1
|
Gautam K, Singh H, Sinha AK. Nanotechnology in Plant Nanobionics: Mechanisms, Applications, and Future Perspectives. Adv Biol (Weinh) 2025; 9:e2400589. [PMID: 39936866 DOI: 10.1002/adbi.202400589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/04/2025] [Indexed: 02/13/2025]
Abstract
Plants are vital to ecosystems and human survival, possessing intricate internal and inter-plant signaling networks that allow them to adapt quickly to changing environments and maintain ecological balance. The integration of engineered nanomaterials (ENMs) with plant systems has led to the emergence of plant nanobionics, a field that holds the potential to enhance plant capabilities significantly. This integration may result in improved photosynthesis, increased nutrient uptake, and accelerated growth and development. Plants treated with ENMs can be stress mitigators, pollutant detectors, environmental sensors, and even light emitters. This review explores recent advancements in plant nanobionics, focusing on nanoparticle (NP) synthesis, adhesion, uptake, transport, fate, and application in enhancing plant physiological functioning, stress mitigation, plant health monitoring, energy production, environmental sensing, and overall plant growth and productivity. Potential research directions and challenges in plant nanobionics are highlighted, and how material optimization and innovation are propelling the growth in the field of smart agriculture, pollution remediation, and energy/biomass production are discussed.
Collapse
Affiliation(s)
- Kajal Gautam
- Department of Chemistry, School of advanced Engineering, UPES, Dehradun, India
| | - Hukum Singh
- Plant Physiology, Genetics and Tree Improvement Division, Forest Research institute (FRI), Dehradun, India
| | - A K Sinha
- Department of Physics, School of advanced Engineering, UPES, Dehradun, India
| |
Collapse
|
2
|
Zhang X, Huang J, Chen D, Yue Y, Wang L, Yang X. A new strategy for sustainable agricultural development: Meta-analysis of the efficient interaction of plant growth-promoting rhizobacteria with nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109845. [PMID: 40186912 DOI: 10.1016/j.plaphy.2025.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Nanoparticles (NPs) and plant growth-promoting rhizobacteria (PGPR) are two kinds of additives that have obvious promotion effect on plant growth and development, but the effectiveness and influencing factors of their cooperation remain incompletely understood. Here, we conducted a global meta-analysis of 68 published studies to explore the potential effects of simultaneous exposure to NPs and PGPR on plants and the factors influencing the benefits of their cooperation. The results indicated that either individual or combined applications of PGPR and NPs were effective at promoting plant growth and development, but the advantages of cooperation were more obvious, especially for plants under stress conditions. Our results also illustrated that PGPRs species affected the efficiency of cooperation with NPs, with the Bacillus spp. and Pseudomonas spp. having the most significant positive effects. Exposure to NPs of 7-15 d and foliar application had the most significant effects on plant biomass, photosynthetic capacity and nutrient accumulation. Effects on plant antioxidant systems were associated with NPs type, size, application dose and exposure way, but were not significantly related to exposure duration. Our results emphasize the effectiveness of cooperation between PGPR and NPs, which provides a theoretical basis for the development of nano-biofertilizers (NBFs), and also provides support for the application and promotion of NBFs in agricultural production.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiurong Huang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Dingyi Chen
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanzheng Yue
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lianggui Wang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiulian Yang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Gao PP, Chen RQ, Xue PY, Guan PB, Dong Y, Liang H, Geng LP, Zhao QL, Ma W, Zhao JJ, Liu WJ. Combined μ-XRF and XANES Track the Behavior of Pb from PM 2.5 Entering Chinese Cabbage Leaves. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4025-4035. [PMID: 39772520 DOI: 10.1021/acs.est.4c08776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Atmospheric fine particulate matter (PM2.5) is the main contributor to Pb accumulation in edible Chinese cabbage leaves in North China. PM2.5-Pb primarily enters leaves via stomatal foliar uptake. However, how PM2.5-Pb is transported and stored within the leaf cells of Chinese cabbage remains unclear. Thus, this study mapped Pb, Ca, and Mg distributions in Chinese cabbage leaves following PM2.5-Pb stress using synchrotron and fast micro-X-ray fluorescence. Findings revealed that PM2.5-Pb was transported and localized in guard cells, the epidermal cell wall, and chloroplasts. X-ray absorption near-edge structure revealed that Pb(CO3)2·Pb(OH)2 in PM2.5 was converted to Pb(OH)2, glutathione-Pb (GSH-Pb), and PbC2O4 in Chinese cabbage leaves. GSH-Pb proportion in the low Pb accumulation (LPA) variety Chinese cabbage leaves was 2.13 times higher than that in the high Pb accumulation (HPA) variety. Glutamate concentration decreased by 44.53% in the LPA variety leaves under PM2.5-Pb stress, increasing GSH-Pb efflux symplasm and reducing Pb accumulation. X-ray fluorescence mapping of Ca and Mg in leaves indicated chlorophyll biosynthesis inhibition in the HPA variety leaves but not in the LPA variety leaves. Pb speciation and distribution vary drastically between the LPA and HPA variety leaves. This study provides guidance for breeding a high-quality LPA variety of Chinese cabbages.
Collapse
Affiliation(s)
- Pei-Pei Gao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
- Key Laboratory for Farmland Eco-environment of Hebei Province, College of Resources and Environmental Sciences, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
| | - Ren-Qiang Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
| | - Pei-Ying Xue
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
- Key Laboratory for Farmland Eco-environment of Hebei Province, College of Resources and Environmental Sciences, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
| | - Pei-Bin Guan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
- Key Laboratory for Farmland Eco-environment of Hebei Province, College of Resources and Environmental Sciences, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
| | - Yan Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
- Key Laboratory for Farmland Eco-environment of Hebei Province, College of Resources and Environmental Sciences, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
| | - Hao Liang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Centre of Vegetable Industry in Hebei, College of Horticulture, Baoding 071000, Hebei, China
| | - Li-Ping Geng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
- Key Laboratory for Farmland Eco-environment of Hebei Province, College of Resources and Environmental Sciences, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
| | - Quan-Li Zhao
- The Teaching and Experimental Station, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Wei Ma
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Centre of Vegetable Industry in Hebei, College of Horticulture, Baoding 071000, Hebei, China
| | - Jian-Jun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Centre of Vegetable Industry in Hebei, College of Horticulture, Baoding 071000, Hebei, China
| | - Wen-Ju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
- Key Laboratory for Farmland Eco-environment of Hebei Province, College of Resources and Environmental Sciences, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China
| |
Collapse
|
4
|
Pinheiro SKDP, Pontes MDS, Miguel TBAR, Grillo R, Souza Filho AGD, Miguel EDC. Nanoparticles and plants: A focus on analytical characterization techniques. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112225. [PMID: 39142607 DOI: 10.1016/j.plantsci.2024.112225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Nanotechnology has brought about significant progress through the use of goods based on nanomaterials. However, concerns remain about the accumulation of these materials in the environment and their potential toxicity to living organisms. Plants have the ability to take in nanomaterials (NMs), which can cause changes in their physiology and morphology. On the other hand, nanoparticles (NPs) have been used to increase plant development and control pests in agriculture by including them into agrochemicals. The challenges of the interaction, internalization, and accumulation of NMs within plant tissues are enormous, mainly because of the various characteristics of NMs and the absence of reliable analytical tools. As our knowledge of the interactions between NMs and plant cells expands, we are able to create novel NMs that are tailored, targeted, and designed to be safe, thus minimizing the environmental consequences of nanomaterials. This review provides a thorough examination and comparison of the main microscopy techniques, spectroscopic methods, and far-field super-resolution methodologies used to examine nanomaterials within the cell walls of plants.
Collapse
Affiliation(s)
- Sergimar Kennedy de Paiva Pinheiro
- Biomaterials Laboratory, Department of Metallurgical Engineering and Materials and Analytical Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Montcharles da Silva Pontes
- Optics and Photonics Group, SISFOTON Lab, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | | | - Renato Grillo
- Environmental Nanochemistry Group, Department of Physics and Chemistry, São Paulo State University (UNESP), Ilha Solteira, SP, Brazil
| | | | - Emilio de Castro Miguel
- Biomaterials Laboratory, Department of Metallurgical Engineering and Materials and Analytical Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil.
| |
Collapse
|
5
|
Xu T, Hao W, Du R, Dai D, Wang C, Li S, Lin CSK, Cha R, Yan J, Li C. Mercaptoimidazole-capped gold nanoparticles as a potent agent against plant pathogenic fungi. J Mater Chem B 2024; 12:10949-10961. [PMID: 39344784 DOI: 10.1039/d4tb01032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Plant pathogenic fungi pose a substantial challenge to agricultural production, but the conventional fungicide-based approaches are losing importance. As agents with broad-spectrum antibacterial effects, gold nanoparticles (Au NPs) are found to have antifungal effects; however, no study has examined their application in agriculture as fungicides. Accordingly, this study investigates the activity of 2-mercaptoimidazole-capped Au NPs (MI-Au NPs) against the 'top' plant pathogenic fungi, finding that they could inhibit Magnaporthe oryzae, Botrytis cinerea, Fusarium pseudograminearum and Colletotrichum destructivum by inducing cytoplasmic leakage. Moreover, MI-Au NPs are found to protect plants from infection by B. cinerea. Specifically, pot experiments demonstrate that MI-Au NPs decrease the incidence rate of B. cinerea infection in Arabidopsis thaliana from 74.6% to 6.2% and in Solanum lycopersicum from 100% to 10.9%, outperforming those achieved by imazalil. Furthermore, the biosafety assays reveal that MI-Au NPs cannot penetrate the cuticle of plant cells or negatively influence plant growth, and it is safe to mammalian cells. In summary, the findings of this study will support the development of NP-based antifungal agents for use in agriculture.
Collapse
Affiliation(s)
- Tang Xu
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenshuai Hao
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Dai Dai
- Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland
| | - Cuixia Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Suhua Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing, 100050, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Chong Li
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Carmona ER, Rojo C, Vergara Carmona V. Nanomaterial-Based Biofortification: Potential Benefits and Impacts of Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23645-23670. [PMID: 39432886 DOI: 10.1021/acs.jafc.4c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nanomaterials (NMs) have shown relevant impacts in crop protection, improvement of yields, and minimizing collateral side effects of fertilizer and pesticides in vegetable and fruit production. The application of NMs to improve biofortification has gained much attention in the last five years, offering a hopeful and optimistic outlook. Thus, we propose comprehensively revising the scientific literature about the use of NMs in the agronomic biofortification of crops and analyzing the beneficial impact of the use of NMs. The results indicated that different species of plants were biofortified with essential elements and macronutrients after the applications of Zn, Fe, Se, nanocomposites, and metalloid NPs. In addition, the physiological performances, antioxidant compounds, and yields were improved with NMs. Using nanofertilizers for the biofortification of crops can be considered a promising method to deliver micronutrients for plants with beneficial impacts on human health, the environment, and agriculture.
Collapse
Affiliation(s)
- Erico R Carmona
- Facultad de Recursos Naturales Renovables, Laboratorio de Bionanomateriales, Universidad Arturo Prat, Av. Arturo Prat s/n, Campus Huayquique, Iquique 1100000, Chile
- Núcleo de Investigación Aplicada e Innovación en Ciencias Biológicas, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Av. Arturo Prat s/n, Campus Huayquique, Iquique 1100000, Chile
| | - Cynthia Rojo
- Facultad de Recursos Naturales Renovables, Laboratorio de Bionanomateriales, Universidad Arturo Prat, Av. Arturo Prat s/n, Campus Huayquique, Iquique 1100000, Chile
- Facultad de Recursos Naturales Renovables, Programa de Magíster en Biotecnología, Universidad Arturo Prat, Av. Arturo Prat s/n, Campus Huayquique, Iquique 1100000, Chile
| | - Víctor Vergara Carmona
- Facultad de Recursos Naturales Renovables, Laboratorio de Bionanomateriales, Universidad Arturo Prat, Av. Arturo Prat s/n, Campus Huayquique, Iquique 1100000, Chile
| |
Collapse
|
7
|
Ďúranová H, Kšiňan S, Kuželová L, Šimora V, Ďurišová Ľ, Olexíková L, Ernst D, Kolenčík M. Nanoparticle-plant interactions: Physico-chemical characteristics, application strategies, and transmission electron microscopy-based ultrastructural insights, with a focus on stereological research. CHEMOSPHERE 2024; 363:142772. [PMID: 38971445 DOI: 10.1016/j.chemosphere.2024.142772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Ensuring global food security is pressing among challenges like population growth, climate change, soil degradation, and diminishing resources. Meeting the rising food demand while reducing agriculture's environmental impact requires innovative solutions. Nanotechnology, with its potential to revolutionize agriculture, offers novel approaches to these challenges. However, potential risks and regulatory aspects of nanoparticle (NP) utilization in agriculture must be considered to maximize their benefits for human health and the environment. Understanding NP-plant cell interactions is crucial for assessing risks of NP exposure and developing strategies to control NP uptake by treated plants. Insights into NP uptake mechanisms, distribution patterns, subcellular accumulation, and induced alterations in cellular architecture can be effectively drawn using transmission electron microscopy (TEM). TEM allows direct visualization of NPs within plant tissues/cells and their influence on organelles and subcellular structures at high resolution. Moreover, integrating TEM with stereological principles, which has not been previously utilized in NP-plant cell interaction assessments, provides a novel and quantitative framework to assess these interactions. Design-based stereology enhances TEM capability by enabling precise and unbiased quantification of three-dimensional structures from two-dimensional images. This combined approach offers comprehensive data on NP distribution, accumulation, and effects on cellular morphology, providing deeper insights into NP impact on plant physiology and health. This report highlights the efficient use of TEM, enhanced by stereology, in investigating diverse NP-plant tissue/cell interactions. This methodology facilitates detailed visualization of NPs and offers robust quantitative analysis, advancing our understanding of NP behavior in plant systems and their potential implications for agricultural sustainability.
Collapse
Affiliation(s)
- Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Samuel Kšiňan
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
| | - Lenka Kuželová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Lucia Olexíková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 95141, Lužianky, Slovakia
| | - Dávid Ernst
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
8
|
Orfei B, Moretti C, Scian A, Paglialunga M, Loreti S, Tatulli G, Scotti L, Aceto A, Buonaurio R. Combat phytopathogenic bacteria employing Argirium-SUNCs: limits and perspectives. Appl Microbiol Biotechnol 2024; 108:357. [PMID: 38822872 PMCID: PMC11144149 DOI: 10.1007/s00253-024-13189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs®, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+), represent a valid candidate as a nano-bactericide in the control of plant bacterial diseases. Respect to the many silver nanoparticles described in the literature, Argirium-SUNCs have many strengths due to the reproducibility of the synthesis method, the purity and the stability of the preparation, the very strong (less than 1 ppm) antimicrobial, and anti-biofilm activities. In this mini-review, we provide information on this nanomaterial and on the possible application in agriculture. KEY POINTS: • Argirium-SUNCs have strong antimicrobial activities against phytopathogenic bacteria. • Argirium-SUNCs are a possible plant protection product. • Argirium-SUNCs protect tomato plants against bacterial speck disease.
Collapse
Affiliation(s)
- Benedetta Orfei
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Anna Scian
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Michela Paglialunga
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Stefania Loreti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Giuseppe Tatulli
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Wu H, He B, Chen B, Liu A. Toxicity of polyvinyl chloride microplastics on Brassica rapa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122435. [PMID: 37625773 DOI: 10.1016/j.envpol.2023.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Microplastics (MPs) can pose high risk to living organisms due to their very small sizes. This study selected polyvinyl chloride MPs (PVC-MPs) which experienced up to 1000 h UV light radiation to investigate the influence of PVC-MPs on Brassica rapa growth. The outcomes showed the presence of PVC-MPs inhibited the plants' growth. The stem length, root length, fresh weight and dry weight of plants exposed to PVC-MPs after 30 days reduced by 45.9%, 35.2%, 26.1% and 5.2%, respectively. The chlorophyll, soluble sugar, malondialdehyde (MDA) and catalase (CAT) concentrations for plants exposed to PVC-MPs after 30 days increased by 25.9%, 135.7%, 88.7% and 47.1% respectively. It was also observed that PVC-MPs blocked the plants' leaf stomata and even entered plants' bodies. This might lead to PVC-MPs movement within the plants and influence plants' growth. The transcriptomic analysis results indicated that exposure to PVC-MPs up-regulated metabolic pathway of plant hormone signal transduction of the plants and down-regulated pathway network of ribosome. However, the research outcomes also showed that the PVC-MPs' locations in soil (located at the upper layers or at lower layers) and the UV light radiation time did not exert significantly different influences on inhibiting plants' growth. This can be attributed to PVC-MPs' small sizes and not much decomposition under light radiation. These imply that longer light radiation time and different particle sizes should be included into future research in order to further explore photodegraded MPs' toxicity effects on plants.
Collapse
Affiliation(s)
- Hao Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Beibei He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bocheng Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
10
|
Orfei B, Moretti C, Loreti S, Tatulli G, Onofri A, Scotti L, Aceto A, Buonaurio R. Silver nanoclusters with Ag 2+/3+ oxidative states are a new highly effective tool against phytopathogenic bacteria. Appl Microbiol Biotechnol 2023; 107:4519-4531. [PMID: 37289240 PMCID: PMC10313544 DOI: 10.1007/s00253-023-12596-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
The main measure worldwide adopted to manage plant bacterial diseases is based on the application of copper compounds, which are often partially efficacious for the frequent appearance of copper-resistant bacterial strains and have raised concerns for their toxicity to the environment and humans. Therefore, there is an increasing need to develop new environmentally friendly, efficient, and reliable strategies for controlling plant bacterial diseases, and among them, the use of nanoparticles seems promising. The present study aimed to evaluate the feasibility of protecting plants against attacks of gram-negative and gram-positive phytopathogenic bacteria by using electrochemically synthesized silver ultra nanoclusters (ARGIRIUM‑SUNCs®) with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+). ARGIRIUM‑SUNCs strongly inhibited the in vitro growth (effective concentration, EC50, less than 1 ppm) and biofilm formation of Pseudomonas syringae pv. tomato and of quarantine bacteria Xanthomonas vesicatoria, Xylella fastidiosa subsp. pauca, and Clavibacter michiganensis subsp. michiganensis. In addition, treatments with ARGIRIUM‑SUNCs also provoked the eradication of biofilm for P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis. Treatment of tomato plants via root absorption with ARGIRIUM‑SUNCs (10 ppm) is not phytotoxic and protected (80%) the plants against P. syringae pv. tomato attacks. ARGIRIUM‑SUNCs at low doses induced hormetic effects on P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis as well as on tomato root growth. The use of ARGIRIUM‑SUNCs in protecting plants against phytopathogenic bacteria is a possible alternative control measure. KEY POINTS: • ARGIRIUM‑SUNC has strong antimicrobial activities against phytopathogenic bacteria; • ARGIRIUM‑SUNC inhibits biofilm formation at low doses; • ARGIRIUM‑SUNC protects tomato plants against bacterial speck disease.
Collapse
Affiliation(s)
- Benedetta Orfei
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Stefania Loreti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Giuseppe Tatulli
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Andrea Onofri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Gunathilaka GU, Li H, Zhang W, Ryser ET. Persistence of Silver Nanoparticles Sorbed on Fresh-Cut Lettuce during Flume Washing and Centrifugal Drying. J Food Prot 2023; 86:100097. [PMID: 37142126 DOI: 10.1016/j.jfp.2023.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Increased agricultural use of silver nanoparticles (Ag NPs) may potentially lead to residual levels on fresh produce, raising food safety and public health concerns. However, the ability of typical washing practices to remove Ag NPs from fresh produce is poorly understood. This study investigated the removal of Ag NPs from Ag NP-contaminated lettuce during bench-top and pilot-scale washing and drying. Ag NP removal was first assessed by washing lettuce leaves in a 4-L carboy batch system using water containing chlorine (100 mg/L) or peroxyacetic acid (80 mg/L) with and without a 2.5% organic load and water alone as the control. Overall, these treatments removed only 3-7% of the sorbed Ag from the lettuce. Thereafter, Ag NP-contaminated lettuce leaves were flume-washed for 90 s in a pilot-scale processing line using ∼600 L of recirculating water with or without a chlorine-based sanitizer (100 mg/L) and then centrifugally dried. After processing, only 0.3-3% of the sorbed Ag was removed, probably due to the strong binding of Ag with plant organic materials. Centrifugation only removed a minor amount of Ag as compared to flume washing. However, the Ag concentration in the ∼750 mL of centrifugation water was much higher as compared to the flume water, suggesting that the centrifugation water would be preferred when assessing fresh-cut leafy greens for Ag contamination. These findings indicate that Ag NPs may persist on contaminated leafy greens with commercial flume washing systems unable to substantially reduce Ag NP levels.
Collapse
Affiliation(s)
- Gayathri U Gunathilaka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Elliot T Ryser
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
12
|
Husted S, Minutello F, Pinna A, Tougaard SL, Møs P, Kopittke PM. What is missing to advance foliar fertilization using nanotechnology? TRENDS IN PLANT SCIENCE 2023; 28:90-105. [PMID: 36153275 DOI: 10.1016/j.tplants.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
An urgent challenge within agriculture is to improve fertilizer efficiency in order to reduce the environmental footprint associated with an increased production of crops on existing farmland. Standard soil fertilization strategies are often not very efficient due to immobilization in the soil and losses of nutrients by leaching or volatilization. Foliar fertilization offers an attractive supplementary strategy as it bypasses the adverse soil processes, but implementation is often hampered by a poor penetration through leaf barriers, leaf damage, and a limited ability of nutrients to translocate. Recent advances within bionanotechnology offer a range of emerging possibilities to overcome these challenges. Here we review how nanoparticles can be tailored with smart properties to interact with plant tissue for a more efficient delivery of nutrients.
Collapse
Affiliation(s)
- Søren Husted
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark.
| | - Francesco Minutello
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Andrea Pinna
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Stine Le Tougaard
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Pauline Møs
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia 4072, Queensland, Australia
| |
Collapse
|
13
|
Gunathilaka GU, He J, Li H, Zhang W, Ryser ET. Behavior of Silver Nanoparticles in Chlorinated Lettuce Wash Water. J Food Prot 2022; 85:1061-1068. [PMID: 35512293 DOI: 10.4315/jfp-22-018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Use of silver nanoparticles (Ag NPs) in pesticides may lead to residual levels in food crops, thus raising food safety and environmental concerns. Because little is known about Ag NP behavior in wash water during typical commercial washing of fresh produce, this study assessed the temporal changes in Ag NP behavior when exposed to 2 to 100 mg/L free chlorine (Cl2) in simulated lettuce wash water for up to 10 days. Aggregate size and zeta potential of Ag NPs (5 mg/L) were evaluated in the presence and absence of dissolved lettuce extract (DLE, 0.1%), with Ag NPs in deionized water serving as the control treatment. In the presence of chlorine, greater aggregation of Ag NPs occurred over time (49 to 431 nm) compared with the control treatment (P < 0.05). Lower zeta potentials (-39 to -95 mV) were observed in the chlorine-only treatments, likely due to the formation of AgCl particles. Larger aggregates and lower zeta potentials were also observed in DLE (84 to 273 nm and -28 to -32 mV, respectively), as compared with the control treatment. After 7 to 10 days, larger aggregates were seen in the chlorine-only treatments as compared with the DLE treatments, despite lower zeta potentials, probably facilitated by nucleation and crystal growth of AgCl. Transmission electron microscopy with energy dispersive spectroscopy confirmed the formation of AgCl-Ag NP composite particles with chlorine and the embedding of AgCl and Ag NPs in the DLE matrix. Thus, DLE might stabilize and protect Ag NPs from chlorine. These findings indicate that chlorine and plant-released organic material can substantially change the behavior of Ag NPs, which may, in turn, impact both removal from fresh-cut produce during washing and their environmental fate. HIGHLIGHTS
Collapse
Affiliation(s)
- Gayathri U Gunathilaka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jianzhou He
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elliot T Ryser
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
14
|
Geng M, Li L, Ai M, Jin J, Hu D, Song K. Recent Advances in Metal-Based Nanoparticle-Mediated Biological Effects in Arabidopsis thaliana: A Mini Review. MATERIALS 2022; 15:ma15134539. [PMID: 35806668 PMCID: PMC9267373 DOI: 10.3390/ma15134539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023]
Abstract
The widespread application of metal-based nanoparticles (MNPs) has prompted great interest in nano-biosafety. Consequently, as more and more MNPs are released into the environment and eventually sink into the soil, plants, as an essential component of the ecosystem, are at greater risk of exposure and response to these MNPs. Therefore, to understand the potential impact of nanoparticles on the environment, their effects should be thoroughly investigated. Arabidopsis (Arabidopsis thaliana L.) is an ideal model plant for studying the impact of environmental stress on plants’ growth and development because the ways in which Arabidopsis adapt to these stresses resemble those of many plants, and therefore, conclusions obtained from these scientific studies have often been used as the universal reference for other plants. This study reviewed the main findings of present-day interactions between MNPs and Arabidopsis thaliana from plant internalization to phytotoxic effects to reveal the mechanisms by which nanomaterials affect plant growth and development. We also analyzed the remaining unsolved problems in this field and provide a perspective for future research directions.
Collapse
Affiliation(s)
- Min Geng
- College of Food and Biology, Changchun Polytechnic, Changchun 130033, China;
| | - Linlin Li
- School of Life Science, Changchun Normal University, Changchun 130032, China; (L.L.); (M.A.); (J.J.); (D.H.)
| | - Mingjun Ai
- School of Life Science, Changchun Normal University, Changchun 130032, China; (L.L.); (M.A.); (J.J.); (D.H.)
| | - Jun Jin
- School of Life Science, Changchun Normal University, Changchun 130032, China; (L.L.); (M.A.); (J.J.); (D.H.)
| | - Die Hu
- School of Life Science, Changchun Normal University, Changchun 130032, China; (L.L.); (M.A.); (J.J.); (D.H.)
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China; (L.L.); (M.A.); (J.J.); (D.H.)
- Institute of Science, Technology and Innovation, Changchun Normal University, Changchun 130032, China
- Correspondence:
| |
Collapse
|
15
|
Shen Y, Borgatta J, Ma C, Singh G, Tamez C, Schultes NP, Zhang Z, Dhankher OP, Elmer WH, He L, Hamers RJ, White JC. Role of Foliar Biointerface Properties and Nanomaterial Chemistry in Controlling Cu Transfer into Wild-Type and Mutant Arabidopsis thaliana Leaf Tissue. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4267-4278. [PMID: 35362318 DOI: 10.1021/acs.jafc.1c07873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seven Arabidopsis thaliana mutants with differences in cuticle thickness and stomatal density were foliar exposed to 50 mg L-1 Cu3(PO4)2 nanosheets (NS), CuO NS, CuO nanoparticles, and CuSO4. Three separate fractions of Cu (surface-attached, cuticle, interior leaf) were isolated from the leaf at 0.25, 2, 4, and 8 h. Cu transfer from the surface through the cuticle and into the leaf varied with mutant and particle type. The Cu content on the surface decreased significantly over 8 h but increased in the cuticle. Cu derived from the ionic form had the greatest cuticle concentration, suggesting greater difficulty in moving across this barrier and into the leaf. Leaf Cu in the increased-stomatal mutants was 8.5-44.9% greater than the decreased stomatal mutants, and abscisic acid to close the stomata decreased Cu in the leaf. This demonstrates the importance of nanomaterial entry through the stomata and enables the optimization of materials for nanoenabled agriculture.
Collapse
Affiliation(s)
- Yu Shen
- The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jaya Borgatta
- The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Chuanxin Ma
- The NSF Center for Sustainable Nanotechnology, Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Gurpal Singh
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Carlos Tamez
- The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Neil P Schultes
- The NSF Center for Sustainable Nanotechnology, Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Zhiyun Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Wade H Elmer
- The NSF Center for Sustainable Nanotechnology, Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Lili He
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Robert J Hamers
- The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jason C White
- The NSF Center for Sustainable Nanotechnology, Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| |
Collapse
|
16
|
Ranjan A, Rajput VD, Kumari A, Mandzhieva SS, Sushkova S, Prazdnova EV, Zargar SM, Raza A, Minkina T, Chung G. Nanobionics in Crop Production: An Emerging Approach to Modulate Plant Functionalities. PLANTS (BASEL, SWITZERLAND) 2022; 11:692. [PMID: 35270162 PMCID: PMC8912566 DOI: 10.3390/plants11050692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 05/05/2023]
Abstract
The "Zero Hunger" goal is one of the key Sustainable Development Goals (SDGs) of the United Nations. Therefore, improvements in crop production have always been a prime objective to meet the demands of an ever-growing population. In the last decade, studies have acknowledged the role of photosynthesis augmentation and enhancing nutrient use efficiency (NUE) in improving crop production. Recently, the applications of nanobionics in crop production have given hope with their lucrative properties to interact with the biological system. Nanobionics have significantly been effective in modulating the photosynthesis capacity of plants. It is documented that nanobionics could assist plants by acting as an artificial photosynthetic system to improve photosynthetic capacity, electron transfer in the photosystems, and pigment content, and enhance the absorption of light across the UV-visible spectrum. Smart nanocarriers, such as nanobionics, are capable of delivering the active ingredient nanocarrier upon receiving external stimuli. This can markedly improve NUE, reduce wastage, and improve cost effectiveness. Thus, this review emphasizes the application of nanobionics for improving crop yield by the two above-mentioned approaches. Major concerns and future prospects associated with the use of nanobionics are also deliberated concisely.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Saglara S. Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Evgenya V. Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar 190025, India;
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea
| |
Collapse
|
17
|
Huang D, Dang F, Huang Y, Chen N, Zhou D. Uptake, translocation, and transformation of silver nanoparticles in plants. ENVIRONMENTAL SCIENCE: NANO 2022; 9:12-39. [PMID: 0 DOI: 10.1039/d1en00870f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article reviews the plant uptake of silver nanoparticles (AgNPs) that occurred in soil systems and the in planta fate of Ag.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| |
Collapse
|