1
|
Tian L, Zhao S, Zhong G, Li J, Hu J, Zhang G. Legacy and currently-used pesticides in sedimentary archives: Anthropogenic footprint in the pearl river estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179300. [PMID: 40209586 DOI: 10.1016/j.scitotenv.2025.179300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/12/2025]
Abstract
Pesticides are fundamental to modern agriculture but pose significant environmental risks due to their persistence, bioaccumulation potential, and toxicity. This study systematically investigates the pollution characteristics and historical trends of 28 legacy organochlorine pesticides (OCPs) and 17 currently-used pesticides (CUPs) in a sediment core from the Pearl River Estuary (PRE), assessing their potential as Anthropocene markers. The concentrations of Σ28OCPs ranged from 0.788 to 9.12 ng/g, dominated by dichlorodiphenyltrichloroethanes (DDTs, 49 ± 21 %) and chlordane (9 ± 6 %), while the Σ17CUP concentrations were an order of magnitude higher, ranging from 4.85 to 98.4 ng/g, with pyrethroids contributing 50-99 %. This shift in pesticide composition reflects the historical transition from OCPs to CUPs in China's pesticide usage. Temporal trends (1919-2019) showed that the concentrations of DDTs, chlordane, pyrethroids, and dicofol closely mirrored their usage history in China, demonstrating that sediment cores effectively record pesticide application history. Redundancy analysis identified total organic carbon, temperature, and precipitation as key environmental factors influencing the concentrations of DDTs, chlordane, pyrethroids, and dicofol. Correlation analysis further demonstrated that the concentrations of DDTs and phenothrin were linked to population, GDP, and agricultural activities, whereas dicofol, parathion-methyl, and bromophos-ethyl were primarily driven by agricultural activities. Moreover, DDT exhibited temporally abrupt trends, broad geographic signals, and permanent environmental records, suggesting its potential as a robust Anthropocene marker. This study provides critical insights into pesticide pollution dynamics and highlights the value of legacy and emerging pollutants in tracking human impacts on Earth's environmental systems.
Collapse
Affiliation(s)
- Lele Tian
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Zhao
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
| | - Guangcai Zhong
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Jianfang Hu
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
| | - Gan Zhang
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
2
|
Zhang L, Yang X, Zhang L, Lu L, Ren X, Zhu Z, Yang T, Zhang Z, Xiao X, Xu X, Huang L. Polychlorinated biphenyls (PCBs) and organochloride pesticides (OCPs) in sediment from the Beibu Gulf, China: Occurrence, spatial-temporal distribution, source, historical variation and ecological risks. MARINE POLLUTION BULLETIN 2025; 214:117759. [PMID: 40043660 DOI: 10.1016/j.marpolbul.2025.117759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
This study comprehensively analyzed 11 polychlorinated biphenyls (PCBs) and 16 organochlorine pesticides (OCPs) in 87 surface sediment samples collected across two seasons and in a sediment core from the Beibu Gulf, China. Overall, only a limited number and low concentrations of PCBs and OCPs were detected. In surface sediments, ΣPCBs concentrations were higher in summer (mean: 0.27 ± 0.37 ng/g dw) compared to winter (mean: 0.07 ± 0.06 ng/g dw), while ΣOCPs showed no significant seasonal variation (summer, mean: 0.19 ± 0.19 ng/g dw; winter, mean: 0.17 ± 0.07 ng/g dw). 4,4'-trichlorobiphenyl (PCB 28), 2,3,5,6-Tetrachlorobiphenyl (PCB 65) and p,p'-Dichlorodiphenyldichloroethylene (p,p'-DDE) were the most predominant contaminants, with average concentrations accounting for >90 % of the ΣPCBs and ΣOCPs, respectively. Spatial distribution revealed higher ΣPCBs concentrations in the southern Beibu Gulf compared to other areas. Industrial productions, shipping activities, as well as ocean current transport appear to be key sources of PCBs in studied region, while the aerobic degradation of residual DDT likely explains the widespread presence of DDE. In sediment core, both ΣPCBs and ΣOCPs exhibited parabolic variation trends along the sediment core depth, reflecting historical use in the Beibu Gulf, with recent declines in new inputs. Risk assessments indicated that PCBs and OCPs in Beibu Gulf sediments pose minimal ecological risks. These findings offer valuable scientific insights to support future research on typical organic pollutants in the Beibu Gulf.
Collapse
Affiliation(s)
- Li Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, PR China.
| | - Xi Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, PR China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Luqi Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Lu Lu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, PR China
| | - Xing Ren
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, PR China
| | - Zuhao Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, PR China
| | - Tinglong Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, PR China
| | - Zhen Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, PR China
| | - Xi Xiao
- Ocean Colleage, Zhejiang University, Zhoushan 316021, PR China
| | - Xingyong Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, PR China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| |
Collapse
|
3
|
Yakovleva E, Gabov D, Shamrikova E, Korolev M, Panukov A, Zhangurov E. Patterns of PAH distribution in karst sinkhole soils (Polar Urals). ENVIRONMENTAL RESEARCH 2025; 277:121555. [PMID: 40194677 DOI: 10.1016/j.envres.2025.121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
This work was the first comprehensive study of polycyclic aromatic hydrocarbons (PAHs) accumulation in soils of karst sinkholes and in background soils of the Polar Urals. Principal component analysis and cluster analysis were used to assess the distribution patterns of PAHs. PAH concentrations were measured in 53 soil samples collected from plant communities of two habitat types: dryad-green moss-lichen tundra and herb-grass meadow. We found karst processes influenced contents of PAHs, especially in the deepest sinkholes where the increased PAH contents were mainly due to surface erosion. The shifted peaks of PAH accumulation along the soil profile were found at the slopes of sinkholes. This was possibly due to more active PAH migration and stratification of soil horizons. We also identified the relationship between accumulation of PAHs and species composition of plant communities. PCA analysis showed relationships between soil PAHs, organic carbon and organic nitrogen that were explained mainly by the formation of PAHs from high molecular weight organic substances, humic acids and lignin. Paleocoals also affected the PAH contents in soils. Calculated diagnostic ratios of PAHs indicated their pedogenic origin.
Collapse
Affiliation(s)
- Evgenia Yakovleva
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation
| | - Dmitry Gabov
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation
| | - Elena Shamrikova
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation.
| | - Mikhail Korolev
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation
| | - Andrew Panukov
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation
| | - Egor Zhangurov
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation
| |
Collapse
|
4
|
Zhang J, Dong L, Huang H, Hua P. Elucidating and forecasting the organochlorine pesticides in suspended particulate matter by a two-stage decomposition based interpretable deep learning approach. WATER RESEARCH 2024; 266:122315. [PMID: 39217646 DOI: 10.1016/j.watres.2024.122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Accurately predicting the concentration of organochlorine pesticides (OCPs) presents a challenge due to their complex sources and environmental behaviors. In this study, we introduced a novel and advanced model that combined the power of three distinct techniques: Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Variational Mode Decomposition (VMD), and a deep learning network of Long Short-Term Memory (LSTM). The objective is to characterize the variation in OCPs concentrations with high precision. Results show that the hybrid two-stage decomposition coupled models achieved an average symmetric mean absolute percentage error (SMAPE) of 23.24 % in the empirical analysis of typical surface water. It exhibited higher predictive power than the given individual benchmark models, which yielded an average SMAPE of 40.88 %, and single decomposition coupled models with an average SMAPE of 29.80 %. The proposed CEEMDAN-VMD-LSTM model, with an average SMAPE of 13.55 %, consistently outperformed the other models, yielding an average SMAPE of 33.53 %. A comparative analysis with shallow neural network methods demonstrated the advantages of the LSTM algorithm when coupled with secondary decomposition techniques for processing time series datasets. Furthermore, the interpretable analysis derived by the SHAP approach revealed that precipitation followed by the total phosphorus had strong effects on the predicted concentration of OCPs in the given water. The data presented herein shows the effectiveness of decomposition technique-based deep learning algorithms in capturing the dynamic characteristics of pollutants in surface water.
Collapse
Affiliation(s)
- Jin Zhang
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Hohai University, 210098, Nanjing, China
| | - Liang Dong
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Hai Huang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006 Guangzhou, China; School of Environment, South China Normal University, University Town, 510006 Guangzhou, China
| | - Pei Hua
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006 Guangzhou, China; School of Environment, South China Normal University, University Town, 510006 Guangzhou, China.
| |
Collapse
|
5
|
Li X, Li T, Wang F, Chen X, Qin Y, Chu Y, Yang M, Zhang ZF, Ma J. Distribution and sources of polycyclic aromatic hydrocarbons in cascade reservoir sediments: influence of anthropogenic activities and reservoir hydrology. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:487. [PMID: 39508905 DOI: 10.1007/s10653-024-02256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
The construction of dams has caused disruptions to river connectivity, leading to alterations in the deposition of hydrophobic organic contaminants in reservoir sediments. Further investigation is warranted to explore the impact of cascade reservoirs with differing hydrological characteristics on polycyclic aromatic hydrocarbons (PAHs) distribution in sediment. This study examines the presence of 30 PAHs in the sediments collected from six cascade reservoirs situated in the Wujiang River basin during January and July 2017. The results showed that Σ30 PAHs ranged from 455-3000 ng/g dw (mean 1030 ng/g dw). Anthropogenic activities and reservoir hydrology determined the distribution trend of PAHs in sediments, with an overall increase from upstream to midstream and then a decrease downstream. The PAH levels were highly linked to the secondary industry (P < 0.05). This was further supported by the relationship between the PAH emissions from coal combustion and traffic sources analyzed by the positive matrix factorization model and economic parameters in the wet season (P < 0.01). At the same time, reservoir age (RA) showed a positive correlation with PAH concentrations (P < 0.05), while hydraulic retention time (HRT) exhibited a negative correlation with PAH levels (P = 0.03). The relationship between total organic carbon (TOC) and PAHs in stream sediments worldwide was nonlinear (P < 0.01), with PAH concentrations initially rising and then falling as TOC levels increased. Concerns regarding carcinogenic risk were raised due to contributions from coal and vehicular sources, with the risk increasing with RA.
Collapse
Affiliation(s)
- Xiaoying Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yong Qin
- College of Food Science, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Yongsheng Chu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Harbin Institute of Technology, Polar Academy, Harbin, 150090, China.
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
6
|
Dai S, Zhou Q, Yang Y, Zhang Y, Zhang S, Yao Y. Increasing contamination of polycyclic aromatic hydrocarbons in Chinese soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122268. [PMID: 39178791 DOI: 10.1016/j.jenvman.2024.122268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
China is facing a serious threat PAHs contaminated soil. To better understand the current state of soil PAH pollution in China and contribute to the development of feasible prevention and control measures and policies in the future. This study examines the spatiotemporal distributions of soil Polycyclic Aromatic Hydrocarbons (PAHs) pollution in China since 2000, and investigates the key factors influencing changes in levels of soil PAHs. The results of the survey on soil PAHs concentration levels in 716 areas were analyzed by visualization of ArcGIS pro data, correlation analysis and linear regression analysis, it was found that the increase in soil PAH pollution in China is concerning. The analysis indicates significant regional disparities, with pollution levels in the north being higher than in the south. Over the 20-year period, the median level of PAHs in soil increased by 476.8 μg/kg. Construction land areas that heavily rely on fossil fuels and industrial activities exhibit significantly higher concentrations of polycyclic aromatic hydrocarbons (PAHs) compared to other land use types. The study identifies key socio-economic factors linked to rising PAH levels, including energy consumption (notably coal and oil), industrial and domestic waste production. Coal consumption is highlighted as the leading factor in PAH concentration changes in 18 provinces, followed by industrial waste in 6 provinces. Future projections up to 2030 suggest continued influence of these factors on soil PAH levels. The research emphasizes the urgent necessity for comprehensive soil management policies to address the growing PAH pollution, offering insights into its dynamics and contributing factors in China.
Collapse
Affiliation(s)
- Shuo Dai
- College of Environment, Hohai University, Nanjing, 210024, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yadi Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yanni Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songhe Zhang
- College of Environment, Hohai University, Nanjing, 210024, China.
| | - Yijun Yao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Du M, Hu T, Liu W, Shi M, Li P, Mao Y, Liu L, Xing X, Qi S. Chronological evaluation of polycyclic aromatic hydrocarbons in sediments of tangxun lake in central China and impacts of human activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54887-54904. [PMID: 39215914 DOI: 10.1007/s11356-024-34816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
This study sheds light on the contamination of polycyclic aromatic hydrocarbons (PAHs) in Tangxun Lake sediments, an urban lake reflecting environmental changes in Central China. By analyzing sediment cores from both the inner and outer areas of the lake, we determined the historical trends and sources of PAHs over the past century. The results reveal a significant increase in PAHs concentrations, particularly since the 1980s, coinciding with China's rapid urbanization and industrialization. Using diagnostic ratios and Absolute principal component score-multivariate linear regression (APCS-MLR) methods, we identified petroleum combustion, coal combustion, and biomass combustion as the primary sources of PAHs in the lake sediments. The spatial analysis indicates higher PAHs levels in the inner lake, likely due to its closer proximity to industrial activities. Moreover, by comparing PAH trends in Tangxun Lake with those in other urban, suburban, and remote lakes across China, based on data from 49 sedimentary cores, we highlight the impact of regional socio-economic dynamics on PAH deposition. These insights are crucial for developing effective pollution mitigation strategies and promoting sustainable development in rapidly urbanizing regions.
Collapse
Affiliation(s)
- Minkai Du
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Tianpeng Hu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Weijie Liu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Mingming Shi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Peng Li
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
- Hubei Geological Survey, Wuhan, 430034, Hubei, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Wuhan East Lake High-Tech Development Zone, Hubei Province, China
| | - Li Liu
- Hubei Geological Survey, Wuhan, 430034, Hubei, China
| | - Xinli Xing
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Wuhan East Lake High-Tech Development Zone, Hubei Province, China.
| | - Shihua Qi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Wuhan East Lake High-Tech Development Zone, Hubei Province, China
| |
Collapse
|
8
|
Hassaan MA, Ragab S, Elkatory MR, El Nemr A. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) distribution, origins, and risk evaluation in the Egyptian Mediterranean coast sediments. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11093. [PMID: 39129319 DOI: 10.1002/wer.11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/08/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
A study was conducted on 31 surface sediments located in different sectors of the Egyptian Mediterranean coast. The sediments were analyzed for their pollution levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The sediments were collected from various depths in harbors, coastal lakes, bays, and lagoons, covering the southeastern Mediterranean of the Nile Delta region. The study aimed at determining the distribution, origin, and potential ecological impact of OCP and PCB pollutants. The researchers used the SRM method of GC-MS/MS to measure the concentration of 18 PCBs and 16 OCPs residues. The study found that the total concentration of OCPs in the samples ranged from 3.091 to 20.512 ng/g, with a mean of 8.749 ± 3.677 ng/g. The total concentration of PCB residues ranged from 2.926 to 20.77 ng/g, with a mean of 5.68 ± 3.282 ng/g. The concentration of DDTs exceeded the effect range low (ERL) (1.00) and threshold effect level (TEL) (1.19) in several stations, but it was still below the effect range median (ERM) (7.00) and the probable effect level (PEL) (4.77). This indicates a low ecological risk. The principal component analysis (PCA) was also conducted to determine the sources of all pollutants in the sediment. The PCA showed significant correlations between the concentrations of Gama-HCH and Beta-HCH (0.741), suggesting similar sources. PRACTITIONER POINTS: OCPs and PCBs residues were analyzed in the sediment of the southeastern Mediterranean. The concentration, existence, and causes of OCPs and PCBs were investigated. OCPs and PCBs ecological risk and ecotoxicological calculation were investigated in detail. Cluster analysis, PCA, and correlation coefficient were also investigated.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
9
|
Guo R, Wu J, Zhang H, Li Q. History of organic pollution in montane lake Issyk-Kul, Kyrgyzstan, Central Asia, inferred from a sediment core. ENVIRONMENTAL RESEARCH 2024; 250:118505. [PMID: 38387497 DOI: 10.1016/j.envres.2024.118505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
In arid regions, montane lakes are valuable water sources and play important ecological roles. However, recent human-induced inputs of organic pollutants are threatening lake ecology in such regions and becoming a matter of great concern. To investigate pollutant histories and sources, we measured polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in a dated sediment core that spans the last ∼350 years, from montane Lake Issyk-Kul (Kyrgyzstan, Central Asia). Results showed that organic pollutants were delivered to Lake Issyk-Kul in four stages and that their concentrations increased from Stage I (∼1670-1800 CE) to Stage IV (∼2000-2010 CE). Furthermore, we tracked the sources of sedimented PAHs using their ratios combined with n-alkanes data. Ratios of PAHs Ant/(Ant + Phe), Flt/(Flt + Pyr) and Bap/BghiP indicated that inputs during Stage II (∼1800-1970 CE) and Stage III (∼1970-2000 CE) came mainly from high-temperature combustion of coal and vehicle emissions. PAHs in Stage I and Stage IV, however, were mainly derived from low-temperature combustion and petrogenic sources. Diagnostic PAH ratios, combined with the natural n-alkane ratio (NAR<0) and unresolved complex mixtures (UCM), showed that the sources of PAHs in Stage I were mainly from erosion of bedrock and partly influenced by forest wildfires, different from the source during Stage IV, which was mainly from refined petroleum caused by accidental spills. Our assessment of the contamination history of the lake indicates that toxicity risk to the waterbody from sediment PAHs is low, but recent discharges arising from traffic deserve attention.
Collapse
Affiliation(s)
- Ru Guo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinglu Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - HongLiang Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianyu Li
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Anhui Province, School of Geography and Tourism, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
10
|
Wei Z, Wei T, Chen Y, Zhou R, Zhang L, Zhong S. Seasonal dynamics and typology of microplastic pollution in Huixian karst wetland groundwater: Implications for ecosystem health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120882. [PMID: 38663080 DOI: 10.1016/j.jenvman.2024.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
This study offers an insightful and detailed examination of microplastic pollution in the Huixian karst wetland's groundwater, providing novel insights into the complex interplay of microplastic characteristics and their seasonal dynamics. We meticulously quantified microplastic concentrations, observing significant seasonal variation with values ranging from 4.9 to 13.4 n·L-1 in the wet season and 0.53-49.4 n·L-1 in the dry season. Our analysis pinpoints human activities and atmospheric deposition as key contributors to this contamination. A critical finding of our research is the pronounced disparity in microplastic levels between open wells and covered artesian wells, highlighting the vulnerability of open wells to higher pollution levels. Through correlation analysis, we unearthed the crucial influence of the karst region's unique hydrogeological characteristics on microplastic migration, distinctively different from non-karst areas. The karst terrain, characterized by its caves and subterranean rivers, facilitates the downward movement of microplastics from surface to groundwater, exacerbating pollution levels. Our investigation identifies agricultural runoff and domestic wastewater as primary pollution sources. These findings not only underscore the urgent need for environmental stewardship in karst regions but also provide a crucial foundation for formulating effective strategies to mitigate microplastic pollution in karst groundwater. The implications of this study extend beyond the Huixian karst wetland, offering a template for addressing microplastic pollution in similar ecosystems globally.
Collapse
Affiliation(s)
- Zengxian Wei
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Tao Wei
- School of Automobile Engineering, Guilin University of Aerospace Technology, Guilin, 541004, China
| | - Yan Chen
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Ruyue Zhou
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Lishan Zhang
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Shan Zhong
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
11
|
Li D, Zhu Z, Cao X, Yang T, An S. Ecological risk of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the sediment of a protected karst plateau lake (Caohai) wetland in China. MARINE POLLUTION BULLETIN 2024; 201:116199. [PMID: 38422826 DOI: 10.1016/j.marpolbul.2024.116199] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Understanding PAH and OCP distributions and sources in lakes is necessary for developing pollutant control policies. Here, we assessed the occurrence, risk, and sources of PAHs and OCPs in the sediment of Caohai Lake. The PAHs were predominantly high-molecular-weight compounds (mean 57.5 %), and the diagnostic ratios revealed that coal, biomass burning, and traffic were the sources of PAHs. HCHs (6.53 ± 7.22 ng g-1) and DDTs (10.86 ± 12.16 ng g-1) were the dominant OCPs and were primarily sourced from fresh exogenous inputs. RDA showed that sediment properties explained 74.12 % and 65.44 % of the variation in PAH and OCP concentrations, respectively. Incremental lifetime cancer risk (ILCR) assessment indicated that hazardous PAHs in Caohai Lake sediment posed moderate risks to children and adults (ILCR>1.0 × 10-4), while the risk from OCPs was low; however, the recent influx of HCHs and DDTs requires additional attention.
Collapse
Affiliation(s)
- Dianpeng Li
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China
| | - Zhengjie Zhu
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China
| | - Xuecheng Cao
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China
| | - Tangwu Yang
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China
| | - Shuqing An
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China.
| |
Collapse
|
12
|
Lv N, Wang B, Wang H, Xiao T, Dong B, Xu Z. The occurrence characteristics, removal efficiency, and risk assessment of polycyclic aromatic hydrocarbons in sewage sludges from across China. CHEMOSPHERE 2024; 351:141033. [PMID: 38160951 DOI: 10.1016/j.chemosphere.2023.141033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Sewage sludge is considered to be an important sink for polycyclic aromatic hydrocarbons (PAHs) in wastewater treatment plants and the potential risks from sludge contaminated with PAHs during land application has attracted attention. To identify the priority PAHs for control and enhance their removal from sludge, the occurrence characteristics, removal efficiency, and risk assessment of PAHs in sewage sludges from across China were analyzed. Data collection was from 2001 to 2023. Results showed that 16 PAHs were widely detected in Chinese sewage sludge with total amounts (∑16PAHs) between 0.06 and 34.93 mg kg dw-1. Fossil fuel, coal, and biomass combustion are main anthropogenic sources of PAHs in China. In general, phenanthrene (PHE), anthracene (ANT), fluorescein (FL), chrysene (CHR), pyrene (PYR), and benzo[b]fluoranthene (BbF) are regarded as the main components and PAHs with 3-5 rings dominate (84.01%-91.53%) sewage sludge in China. Although aerobic composting and anaerobic treatment significantly improve ∑16PAHs removal, sludge stabilization treatment only reduced the risk by a small amount, especially for high-molecular-weight (HMW) PAHs. The benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), and dibenzo[a,h]anthracene (DahA) are proposed as the priority control contaminants for sewage sludge in China because they have consistently high-risk quotient (RQ) values of 2.42-7.47, 1.28-3.16, 1.06-1.83 before and after sludge stabilization, respectively. More attention should be paid to BaA, BbF, benzo[k]fluoranthene (BkF), BaP, DahA, and indeno[1,2,3-cd]pyrene (IcdP) in Beijing; ANT, BaA, and BaP in Shanghai; and BaA and BaP in Guanghzou. Although the toxic equivalent quotient (TEQ) for PAHs met the limit concentration requirements of the national standard, the potential health risks due to long-term exposure to HMW PAHs cannot be ignored because the incremental lifetime cancer risk (ILCR) was consistently in the risk threshold range (>1 × 10-6). Some suggestions on enhanced treatment approaches and land use standards are proposed to further alleviate the risk from HMW PAHs.
Collapse
Affiliation(s)
- Nan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bingqing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
13
|
Xing X, Liu W, Li P, Su Y, Li X, Shi M, Hu T, Zhang Y, Liu L, Zhang J, Qi S. Insight into the effect mechanism of sedimentary record of polycyclic aromatic hydrocarbon: Isotopic evidence for lake organic matter deposition and regional development model. ENVIRONMENTAL RESEARCH 2023; 239:117380. [PMID: 37832771 DOI: 10.1016/j.envres.2023.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Deciphering the temporal patterns of polycyclic aromatic hydrocarbons (PAHs) in sediment cores, and the effect mechanism of sedimentary organic matter (OM) and regional development model on PAHs are crucial for pollution control and environmental management. Herein, sediment core was collected from Chenhu international wetland in Wuhan, central China. Meanwhile, historical trend and source of PAHs and sedimentary OM were presented, respectively. Result demonstrated that the most significant growth of PAHs (increased by 158.8%) was attributed to the significant enhancement of traffic emission (5.57 times), coal combustion (4.59 times), and biomass burning (8.09 times). Similarly, the percentage of phytoplankton (stage Ⅲ: 37.9%; stage Ⅳ: 31.2%) and terrestrial C3 plants (stage Ⅲ: 24.6%; stage Ⅳ: 29.2%) to sedimentary OM hold the dominant position after the stage Ⅱ. The obvious shifts of historical trend and sources in PAHs were highly related to economic development models (r = 0.72, p < 0.001) and sedimentary OM (r = 0.82, p < 0.001). It demonstrated that eutrophication of lake accelerated the burial of PAHs. Redundancy analysis results suggested that TOC was dominating driver of sedimentary PAHs (16.56%) and phytoplankton occupied 9.58%. To further confirm the significant role of economic development models, three different historical trends of PAHs in different regions of China were presented. The result of this study provides the new insight into the geochemistry mechanism of lake sedimentary OM and PAHs. Meanwhile, the relationship of regional development model and sedimentary PAHs was highlighted in this study. Significantly, the main environmental implications of this study are as follows: (1) lake eutrophication of phytoplankton OM accelerated the burial of PAHs in lake sediment; (2) economic development models and energy structure significantly influence the sedimentary PAHs. This study highlights the coupling relationship between OM burial and PAHs sedimentation, and the importance of accelerating the transformation of economic energy structure.
Collapse
Affiliation(s)
- Xinli Xing
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| | - Weijie Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Peng Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Hubei Geological Bureau, Wuhan, 430034, China
| | - Yewang Su
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xingyu Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Mingming Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Tianpeng Hu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Ya Zhang
- Hubei Geological Bureau, Wuhan, 430034, China
| | - Li Liu
- Hubei Geological Bureau, Wuhan, 430034, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Shihua Qi
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
14
|
Zhang J, Sun W, Shi C, Li W, Liu A, Guo J, Zheng H, Zhang J, Qi S, Qu C. Investigation of organochlorine pesticides in the Wang Lake Wetland, China: Implications for environmental processes and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165450. [PMID: 37451441 DOI: 10.1016/j.scitotenv.2023.165450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Wang Lake Wetland is an important habitat for many fish and migratory birds. To explore the effect of periodic hydrological changes on the transfer and ecological risk of OCPs in the multimedia system of the wetland, eight sampling sites were selected for collecting soil (SS), sediment (SD) and water, to acquire dissolved phase (DP) and suspended particulate matter (SPM) samples during low- and high-flow periods. The results indicated that OCPs are pervasive in the various media of Wang Lake Wetland, and there was a significant temporal variability in concentration of ∑23OCPs in the SPM samples. Several OCPs exist certain ecological risks to aquatic organisms, but higher level of OCPs do not always equal to higher ecological risk. The residues of OCPs are largely attributed to their historical use, but recent inputs of some of them are still non-ignorable. The relatively higher values of organic carbon normalized partition coefficient (KOC) for SPM-W (KOC(SPM-W)) were obtained, which reflected the more frequent exchange of OCPs in the SPM samples. The sediment of the Wang Lake Wetland is likely to be a sink for several OCPs with high n-octanol/water partition coefficient (KOW) (e.g., DDTs and its metabolites), and high-temperature and rainfall-driven changes may promote the migration of OCPs with low KOW to the DP.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wen Sun
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Changhe Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wenping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Ao Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiahua Guo
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Hesong Zheng
- Huangshi City Network Lake Wetland Nature Reserve Administration, Huangshi 435200, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
15
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
16
|
Hassaan MA, Elkatory MR, Ragab S, El Nemr A. Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in water-sediment system of southern Mediterranean: Concentration, source and ecological risk assessment. MARINE POLLUTION BULLETIN 2023; 196:115692. [PMID: 37871457 DOI: 10.1016/j.marpolbul.2023.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were studied in the Nile Delta area of Egypt's southern Mediterranean for their environmental impacts, probable sources, and ecological risk assessment. Using the Gas Chromatography Triple Quadrupole technique, the residues of 16 OCPs and 18 PCBs were determined. The total OCPs content in the seawater and sediment samples ranged from 0.108 to 10.97 μg/L and 0.301 to 5.268 ng/g, respectively, while the PCBs residues had values between 0.808 and 1069.75 μg/L in seawater and between not detected and 575.50 ng/g in sediment samples. The findings of the risk evaluation showed that, except for endosulfan-I, OCPs caused little harm in seawater. However, PCB180, PCB153, PCB156, PCB126 and PCB138 posed a comparatively significant risk. The concentration of DDTs was higher than the effect range low and threshold effect level but remained below the effect range median and probable effect level, posing a minimal ecological concern.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Marwa R Elkatory
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
17
|
Xia Y, Zhang Y, Ji Q, Cheng X, Wang X, Sabel CE, He H. Sediment core records and impact factors of polycyclic aromatic hydrocarbons in Chinese lakes. ENVIRONMENTAL RESEARCH 2023; 235:116690. [PMID: 37474088 DOI: 10.1016/j.envres.2023.116690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Lake sediment is a natural sink for polycyclic aromatic hydrocarbons (PAHs). PAH sedimentation characteristics and their impact factors of Chinese lakes have mainly been qualitative assessed. However, quantitative impacts of PAH sedimentation from different factors have not been well analyzed. To fill this gap, we screened PAH sedimentation records from the literature, for 51 lakes in China and other regions of the world, to identify historical concentration variation and the impact factors of PAHs in different regions, in lake sediment. The results show that PAH concentrations in the sediment core in the selected Chinese lakes (478 ± 812 ng/g dry weight (dw)) were significantly lower than those in North America (5518 ± 6572 ng/g dw) and Europe (3817 ± 4033 ng/g dw). From 1900 to 2015, most of the lakes in China showed an increasing trend of PAH sedimentation concentrations, with the lakes in Southeastern China showed a decreasing trend of PAH concentration in the period of 2001-2015, which was later than the peak times shown in Western countries (1941-1970). The 2-3-ring PAHs were the main components in the sediment core of Chinese lakes, but the proportion to the total PAHs decreased from 72% in 1900-1940 to 55% in 2001-2015. Generalized additive modeling (GAM) was adopted to simulate the associations between PAH sedimentation records and the impact factors. There are large regional variations of economic and industrial development in China. The impact factors of PAH accumulation in the lake sediments differ in different regions. However, population and the consumption of coal, pesticides, and fertilizer were identified to be the most important impact factors influencing PAH sedimentation. The Chinese government needs to strengthen control measures on pollutant discharge to reduce the anthropogenic impact of PAH sedimentation in lakes.
Collapse
Affiliation(s)
- Yubao Xia
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China
| | - Yanxia Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China; Aarhus Institute of Advanced Studies, Aarhus University, 8000, Aarhus, Denmark; BERTHA - Big Data Centre for Environment and Health, Department of Public Health, Aarhus University, 8000, Aarhus, Denmark.
| | - Qingsong Ji
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China
| | - Xinkai Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Clive E Sabel
- BERTHA - Big Data Centre for Environment and Health, Department of Public Health, Aarhus University, 8000, Aarhus, Denmark; Department of Public Health, Aarhus University, 8000, Aarhus, Denmark
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian, 354300, PR China.
| |
Collapse
|
18
|
Ma L, Li Y, Zhang X, Zhang Y, Niu Z. Pollution characteristics, distribution, and source analysis of carbazole and polyhalogenated carbazoles in coastal areas of Bohai Bay, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122103. [PMID: 37356794 DOI: 10.1016/j.envpol.2023.122103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are a class of emerging environmental contaminants formed by the substitution of hydrogen on carbazole (CZ) benzene rings with halogens (Cl, Br, I) with potential dioxin-like toxicity, and they have been frequently detected in various environmental media and organisms recently. Nevertheless, co-research of CZ/PHCZs with PAHs is very limited. In addition, I-PHCZs, which are believed to be much more toxic than CZ, Cl-PHCZs and Br-PHCZs, have a few data in sediments previously. The concentration and distribution of CZ/PHCZs and PAHs were analyzed in 18 surface sediments of Bohai Bay, China. There is a significant correlation (R = 0.64, P<0.05) between PHCZs and PAHs, and principal component analysis (PCA) also indicating that they may have a certain similarity in origin. Additionally, total CZ and PHCZs was up to 230.57 ng/g dw in the studied samples, which was approximately 1-2 orders of magnitude lower than PAHs and other common persistent organic pollutants (POPs). The compositions of the CZ/PHCZs in our study were dominated by CZ (2.74-18.28, median 2.92 ng/g dw), 3,6-dichlorocarbazole (n.d-6.78, median 0.97 ng/g dw) and 3,6-iodocarbazole (n.d-12.68, median 1.65 ng/g dw). Results of this study discovered the varying origins of CZ and PHCZs and/or a complexity of anthropogenic influences and natural sources processes, and revealed a wide distribution of CZ/PHCZs across the studied. Moreover, more attention should be paid by comparing CZ/PHCZs with other widely distributed POPs.
Collapse
Affiliation(s)
- Luyao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuna Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; The International Joint Institute of Tianjin University, Fuzhou, 350207, China
| |
Collapse
|
19
|
Guo J, Chen W, Wu M, Qu C, Sun H, Guo J. Distribution, Sources, and Risk Assessment of Organochlorine Pesticides in Water from Beiluo River, Loess Plateau, China. TOXICS 2023; 11:496. [PMID: 37368595 DOI: 10.3390/toxics11060496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The Loess Plateau has been a focus of public discussion and environmental concerns over the past three decades. In this study, in order to investigate the effect of OCP pollution in water of the Beiluo River, concentrations of 25 OCPs at 17 locations in the water were examined. The results showed that the concentration of ∑OCPs in the water ranged from 1.76 to 32.57 ng L-1, with an average concentration of 7.23 ng L-1. Compared with other basins in China and abroad, the OCP content in the Beiluo River was at a medium level. Hexachlorocyclohexane (HCH) pollution in the Beiluo River was mainly from the mixed input of lindane and technical HCHs. Dichlorodiphenyltrichloroethane (DDT) pollution was mainly from the mixed input of technical DDTs and dicofol. Most of the OCP pollution came from historical residues. The risk assessment results showed that hexachlorobenzene (HCB) and endosulfan had high ecological risks in the middle and lower reaches of the Beiluo River. Most residual OCPs were not sufficient to pose carcinogenic and non-carcinogenic health risks to humans. The results of this study can provide a reference for OCP prevention and control and watershed environmental management.
Collapse
Affiliation(s)
- Jipu Guo
- State Grid Shaanxi Electric Power Research Institute, Xi'an 710100, China
| | - Wenwu Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710100, China
| | - Menglei Wu
- Key Laboratory of Cultural Heritage Research and Conservation, School of Culture Heritage, Northwest University, Xi'an 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710100, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710100, China
| |
Collapse
|
20
|
Janneh M, Qu C, Zhang Y, Xing X, Nkwazema O, Nyihirani F, Qi S. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in agricultural and dumpsite soils in Sierra Leone. RSC Adv 2023; 13:7102-7116. [PMID: 36875876 PMCID: PMC9977409 DOI: 10.1039/d2ra07955k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
This study investigates the concentration and distribution of polycyclic aromatic hydrocarbons (PAHs) in soils, potential sources, risk assessment, and soil physicochemical properties influencing PAH distribution in developed and remote cities in Sierra Leone. Seventeen topsoil samples (0-20 cm) were collected and analyzed for 16 PAHs. The average concentrations of Σ16PAH in soils in the surveyed areas were 1142 ng g-1 dw, 265 ng g-1 dw, 79.7 ng g-1 dw, 54.3 ng g-1 dw, 54.2 ng g-1 dw, 52.3 ng g-1 dw, and 36.6 ng g-1 dw in Kingtom, Waterloo, Magburaka, Bonganema, Kabala, Sinikoro, and Makeni, respectively. Based on the European soil quality guidelines, Kingtom and Waterloo soils were categorized as heavily and weakly contaminated soil PAHs respectively. The main PAH compounds of this study were 2-ring, 4-ring, and 5-ring PAHs. High molecular weight PAHs (4-6 rings) made up 62.5% of the total PAHs, while low molecular weight PAHs (2-3 rings) was 37.5%. In general, HMWPAHs were predominant in Kingtom, followed by Waterloo. The appointment of PAH sources using different methods revealed mixed sources, but predominantly pyrogenic sources (petroleum, biomass, coal, and fossil fuel contributions). Soil pH has a significant impact on PAH distribution. The toxicity equivalent quantity (TEQBaP) levels in soils pose a potential health risk to residents in developed cities but pose a negligible health risk to residents in remote cities. This study is significant as its findings reveal the status of PAH soil contamination in Sierra Leone. The results have important implications for policymakers and stakeholders to identify high-risk zones and establish proper environmental monitoring programs, pollution control measures, and remediation strategies to prevent future risks.
Collapse
Affiliation(s)
- Mariama Janneh
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan 430074 China +86-138-8602-8263.,School of Environmental Studies, China University of Geosciences Wuhan 430074 China.,Chemistry Department, School of Environmental Sciences, Njala University of Sierra Leone Moyamba District Sierra Leone 787247
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan 430074 China +86-138-8602-8263
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan 430074 China +86-138-8602-8263
| | - Xinli Xing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan 430074 China +86-138-8602-8263.,School of Environmental Studies, China University of Geosciences Wuhan 430074 China
| | - Oscar Nkwazema
- School of Management Science and Engineering, China University of Geosciences Wuhan 430074 China
| | - Fatuma Nyihirani
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan 430074 China +86-138-8602-8263.,School of Environmental Studies, China University of Geosciences Wuhan 430074 China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan 430074 China +86-138-8602-8263.,School of Environmental Studies, China University of Geosciences Wuhan 430074 China
| |
Collapse
|
21
|
Shi M, Zhu J, Hu T, Xu A, Mao Y, Liu L, Zhang Y, She Z, Li P, Qi S, Xing X. Occurrence, distribution and risk assessment of microplastics and polycyclic aromatic hydrocarbons in East lake, Hubei, China. CHEMOSPHERE 2023; 316:137864. [PMID: 36642129 DOI: 10.1016/j.chemosphere.2023.137864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The pollution of microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) in the environment is a global problem, which has attracted extensive attention of many researchers. In present study, MPs and PAHs are investigated to study the impact of human activities and their possible relationship in China's second largest urban lake, East Lake. The abundance of MPs are 3329.19 ± 2059.26 particles/m3 and 2207.56 ± 1194.04 particles/kg in water and sediment, respectively. MPs are predominantly characterized by fibers, polypropylene (PP) and polyethylene (PE), colorlessness in water and sediment. The abundance of MPs in water with frequent human activities is higher, which is reversed in sediments, indicating that disturbance is not conducive to the enrichment of MPs in sediments. The concentration of 16 PAHs are 36.95 ± 13.76 ng/L and 897.08 ± 232.34 ng/g in water and sediment, respectively. PAHs in water are mainly 2-3-ring, while there are 4-ring PAHs in sediments. The good corresponding relationship between MPs and PAHs indicates that human activities have an important impact on the distribution of pollutants compared to the interaction of pollutants. In addition, the significant positive correlation between lakeshore length and water MPs abundance indicates that surface runoff may be an important source of water MPs. The pollution load index shows that MPs in sediment has reached moderate to severe pollution level, while the water is slightly polluted level. The potential ecological risk assessment results show that more than half of the sediment sites are at dangerous to very dangerous ecological risk level.
Collapse
Affiliation(s)
- Mingming Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiaxin Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Tianpeng Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - An Xu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Li Liu
- Hubei Geological Bureau, Wuhan 430034, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Zhenbing She
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Peng Li
- Hubei Geological Bureau, Wuhan 430034, China
| | - Shihua Qi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xinli Xing
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
22
|
Yu H, Hu T, Mao Y, Liao T, Shi M, Liu W, Li M, Yu Y, Zhang Y, Xing X, Qi S. Influence of temperature and precipitation on the fate of polycyclic aromatic hydrocarbons: simulation experiments on peat cores from a typical alpine peatland in Central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37859-37874. [PMID: 36575261 DOI: 10.1007/s11356-022-24559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The corresponding relationships between temperature, precipitation, and polycyclic aromatic hydrocarbon (PAH) concentration in a typical ombrotrophic peatland in Dajiuhu, Shennongjia, were quantitatively characterized by field sampling tests validated with simulation experiments. The PAH concentrations of peat cores in Dajiuhu peatland ranged from 262 to 977 ng·g-1, with a mean value of 536 ± 284 ng·g-1. PAHs were mainly composed of 2-3 ring PAHs, accounting for 31.7% ± 2.00% and 31.7% ± 5.00%, respectively. The concentration of PAHs in peat cores showed a significant decrease with increasing temperature, while the low molecular weight PAHs (LMW-PAHs) were more sensitive to temperature changes compared to the high molecular weight PAHs (HMW-PAHs). Besides, with the increase of quantity and velocity of leaching liquid, PAHs in peat were first transferred in the form of attached large-size particles and then gradually entered the aqueous phase. According to the IPCC projections of global warming, Dajiuhu peatland will release 956 ± 26.3 kg·°C-1 PAHs into gas phase during 2030-2052, and a conservative projection based on local temperature trends showed that 459 ± 12.6 kg·°C-1 PAHs will be released into gas phase by 2047 in Dajiuhu peatland. The projected release fluxes of PAHs in Dajiuhu peatland with precipitation volume and precipitation velocity are 381 ± 201 kg·100 mm-1 and 1052 ± 167 kg·min·mL-1, respectively, which are primarily from peat into particulate and aqueous phase.
Collapse
Affiliation(s)
- Haikuo Yu
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Tianpeng Hu
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Ting Liao
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Mingming Shi
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Weijie Liu
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Miao Li
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yue Yu
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xinli Xing
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Shihua Qi
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
23
|
Bai Y, Yu H, Shi K, Shang N, He Y, Meng L, Huang T, Yang H, Huang C. Polycyclic aromatic hydrocarbons in remote lakes from the Tibetan Plateau: Concentrations, source, ecological risk, and influencing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115689. [PMID: 35816959 DOI: 10.1016/j.jenvman.2022.115689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have received worldwide attention due to their potential teratogenic, persistent, and carcinogenic characteristics. In this study, the PAHs concentrations in two dated sediment cores taken from central Tibetan Plateau (TP) were analyzed to study the deposition history, potential sources, ecological risks, and influencing factors. Total concentration of PAHs (∑PAHs) ranged from 50.0 to 195 ng g-1 and 51.9-133 ng g-1 in sediments of Pung Co (PC) and Dagze Co (DZC), respectively. 2-3-ring PAHs were dominant in the two lake sediments, accounting for an average of 77.5% and 80.1%, respectively. The historical trends of ∑PAHs in the two lakes allowed to distinguish three periods, namely, relative stability before the 1950s, a gradual increase between the 1950s and the 1990s, and then a decline to the present-day. In addition, the trend in the concentration level of each PAH composition was consistent with ∑PAHs before the 1990s, while they exhibited different trends since the 1990s, which may be the result of a combination of anthropogenic activities and climate change in recent years, whereas before the 1990s the PAH profile was mainly influenced by atmospheric deposition. The results of source apportionment examined according to diagnostic ratios and positive matrix factorization were consistent and revealed that PAHs were primarily derived from biomass and coal combustion. Significant correlations between PAHs and organic carbon (OC) indicate that OC might be a key factor influencing the concentration of PAHs in sediments. The ecological risk assessment demonstrated that PAHs in TP sediments occurred at a low risk level. Results of this study could be helpful to develop a deeper insight into the deposition history of PAHs in remote lakes of the TP region and explore the response of these variations to climate change and human activities.
Collapse
Affiliation(s)
- Yixin Bai
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Heyu Yu
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Kunlin Shi
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Nana Shang
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Yao He
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Lize Meng
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Tao Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, PR China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, PR China
| | - Hao Yang
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, PR China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, PR China
| | - Changchun Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, PR China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, PR China.
| |
Collapse
|
24
|
Liu W, Hu T, Mao Y, Shi M, Cheng C, Zhang J, Qi S, Chen W, Xing X. The mechanistic investigation of geochemical fractionation, bioavailability and release kinetic of heavy metals in contaminated soil of a typical copper-smelter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119391. [PMID: 35513199 DOI: 10.1016/j.envpol.2022.119391] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Identifying the bioavailability and release-desorption mechanism of heavy metals (HMs) in soil is critical to understand the release risk of HMs. Simultaneously, the mechanistic investigation of affecting the bioavailability of HMs in soil is necessary, such as the grain-size distribution and soil mineralogy. Herein, the bioavailability of HMs (Cu, Cd, Ni, Pb, and Zn) in different area soils near a typical copper-smelter was evaluated by the sequential extraction technique (BCR), diffusive gradients in thin-films (DGT), and DGT-induced fluxes in sediments (DIFS) model. Results showed that the HMs proportion of the residual fraction in all soils was the highest. The average bioavailability concentration (CDGT) of Cu and Cd in industrial soil was the highest, with 45.12 μg· L-1 and 9.06 μg· L-1. The result of DIFS model revealed that the decreased order of the mean value of desorption rate constant (K-1) was Cd > Zn > Ni > Cu > Pb, 5.91 × 10-5, 4.96 × 10-5, 2.89 × 10-5, 9.64 × 10-6, and 8.69 × 10-6, respectively. According to the spatial distribution of release potential (R-value), the release potential of labile-Cu in agricultural soil was the highest, which was mainly attributed to fertilizer application in farmland. Simultaneously, the reduced hydroxyl was also related to the agricultural activities, resulting in the weakened adsorption capacity of HMs by soil. Redundancy analysis (RDA) results showed that the bioavailability of Cd, Ni, and Zn was mainly driven by soil pH, while the bioavailability of Cu and Pb was primarily driven by dissolved organic carbon (DOC). Meanwhile, carbonate minerals had a positive correlation with the bioavailability of Cd, Ni, and Zn, which could promote the release of HMs in mining soil as chemical weathering progresses. In conclusion, this study provides a structured method which can be used as a standard approach for similar scenarios to determine the geochemical fractionation, bioavailability, and release kinetics of heavy metals in soils.
Collapse
Affiliation(s)
- Weijie Liu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Tianpeng Hu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Mingming Shi
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Cheng Cheng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Wei Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xinli Xing
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| |
Collapse
|
25
|
Wang X, Zhang Z, Zhang R, Huang W, Dou W, You J, Jiao H, Sun A, Chen J, Shi X, Zheng D. Occurrence, source, and ecological risk assessment of organochlorine pesticides and polychlorinated biphenyls in the water-sediment system of Hangzhou Bay and East China Sea. MARINE POLLUTION BULLETIN 2022; 179:113735. [PMID: 35567961 DOI: 10.1016/j.marpolbul.2022.113735] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The pollution characteristics, potential sources, and potential ecological risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the Hangzhou Bay (HZB) and East China Sea (ECS). Total OCPs concentration ranged from 2.62 to 102.07 ng/L and 4.41 to 75.79 μg/kg in the seawater and sediment samples, with PCBs concentration in the range of 0.40-51.75 ng/L and 0.80-45.54 μg/kg, respectively. The OCPs were positively correlated with nutrients, whereas PCBs presented a negative correlation. The newly imported dichlorodiphenyltrichloroethane (DDT) in HZB is mainly the mixing of technical DDT and dicofol sources. The PCB source composition is more likely related to the mixture of Kanechlor 300, 400, Aroclor 1016, 1242, and Aroclor 1248. Risk assessment results indicate that OCPs posed low risk in seawater. The potential risk of DDTs in the sediments is a cause of concern.
Collapse
Affiliation(s)
- Xiaoni Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Wenke Dou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jinjie You
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Haifeng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Dan Zheng
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315042, PR China
| |
Collapse
|