1
|
Del Rio-Salas R, Moreno-Rodríguez V, Loredo-Portales R, Salgado-Souto S, Rader S, Valencia-Moreno M, Romo-Morales D, Aguirre-Noyola JL, Ramos-Pérez D. Do efflorescent salts from worn lead-acid automotive batteries represent potential non-exhaust emissions to urban pollution? A Pb isotope perspective. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137366. [PMID: 39908757 DOI: 10.1016/j.jhazmat.2025.137366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Automotive lead-acid batteries have been used for decades, and despite the development of alternative battery technologies, they are still widely used around the world, especially in developing countries. Several studies on the production, recycling, and environmental impact of the lead-acid battery industry have been carried out; however, the contribution of batteries used in operating vehicles to urban pollution (i.e., non-exhaust emission) remains unexplored. Worn lead-acid batteries trigger the formation of efflorescent salts containing potentially toxic elements that precipitate on battery terminals, which could be dispersed during vehicle transport. This research focused on determining the nature of Pb associated with this type of efflorescent salts to identify the sources that influence Pb in the urban dust of Hermosillo city, northwestern Mexico. Pb isotope systematics was used to determine the anthropogenic end-member contributing to the composition of urban dust. Pb isotope data of efflorescent salts revealed less-radiogenic compositions. The findings of this research highlight that efflorescent salts related to acid-lead batteries may represent an anthropogenic source of contaminants associated with non-exhaust emissions. The contribution of efflorescent salts potentially influences the Pb isotope compositions of urban dust and may help to understand Pb inputs from non-exhaust emissions to urban dust.
Collapse
Affiliation(s)
- Rafael Del Rio-Salas
- Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, Hermosillo, Sonora C.P. 83000, México; Laboratorio Nacional de Geoquímica y Mineralogía-LANGEM, Ciudad de México, México.
| | - Verónica Moreno-Rodríguez
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas s/n, Hermosillo, Sonora C.P. 83000, México
| | - René Loredo-Portales
- Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, Hermosillo, Sonora C.P. 83000, México; Laboratorio Nacional de Geoquímica y Mineralogía-LANGEM, Ciudad de México, México
| | - Sergio Salgado-Souto
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-hacienda de San Juan Bautista s/n, Taxco el Viejo, Guerrero C.P. 40323, México
| | - Shelby Rader
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47408, USA
| | - Martín Valencia-Moreno
- Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, Hermosillo, Sonora C.P. 83000, México
| | - Diana Romo-Morales
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas s/n, Hermosillo, Sonora C.P. 83000, México
| | - José Luis Aguirre-Noyola
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco C.P. 47600, México
| | - Daniel Ramos-Pérez
- Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, Hermosillo, Sonora C.P. 83000, México; Laboratorio Nacional de Geoquímica y Mineralogía-LANGEM, Ciudad de México, México
| |
Collapse
|
2
|
Krasnov H, Sachdev K, Knobel P, Colicino E, Yitshak-Sade M. The association between long-term exposure to PM 2.5 constituents and ischemic stroke in the New York City metropolitan area. CHEMOSPHERE 2025; 378:144390. [PMID: 40203750 DOI: 10.1016/j.chemosphere.2025.144390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/28/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Numerous studies linked fine particulate matter (PM2.5) to ischemic stroke. However, only a few investigated the differential associations with specific PM2.5 components and sources. We utilized electronic health records (EHR) from the Mount Sinai Health System in the New York City metropolitan area during 2011-2019 and assessed the associations of PM2.5 components and sources with ischemic stroke. We used mixed-effect Poisson survival regressions to assess the single-exposure associations with the chemical components. We used multivariable regression to assess the simultaneous associations with source-apportioned PM2.5 exposures estimated using non-negative matrix factorization. Then, we assessed the sensitivity of our results to different specifications of EHR data continuity: (1) using a less strict definition of censorship year, (2) adjusting the model for EHR data continuity index, a validated algorithm measuring EHR-data continuity based on indicators of primary care service utilization. We observed higher risks for ischemic stroke (Risk ratio [95 % confidence intervals] per interquartile range increase) associated with higher exposure to nickel (1.080 [1.045; 1.116]), vanadium (1.070 [1.033; 1.109]), zinc (1.076 [1.031; 1.122]), and nitrate (1.084 [1.039; 1.132]). In the multivariate models we found higher risk for ischemic stroke associated with exposure to oil combustion sourced PM2.5 (1.061 [1.012; 1.113]). The results remained consistent under different model specifications accounting for EHR data continuity. In conclusion, we found an increased risk of ischemic stroke associated with specific PM2.5 components and sources. These findings were robust to different specifications of EHR-data continuity. Our findings can inform policy and interventions aimed at reducing cardiovascular disease burden.
Collapse
Affiliation(s)
- Helena Krasnov
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kshitij Sachdev
- Graduate Program in Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Knobel
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maayan Yitshak-Sade
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Huang W, Liu Y, Bi X, Wang Y, Li H, Qin J, Chen J, Ruan Z, Chen G, Qiu R. Source-specific soil heavy metal risk assessment in arsenic waste mine site of Yunnan: Integrating environmental and biological factors. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136902. [PMID: 39721480 DOI: 10.1016/j.jhazmat.2024.136902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
This study quantified heavy metal (HM) pollution risks in mining site soils to provide targeted solutions for environmental remediation. Focusing on As waste mine sites in Yunnan, we utilised multiple indices and a positive matrix factorisation model to assess and quantify ecological health risks. Our ecological risk assessment distinguished between environmental and biological factors. This study demonstrated that As and Pb are the most impactful contaminants in environmental and biological contexts, respectively. Notably, the quantification of ecological risk sources indicated that agricultural sources were the main environmental influencers, accounting for 58.45 % of the total impact. Consequently, Cu from agricultural sources has become a primary environmental HM target, replacing As. In the quantification of health risk sources, mining and smelting activities predominantly contributed to health risks, contributing 23 % and 39.81 % of the Non-Carcinogenic Risk and 47.98 % and 42.96 % of the Carcinogenic Risk, respectively. The representative pollution source elements As and Cd were consistent with the health risk assessment results. This study refined the ecological risk assessment framework by distinguishing between environmental and biological factors, providing crucial insights into the rehabilitation of mine sites and formulation of effective environmental management strategies.
Collapse
Affiliation(s)
- Weigang Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyang Bi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huashou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Junhao Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
| | - Zhepu Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Wei T, Dong Z, Li F, Kang S, Qin X. Quantifying the distribution and origins of aerosol zinc across the Northern Hemisphere using stable zinc isotopes: A review. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137828. [PMID: 40073573 DOI: 10.1016/j.jhazmat.2025.137828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Quantitatively assessing the origins of aerosol zinc (Zn) is crucial for understanding of the global atmospheric Zn cycle and for formulating targeted policies to mitigate anthropogenic Zn emissions. Zn isotope ratios (denoted as δ⁶⁶Zn) serve as powerful tools for constraining the origins of aerosol Zn. This review comprehensively compiles an δ⁶⁶Zn (relative to Lyon JMC Zn standard) dataset (n = 207) for multi-sized aerosols observed exclusively in the Northern Hemisphere, encompassing diverse atmospheric environments, including urban areas and remote deserts, glacier, and ocean. Reanalysis of the integrated dataset reveals both the spatial heterogeneity of aerosol δ⁶⁶Zn and its partitioning pattern across various size fractions. Spatially, aerosol δ⁶⁶Zn exhibits an upward trend from urban areas to ocean, deserts, and ultimately to glacier environments, accompanied by a shift in isotopic signatures from negative to very positive values. Notably, with the exception of desert aerosols, those from other atmospheric environments exhibit δ⁶⁶Zn that deviate significantly from the Bulk Silicate Earth (BSE) background value. In terms of particle size, δ⁶⁶Zn in size-fractionated aerosols displays an initial decrease followed by an increase as particle size decreases, with the 2.7 µm serving as a transitional boundary. Given the limited research on quantifying the origins of aerosol Zn, this review conducts a quantitative source allocation of aerosol Zn by incorporating a compiled δ⁶⁶Zn dataset into the MixSIAR model. Four primary endmembers are defined, each with respective δ⁶⁶Zn values: natural dust (+0.25 ± 0.15 ‰), metal smelting (-0.68 ± 0.07 ‰), coal combustion (+1.31 ± 0.11 ‰), and non-exhaust traffic emissions (+0.22 ± 0.07 ‰). Model calculations indicate that beyond urban areas-which are primary hotspots for anthropogenic Zn impacts-over half of atmospheric Zn in remote glacier and ocean regions originates from anthropogenic emissions. This underscores the pervasive influence of human activities on the atmospheric Zn cycle, even in geographically remote regions. To deepen understanding of the global Zn transport and cycle, future research should prioritize expanding isotope observations in the Southern Hemisphere.
Collapse
Affiliation(s)
- Ting Wei
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiwen Dong
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Fangzhou Li
- College of Environmental Science and Engineering, Peking University, Beijing, China
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiang Qin
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
5
|
Al-Rubaye RF, Kardel F, Dehbandi R. Ecological and human health risks of potentially toxic elements (PTEs) in street dust of Al-Hillah City, Iraq using Monte Carlo simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178722. [PMID: 39919661 DOI: 10.1016/j.scitotenv.2025.178722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/14/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Street dust is a primary source of metal pollution in urban environments, posing a significant threat to human health through chronic exposure via inhalation, ingestion, and skin contact. This study used deterministic and Monte Carlo simulation to assess the health risks of potential toxic elements (PTEs) in the street dust of Al-Hillah City. The average concentrations of elements in the samples followed the order: Al > Fe > S > K > Sr > Mn > Cr > Ba > Zn > Ni > Pb > Cu > Co > As > Sn > Sb > Cd. In the study area, all the measured elements exceeded UCC values except for Al, Ba, Fe, and K. The results for the enrichment factor (EF), geo accumulation index (Igeo), and contamination factor (CF) revealed that the most sampled locations were polluted with sulfur (S), arsenic (As), and chromium (Cr). The highest values of the pollution load index were not for a solely land use class; they were identified at different sampling stations. According to the potential ecological risk rating, As and Cd pose a medium risk, while Cr, Cu, Ni, Pb, and Zn have low risks. The probabilistic Monte Carlo simulation highlighted the significant health risks from PTEs in street dust, especially for children, with HI values of 2.01, 3.24, and 5.26 at the 5th, 50th, and 95th percentiles, respectively. In comparison, HI values for adults were much lower at 0.29, 0.41, and 0.58, remaining within safe limits. Lifetime Cancer Risk (LTCR) estimates showed that 99.7 % of adults and 97 % of children exposed to levels exceeding the safe threshold 1E-4. Sensitivity analysis revealed that chromium (Cr) and nickel (Ni) were the main PTEs contributing to health risks in children and adults' groups.
Collapse
Affiliation(s)
- Rafeef Fadhil Al-Rubaye
- Department of Environmental Science, Faculty of Marine and Environmental Sciences, University of Mazandaran, P.O. Box: 416, Babolsar, Mazandaran, Iran; General Directorate of Education in Babil Governorate, Iraq
| | - Fatemeh Kardel
- Department of Environmental Science, Faculty of Marine and Environmental Sciences, University of Mazandaran, P.O. Box: 416, Babolsar, Mazandaran, Iran.
| | - Reza Dehbandi
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| |
Collapse
|
6
|
Kasimov NS, Vasil'chuk JY, Tereshina MA, Chalov SR, Erina ON, Kosheleva NE, Shinkareva G, Sokolov DI, Vlasov D, Konoplev AV. Metals and metalloids pollution levels, partitioning, and sources in the environmental compartments of a small urban catchment in Moscow megacity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125552. [PMID: 39701369 DOI: 10.1016/j.envpol.2024.125552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
This study examines the contamination levels and sources of 32 metals and metalloids (MMs) in environmental compartments (roadside soil, road dust, and river suspended sediments) of a small urbanized river catchment located in Moscow megacity. MMs partitioning between particle size fractions (PM1000, PM1-10, and PM1) was analyzed by ICP-MS and ICP-AES methods. The pollution level of particle size fractions with MMs decreases in the following series: road dust > suspended sediments > soils. Absolute principal component analysis with multiple linear regression (PCA/APCS-MLR) shows that in both relatively coarse (PM1-10) and fine (PM1) fractions, traffic emissions are the primary contributors to pollution, whereas natural sources are dominant providers of chemical elements in bulk samples (PM1000). The predominance of fractions with a diameter over 10 μm in all three studied compartments indicates that the mineral matrix of all compartments is formed predominantly by natural material. Across all compartments and their fractions, Sb, Cd, Zn, Mo, W, Sn, Cu, Pb, and Bi are consistently accumulated. PM1 and PM1-10 particles of road dust and suspended sediments also absorb Ni and Cr, suspended sediments retain Mn and As, and soils additionally accumulate As. Anthropogenic influence is more pronounced in PM1 and PM1-10 particles compared to bulk samples due to a large impact of industrial sources, traffic, construction activities, and waste storage. Polluted soils are an additional source of MMs to PM1 and PM1-10 of road dust and PM1-10 of suspended sediments, and road dust acts as a source of MMs to PM1-10 of soils.
Collapse
Affiliation(s)
- Nikolay S Kasimov
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Jessica Yu Vasil'chuk
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Maria A Tereshina
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation.
| | - Sergey R Chalov
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Oxana N Erina
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Natalia E Kosheleva
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Galina Shinkareva
- Department of Geosciences, Middle Tennessee State University, MTSU PO Box 9, Davis Science Building 241, 37132, Murfreesboro, TN, USA
| | - Dmitrii I Sokolov
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Dmitrii Vlasov
- School of Agriculture, Middle Tennessee State University, MTSU PO Box 5, Stark Agribusiness & Agriscience Center, 37132, Murfreesboro, TN, USA; Department of Geography, Geology, and the Environment, Illinois State University, Campus Box 4400, 61790, Normal, IL, USA
| | - Alexey V Konoplev
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation; Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture, 960-1296, Japan
| |
Collapse
|
7
|
Chen L, Xie M, Li G, Lin S, Wang D, Li Z, Wang Y, Wang Z. A spatial source-oriented and probability-based risk-assessment framework for heavy metal and PAH contamination of urban soils in Guangzhou, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136500. [PMID: 39577277 DOI: 10.1016/j.jhazmat.2024.136500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
The identification and quantification of high-risk hotspots for soils contaminated by heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) remains a challenge due to their various sources and heterogeneous sink properties in urban soil systems. In this study of 221 soil samples from Guangzhou, China, a novel framework combining Bivariate local Moran's I (BLMI), positive matrix factorization (PMF), human health risk (HHR) assessment, Monte Carlo simulation (MCS), and a newly developed spatial risk model were proposed to conduct probabilistic source-oriented HHR assessment, high-risk hotspot quantification, and risk formation mechanism elaboration. Study results indicate that traffic emissions are the largest contributor of HMs (47.6 %) and PAHs (40.2 %), but not always the largest contributor of HHR. Agricultural or urban green-space management activities of HM, and mixed source of PAH, are the largest contributors of non-carcinogenic risk (NCR, 48.7 % and 51.1 %, respectively), while mixed source of HM and traffic emissions of PAH are the largest contributors of carcinogenic risk (CR, 53.9 % and 71.2 %, respectively). The probability of risk exceeding safe threshold levels is < 5.0 % for NCR and > 90.0 % for CR. High-risk hotspots were identified in the mid-west and south of the city, making up 15.0 % of the total Guangzhou area. Risk mechanisms were deduced from the spatial heterogeneity and inter-dependence of emission sources and soil sink, based on source-sink theory. Our findings provide a new framework for precisely identifying risk sources and target areas, thereby alleviating HHR associated with co-occurring HMs and PAHs in urban soil systems.
Collapse
Affiliation(s)
- Lian Chen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong, China
| | - Minghe Xie
- College of engineering, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Gaocong Li
- College of Electronic Information Engineering, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Sen Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong, China
| | - Dan Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong, China
| | - Zhiyi Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong, China
| | - Yuan Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong, China
| | - Zhenjiang Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, Guangdong, China.
| |
Collapse
|
8
|
Lahiri D, Ray I, Ray R, Chanakya IVS, Tarique M, Misra S, Rahaman W, Tiwari M, Wang X, Das R. Source apportionment and emission projections of heavy metals from traffic sources in India: Insights from elemental and Pb isotopic compositions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135810. [PMID: 39288519 DOI: 10.1016/j.jhazmat.2024.135810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
The study investigates the sources of metals in urban road dusts using elemental concentration and Pb isotopic ratios. The elemental concentrations are also utilized to determine the present heavy metal emissions as well as projected emissions till 2045. Bayesian mixing model for source apportionment highlights the significant contributions of both exhaust and non-exhaust sources to the metal-enriched urban road dusts, with each contributing approximately 40 %. Emission analysis reveals that India's projected electric vehicle (EV) penetration may not be sufficient to suppress the metal emissions from vehicular exhausts. Further challenge is posed by high metal concentrations in the non-exhaust sources, that dominates the emission of some metals compared to exhaust sources. If the metal concentrations remain unchanged, the emission analysis predicts alarming increases in total emissions from all the exhaust and non-exhaust sources by 174 %, 176 %, 163 % and 184 % for Ni, Cu, Zn and Pb, respectively, from 2022 to 2045. Thus, it is crucial to reduce the metal concentrations in traffic emission sources and also impose better regulatory measures to improve the urban metal pollution scenario.
Collapse
Affiliation(s)
- Divyangana Lahiri
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Iravati Ray
- School of Environmental Studies, Jadavpur University, Kolkata, India.
| | - Rupam Ray
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | | | - Mohd Tarique
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, India
| | - Sambuddha Misra
- Centre for Earth Sciences, Indian Institute of Sciences, Bangalore, India
| | - Waliur Rahaman
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, India
| | - Manish Tiwari
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, India
| | - Xianfeng Wang
- Earth Observatory of Singapore, Nanyang Technological University, Singapore; Asian School of Environment, Nanyang Technological University, Singapore
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata, India; Earth Observatory of Singapore, Nanyang Technological University, Singapore.
| |
Collapse
|
9
|
Jayaneththi YH, Robert D, Giustozzi F. A critical review on leaching of contaminants from asphalt pavements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174967. [PMID: 39097010 DOI: 10.1016/j.scitotenv.2024.174967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
Abstract
Contaminant leaching from asphalt pavements poses a significant environmental concern, potentially damaging soil and groundwater quality. The growing interest in incorporating recycled materials in asphalt pavements has further raised concerns over the potential environmental hazards due to contaminant leaching. Consequently, this paper offers a comprehensive review of the literature over the past three decades structured into six sections: groundwater contamination via leaching, methodologies for evaluating leaching, analysis of contaminants, contaminants and leaching from road materials incorporating recycled waste, other factors affecting leaching of pollutants from asphalt pavements, and mathematical models to predict leaching from asphalt pavements. Despite the importance of addressing leaching issues, there is a lack of standardised leaching tests and guidelines specific to asphalt materials, limited attention to evaluating contaminants beyond heavy metals and PAHs in asphalt leachates, insufficient understanding of optimal instrument parameters for asphalt leachate analysis, and a scarcity of mathematical models to predict future leaching potential.
Collapse
Affiliation(s)
| | - Dilan Robert
- Civil and Infrastructure Engineering, RMIT University, 124 La Trobe St., Melbourne, VIC 3001, Australia
| | - Filippo Giustozzi
- Civil and Infrastructure Engineering, RMIT University, 124 La Trobe St., Melbourne, VIC 3001, Australia.
| |
Collapse
|
10
|
Jeong H, Araújo DF, Ra K. Combined copper isotope and elemental signatures in bivalves and sediments from the Korean coast: Applicability for monitoring anthropogenic contamination. MARINE POLLUTION BULLETIN 2024; 208:116930. [PMID: 39278180 DOI: 10.1016/j.marpolbul.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
This study investigates the applicability of elemental and Cu isotope compositions in sediments and bivalves from the Korean coast to monitor anthropogenic Cu contamination. Sediments with high Cu (>64.4 mg/kg) and/or moderate enrichment levels (EFCu) exhibit homogenous δ65CuAE647 values (-0.12 to +0.16 ‰), suggesting similar anthropogenic Cu fingerprints along the Korean coast. Sediments with Cu concentrations near natural background levels (< 20.6 mg/kg) display large isotopic variability (Δ65Cumax-mim: ~0.8 ‰), encompassing those from sediments under anthropic influences. We hypothesize that Cu isotopic compositions of Korean geology are heterogeneous, therefore, natural end-members of source mixing models should be established locally at small scales. Cu concentrations in Oysters correlate with sediments, and their isotopic compositions are more suitable for monitoring Cu contamination, while mussel's regulatory mechanisms seem to affect source records. The current Cu isotope data will help to detect shifts attributable to anthropic contamination in future biomonitoring.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300 Nantes, France; Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, South Korea.
| | - Daniel F Araújo
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300 Nantes, France
| | - Kongtae Ra
- Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, South Korea; Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
11
|
Tang Y, Han G, Qu R, Liu J, Liu M. Exploration of natural processes and anthropogenic inputs by Zn isotopes in suspended particulate matter: A case study from the Lancang River in Southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123317. [PMID: 38185360 DOI: 10.1016/j.envpol.2024.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
River is an important pathway for the biogeochemical cycle of Zn. This study reports Zn concentration and δ66Zn composition for suspended particulate matter (SPM) from Lancang River basin in Southwest China, and explore the impact of natural processes and human activities on Zn cycle. The SPM samples have a much higher average Zn content (162 mg kg-1) than that of the upper crust (67.0 mg kg-1), but it is close to the value of the Pearl River (187 mg kg-1). The enrichment factor (EF) values of Zn in SPM range from 1.08 to 6.88, with an average of 2.15, which does not show significant pollution characteristics. The δ66Zn values in SPM range from -0.67‰ to +0.63‰, with an average of +0.13‰. The δ66Zn values showed positive correlation with Ca/Mg ratios while showed little correlation with Zn contents in SPM. It indicated that anthropogenic sources have limited influence on SPM, and the Zn isotope composition in SPM is more likely to be inherited from the weathered rocks materials and influenced by natural fractionation processes in river water. This result contributes to understanding of the geochemical cycling process of Zn and its environmental effects in water.
Collapse
Affiliation(s)
- Yang Tang
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550004, China
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Rui Qu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jinke Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Man Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
12
|
Zhou L, Masset T, Breider F. Adsorption of copper by naturally and artificially aged polystyrene microplastics and subsequent release in simulated gastrointestinal fluid. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:411-420. [PMID: 38250811 DOI: 10.1039/d3em00354j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Microplastics, especially aged microplastics can become vectors of metals from environment to organisms with potential negative effects on food chain. However, a few studies focused on the bioavailability of adsorbed metals and most studies related to aged microplastics used artificial method that cannot entirely reflect actual aging processes. In this study, virgin polystyrene was aged by ozone (PS-O3), solar simulator (PS-SS) and lake (PS-lake) to investigate adsorption of Cu by virgin, artificially and naturally aged microplastics and subsequent release in simulated gastrointestinal fluids (SGF). Characterization results show carbonyl was formed in PS-O3 and PS-SS, and the oxidation degree was PS-O3 > PS-SS > PS-lake. However, Cu adsorption capacity followed this order PS-lake (158 μg g-1) > PS-SS (117 μg g-1) > PS-O3 (65 μg g-1) > PS-virgin (0). PS-O3 showed highest Cu adsorption capacity at 0.5 h (71 μg g-1), but it dropped dramatically later (10 μg g-1, 120 h), because PS-O3 could break up and the adsorbed Cu released in solutions subsequently. For PS-lake, precipitation of metallic oxides contributes to the accumulation of Cu. The addition of dissolved organic matter (DOM) could occupy adsorption sites on PS and compete with Cu, but also can attach PS and adsorb Cu due to its rich functional groups. The simultaneous ingestion of microplastics with food suggested that adsorbed Cu is solubilized mostly from aged PS to SGF.
Collapse
Affiliation(s)
- Lu Zhou
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Thibault Masset
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
13
|
Aldekheel M, Tohidi R, Al-Hemoud A, Alkudari F, Verma V, Subramanian PSG, Sioutas C. Identifying urban emission sources and their contribution to the oxidative potential of fine particulate matter (PM 2.5) in Kuwait. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123165. [PMID: 38103716 PMCID: PMC10923010 DOI: 10.1016/j.envpol.2023.123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
In this study, we investigated the seasonal variations, chemical composition, sources, and oxidative potential of ambient PM2.5 (particles with a diameter of less than 2.5 μm) in Kuwait City. The sampling campaign was conducted within the premises of Kuwait Institute for Scientific Research from June 2022 to May 2023, covering different seasons throughout the year. The personal cascade impactor sampler (PCIS) operated at flow rate of 9 L/min was employed to collect weekly PM2.5 samples on PTFE and quarts filters. These collected samples were analyzed for carbonaceous species (i.e., elemental and organic carbon), metals and transition elements, inorganic ions, and DTT (dithiothreitol) redox activity. Furthermore, principal component analysis (PCA) and multi-linear regression (MLR) were used to identify the predominant emission sources and their percentage contribution to the redox activity of PM2.5 in Kuwait. The results of this study highlighted that the annual-averaged ambient PM2.5 mass concentrations in Kuwait (59.9 μg/m3) substantially exceeded the World Health Organization (WHO) guideline of 10 μg/m3. Additionally, the summer season displayed the highest PM2.5 mass concentration (75.2 μg/m3) compared to other seasons, primarily due to frequent dust events exacerbated by high-speed winds. The PCA identified four primary PM2.5 sources: mineral dust, fossil fuel combustion, road traffic, and secondary aerosols. The mineral dust was found to be the predominant source, contributing 36.1% to the PM2.5 mass, followed by fossil fuel combustion and traffic emissions with contributions of 23.7% and 20.3%, respectively. The findings of MLR revealed that road traffic was the most significant contributor to PM2.5 oxidative potential, accounting for 47% of the total DTT activity. In conclusion, this comprehensive investigation provides essential insights into the sources and health implications of PM2.5 in Kuwait, underscoring the critical need for effective air quality management strategies to mitigate the impacts of particulate pollution in the region.
Collapse
Affiliation(s)
- Mohammad Aldekheel
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Department of Civil Engineering, Kuwait University, P.O Box 5969, Safat, 13060, Kuwait
| | - Ramin Tohidi
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ali Al-Hemoud
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait
| | - Fahad Alkudari
- Public Administration of Experts, Ministry of Justice, P.O. Box 6, Safat, 12008, Kuwait
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - P S Ganesh Subramanian
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
14
|
Wang H, Luo Z, Dai A, Liao X, Yan C, Yu R, Zhou S, Xing B. Ascertaining appropriate measuring methods to determine tire wear particle pollution on driving school grounds in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133657. [PMID: 38309163 DOI: 10.1016/j.jhazmat.2024.133657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Tire wear particles (TWPs) are garnering increasing attention due to their potential adverse environmental impacts. However, precisely ascertaining TWPs content is challenging due to the complexity and variability of the tire components used in the environment, indicating that more reliable methods to accurately determine TWPs are necessary. In this study, driving school grounds were used as a case study to ascertain an appropriate and reliable method to determine TWPs levels based on a comprehensive comparison between different analytical results using styrene butadiene rubber (SBR), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and zinc (Zn) as analytical markers. Thermogravimetric analysis-Gas chromatography mass spectrometry (TGA-GC-MS) method reliability using SBR was verified and applied to measure TWPs levels on driving school grounds. By reliably converting SBR content to TWPs content, the average TWPs content on driving school grounds was measured at 190.13 ± 101.89 mg/g. The highest TWPs content was 281.83 ± 171.44 mg/g under the reverse stall parking driving programs, while the slope start and stop driving programs was lower at 208.36 ± 124.11 mg/g. Our findings highlight the importance of accurately determining TWPs content within specific environments while comprehensively exploring associated patterns of change to better understand the environmental risks of TWPs.
Collapse
Affiliation(s)
- Haiming Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhuanxi Luo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Anteng Dai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Shufeng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
15
|
Xia B, Huang Y, Pei X, Liu C. Application of Cu isotopes to identify Cu sources in soils impacted by multiple anthropogenic activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167114. [PMID: 37717751 DOI: 10.1016/j.scitotenv.2023.167114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Copper (Cu) is an important micronutrient for animals and plants, but it is toxic at high concentrations in soil. Soils adjacent to industrial areas would be subjected to severe Cu pollution. Identifying Cu sources in the surface environment is crucial for understanding their pollution level and fate. This study investigated Cu content, isotope composition of topsoils, and two soil profiles with varying levels of Cu contamination and related potential Cu sources in southwest China. The difference in Cu isotope compositions of tailing (1.29 ± 0.08 ‰), smelting fly ash (0.04 ± 0.03 ‰), coal (2.44 ± 0.09 ‰), coal-burning fly ash (0.34 ± 0.03 ‰), and geogenic soil (0.10 ± 0.03 ‰) enabled us to distinguish anthropogenic Cu from geogenic Cu. The plot of δ65Cu and 1/Cu demonstrates that Cu of the polluted soils was from three end-members: the smelting fly ash, the vehicle exhaust, and the background soils. Based on the mass balance model, we calculated that the fly ash from smelting was the major anthropogenic source, contributing approximately 29 % of Cu contamination in soils, and the diesel exhaust was another important source, with a contribution rate of approximately 25 %. Additionally, soil profile results suggest that anthropogenic Cu could transport through soil profiles and influence Cu content and isotope signatures of subsurface soils, at least to a depth of ∼60 cm. Finally, our research indicates that Cu isotopes could be a promising tool for tracing industrial pollution, as significant Cu isotope fractionation would occur during the smelting process. Our research highlights the contribution of smelting and diesel exhaust to Cu contamination in the soils in a representative mining area. These findings serve as a scientific foundation for the development of policy for pollution control in industrial-affected regions.
Collapse
Affiliation(s)
- Bo Xia
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; College of Geosciences, Chengdu University of Technology, Sichuan 610059, China.
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Chao Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| |
Collapse
|
16
|
Xia Y, Liu Y, Liu C, Gao T, Yin R, Qi M, Wu H. Lake Sediment Archive Reveals a Distinct Response to Anthropogenic Pb and Zn Deposition with Historical Periods: Pb-Zn Isotope Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15184-15192. [PMID: 37723101 DOI: 10.1021/acs.est.3c00511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Anthropogenic activities release large quantities of heavy metals into the atmosphere. In China, the input of these heavy metals through local and trans-boundary atmospheric deposition is poorly understood. To assess this issue, herein, we use Pb and Zn isotopes to constrain the sources of Pb and Zn in a 210Pb-dated sediment core collected from the enclosed lake in South China. We observed a progressive shift toward higher 208Pb/206Pb and Pb fluxes (0.79-4.02 μg·cm-2·a-1) from 1850 to 1950 and a consistent decrease in δ66ZnIRMM (as low as -0.097 ± 0.030‰) coupled with an increase in Pb (1.74-3.36 μg·cm-2·a-1) and Zn (8.07-10.44 μg·cm-2·a-1) fluxes after 1980. These distinguished isotopic signals and flux variations reveal the presence of trans-boundary Pb since 1900, with the addition of local industrial Pb and Zn pollution after 1980. Up to 72.3% of Pb deposited at our site can be attributed to long-distance transportation from previously industrialized countries, resulting in a noteworthy legacy of Pb in China since 1900. Despite the phasing out of leaded gasoline, Chinese gasoline still contributes an average of 20.9%. The contribution of China's mining and smelting activities to Pb has increased steadily since 1980 and remained stable at an average of 25.1% since 2000.
Collapse
Affiliation(s)
- Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
| | - Ting Gao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
| | - Meng Qi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongchen Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
| |
Collapse
|
17
|
Liu J, Peng J, Men Z, Fang T, Zhang J, Du Z, Zhang Q, Wang T, Wu L, Mao H. Brake wear-derived particles: Single-particle mass spectral signatures and real-world emissions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100240. [PMID: 36926019 PMCID: PMC10011745 DOI: 10.1016/j.ese.2023.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Brake wear is an important but unregulated vehicle-related source of atmospheric particulate matter (PM). The single-particle spectral fingerprints of brake wear particles (BWPs) provide essential information for understanding their formation mechanism and atmospheric contributions. Herein, we obtained the single-particle mass spectra of BWPs by combining a brake dynamometer with an online single particle aerosol mass spectrometer and quantified real-world BWP emissions through a tunnel observation in Tianjin, China. The pure BWPs mainly include three distinct types of particles, namely, Ba-containing particles, mineral particles, and carbon-containing particles, accounting for 44.2%, 43.4%, and 10.3% of the total BWP number concentration, respectively. The diversified mass spectra indicate complex BWP formation pathways, such as mechanical, phase transition, and chemical processes. Notably, the mass spectra of Ba-containing particles are unique, which allows them to serve as an excellent indicator for estimating ambient BWP concentrations. By evaluating this indicator, we find that approximately 4.0% of the PM in the tunnel could be attributable to brake wear; the real-world fleet-average emission factor of 0.28 mg km-1 veh-1 is consistent with the estimation obtained using the receptor model. The results presented herein can be used to inform assessments of the environmental and health impacts of BWPs to formulate effective emissions control policies.
Collapse
|
18
|
Wang X, Liu E, Yan M, Zheng S, Fan Y, Sun Y, Li Z, Xu J. Contamination and source apportionment of metals in urban road dust (Jinan, China) integrating the enrichment factor, receptor models (FA-NNC and PMF), local Moran's index, Pb isotopes and source-oriented health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163211. [PMID: 37003334 DOI: 10.1016/j.scitotenv.2023.163211] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Contamination and source identifications of metals in urban road dust are critical for remediation and health protection. Receptor models are commonly used for metal source identification, whereas the results are usually subjective and not verified by other indicators. Here we present and discuss a comprehensive approach to study metal contamination and sources in urban road dust (Jinan) in spring and winter by integrating the enrichment factor (EF), receptor models (positive matrix factorization (PMF) and factor analysis with nonnegative constraints (FA-NNC)), local Moran's index, traffic factors and Pb isotopes. Cadmium, Cr, Cu, Pb, Sb, Sn and Zn were the main contaminants, with mean EFs of 2.0-7.1. The EFs were 1.0-1.6 times higher in winter than in spring but exhibited similar spatial trends. Chromium contamination hotspots occurred in the northern area, with other metal contamination hotspots in the central, southeastern and eastern areas. The FA-NNC results indicated Cr contamination primarily resulting from industrial sources and other metal contamination primarily originating from traffic emissions during the two seasons. Coal burning emissions also contributed to Cd, Pb and Zn contamination in winter. FA-NNC model-identified metal sources were verified via traffic factors, atmospheric monitoring and Pb isotopes. The PMF model failed to differentiate Cr contamination from other detrital metals and the above anthropogenic sources, largely due to the model grouping metals by emphasizing hotspots. Considering the FA-NNC results, industrial and traffic sources accounted for 28.5 % (23.3 %) and 44.7 % (28.4 %), respectively, of the metal concentrations in spring (winter), and coal burning emissions contributed 34.3 % in winter. Industrial emissions primarily contributed to the health risks of metals due to the high Cr loading factor, but traffic emissions dominated metal contamination. Through Monte Carlo simulations, Cr had 4.8 % and 0.4 % possibilities posing noncarcinogenic and 18.8 % and 8.2 % possibilities posing carcinogenic risks for children in spring and winter, respectively.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China.
| | - Mengxia Yan
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Shuwei Zheng
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Ying Fan
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Yingxue Sun
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Zijun Li
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China.
| |
Collapse
|
19
|
Schleicher NJ, Weiss DJ. Identification of atmospheric particulate matter derived from coal and biomass burning and from non-exhaust traffic emissions using zinc isotope signatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121664. [PMID: 37085103 DOI: 10.1016/j.envpol.2023.121664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Improving urban air quality is a global challenge. To implement successful abatement measures that reduce atmospheric particulate matter (APM) and associated metal concentrations, precise source apportionment is needed. For this, apportioning contributions from coal and biomass burning and differentiating these from non-exhaust traffic emissions in urban APM is critical. Recent studies characterising the metal isotope composition of urban APM, and potential source materials suggested that non-traditional isotope systems could prove unique fingerprinting tools. Zinc isotopes should be able to separate APM derived from uncontrolled combustion (fly ash, isotopically heavy) from non-exhaust traffic sources (tyre and brake wear, intermediate) and from controlled industrial emissions (flue gas, light). To test this hypothesis, we determined zinc isotope ratios of APM (TSP, PM2.5, PM1) in Beijing (coal combustion for residential heating) and Varanasi (biomass burning in pre-monsoon periods). In Beijing, δ66ZnLyon values of PM2.5 ranged from -0.41 to +1.01‰ in 2015 (avg = +0.25 ± 0.50‰, n = 19). Aerosols (including TSP, PM2.5 and PM1 samples) from the heating period were significantly (t-test, p < 0.001) heavier (avg = +0.90 ± 0.12‰, n = 7) than those from the non-heating period (avg = +0.14 ± 0.36‰, n = 23). Average δ66ZnLyon values of PM2.5 in Varanasi in spring 2015 were +0.82 ± 0.11‰ (n = 4). Extent and direction of isotope fractionation is in line with that expected from theoretical models and the isotope signatures observed agree with previously determined ratios of source materials. Our study links for the first time comprehensively the heavy zinc isotope compositions in APM to coal and biomass burning and shows that zinc isotope compositions of aerosols can discriminate between non-exhaust traffic and combustion sources.
Collapse
Affiliation(s)
- Nina J Schleicher
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, Prince Consort Road, SW7 2AZ, London, United Kingdom.
| | - Dominik J Weiss
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, Prince Consort Road, SW7 2AZ, London, United Kingdom
| |
Collapse
|
20
|
Jeong H, Araújo DF, Knœry J, Briant N, Ra K. Isotopic (Cu, Zn, and Pb) and elemental fingerprints of antifouling paints and their potential use for environmental forensic investigations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121176. [PMID: 36731740 DOI: 10.1016/j.envpol.2023.121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Antifouling paints (APs) are one of the important sources of Cu and Zn contamination in coastal environments. This study applied for the first-time a multi-isotope (Cu, Zn, and Pb) and multi-elemental characterization of different AP brands to improve their tracking in marine environments. The Cu and Zn contents of APs were shown to be remarkably high ∼35% and ∼8%, respectively. The δ65CuAE647, δ66ZnIRMM3702, and 206Pb/207Pb of the APs differed depending on the manufacturers and color (-0.16 to +0.36‰, -0.34 to +0.03‰, and 1.1158 to 1.2140, respectively). A PCA analysis indicates that APs, tires, and brake pads have also distinct elemental fingerprints. Combining isotopic and elemental ratios (e.g., Zn/Cu) allows to distinguish the environmental samples. Nevertheless, a first attempt to apply this approach in highly urbanized harbor areas demonstrates difficulties in source apportionments, because the sediment was chemically and isotopically homogeneous. The similarity of isotope ranges between the harbor and non-exhaust traffic emission sources suggests that most metals are highly affected by urban runoff, and that APs are not the main contributors of these metals. It is suspected that AP-borne contamination should be punctual rather than dispersed, because of APs low solubility properties. Nevertheless, this study shows that the common coastal anthropogenic sources display different elemental and isotopic fingerprints, hence the potential for isotope source tracking applications in marine environments. Further study cases, combined with laboratory experiments to investigate isotope fractionation during releasing the metal sources are necessary to improve non-traditional isotope applications in environmental forensics.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300, Nantes, France; Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, South Korea.
| | - Daniel F Araújo
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300, Nantes, France
| | - Joël Knœry
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300, Nantes, France
| | - Nicolas Briant
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300, Nantes, France
| | - Kongtae Ra
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, South Korea; Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon, 34113, South Korea
| |
Collapse
|
21
|
Liu G, Chen T, Cui J, Zhao Y, Li Z, Liang W, Sun J, Liu Z, Xiao T. Trace Metal(loid) Migration from Road Dust to Local Vegetables and Tree Tissues and the Bioaccessibility-Based Health Risk: Impacts of Vehicle Operation-Associated Emissions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2520. [PMID: 36767884 PMCID: PMC9914983 DOI: 10.3390/ijerph20032520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Traffic activities release large amounts of trace metal(loid)s in urban environments. However, the impact of vehicle operation-associated emissions on trace metal(loid) enrichment in road dust and the potential migration of these trace metal(loid)s to the surrounding environment remain unclear. We evaluated the contamination, sequential fraction, and bioaccessibility of trace metal(loid)s in urban environments by assessing their presence in road dust, garden vegetables, and tree tissues, including bark and aerial roots, at a traffic-training venue impacted by vehicle operation emissions and, finally, calculated the bioaccessibility-based health risk. The results indicated a significant accumulation of trace metal(loid)s in road dust, with the highest lead (Pb), cadmium (Cd), and antimony (Sb) concentrations in the garage entrance area due to higher vehicle volumes, frequent vehicle starts and stops, and lower speeds. Aerial roots exposed to hill start conditions exhibited the highest Pb, Zn, and Sb levels, potentially caused by high road dust resuspension, confirming that this tree tissue is an appropriate bioindicator. Sequential extraction revealed high percentages of carbonate-, Fe/Mn oxide-, and organic/sulphide-associated fractions of Pb, copper (Cu), and zinc (Zn) in road dust, while most Cd, Cr, Ni, and Sb occurred as residual fractions. According to the potential mobilizable fractions in sequential extraction, the in vitro gastrointestinal method could be more suitable than the physiologically based extraction test to evaluate the bioaccessibility-related risk of traffic-impacted road dust. The bioaccessibility-based health risk assessment of the road dust or soil confirmed no concern about noncarcinogenic risk, while the major risk originated from Pb although leaded gasoline was prohibited before the venue establishment. Furthermore, the cancer risks (CRs) analysis showed the probable occurrence of carcinogenic health effects from Cd and Ni to adults and from Cd, Cr, and Ni to children. Furthermore, the Cd and Pb concentrations in the edible leaves of cabbage and radish growing in gardens were higher than the recommended maximum value. This study focused on the health risks of road dust directly impacted by vehicle emissions and provides accurate predictions of trace metal(loid) contamination sources in the urban environment.
Collapse
Affiliation(s)
- Guangbo Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Tian Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jinli Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yanping Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhi Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Weixin Liang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenghui Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
22
|
Shi H, Wang P, Zheng J, Deng Y, Zhuang C, Huang F, Xiao R. A comprehensive framework for identifying contributing factors of soil trace metal pollution using Geodetector and spatial bivariate analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159636. [PMID: 36280075 DOI: 10.1016/j.scitotenv.2022.159636] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The accurate identification of pollution sources is important for controlling soil pollution. However, the widely used Positive matrix factorization (PMF) model generally relies on knowledge and experience to accurately identify pollution sources; thus, this method faces significant challenges in objectively identifying soil pollution sources. Herein, we established a comprehensive source analysis framework using factor identification and geospatial analysis, and revealed the factors contributing to trace metal(loid) (TM) pollution in soil in the Pearl River Delta (PRD), China. Using the PMF model, we initially considered that the PRD may be affected by natural, atmospheric, traffic and industrial, and agricultural sources. Moreover, Geodetector model detected the relationship between TMs and 12 environmental variables based on the strong spatial "source-sink" relationship of pollutants. The parent material and digital elevation model were the key factors predicting the accumulation of Cr, Ni, and Cu. Industries and roads were the most important determinants of Pb, Zn, and Cd, whereas atmospheric deposition was more important for Hg accumulation. The accumulation of As was found to be closely related to agricultural activities such as the application of chemical fertilizers and pesticides. The spatial autocorrelation between soil TM pollution and environmental variables further supports this hypothesis. Overall, the obtained results showed that proposed approach improved the accuracy of source apportionment and provided a basis for soil pollution control.
Collapse
Affiliation(s)
- Hangyuan Shi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiatong Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510006, China
| | - Changwei Zhuang
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510006, China
| | - Fei Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Rongbo Xiao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
23
|
Sadiku OO, Rodríguez-Seijo A. Metabolic and genetic derangement: a review of mechanisms involved in arsenic and lead toxicity and genotoxicity. Arh Hig Rada Toksikol 2022; 73:244-255. [PMID: 36607725 PMCID: PMC9985351 DOI: 10.2478/aiht-2022-73-3669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
Urbanisation and industrialisation are on the rise all over the world. Environmental contaminants such as potentially toxic elements (PTEs) are directly linked with both phenomena. Two PTEs that raise greatest concern are arsenic (As) and lead (Pb) as soil and drinking water contaminants, whether they are naturally occurring or the consequence of human activities. Both elements are potential carcinogens. This paper reviews the mechanisms by which As and Pb impair metabolic processes and cause genetic damage in humans. Despite efforts to ban or limit their use, due to high persistence both continue to pose a risk to human health, which justifies the need for further toxicological research.
Collapse
Affiliation(s)
- Olubusayo Olujimi Sadiku
- University of Lagos, College of Medicine, Faculty of Basic Medical Sciences, Department of Medical Laboratory Science, Lagos, Nigeria
| | - Andrés Rodríguez-Seijo
- University of Porto, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- University of Porto, Faculty of Sciences, Biology Department, Porto, Portugal
- University of Vigo, Department of Plant Biology and Soil Sciences, Ourense, Spain
| |
Collapse
|
24
|
Fan J, Deng L, Wang W, Yi X, Yang Z. Contamination, Source Identification, Ecological and Human Health Risks Assessment of Potentially Toxic-Elements in Soils of Typical Rare-Earth Mining Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15105. [PMID: 36429823 PMCID: PMC9690513 DOI: 10.3390/ijerph192215105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The mining and leaching processes of rare-earth mines can include the entry of potentially toxic elements (PTEs) into the environment, causing ecological risks and endangering human health. However, the identification of ecological risks and sources of PTEs in rare-earth mining areas is less comprehensive. Hence, we determine the PTE (Co, Cr, Cu, Mn, Ni, Pb, Zn, V) content in soils around rare-earth mining areas in the south and analyze the ecological health risks, distribution characteristics, and sources of PTEs in the study area using various indices and models. The results showed that the average concentrations of Co, Mn, Ni, Pb and Zn were higher than the soil background values, with a maximum of 1.62 times. The spatial distribution of PTEs was not homogeneous and the hot spots were mostly located near roads and mining areas. The ecological risk index and the non-carcinogenic index showed that the contribution was mainly from Co, Pb, and Cr, which accounted for more than 90%. Correlation analysis and PMF models indicated that eight PTEs were positively correlated, and rare-earth mining operations (concentration of 22.85%) may have caused Pb and Cu enrichment in soils in the area, while other anthropogenic sources of pollution were industrial emissions and agricultural pollution. The results of the study can provide a scientific basis for environmental-pollution assessment and prevention in rare-earth mining cities.
Collapse
Affiliation(s)
- Jiajia Fan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Li Deng
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining 810007, China
| | - Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiu Yi
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Zhiping Yang
- Jiangxi Research Academy of Ecological Civilization, Nanchang 330036, China
| |
Collapse
|
25
|
Jeong H, Ra K. Pollution and Health Risk Assessments of Potentially Toxic Elements in the Fine-Grained Particles (10−63 µm and <10 µm) in Road Dust from Apia City, Samoa. TOXICS 2022; 10:toxics10110683. [PMID: 36422891 PMCID: PMC9698250 DOI: 10.3390/toxics10110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 05/06/2023]
Abstract
Fine road dust is a major source of potentially toxic elements (PTEs) pollution in urban environments, which adversely affects the atmospheric environment and public health. Two different sizes (10−63 and <10 μm) were separated from road dust collected from Apia City, Samoa, and 10 PTEs were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Fine road dust (<10 μm) had 1.2−2.3 times higher levels of copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), antimony (Sb), lead (Pb), and mercury (Hg) than 10−63 μm particles. The enrichment factor (EF) value of Sb was the highest among PTEs, and reflected significant contamination. Cu, Zn, and Pb in road dust were also present at moderate to significant levels. Chromium (Cr), cobalt (Co), and nickel (Ni) in road dust were mainly of natural origins, while Cu, Zn, Sb, and Pb were due to traffic activity. The levels of PTEs in road dust in Samoa are lower than in highly urbanized cities, and the exposure of residents in Samoa to PTEs in road dust does not pose a noncarcinogenic health risk. Further studies of the effects of PTEs contamination in road dust on the atmosphere and living organisms are needed.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Ifremer, Département Ressources Biologiques et Environnement (RBE), Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44000 Nantes, France
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Korea
| | - Kongtae Ra
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Korea
- Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
26
|
Luo J, Xing W, Ippolito JA, Zhao L, Han K, Wang Y, Qiu K, Li L. Bioaccessibility, source and human health risk of Pb, Cd, Cu and Zn in windowsill dusts from an area affected by long-term Pb smelting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156707. [PMID: 35718186 DOI: 10.1016/j.scitotenv.2022.156707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/22/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Non-ferrous metal smelting results in heterogenous spatial distribution of potentially toxic metals (PTM) near smelters. In this work, windowsill dusts were collected from smelting (SA) and urban (UJ) sub-areas of Jiyuan (a city affected by >70 years of Pb smelting) to investigate PTM source and bioaccessibility. The <10 μm fraction of dusts were analyzed for total and bioaccessible Pb, Cd, Cu and Zn concentrations; bioaccessibility was analyzed by a three-stage assay (i.e., lung phase, gastric phase and gastrointestinal phase) using artificial lysosomal fluid (ALF, L phase) followed by simulated gastric and gastrointestinal fluids (G and GI phases). This assay mimicked the movement of particles phagocytosed by alveolar macrophages in the respiratory system, then transported up the oropharynx and subsequently swallowed and transported into the digestive system. Zinc had greater bioaccessible concentrations in L and GI phases than other metals, and the mean L phase bioaccessible PTM concentrations in SA were greater than in UJ. The mean L + GI phase bioaccessible concentrations of Pb, Cd, Cu and Zn in SA were 280, 79, 124 and 1458 mg kg-1, while those in UJ were 215, 54, 116 and 598 mg kg-1, respectively. The L phase extracted 87.7 to 98.8 % of PTM within the L + GI assay. Lead had a lower L + GI bioaccessibility than Cd, Cu and Zn (70-76 % vs. 82-92 %). Higher tolerable Cd carcinogenic risks based on bioaccessibility were found in SA sub-area than in UJ while no carcinogenic or non-carcinogenic risk was found for other metals. Lead isotopic ratios indicated that both Pb ore and smelting bottom ash contributed to dust Pb accumulation in SA, while coal burning, lead ore, Pb smelting bottom ash and diesel engine exhaust contributed to dust Pb accumulation in UJ. Overall, results indicated heterogenous distribution of PTM source and bioaccessibility in the vicinity of Pb smelters.
Collapse
Affiliation(s)
- Jie Luo
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, Henan 450001, China
| | - Weiqin Xing
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, Henan 450001, China
| | - James A Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA; Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, Henan 450001, China
| | - Linlin Zhao
- Jiyuan Ecological and Environmental Monitoring Center of Henan Province, Jiyuan, Henan 459000, China
| | - Ke Han
- Jiyuan Ecological and Environmental Monitoring Center of Henan Province, Jiyuan, Henan 459000, China
| | - Yale Wang
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, Henan 450001, China
| | - Kunyan Qiu
- Jiyuan Ecological and Environmental Monitoring Center of Henan Province, Jiyuan, Henan 459000, China
| | - Liping Li
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, Henan 450001, China.
| |
Collapse
|
27
|
Xing W, Luo J, Ippolito JA, Lu R, Hao Z, Li L. Metal contamination in soils and windowsill dusts: implication of multiple sources on dust metal accumulation within a city affected by Pb smelting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68447-68459. [PMID: 35543780 DOI: 10.1007/s11356-022-20696-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The accumulation of total Pb, Cd, Cu, and Zn in soils (0-5 cm) and windowsill dust fractions (45-125, 10-45, and < 10 μm), and soil pollution indices (PI), were investigated in a long-term (~ 70 years) Pb smelter area and in the nearby urban city of Jiyuan, China. Principal component analysis (PCA) was utilized to identify metal contamination sources. Results showed that mean soil Pb, Cd, Cu, and Zn concentrations in the smelter area were 803, 13.8, 118, and 323 mg kg-1, while those of the urban area were 270, 7.95, 51.6, and 244 mg kg-1, respectively. Lead and Cd had greater soil PI than Cu and Zn. Lead concentrations in the 45-125, 10-45, and < 10-μm urban dust fractions ranged from 197.1 to 1953 (mean 1020), 202-3962 (2407), and 51.1-1258 (310.7) mg kg-1, while Cd concentrations ranged from 11.1 to 111 (49.2), 10.4-159 (64.3) and 21.5-131 (60.0) mg kg-1, respectively. Excessive Zn concentrations (5000-22,000 mg kg-1) in some urban dust samples were found at two sampling sites, while Zn concentrations were < 2600 mg kg-1 in all other samples. Based on PCA results, metal accumulation near the Pb smelter was dominated by smelting activities. The PCA results further suggested that mass vehicular transportation modes may be an important source of metals such as Cu and Zn in the urban area. Certain samples in both sub-areas had unsafe potential non-carcinogenic risks of Pb for children. These findings suggest that reducing environmentally relevant metal concentrations in this, and similar areas, will likely require a multi-faceted approach.
Collapse
Affiliation(s)
- Weiqin Xing
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - Jie Luo
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - James A Ippolito
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523-1170, USA
| | - Ruilong Lu
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - Zhongyu Hao
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - Liping Li
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China.
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
28
|
Szell M, Mimar S, Perlman T, Ghoshal G, Sinatra R. Growing urban bicycle networks. Sci Rep 2022; 12:6765. [PMID: 35474086 PMCID: PMC9039277 DOI: 10.1038/s41598-022-10783-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cycling is a promising solution to unsustainable urban transport systems. However, prevailing bicycle network development follows a slow and piecewise process, without taking into account the structural complexity of transportation networks. Here we explore systematically the topological limitations of urban bicycle network development. For 62 cities we study different variations of growing a synthetic bicycle network between an arbitrary set of points routed on the urban street network. We find initially decreasing returns on investment until a critical threshold, posing fundamental consequences to sustainable urban planning: cities must invest into bicycle networks with the right growth strategy, and persistently, to surpass a critical mass. We also find pronounced overlaps of synthetically grown networks in cities with well-developed existing bicycle networks, showing that our model reflects reality. Growing networks from scratch makes our approach a generally applicable starting point for sustainable urban bicycle network planning with minimal data requirements.
Collapse
Affiliation(s)
- Michael Szell
- NEtwoRks, Data, and Society (NERDS), IT University of Copenhagen, 2300, Copenhagen, Denmark. .,Complexity Science Hub Vienna, 1080, Vienna, Austria. .,ISI Foundation, 10126, Turin, Italy.
| | - Sayat Mimar
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Tyler Perlman
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Gourab Ghoshal
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Roberta Sinatra
- NEtwoRks, Data, and Society (NERDS), IT University of Copenhagen, 2300, Copenhagen, Denmark.,Complexity Science Hub Vienna, 1080, Vienna, Austria.,ISI Foundation, 10126, Turin, Italy.,Copenhagen Center for Social Data Science (SODAS), University of Copenhagen, 1353, Copenhagen, Denmark
| |
Collapse
|
29
|
Ecological Risk Evaluation and Source Identification of Heavy Metal Pollution in Urban Village Soil Based on XRF Technique. SUSTAINABILITY 2022. [DOI: 10.3390/su14095030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rapid urbanization in China has resulted in significant differences between urban and rural areas. The emergence of urban villages is inevitable in this context, for which complex problems regarding land use, industrial management and ecological environment have arisen. This study performed a case study on a typical urban village, by assessing heavy metal pollution and ecological risk in soil. It detected a total of 80 basic units through portable X-ray fluorescence (XRF) instrument. A total of 25 high-risk contaminated points were selected, sampled and analyzed in laboratory as confirmation. The results showed the mean concentrations of Pb, Cu, Zn and Ni in soil were significantly higher than background values. Pb, Zn and Ni showed obvious pairwise correlation, and the high-value zones could be attributed to automobile traffic and industrial activities. In addition, the pollution problem is complicated by a combination of agricultural activities, the absence of clear division between different functional zones, as well as a general lack of environmental awareness. All of these lead to increased ecological risk and are a serios threaten to public health.
Collapse
|
30
|
Atmospheric deposition of Pb and Cd in the Cedrus atlantica for environmental biomonitoring. LANDSCAPE AND ECOLOGICAL ENGINEERING 2022. [DOI: 10.1007/s11355-022-00503-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Investigations of Metal Pollution in Road Dust of Steel Industrial Area and Application of Magnetic Separation. SUSTAINABILITY 2022. [DOI: 10.3390/su14020919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pollution characteristics and ecological risks for metals in non-magnetic and magnetic road dust from steel industrial areas were investigated by applying a magnetic separation method. Metal (except for Al, Li, Ti, As, and Sb) concentrations in the magnetic road dust were 1.2 (Sn) to 7.8 (Fe) times higher than those in the non-magnetic road dust. For the magnetic road dust, the geo-accumulation index revealed a strongly to extremely polluted status for Cr, Zn, Cd, and Sb, a strongly polluted status for Mn, Cu, and Pb, and a moderately to strongly polluted status for Fe, Ni, Mo, and Hg. This result indicates that the dominant metal pollution sources of road dust in industrial areas were the traffic activities of heavy-duty vehicles. The mean content of magnetic particles accounted for 44.7% of the total road dust. The metal loadings in the magnetic road dust were 86% (Fe), 77% (Cr), 67% (Mn), 86% (Ni), 76% (Cu), 72% (Zn), 64% (Mo), and 62% (Cd), respectively. Removal of the magnetic fraction from road dust using magnetic separation techniques not only reduces metal contamination but can also improve effective road cleaning strategies or reduce waste generation.
Collapse
|
32
|
Abstract
Abstract
Background
Particles from non-exhaust emissions derived from traffic activities are a dominant cause of toxic metal pollution in urban environments. Recently, studies applying multiple isotope values using the Iso-source and positive matrix factorization (PMF) models have begun to be used as useful tools to evaluate the contribution of each pollution source in urban environments. However, data on the metal concentrations and isotopic compositions of each potential source are lacking. Therefore, this study presents data on toxic metals and Cu, Zn, and Pb isotopic compositions in tires, which are one of the important non-exhaust emission sources.
Findings
Among the toxic metals, Zn had the highest concentration in all tire samples, and the mean concentrations were in the order of Zn > Cu > Pb > Sn > Sb > Ni > Cr > As > Cd. Ni, Zn, Sn, and Sb had higher concentrations in domestic tires (South Korea), and the Cu, Cd, and Pb concentrations were relatively higher in imported tires. The mean values of δ65CuAE647, δ66ZnIRMM3702, and 206Pb/207Pb ranged from − 1.04 to − 0.22‰, − 0.09 to − 0.03‰, and 1.1242 to 1.1747, respectively. The concentrations and isotopic compositions of Cu and Pb in the tires showed large differences depending on the product and manufacturer. However, the differences in Zn concentration and δ66ZnIRMM3702 values were very small compared with those of Cu and Pb. The relationships of the Zn concentration and isotopic composition showed that domestic tires are clearly distinguishable from imported tires. Bi-plots of Cu, Zn, and Pb isotopic compositions indicated that tires can be clearly discriminated from natural-origin and other non-exhaust traffic emission sources.
Conclusions
The multi-isotope signatures of Cu, Zn, and Pb exhibited different isotopic values for other non-exhaust traffic emission sources than for tires, and application of the multi-isotope technique may be a powerful method for distinguishing and managing non-exhaust sources of metal contamination in urban environments.
Collapse
|