38157169 PMCID: PMC10821840 DOI: 10.1007/s11356-023-31635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs), due to their micro size, which overlaps with the typical food size of various aquatic organisms, can be ingested and move up the food chain, accumulating in the bodies of organisms at higher trophic levels. Few studies have focused on the uptake of MPs by ciliates, which are an important element of the microbial cycle. Three different ciliate species were used in this study: Blepharisma japonicum, Euplotes sp., and Spirostomum teres, as well as polystyrene beads with diameters of 1 and 2 µm at two concentrations (106 and 107 beads × mL-1). The results of the experiments showed that MPs have a variable, species-specific effect on the population growth rate of ciliates, which is directly dependent on their concentration in the environment (P < 0.01). It was also observed that the number of MPs ingested changed over time depending on their concentration and size. On average, the highest number of ingested MPs (883.11 ± 521.47) was recorded at 60 min of exposure to a low concentration of small beads in B. japonicum. The lowest number of beads was ingested after 5 min of exposure to a low concentration of large beads in the same species. The rate of MP uptake by the ciliate species was significantly dependent on their concentration, exposure time, and size (P < 0.001). The highest clearance rate was observed in the fifth minute of the experiment in the environment with the lowest MP concentration.
Collapse
Affiliation(s)
- Martyna Budziak
- Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Janusz Fyda
- Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
14
|
Hawley L, Smalling KL, Glaberman S. Critical review of the phytohemagglutinin assay for assessing amphibian immunity. CONSERVATION PHYSIOLOGY 2023; 11:coad090. [PMID: 38090122 PMCID: PMC10714196 DOI: 10.1093/conphys/coad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 04/26/2024]
Abstract
Infectious diseases are a major driver of the global amphibian decline. In addition, many factors, including genetics, stress, pollution, and climate change can influence the response to pathogens. Therefore, it is important to be able to evaluate amphibian immunity in the laboratory and in the field. The phytohemagglutinin (PHA) assay is an inexpensive and relatively non-invasive tool that has been used extensively to assess immunocompetence, especially in birds, and more recently in amphibians. However, there is substantial variation in experimental methodology among amphibian PHA studies in terms of species and life stages, PHA doses and injection sites, and use of experimental controls. Here, we compile and compare all known PHA studies in amphibians to identify knowledge gaps and develop best practices for future work. We found that research has only been conducted on a limited number of species, which may not reflect the diversity of amphibians. There is also a lack of validation studies in most species, so that doses and timing of PHA injection and subsequent swelling measurements may not effectively evaluate immunocompetence. Based on these and other findings, we put forward a set of recommendations to make future PHA studies more consistent and improve the ability to utilize this assay in wild populations, where immune surveillance is greatly needed.
Collapse
Affiliation(s)
- Lauren Hawley
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Kelly L Smalling
- New Jersey Water Science Center, U.S. Geological Survey, Lawrenceville, NJ, USA
| | - Scott Glaberman
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| |
Collapse
|
15
|
Tang Y, Fan K, Herath I, Gustave W, Lin C, Qin J, Qiu R. Contribution of free hydroxyl radical to the formation of micro(nano)plastics and release of additives during polyethylene degradation in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122590. [PMID: 37734629 DOI: 10.1016/j.envpol.2023.122590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
The omnipresence of secondary microplastics (MPs) in aquatic ecosystems has become an increasingly alarming public health concern. Hydrogen peroxide (H2O2) is an important oxidant in nature and the most stable reactive oxygen species occurred in natural water. In order to explore the contribution of free ˙OH generated from H2O2-driven Fenton-like reactions on the degradation of polyethylene (PE) and generation of micro- and nano-scale plastics in water, a batch experiment was conducted over a period of 620 days in water treated with micromolar H2O2. The incorporation of H2O2 in water induced the formation of flake-like micro(nano)-sized particles due to intensified oxidative degradation of PE films. The presence of ˙OH significantly enhanced the generation of both micro- and nano-scale plastics exhibiting a higher proportion of particles in the range of 200-500 nm compared to the Control. Total organic carbon in the H2O2 treated solution was nearly 174-fold higher than that of the Control indicating a substantial liberation of organic compounds due to the oxidative degradation of native carbon chain of PE and subsequent decomposition of its additives. The highly toxic butylated hydroxytoluene detected from the gas chromatography-mass spectrometry (GC-MS) analysis implied the toxicological behavior of secondary micro(nano)plastics influenced by the oxidation and decomposition processes The findings from this study further expand our understanding of the role of ˙OH in degrading PE micro-scale plastics into nanoparticles as an implication of naturally occurring H2O2 in aquatic environments. In the future, further attention should be drawn to the underlying mechanisms of H2O2-driven in-situ Fenton reaction mediated by natural environmental conditions targeting the alternation of light and darkness on the oxidative degradation of plastics.
Collapse
Affiliation(s)
- Yu Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kaiqing Fan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Williamson Gustave
- The School of Chemistry, Environmental & Life Sciences, University of The Bahamas, Nassau, Bahamas
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Junhao Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
16
|
Mendoza SM, García-Moll MP, Fernandez VH, Barrios M, Mena R, Miriuka S, Cledon M. Microplastics in stomach contents of juvenile Patagonian blennies (Eleginops maclovinus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164684. [PMID: 37315594 DOI: 10.1016/j.scitotenv.2023.164684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Microplastics are one of the major environmental issues that need to be addressed because they are starting to impact food chains and are also affecting human populations. The size, colour, form, and abundance of microplastics in young blennies of the species Eleginops maclovinus were examined in the current study. While the stomach contents of 70 % of the studied individuals contained microplastics, 95 % of them included fibres. Individual size and the largest particle size that can be eaten, which ranges between 0.09 and 1.5 mm present no statistical correlation. The quantity of particles taken in by each individual does not change with size. The most present microfibers colours were blue and red. Sampled fibres were analysed with FT-IR and no natural fibres were detected, proving the synthetic origin of the detected particles. These findings suggest that protected coastlines create conditions that favour the encounter of microplastics increasing local wildlife exposure to microplastics, raising the danger of their ingestion with potential physiological, ecological, economical and human health consequences.
Collapse
Affiliation(s)
- S M Mendoza
- CIMAS (CONICET, UnComa, Rio Negro), Güemes 1030, San Antonio Oeste, Rio Negro, Argentina
| | - M P García-Moll
- FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Spain
| | - V H Fernandez
- CIMAS (CONICET, UnComa, Rio Negro), Güemes 1030, San Antonio Oeste, Rio Negro, Argentina
| | - M Barrios
- CIMAS (CONICET, UnComa, Rio Negro), Güemes 1030, San Antonio Oeste, Rio Negro, Argentina
| | - R Mena
- CIMAS (CONICET, UnComa, Rio Negro), Güemes 1030, San Antonio Oeste, Rio Negro, Argentina
| | - S Miriuka
- CIMAS (CONICET, UnComa, Rio Negro), Güemes 1030, San Antonio Oeste, Rio Negro, Argentina
| | - M Cledon
- CIMAS (CONICET, UnComa, Rio Negro), Güemes 1030, San Antonio Oeste, Rio Negro, Argentina; FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Spain.
| |
Collapse
|
17
|
He Y, Shen A, Salam M, Liu M, Wei Y, Yang Y, Li H. Microcystins-Loaded Aged Nanoplastics Provoke a Metabolic Shift in Human Liver Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10521-10531. [PMID: 37449315 DOI: 10.1021/acs.est.3c00990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Studies concerning the toxicity of pollutant-loaded nanoplastics (NPs) toward humans are still in their infancy. Here, we evaluated the adsorption of microcystins (MCs) by pristine and aged polystyrene nanoplastics (PSNPs), prepared MCs-loaded aged PSNPS (1, 5, 10, 15, and 19 μg/mg), and systematically mapped the key molecular changes induced by aged and MCs-loaded PSNPs to human hepatoblastoma (HepG2) cells. According to the results, MC-LR adsorption is increased 2.64-fold by aging, and PSNP accumulation is detected in HepG2 cells. The cytotoxicity of the MC-LR-loaded aged PSNPs showed a positive relationship with the MC-LR amount, as the cell viability in the 19 μg/mg loading treatment (aPS-MC19) was 10.84% lower than aged PSNPs; meanwhile, more severe oxidative damage was observed. Primary approaches involved stressing the endoplasmic reticulum and reducing protein synthesis that the aged PSNPs posed for HepG2 cells, while the aggravated cytotoxicity in aPS-MC19 treatment was a combined result of the metabolic energy disorder, oxidative damage, endoplasmic reticulum stress, and downregulation of the MC-LR target protein. Our results confirm that the aged PSNPs could bring more MC-LR into the HepG2 cells, significantly interfere with biological processes, and provide new insight into deciphering the risk of NPs to humans.
Collapse
Affiliation(s)
- Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Ai Shen
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing 400045, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| |
Collapse
|
18
|
Liang W, Li B, Jong MC, Ma C, Zuo C, Chen Q, Shi H. Process-oriented impacts of microplastic fibers on behavior and histology of fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130856. [PMID: 36753910 DOI: 10.1016/j.jhazmat.2023.130856] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microplastic pollution has raised global concern for its hazards to biota. To determine the direct impact of microplastics during their contact with fish, we exposed goldfish (Carassius auratus) to 100 and 1000 items/L waterborne microplastic fibers in the short- and long-term. In the presence of 1000 items/L of microplastic fibers, the coughing behavior of fish increased significantly after 2 h of exposure. Predatory behaviors decreased significantly by 53.0% after 45 d of exposure, and the reduction in daily food intake was negatively related to exposure duration in the 1000 items/L group. In addition, microplastic fibers stimulated dynamic mucus secretion across different fish tissues during the different processes evaluated in this study, with 30.0% and 62.9% overall increases in the secretory capacity of mucus cells in the 100 and 1000 items/L groups, respectively. These behavioral and histological alterations were derived from the ventilation, feeding, and swimming processes of goldfish. We regarded these changes as process-oriented impacts, suggesting the effects of microplastics on fish and how fish cope with microplastics.
Collapse
Affiliation(s)
- Weiwenhui Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Bowen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
19
|
Microplastics (MPs) in marine food chains: Is it a food safety issue? ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:101-140. [PMID: 36863833 DOI: 10.1016/bs.afnr.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enormous usage of plastic over the last seven decades has resulted in a massive quantity of plastic waste, much of it eventually breaking down into microplastic (MP) and nano plastic (NP). The MPs and NPs are regarded as emerging pollutants of serious concern. Both MPs and NPs can have a primary or secondary origin. Their ubiquitous presence and ability to sorb, desorb, and leach chemicals have raised concern over their presence in the aquatic environment and, particularly, the marine food chain. MPs and NPs are also considered vectors for pollutant transfer along with the marine food chain, and people who consume seafood have began significant concerns about the toxicity of seafood. The exact consequences and risk of MP exposure to marine foods are largely unknown and should be a priority research area. Although several studies have documented an effective clearance mechanism by defecation, significant aspect has been less emphasized for MPs and NPs and their capability to translocate in organs and clearance is not well established. The technological limitations to study these ultra-fine MPs are another challenge to be addressed. Therefore, this chapter discusses the recent findings of MPs in different marine food chains, their translocation and accumulations potential, MPs as a critical vector for pollutant transfer, toxicology impact, cycling in the marine environment and seafood safety. Besides, the concerns and challenges that are overshadowed by findings for the significance of MPs were covered.
Collapse
|
20
|
Vercauteren M, Semmouri I, Van Acker E, Pequeur E, Janssen CR, Asselman J. Toward a Better Understanding of the Contribution of Wastewater Treatment Plants to Microplastic Pollution in Receiving Waterways. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:642-654. [PMID: 36524859 DOI: 10.1002/etc.5540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (1 µm-5 mm), are ubiquitous in daily-use products and regularly end up in the wastewater. The main part of the wastewater is treated in wastewater treatment plants (WWTPs), which allow for at least partial removal of microplastics. The present study aimed to understand the contribution of domestic wastewater to microplastic pollution in Flanders (Belgium) via two main discharge routes of microplastics: (1) the effluent, and (2) removed fractions. Furthermore the effect of effluent discharge on the microplastic contamination in the waterway was studied in both surface water and sediment samples of upstream and downstream locations of the discharge from three WWTPs. On average, 12.64 ± 20.20 microplastic/L entered a WWTP (10 µm-5 mm). The effluent contained on average 0.41 ± 0.91 microplastic/L, resulting in an average removal efficiency of 97.46% ± 2.33%, which is comparable with various (non-)European countries. Removal efficiencies are both polymer- and size-specific, and data suggest that smaller particles are less efficiently removed from the wastewater, which also causes an increased input of smaller particles to the environment. The sludge is the most efficient treatment process to remove microplastics. Despite the high removal efficiencies, still 1.11 × 107 ± 3.07 × 107 microplastics end up in the nearby waterway daily. Nonetheless, based on the results gathered in the present study, this does not seem to impact the microplastic concentration in the waterway significantly. In summary, the present study offers a holistic approach in the research on the impact of wastewater on microplastic pollution in the ecosystem, integrating different discharge routes and measuring the impact on environmental microplastic pollution. Environ Toxicol Chem 2023;42:642-654. © 2022 SETAC.
Collapse
Affiliation(s)
- Maaike Vercauteren
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ilias Semmouri
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
| | - Emmanuel Van Acker
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emmy Pequeur
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Colin R Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
| |
Collapse
|
21
|
Lasdin KS, Arnold M, Agrawal A, Fennie HW, Grorud-Colvert K, Sponaugle S, Aylesworth L, Heppell S, Brander SM. Presence of microplastics and microparticles in Oregon Black Rockfish sampled near marine reserve areas. PeerJ 2023; 11:e14564. [PMID: 36815986 PMCID: PMC9936869 DOI: 10.7717/peerj.14564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/22/2022] [Indexed: 02/16/2023] Open
Abstract
Measuring the spatial distribution of microparticles which include synthetic, semi-synthetic, and anthropogenic particles is critical to understanding their potential negative impacts on species. This is particularly important in the context of microplastics, which are a form of microparticle that are prevalent in the marine environment. To facilitate a better understanding of microparticle occurrence, including microplastics, we sampled subadult and young juvenile Black Rockfish (Sebastes melanops) at multiple Oregon coast sites, and their gastrointestinal tracts were analyzed to identify ingested microparticles. Of the subadult rockfish, one or more microparticles were found in the GI tract of 93.1% of the fish and were present in fish from Newport, and near four of five marine reserves. In the juveniles, 92% of the fish had ingested one or more microparticles from the area of Cape Foulweather, a comparison area, and Otter Rock, a marine reserve. The subadults had an average of 7.31 (average background = 5) microparticles detected, while the juveniles had 4.21 (average background = 1.8). In both the subadult and juvenile fish, approximately 12% of the microparticles were identified as synthetic using micro-Fourier Infrared Spectroscopy (micro-FTIR). Fibers were the most prevalent morphology identified, and verified microparticle contamination was a complex mixture of synthetic (∼12% for subadults and juveniles), anthropogenic (∼87% for subadults and 85.5% for juveniles), and natural (e.g., fur) materials (∼0.7% for subadults and ∼2.4% for juveniles). Similarities in exposure types (particle morphology, particle number) across life stages, coupled with statistical differences in exposure levels at several locations for subadult fish, suggest the potential influence of nearshore oceanographic patterns on microparticle distribution. A deeper understanding of the impact microplastics have on an important fishery such as those for S. melanops, will contribute to our ability to accurately assess risk to both wildlife and humans.
Collapse
Affiliation(s)
- Katherine S. Lasdin
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States,Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Madison Arnold
- Department of Environmental Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Anika Agrawal
- Natural Resources and the Environment, University of Connecticut, Storrs, CT, United States
| | - H. William Fennie
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States,Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric and Administration, La Jolla, CA, USA,Hatfield Marine Science Center, Newport, OR, USA
| | - Kirsten Grorud-Colvert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Su Sponaugle
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States,Hatfield Marine Science Center, Newport, OR, USA
| | | | - Scott Heppell
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Susanne M. Brander
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, United States
| |
Collapse
|
22
|
Hasegawa T, Mizukawa K, Yeo BG, Sekioka T, Takada H, Nakaoka M. The significance of trophic transfer of microplastics in the accumulation of plastic additives in fish: An experimental study using brominated flame retardants and UV stabilizers. MARINE POLLUTION BULLETIN 2022; 185:114343. [PMID: 36410196 DOI: 10.1016/j.marpolbul.2022.114343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Marine organisms ingest microplastics directly from water and indirectly from food sources. Ingesting microplastics can lead to the accumulation of plastic-derived chemicals. However, the relative contributions of the two exposure routes to the accumulation of plastic-derived chemicals in organisms are unknown. Using microplastics containing two brominated flame retardants (BFRs; BDE209 and DBDPE) and three UV stabilizers (UVSs; UV-234, UV-327, and BP-12), we performed exposure experiments to compare chemical accumulation patterns in fish (Myoxocephalus brandti) between exposure from water and prey (Neomysis spp.). We found significantly higher concentrations of BFRs in fish fed microplastic-contaminated prey than fish exposed to microplastics in the water. However, we observed similar concentrations of UVSs in fish exposed to both sources. As BFRs are more hydrophobic than UVSs, the differences may reflect the hydrophobic nature of the additives. Our findings indicate that both exposure routes are crucial to understanding the accumulation of plastic additives in fish.
Collapse
Affiliation(s)
- Takaaki Hasegawa
- Graduate School of Environmental Science, Hokkaido University, Akkeshi, Hokkaido 088-1113, Japan
| | - Kaoruko Mizukawa
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Bee Geok Yeo
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tomonori Sekioka
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Masahiro Nakaoka
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Akkeshi, Hokkaido 088-1113, Japan.
| |
Collapse
|
23
|
Zebrowski ML, Babkiewicz E, Błażejewska A, Pukos S, Wawrzeńczak J, Wilczynski W, Zebrowski J, Ślusarczyk M, Maszczyk P. The effect of microplastics on the interspecific competition of Daphnia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120121. [PMID: 36089144 DOI: 10.1016/j.envpol.2022.120121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastic pollution is currently one of the most intensely studied ecological issues. Numerous studies have estimated the distribution and concentration of microplastics in various environments and determine how they affect their inhabitants. Much less effort has been place on assessing the possible effects of microplastics on interactions between organisms, including interspecific competition. Our aim was to test the hypothesis that the presence of microplastics affects the proportion of individuals of coexisting species and the elimination rate of the inferior competitor. The hypothesis was tested in competitive experiments done in the absence and presence of spherical non-biodegradable polystyrene and polyethylene and biodegradable polyhydroxybutyrate in environmentally relevant densities. In each of the experiments, we used three different pairs of closely related planktonic species of the genus Daphnia composed of the superior and inferior competitor: D. pulex and D. magna, D. magna and D. galeata, D. pulex and D. galeata. The results support our hypothesis and demonstrate each microplastic type had a different effect on the density of the competing species. The presence of polystyrene and polyethylene lowered the density of the superior competitor in each of the three pairs, at least partially due to a reduction in the number of gravid females, but not their fecundity. The presence of the polyhydroxybutyrate, in turn, increased the population density of D. magna in the variants with each of the two remaining species. Moreover, the presence of microplastics affected the elimination rate of the inferior competitor, i.e. polystyrene expedited the exclusion of D. magna by D. pulex, and polyhydroxybutyrate hampered the exclusion of D. magna by D. pulex. Our results suggest that long-term exposure to environmentally relevant densities of both non-biodegradable and biodegradable microplastics may affect the relative abundance of co-occurring species in zooplankton communities, and thus the functioning of aquatic ecosystems.
Collapse
Affiliation(s)
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Szymon Pukos
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Julia Wawrzeńczak
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wojciech Wilczynski
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland; Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Mirosław Ślusarczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
24
|
Junaid M, Siddiqui JA, Sadaf M, Liu S, Wang J. Enrichment and dissemination of bacterial pathogens by microplastics in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154720. [PMID: 35337880 DOI: 10.1016/j.scitotenv.2022.154720] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Microplastic pollution and associated impacts in the aquatic environment are spreading at an alarming rate worldwide. Plastic waste is increasing in the environment, and microplastics (MPs) are becoming a growing issue because they serve as vectors for pathogen transmission. This is the first comprehensive review that specifically addresses MPs as a source and vector of pathogenic bacteria, mainly associated with genera Vibrio, Pseudomonas, Acinetobacter, and so on, which are discovered to be more abundant on the aquatic plastisphere than that in the surrounding wastewater, freshwater, and marine water ecosystems. The horizontal gene transfer, chemotaxis, and co-selection and cross-selection could be the potential mechanism involved in the enrichment and dissemination of bacterial pathogens through the aquatic plastisphere. Further, bacterial pathogens through aquatic plastisphere can cause various ecological and human health impacts such as disrupted food chain, oxidative stress, tissue damages, disease transmission, microbial dysbiosis, metabolic disorders, among others. Last but not least, future research directions are also described to find answers to the challenging questions about bacterial pathogens in the aquatic plastisphere to ensure the integrity and safety of ecological and human health.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Mamona Sadaf
- Knowledge Unit of Business, Economics, Accountancy and Commerce (KUBEAC), University of Management and Technology, Sialkot Campus, 51310, Pakistan
| | - Shulin Liu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
25
|
Pennati R, Castelletti C, Parolini M, Scarì G, Mercurio S. Mixotrophic flagellate ingestion boosts microplastic accumulation in ascidians. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:639-644. [PMID: 35416427 PMCID: PMC9324947 DOI: 10.1002/jez.2596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Microplastics are contaminants of global environmental concern. They can be ingested by a variety of organisms when they enter the food web. Several studies have reported trophic transfer of microplastics from low trophic levels to higher ones. Bioaccumulation has been suggested to occur but few studies have demonstrated it for marine environments. In this article, in controlled laboratory conditions, we exposed filter-feeder ascidian juveniles to microplastics in the presence or in absence of mixotrophic cryptomonad flagellates. Cryptomonads can efficiently ingest microbeads, and their presence significantly increased the concentration of microplastics in the digestive tract of the ascidians. Our results demonstrate the occurrence of microplastic bioaccumulation in the lower levels of the marine trophic chain and suggest that unicellular organisms can be key actors in microplastic trophic transfer at the microscale level.
Collapse
Affiliation(s)
- Roberta Pennati
- Department of Environmental Science and PolicyUniversità degli Studi di MilanoMilanItaly
| | - Chiara Castelletti
- Department of Environmental Science and PolicyUniversità degli Studi di MilanoMilanItaly
| | - Marco Parolini
- Department of Environmental Science and PolicyUniversità degli Studi di MilanoMilanItaly
| | - Giorgio Scarì
- Department of BiosciencesUniversità degli Studi di MilanoMilanItaly
| | - Silvia Mercurio
- Department of Environmental Science and PolicyUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|
26
|
Siddiqui S, Dickens JM, Cunningham BE, Hutton SJ, Pedersen EI, Harper B, Harper S, Brander SM. Internalization, reduced growth, and behavioral effects following exposure to micro and nano tire particles in two estuarine indicator species. CHEMOSPHERE 2022; 296:133934. [PMID: 35176295 PMCID: PMC9071364 DOI: 10.1016/j.chemosphere.2022.133934] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 05/19/2023]
Abstract
Synthetic rubber emissions from automobile tires are common in aquatic ecosystems. To assess potential impacts on exposed organisms, early life stages of the estuarine indicator species Inland Silverside (Menidia beryllina) and mysid shrimp (Americamysis bahia) were exposed to three tire particle (TP) concentrations at micro and nano size fractions (0.0038, 0.0378 and 3.778 mg/L in mass concentrations for micro size particles), and separately to leachate, across a 5-25 PSU salinity gradient. Following exposure, M. beryllina and A. bahia had significantly altered swimming behaviors, such as increased freezing, changes in positioning, and total distance moved, which could lead to an increased risk of predation and foraging challenges in the wild. Growth for both A. bahia and M. beryllina was reduced in a concentration-dependent manner when exposed to micro-TP, whereas M. beryllina also demonstrated reduced growth when exposed to nano-TP (except lowest concentration). TP internalization was dependent on the exposure salinity in both taxa. The presence of adverse effects in M. beryllina and A. bahia indicate that even at current environmental levels of tire-related pollution, which are expected to continue to increase, aquatic ecosystems may be experiencing negative impacts.
Collapse
Affiliation(s)
- S Siddiqui
- Fisheries, Wildlife, and Conservation Sciences; Coastal Oregon Marine Experiment Station, College of Agricultural and Life Sciences, Oregon State University, 97365, USA.
| | - J M Dickens
- Marine Resources Management Program, College of Earth, Atmospheric, and Oceanic Sciences, Oregon State University Corvallis, Oregon, 97331, USA
| | - B E Cunningham
- Environmental and Molecular Toxicology, College of Agricultural and Life Sciences, Oregon State University, 97331, USA
| | - S J Hutton
- Environmental and Molecular Toxicology, College of Agricultural and Life Sciences, Oregon State University, 97331, USA
| | - E I Pedersen
- Fisheries, Wildlife, and Conservation Sciences; Coastal Oregon Marine Experiment Station, College of Agricultural and Life Sciences, Oregon State University, 97365, USA
| | - B Harper
- Environmental and Molecular Toxicology, College of Agricultural and Life Sciences, Oregon State University, 97331, USA
| | - S Harper
- Environmental and Molecular Toxicology, College of Agricultural and Life Sciences, Chemical, Biological and Environmental Engineering, College of Engineering, Oregon State University, 97331, USA
| | - S M Brander
- Fisheries, Wildlife, and Conservation Sciences; Coastal Oregon Marine Experiment Station, College of Agricultural and Life Sciences, Oregon State University, 97365, USA
| |
Collapse
|
27
|
Cunningham B, Harper B, Brander S, Harper S. Toxicity of micro and nano tire particles and leachate for model freshwater organisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128319. [PMID: 35236035 DOI: 10.1016/j.jhazmat.2022.128319] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental sampling has documented a diversity of microplastics, including high levels of black rubber- generally identified as tire debris. Though organisms have been shown to ingest tire particles (TPs), past research focused on toxicity of leachate alone, overlooking potential effects of particles. To address these gaps, we assessed the toxicity of micro (1-20 µm) and nano (<1 µm) TPs for two model organisms, embryonic Zebrafish Danio rerio and the crustacean Daphnia magna. To assess effects on development, Zebrafish embryos were exposed to concentrations of TPs or leachate ranging from 0 to 3.0 × 109 particles/ml and 0-100% respectively (n = 4). Greater mortality and sublethal malformations were observed following nano TP and leachate exposures as compared to micro TPs. Unique abnormalities between the exposures indicates that there is both chemical and particle-specific toxicity. We also observed D. magna mortality following a 48 h exposure of neonate to TPs or leachate, ranging from 0 to 3.3 × 109 particles/ml and 0-100% respectively (n = 3). Though, particle-enhancement of toxicity was observed for both Zebrafish and D. magna, overall sensitivity to TPs differed. It is important to identify differential toxicities across species to achieve an understanding of the environmental impacts of TPs and the chemicals they leach.
Collapse
Affiliation(s)
- Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Bryan Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Susanne Brander
- Coastal Oregon Marine Experiment Station, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, United States
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
28
|
Jewett E, Arnott G, Connolly L, Vasudevan N, Kevei E. Microplastics and Their Impact on Reproduction-Can we Learn From the C. elegans Model? FRONTIERS IN TOXICOLOGY 2022; 4:748912. [PMID: 35399297 PMCID: PMC8987311 DOI: 10.3389/ftox.2022.748912] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Biologically active environmental pollutants have significant impact on ecosystems, wildlife, and human health. Microplastic (MP) and nanoplastic (NP) particles are pollutants that are present in the terrestrial and aquatic ecosystems at virtually every level of the food chain. Moreover, recently, airborne microplastic particles have been shown to reach and potentially damage respiratory systems. Microplastics and nanoplastics have been shown to cause increased oxidative stress, inflammation, altered metabolism leading to cellular damage, which ultimately affects tissue and organismal homeostasis in numerous animal species and human cells. However, the full impact of these plastic particles on living organisms is not completely understood. The ability of MPs/NPs to carry contaminants, toxic chemicals, pesticides, and bioactive compounds, such as endocrine disrupting chemicals, present an additional risk to animal and human health. This review will discusses the current knowledge on pathways by which microplastic and nanoplastic particles impact reproduction and reproductive behaviors from the level of the whole organism down to plastics-induced cellular defects, while also identifying gaps in current knowledge regarding mechanisms of action. Furthermore, we suggest that the nematode Caenorhabditis elegans provides an advantageous high-throughput model system for determining the effect of plastic particles on animal reproduction, using reproductive behavioral end points and cellular readouts.
Collapse
Affiliation(s)
- Elysia Jewett
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Gareth Arnott
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
29
|
Kim L, Cui R, Kwak JI, An YJ. Sub-acute exposure to nanoplastics via two-chain trophic transfer: From brine shrimp Artemia franciscana to small yellow croaker Larimichthys polyactis. MARINE POLLUTION BULLETIN 2022; 175:113314. [PMID: 35063757 DOI: 10.1016/j.marpolbul.2021.113314] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
This study investigated the trophic transfer of nanoplastics in marine food chains. We fed nanoplastic-exposed Artemia franciscana (brine shrimp) to Larimichthys polyactis (small yellow croaker) daily for eight days. Subsequently, the overall health condition, histopathological damage to the liver and digestive tract, and swimming ability of the fish were measured. After the sub-acute exposure to nanoplastics via trophic transfer, the fish showed inhibited growth, severe liver damage, as well as a poorer swimming ability compared to the control. The swimming ability was especially affected, in terms of the overall movement as well as thigmotaxis. The results thus clarified that even an indirect exposure to nanoplastics could induce neurotoxic effects and affect the swimming ability of the fish. As fish are well-known human food resources, the possibility of such trophic transfers affecting higher trophic level organisms, such as humans, cannot be ruled out.
Collapse
Affiliation(s)
- Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Rongxue Cui
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
30
|
Uy CA, Johnson DW. Effects of microplastics on the feeding rates of larvae of a coastal fish: direct consumption, trophic transfer, and effects on growth and survival. MARINE BIOLOGY 2022; 169:27. [PMID: 35068587 PMCID: PMC8764328 DOI: 10.1007/s00227-021-04010-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/14/2021] [Indexed: 05/28/2023]
Abstract
UNLABELLED Microplastics are now found throughout the world's oceans, and although many organisms ingest microplastics, less is known about how plastics in seawater may affect key processes such as feeding rate, growth, and survival. We used a series of laboratory experiments to test whether microplastics in seawater affected the feeding rates of larvae of the California Grunion, Leuresthes tenuis. In addition, we tested whether trophic transfer of microplastics from zooplankton to larval fish can occur and affect growth and survival of fish. We measured feeding rates of grunion larvae at various concentrations of 75-90 µm and 125-250 µm polyethylene microplastics and under both still water and turbulent conditions. In these experiments, exposure to microplastics had modest effects on feeding rates, though responses may be somewhat complex. Low concentrations of microplastics increased feeding rates compared to the control, but at higher concentrations, feeding rates were indistinguishable from those in the control group, though effects were small compared to natural variation in feeding rates among individual fish. Experiments to test for trophic transfer of microplastics revealed that grunion larvae that were fed brine shrimp exposed to high concentrations of microplastics had lower growth rates and elevated mortality rates. Overall, our results suggest that the direct effects of microplastics on feeding rates of California Grunion during the early larval phase are minor, while the trophic transfer of microplastics from zooplankton to larval fish may have significant effects on their growth and survival. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00227-021-04010-x.
Collapse
Affiliation(s)
- Christine Angelica Uy
- Department of Biological Sciences, California State University, Long Beach, CA 90840 USA
| | - Darren W. Johnson
- Department of Biological Sciences, California State University, Long Beach, CA 90840 USA
| |
Collapse
|
31
|
Wang J, Li X, Gao M, Li X, Zhao L, Ru S. Polystyrene microplastics increase estrogenic effects of 17α-ethynylestradiol on male marine medaka (Oryzias melastigma). CHEMOSPHERE 2022; 287:132312. [PMID: 34563785 DOI: 10.1016/j.chemosphere.2021.132312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) and endocrine disrupting chemicals are ubiquitous pollutants in marine environments, but their combined ecological risk is unclear. This study exposed male marine medaka (Oryzias melastigma) to 10 ng/L 17α-ethynylestradiol (EE2) alone or EE2 plus 2, 20, and 200 μg/L polystyrene MPs for 28 days to investigate the impacts of MPs on the reproductive disruption of EE2. The results showed that 10 ng/L EE2 alone did not affect biometric parameters, while co-exposure to EE2 and 20, 200 μg/L MPs suppressed the growth and decreased gonadosomatic and hepatosomatic indices. Compared to EE2 alone, EE2 plus MPs exposure significantly increased plasma 17β-estradiol (E2) levels in a dose-dependent manner, and co-exposure to EE2 and 20, 200 μg/L MPs significantly increased the ratios of E2/testosterone (T). Moreover, EE2 plus MPs exposure elevated the transcription levels of estrogen biomarker genes vitellogenin and choriogenin, and estrogen receptor (ERα and ERβ). Morphological analysis also showed that co-exposure to EE2 and MPs induced more severe damage to the testes and livers, indicating that MPs increased the toxicity of EE2. The actual EE2 concentrations in the solution increased with the exposure concentrations of MPs, suggesting that MPs changed the fate and behavior of EE2 in the seawater. These findings demonstrate that MPs could increase the estrogenic effects of EE2 on marine fish, suggesting that the combined health risk of MPs and endocrine disrupting chemicals on marine organisms should be paid great attention.
Collapse
Affiliation(s)
- Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|