1
|
Dai X, Wang F, Liao Y, Tu N, Fu X, Fu W, Sun Y, Liu J, Wan S, Yin W, Pi W, Liang J, Chen S, Jiang J, Yi G, Luo Y, Pan Z, Chen Z. Associations of welding-related metals and hypertension in male welders: Roles of cytokinesis-block micronucleus cytome assay parameters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126119. [PMID: 40139295 DOI: 10.1016/j.envpol.2025.126119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
The effects of welding-related metals on hypertension remain unclear. In this study, we aimed to assess the associations between welding-related metals and hypertension risk in occupational settings, and to evaluate the mediating roles of micronucleus parameters in these associations. We conducted a study on 434 male welders from a vehicle manufacturing plant in Wuhan, China, in 2023. We measured 17 metals in welding workshops and office air, specifically copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), chromium (Cr), iron (Fe), barium (Ba), aluminium (Al), zinc (Zn), tin (Sn), indium (In), cesium (Cs), arsenic (As), tellurium (Te), cadmium (Cd), cobalt (Co), and selenium (Se). We also examined blood levels of welding-related metals and micronucleus parameters, including micronuclei (MN), nucleoplasmic bridges, and nuclear buds. Generalized linear models were used to assess metal-hypertension associations, with mediation analyses exploring the roles of micronucleus parameters in these associations. The median concentrations of Cu, Mn, Ni, Pb, Cr, and Fe in welding workshop air were five times higher than in offices and correlated significantly with welding fume, hence designated as welding-related metals. The mean age of the participants was 42.96 years and 108 (24.88 %) were hypertension patients. Significant positive associations were found between blood Mn (OR = 1.120, 95 %CI = 1.044-1.200, P = 0.002) and Pb (OR = 1.047, 95 %CI = 1.018-1.077, P = 0.001) and hypertension. These associations persisted even after adjustment for all other metals. Additionally, positive associations were found of MN with hypertension risk (OR = 2.684, 95 %CI = 1.431-5.037, P = 0.002) and Pb with MN (β = 0.007, 95 %CI = 0.002-0.011, P = 0.002). Furthermore, we observed a significant mediation role of MN in the Pb-hypertension association, with a mediating proportion of 16.10 %. Specifically, the ORs(95 %CIs) for the direct and indirect effects of Pb on hypertension risk were 0.0031(0.0004-0.0042) and 0.0006(0.0001-0.0012), respectively. Our findings indicated that Pb and Mn were associated with higher hypertension risk, with elevated MN frequency potentially mediating the Pb-hypertension association.
Collapse
Affiliation(s)
- Xiayun Dai
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Fan Wang
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Yonggang Liao
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Na Tu
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Xiaolei Fu
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Wenjuan Fu
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Yizhe Sun
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Junpin Liu
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Siyu Wan
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Wenjun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Wei Pi
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Jiaojun Liang
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Siqi Chen
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Jinfeng Jiang
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Guilin Yi
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Yongbin Luo
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Zhiwei Pan
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China.
| | - Zhenlong Chen
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China.
| |
Collapse
|
2
|
Wang W, Yang K, Li J, Lin Y, Rao M, Zhang Y, Duoliken H, Jin M, Wang J, Chen K, Tang M. Exposure to toxic metals might accelerate aging. ENVIRONMENTAL RESEARCH 2025; 272:121180. [PMID: 39983966 DOI: 10.1016/j.envres.2025.121180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Biological aging (BA) trajectory can capture the characteristics of the dynamic process of aging. Although toxic metals were associated with various health effects, there was limited study of their single and joint effects on BA trajectory. METHODS A total of 2688 community-based older adults (≥65 years) were enrolled in this study, and we measured a composite BA indicator based on 9 clinical and anthropometric measures using Klemera and Doubal methods at four time points from baseline to the last follow-up. Group-based trajectory modeling was used to identify the aging trajectories. The associations between toxic metals and BA trajectories were analyzed by multivariable multinomial logistic regression. Quantile g-computing was used to explore the mixed effect of toxic metals. Pairwise interactions of toxic metals were further assessed. RESULTS Three BA trajectories including slow aging, normal aging, and accelerated aging were identified in this study. Quantile g-computing showed toxic metals mixture was associated with higher risk of being in normal aging trajectory (OR = 1.14, 95%CI: 1.01, 1.29) or accelerated aging trajectories (OR = 1.53, 95%CI: 1.25, 1.88), with Pb as the dominant contributor. An interquartile range (IQR) increase in ln-transformed Pb was associated with an increased risk of being in normal aging (OR = 1.21, 95%CI:1.08, 1.35) or accelerated BA trajectory (OR = 1.54, 95%CI:1.31, 1.82) compared with slow aging trajectory. Similarly, per IQR increase in As was associated with a higher risk of being in accelerated BA trajectory (OR = 1.18, 95%CI: 1.01, 1.39). The interaction between toxic metals exposure was not significant. CONCLUSION This study identified three BA trajectories and found the association between mixed toxic metals and increased risk of accelerated BA trajectories, with Pb as the dominant contributor. These findings highlight the importance of reducing toxic metals in the environment and may assist in developing effective anti-aging interventions in older adults.
Collapse
Affiliation(s)
- Wenqing Wang
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kaixuan Yang
- Department of Public Health, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Jiayi Li
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yaoyao Lin
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Man Rao
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Zhang
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hazizi Duoliken
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mingjuan Jin
- Department of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jianbing Wang
- Department of Public Health, the National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kun Chen
- Department of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Mengling Tang
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Hu XF, Loan A, Chan HM. Re-thinking the link between exposure to mercury and blood pressure. Arch Toxicol 2025; 99:481-512. [PMID: 39804370 PMCID: PMC11775068 DOI: 10.1007/s00204-024-03919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025]
Abstract
Hypertension or high blood pressure (BP) is a prevalent and manageable chronic condition which is a significant contributor to the total global disease burden. Environmental chemicals, including mercury (Hg), may contribute to hypertension onset and development. Hg is a global health concern, listed by the World Health Organization (WHO) as a top ten chemical of public health concern. Most people are exposed to some level of Hg, with vulnerable groups, including Indigenous peoples and small-scale gold miners, at a higher risk for exposure. We published a systematic review and meta-analysis in 2018 showing a dose-response relationship between Hg exposure and hypertension. This critical review summarizes the biological effects of Hg (both organic and inorganic form) on the underlying mechanisms that may facilitate the onset and development of hypertension and related health outcomes and updates the association between Hg exposure (total Hg concentrations in hair) and BP outcomes. We also evaluated the weight of evidence using the Bradford Hill criteria. There is a strong dose-response relationship between Hg (both organic and inorganic) exposure and BP in animal studies and convincing evidence that Hg contributes to hypertension by causing structural and functional changes, vascular reactivity, vasoconstriction, atherosclerosis, dyslipidemia, and thrombosis. The underlying mechanisms are vast and include impairments in antioxidant defense mechanisms, increased ROS production, endothelial dysfunction, and alteration of the renin-angiotensin system. We found additional 16 recent epidemiological studies that have reported the relationship between Hg exposure and hypertension in the last 5 years. Strong evidence from epidemiological studies shows a positive association between Hg exposure and the risk of hypertension and elevated BP. The association is mixed at lower exposure levels but suggests that Hg can affect BP even at low doses when co-exposed with other metals. Further research is needed to develop robust conversion factors among different biomarkers and standardized measures of Hg exposure. Regulatory agencies should consider adopting a 2 µg/g hair Hg level as a cut-off for public health regulation, especially for adults older than child-bearing age.
Collapse
Affiliation(s)
- Xue Feng Hu
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Allison Loan
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Hing Man Chan
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
4
|
Karakwende P, Barr DB, Checkley W, Clasen T, Lovvorn A, Contreras CL, Diaz AA, Dusabimana E, De Las Fuentes L, Jabbarzadeh S, Johnson M, Kalisa E, Kirby M, McCracken JP, Ndagijimana F, Ndikubwimana A, Ntakirutimana T, de Dieu Ntivuguruzwa J, Jennifer L, Peel AP, Davila-Roman VG, Rosa G, Waller LA, Wang J, Thompson L, Clark ML, Young BN. Baseline associations between exposure to metals and systolic and diastolic blood pressure among women in the Household Air Pollution Intervention Network Trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.21.25320894. [PMID: 39973984 PMCID: PMC11838999 DOI: 10.1101/2025.01.21.25320894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Lead (Pb) and cadmium (Cd) are metals that occur naturally in the environment and are present in biomass fuels, such as wood. When these fuels are burned, they can release Pb and Cd into the air, leading to exposure through inhalation. Studies of exposure to metals and health outcomes suggest harmful impacts, including cardiovascular diseases. We assessed baseline associations between Pb and Cd concentrations in dried blood spots with systolic and diastolic blood pressure (SBP, DBP) among women in the Household Air Pollution Intervention Network (HAPIN) trial. We analyzed data from three of the four HAPIN randomized controlled trial sites (Guatemala, Peru, and Rwanda), focusing on women aged 40 to 79 years living in households reliant on biomass cooking. Dried blood spots were collected, processed, and analyzed for Pb and Cd exposure; SBP and DBP were measured following international guidelines. Demographic, socioeconomic, and dietary variables were collected via standardized questionnaires administered by local field staff. Statistical analyses included multivariable linear regression to examine associations between Pb and Cd, separately, and BP, adjusting for covariates informed by a Directed Acyclic Graph. Additional analyses assessed effect modification by age and research site. There was regional variation in BP levels among women, with median SBP and DBP values higher in Rwanda (116.3 mmHg, 73.0 mmHg) and Guatemala (113.3 mmHg, 68.3 mmHg) compared to Peru (106.0 mmHg, 63.3 mmHg). Pb exposure showed positive associations with both SBP and DBP. For each log-unit increase in Pb concentration, we observed increases of 2.36 mmHg SBP (95% CI 0.51, 4.20) and 1.42 mmHg DBP (95% CI 0.16, 2.67). Cd was not associated with SBP or DBP in this analysis. Pb exposure may be an important risk factor for increased SBP and DBP, markers of cardiovascular disease risk.
Collapse
Affiliation(s)
- Patrick Karakwende
- School of Public Health, College of Medicine and Health Sciences, University of Rwanda, Kigali Rwanda
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, US
| | - William Checkley
- Division of Pulmonary and Critical Care, and the Center for Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD US
| | - Thomas Clasen
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, US
| | - Amy Lovvorn
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, US
| | - Carmen Lucía Contreras
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Anaite A. Diaz
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | | | - Lisa De Las Fuentes
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Shirin Jabbarzadeh
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, US
| | | | - Egide Kalisa
- School of Sciences, Center of Excellence in Biodiversity and Natural Resource Management, College of Science and Technology, Kigali, Rwanda
| | | | - John P. McCracken
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, US
| | | | - Adolphe Ndikubwimana
- School of Public Health, College of Medicine and Health Sciences, University of Rwanda, Kigali Rwanda
| | - Theoneste Ntakirutimana
- School of Public Health, College of Medicine and Health Sciences, University of Rwanda, Kigali Rwanda
| | | | - L Jennifer
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, US
| | - Ajay Pillarisetti Peel
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
| | - Victor G. Davila-Roman
- Caridiovascular Division, School of Medicine, Washington University School of Medicine St. Louis, MO
| | - Ghislaine Rosa
- Department of Infectious and Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lance A. Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, US
| | - Jiantong Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, US
| | - Lisa Thompson
- Nell Hodgson Woodruff School of Nursing Emory University 1520 Clifton Road, NE Atlanta, GA 30322-4027
| | - Maggie L. Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, US
| | - Bonnie N. Young
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, US
| |
Collapse
|
5
|
Jansen P, Den Hond E, De Brouwere K, Ali EA, Hassen HY, Gabaret I, Van Pottelbergh G. Integrating human biomonitoring exposure data into a primary care morbidity database: a feasibility study. Environ Health 2025; 24:1. [PMID: 39755621 DOI: 10.1186/s12940-024-01152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND The detection of a local per- and polyfluoroalkyl substances (PFAS) pollution hotspot in Zwijndrecht (Belgium) necessitated immediate action to address health concerns of the local community. Several human biomonitoring (HBM) studies were initiated, gathering cross-sectional exposure data from more than 10,000 participants. The linkage of these HBM data with primary care health registries might be a useful new tool in environmental health analysis. AIM We assessed the feasibility of linking exposure data from HBM programs to health outcomes from the Intego registry, which collects data from general practitioners' electronic health records. This feasibility study uses exposure data from one of the completed PFAS HBM studies, which included 796 individuals. We describe the separate datasets, the process of integrating the HBM data into Intego, the analysis plan and the advantages and challenges of using this method. RESULTS We established the integration of HBM data into the Intego primary care morbidity database, adhering to stringent privacy regulations and quality standards to ensure result integrity. Because of the modest sample size used in this feasibility study, no conclusions about the impact of PFAS on health endpoints can be drawn. However, with PFAS data from more than 10,000 residents available soon, more robust studies will be possible with this new method. INTERPRETATION We introduce a novel approach for assessing the impact of environmental health hazards within primary care settings. The methods outlined here not only pave the way for larger-scale projects but also offer a promising avenue for long-term environmental health monitoring.
Collapse
Affiliation(s)
- Pieter Jansen
- Academic Center for General Practice, KU Leuven, Kapucijnenvoer 7 bus 7001 block h, Leuven, 3000, Belgium.
| | - Elly Den Hond
- Provincial Institute for Hygiene (PIH), Kronenburgstraat 45, Antwerp, 2000, Belgium
- Family Medicine and Population Health, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Katleen De Brouwere
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Endale Alemayehu Ali
- Academic Center for General Practice, KU Leuven, Kapucijnenvoer 7 bus 7001 block h, Leuven, 3000, Belgium
| | - Hamid Yimam Hassen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Ilona Gabaret
- Provincial Institute for Hygiene (PIH), Kronenburgstraat 45, Antwerp, 2000, Belgium
- Department of Care Flanders, Simon Bolivarlaan 17, Brussels, 1000, Belgium
| | - Gijs Van Pottelbergh
- Academic Center for General Practice, KU Leuven, Kapucijnenvoer 7 bus 7001 block h, Leuven, 3000, Belgium
| |
Collapse
|
6
|
Jiang H, Zhang S, Lin Y, Meng L, Li J, Wang W, Yang K, Jin M, Wang J, Tang M, Chen K. Roles of serum uric acid on the association between arsenic exposure and incident metabolic syndrome in an older Chinese population. J Environ Sci (China) 2025; 147:332-341. [PMID: 39003051 DOI: 10.1016/j.jes.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 07/15/2024]
Abstract
Growing evidences showed that heavy metals exposure may be associated with metabolic diseases. Nevertheless, the mechanism underlying arsenic (As) exposure and metabolic syndrome (MetS) risk has not been fully elucidated. So we aimed to prospectively investigate the role of serum uric acid (SUA) on the association between blood As exposure and incident MetS. A sample of 1045 older participants in a community in China was analyzed. We determined As at baseline and SUA concentration at follow-up in the Yiwu Elderly Cohort. MetS events were defined according to the criteria of the International Diabetes Federation (IDF). Generalized linear model with log-binominal regression model was applied to estimate the association of As with incident MetS. To investigate the role of SUA in the association between As and MetS, a mediation analysis was conducted. In the fully adjusted log-binominal model, per interquartile range increment of As, the risk of MetS increased 1.25-fold. Compared with the lowest quartile of As, the adjusted relative risk (RR) of MetS in the highest quartile was 1.42 (95% confidence interval, CI: 1.03, 2.00). Additionally, blood As was positively associated with SUA, while SUA had significant association with MetS risk. Further mediation analysis demonstrated that the association of As and MetS risk was mediated by SUA, with the proportion of 15.7%. Our study found higher As was remarkably associated with the elevated risk of MetS in the Chinese older adults population. Mediation analysis indicated that SUA might be a mediator in the association between As exposure and MetS.
Collapse
Affiliation(s)
- Haiyan Jiang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Simei Zhang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yaoyao Lin
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin Meng
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiayi Li
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenqing Wang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kaixuan Yang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianbing Wang
- Department of Public Health, National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
7
|
Verzelloni P, Giuliano V, Wise LA, Urbano T, Baraldi C, Vinceti M, Filippini T. Cadmium exposure and risk of hypertension: A systematic review and dose-response meta-analysis. ENVIRONMENTAL RESEARCH 2024; 263:120014. [PMID: 39304018 DOI: 10.1016/j.envres.2024.120014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Exposure to environmental toxic metals represents a significant global public health concern. Many studies have reported that cadmium (Cd) exposure increases the risk of hypertension. Since the shape of such relation has not been well characterized, we assessed it by performing a systematic review and dose-response meta-analysis of human studies. METHODS We searched the literature through September 5, 2024 to identify papers related to Cd, hypertension, and blood pressure. Inclusion criteria were: observational design, adult population, assessment of exposure using Cd biomarkers, and availability of exposure category-specific risk estimates for hypertension. We performed a dose-response meta-analysis of the results from included studies. RESULTS Of the 18 studies published between 2006 and 2024, most had a cross-sectional design. Cd was measured in whole blood and/or urine in almost all studies, whereas only two studies measured Cd in serum. The dose-response meta-analysis indicated an almost linear relation between urinary Cd concentrations and hypertension risk with RR = 1.18, 95% CI 1.02-1.37 at 2.0 μg/g creatinine compared with no exposure. In contrast, the association between blood Cd concentrations and hypertension risk was non-linear: there was a steep monotonic increase in risk for Cd concentrations below 2 μg/L, reaching a RR of 1.48 (95% CI 1.17-1.86) at 2.0 μg/L, after which a plateau seemed reached. We found similar trends when restricting to studies of Asian population, while when considering North American studies, hypertension risk increased above 1.0 μg/g creatinine. CONCLUSIONS In this dose-response meta-analysis, risk of hypertension showed a non-linear positive association with blood Cd concentrations and a linear positive association with urinary Cd concentrations. Inconsistency in the shape of associations could relate to the different timing of exposure assessed by the biomarkers or the alteration Cd excretion at increasing exposure levels. Mitigation of Cd exposure is confirmed as a public health priority for chronic disease prevention.
Collapse
Affiliation(s)
- Pietro Verzelloni
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Vincenzo Giuliano
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Teresa Urbano
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia Baraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vinceti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Tommaso Filippini
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
Wang Y, Qiao M, Yang H, Chen Y, Jiao B, Liu S, Duan A, Wu S, Wang H, Yu C, Chen X, Duan H, Dai Y, Li B. Investigating the relationship of co-exposure to multiple metals with chronic kidney disease: An integrated perspective from epidemiology and adverse outcome pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135844. [PMID: 39357351 DOI: 10.1016/j.jhazmat.2024.135844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Systematic studies on the associations between co-exposure to multiple metals and chronic kidney disease (CKD), as well as the underlying mechanisms, remain insufficient. This study aimed to provide a comprehensive perspective on the risk of CKD induced by multiple metal co-exposures through the integration of occupational epidemiology and adverse outcome pathway (AOP). The study participants included 401 male mine workers whose blood metal, β2-microglobulin (β2-MG), and cystatin C (Cys-C) levels were measured. Generalized linear models (GLMs), quantile g-computation models (qgcomp), least absolute shrinkage and selection operator (LASSO), and bayesian kernel machine regression (BKMR) were utilized to identify critical nephrotoxic metals. The mean concentrations of lead, cadmium, mercury, arsenic, and manganese were 191.93, 3.92, 4.66, 3.11, 11.35, and 16.33 µg/L, respectively. GLM, LASSO, qgcomp, and BKMR models consistently identified lead, cadmium, mercury, and arsenic as the primary contributors to kidney toxicity. Based on our epidemiological analysis, we used a computational toxicology method to construct a chemical-genetic-phenotype-disease network (CGPDN) from the Comparative Toxicogenomics Database (CTD), DisGeNET, and GeneCard databases, and further linked key events (KEs) related to kidney toxicity from the AOP-Wiki and PubMed databases. Finally, an AOP framework of multiple metals was constructed by integrating the common molecular initiating events (reactive oxygen species) and KEs (MAPK signaling pathway, oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, hypertension, cell death, and kidney toxicity). This is the first AOP network to elucidate the internal association between multiple metal co-exposures and CKD, providing a crucial basis for the risk assessment of multiple metal co-exposures.
Collapse
Affiliation(s)
- Yican Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Mengyun Qiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haitao Yang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shuai Liu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Airu Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Siyu Wu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haihua Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Changyan Yu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiao Chen
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yufei Dai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Bin Li
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
9
|
Kuang HX, Liu Y, Wang JR, Li MY, Zhou Y, Meng LX, Xiang MD, Yu YJ. Revealing the links between hair metal(loids) and alterations in blood pressure among children in e-waste recycling areas through urinary metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176352. [PMID: 39299322 DOI: 10.1016/j.scitotenv.2024.176352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is prevalent in e-waste recycling areas, and elevated blood pressure in children significantly increases the risk of hypertension in adulthood. However, the associations and toxic pathways between chronic exposure to metal(loids) and elevated blood pressure are rarely investigated. In this study, we measured the levels of 29 hair metal(loids) (chronic exposure biomarkers) and blood pressure in 667 susceptible children from an e-waste recycling area to explore their relationships. Paired urine metabolomics analysis was also performed to interpret potential mechanistic pathways. Results showed that the hypertension prevalence in our recruited children (13.0 %) exceeded the average rate (9.5 %) for Chinese children aged 6-17 years. The top five abundant metal(loids), including lead, strontium, barium, and zinc, demonstrated the most profound associations with elevated systolic blood pressure. Quantile g-computation, weighted quantile sum, and Bayesian kernel machine regression analysis jointly demonstrated a significant association between chronic exposure to metal(loids) mixture and systolic blood pressure. Interestingly, selenium showed significant antagonistic interactions with these four metals, suggesting that supplementing selenium may help children resist the elevated blood pressure induced by metal(loids) exposure. Increased metal(loids) and blood pressure levels were significantly linked to changes in urine metabolomics. Structural equation model indicated that androsterone glucuronide and N-Acetyl-1-aspartylglutamic acid were the significant mediators of the associations between metal(loids) and blood pressure, with mediation effects of 77.4 % and 29.0 %, respectively, suggesting that androsterone glucuronide and N-Acetyl-1-aspartylglutamic acid may be involved in the development of metal-induced blood pressure elevating effect. Girls were more vulnerable to metal(loids)-induced hormonal imbalance, especially androsterone glucuronide, than boys. Chronic exposure to metal(loids) at e-waste recycling sites may contribute to elevated blood pressure in children through disrupting various metabolism pathways, particularly hormonal balance. Our study provides new insights into potential mechanistic pathways of metal(loids)-induced changes in children's blood pressure.
Collapse
Affiliation(s)
- Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Ye Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jia-Rong Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Meng-Yang Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lin-Xue Meng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
10
|
Gong Y, Wang Y, Nong Q, Hu P, Li Z, Huang X, Zhong M, Li X, Wu S, Zeng F, Zhao N, Qin Y, Liu S, Hong J, Hu L, Zhang W, Huang Y. The Impact of Blood Lead and Its Interaction with Occupational Factors and Air Pollution on Hypertension Prevalence. TOXICS 2024; 12:861. [PMID: 39771076 PMCID: PMC11679143 DOI: 10.3390/toxics12120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Large-scale epidemiological studies on the association of blood lead levels with blood pressure and hypertension prevalence are still limited, particularly among lead-exposed workers. The evidence is even more scarce on the interaction of blood lead levels with occupational variables and ambient air pollution levels. We developed mixed-effect models based on a large group of lead-exposed workers (N = 22,002). The results were also stratified by multiple groupings. Compared to participants with blood lead < 20 μg/L, those with levels > 20 μg/L had a 26-37% higher prevalence of hypertension, as well as a 0.65-13.7 mmHg higher systolic and diastolic blood pressure. Workers exposed to high PM10 levels had a 21-28% higher risk. Workers exposed to high temperatures had a 0.41-2.46 mmHg greater increase in blood pressure, and those not exposed to dust had a 1.29-1.65 mmHg greater blood pressure increase. Our findings suggested the negative impact of blood lead on blood pressure and the prevalence of hypertension, with workers exposed to high PM10 concentrations, those exposed to occupational high temperature, and those without dust exposure being more vulnerable.
Collapse
Affiliation(s)
- Yajun Gong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ying Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (S.W.); (F.Z.)
| | - Qiying Nong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
| | - Peixia Hu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhiqiang Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (S.W.); (F.Z.)
| | - Xiangyuan Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Meimei Zhong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Xinyue Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (S.W.); (F.Z.)
| | - Shaomin Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (S.W.); (F.Z.)
| | - Fangfang Zeng
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (S.W.); (F.Z.)
| | - Na Zhao
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (S.W.); (F.Z.)
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yiru Qin
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
| | - Suhui Liu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (S.W.); (F.Z.)
| | - Jiaying Hong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (S.W.); (F.Z.)
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; (Y.G.); (Q.N.); (P.H.); (Z.L.); (X.H.); (M.Z.); (X.L.); (N.Z.); (Y.Q.); (S.L.); (J.H.)
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou 510080, China; (Y.W.); (S.W.); (F.Z.)
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
11
|
Wei J, Liu R, Yang Z, Liu H, Wang Y, Zhang J, Sun M, Shen C, Liu J, Yu P, Tang NJ. Association of metals and bisphenols exposure with lipid profiles and dyslipidemia in Chinese adults: Independent, combined and interactive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174315. [PMID: 38942316 DOI: 10.1016/j.scitotenv.2024.174315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Although studies have assessed the association of metals and bisphenols with lipid metabolism, the observed results have been controversial, and limited knowledge exists about the combined and interactive effects of metals and bisphenols exposure on lipid metabolism. METHODS Plasma metals and serum bisphenols concentrations were evaluated in 888 participants. Multiple linear regression and logistic regression models were conducted to assess individual associations of 18 metals and 3 bisphenols with 5 lipid profiles and dyslipidemia risk, respectively. The dose-response relationships of targeted contaminants with lipid profiles and dyslipidemia risk were captured by applying a restriction cubic spline (RCS) function. The bayesian kernel machine regression (BKMR) model was used to assess the overall effects of metals and bisphenols mixture on lipid profiles and dyslipidemia risk. The interactive effects of targeted contaminants on interested outcomes were explored by constructing an interaction model. RESULTS Single-contaminant analyses revealed that exposure to iron (Fe), nickel (Ni), copper (Cu), arsenic (As), selenium (Se), strontium (Sr), and tin (Sn) was associated with elevated lipid levels. Cobalt (Co) showed a negative association with high density lipoprotein cholesterol (HDL-C). Bisphenol A (BPA) and bisphenol AF (BPAF) were associated with decreased HDL-C levels, with nonlinear associations observed. Vanadium (V), lead (Pb), and silver (Ag) displayed U-shaped dose-response relationships with most lipid profiles. Multi-contaminant analyses indicated positive trends between contaminants mixture and total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C). The interaction analyses showed that Se-Fe exhibited synergistic effects on LDL-C and non-HDL-C, and Se-Sn showed a synergistic effect on HDL-C. CONCLUSIONS Our study suggested that exposure to metals and bisphenols was associated with changes in lipid levels, and demonstrated their combined and interactive effects.
Collapse
Affiliation(s)
- Jiemin Wei
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Ruifang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Ze Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Yiqing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Jingyun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Meiqing Sun
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Changkun Shen
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Jian Liu
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
12
|
Guo K, Ni W, Du L, Zhou Y, Cheng L, Zhou H. Environmental chemical exposures and a machine learning-based model for predicting hypertension in NHANES 2003-2016. BMC Cardiovasc Disord 2024; 24:544. [PMID: 39385080 PMCID: PMC11462799 DOI: 10.1186/s12872-024-04216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Hypertension is a common disease, often overlooked in its early stages due to mild symptoms. And persistent elevated blood pressure can lead to adverse outcomes such as coronary heart disease, stroke, and kidney disease. There are many risk factors that lead to hypertension, including various environmental chemicals that humans are exposed to, which are believed to be modifiable risk factors for hypertension. OBJECTIVE To investigate the role of environmental chemical exposures in predicting hypertension. METHODS A total of 11,039 eligible participants were obtained from NHANES 2003-2016, and multiple imputation was used to process the missing data, resulting in 5 imputed datasets. 8 Machine learning algorithms were applied to the 5 imputed datasets to establish hypertension prediction models, and the average accuracy score, precision score, recall score, and F1 score were calculated. A generalized linear model was also built to predict the systolic and diastolic blood pressure levels. RESULTS All 8 algorithms had good predictions for hypertension, with Support Vector Machine (SVM) being the best, with accuracy, precision, recall, F1 scores and area under the curve (AUC) of 0.751, 0.699, 0.717, 0.708 and 0.822, respectively. The R2 of the linear model on the training and test sets was 0.28, 0.25 for systolic and 0.06, 0.05 for diastolic blood pressure. CONCLUSIONS In this study, relatively accurate prediction of hypertension was achieved using environmental chemicals with machine learning algorithms, demonstrating the predictive value of environmental chemicals for hypertension.
Collapse
Affiliation(s)
- Kun Guo
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Weicheng Ni
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Leilei Du
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Yimin Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Ling Cheng
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Hao Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China.
| |
Collapse
|
13
|
Liang Y, Zhang M, Jin W, Zhao L, Wu Y. Association of heavy metals exposure with lower blood pressure in the population aged 8-17 years: a cross-sectional study based on NHANES. Front Public Health 2024; 12:1411123. [PMID: 39035189 PMCID: PMC11259964 DOI: 10.3389/fpubh.2024.1411123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Background The existing evidence regarding the joint effect of heavy metals on blood pressure (BP) in children and adolescents is insufficient. Furthermore, the impact of factors such as body weight, fish consumption, and age on their association remains unclear. Methods The study utilized original data from the National Health and Nutrition Examination Survey, encompassing 2,224 children and adolescents with complete information on 12 urinary metals (barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, tungsten, uranium, mercury and arsenic), BP, and core covariates. Various statistical methods, including weighted multiple logistic regression, linear regression, and Weighted Quantile Sum regression (WQS), were employed to evaluate the impact of mixed metal exposure on BP. Sensitivity analysis was conducted to confirm the primary analytical findings. Results The findings revealed that children and adolescents with low-level exposure to lead (0.40 μg/L, 95%CI: 0.37, 0.42), mercury (0.38 μg/L, 95%CI: 0.35, 0.42) and molybdenum (73.66 μg/L, 95%CI: 70.65, 76.66) exhibited reduced systolic blood pressure (SBP) and diastolic blood pressure (DBP). Conversely, barium (2.39 μg/L, 95%CI: 2.25, 2.54) showed a positive association with increased SBP. A 25th percentile increase in the WQS index is significantly associated with a decrease in SBP of 0.67 mmHg (95%CI, -1.24, -0.10) and a decrease in DBP of 0.59 mmHg (95% CI, -1.06, -0.12), which remains statistically significant even after adjusting for weight. Furthermore, among individuals who consume fish, heavy metals have a more significant influence on SBP. A 25 percentile increase in the WQS index is significantly associated with a decrease of 3.30 mmHg (95% CI, -4.73, -1.87) in SBP, primarily attributed to mercury (27.61%), cadmium (27.49%), cesium (17.98%), thallium (8.49%). The study also identified a declining trend in SBP among children aged 10-17, whereas children aged 11-18 exhibited lower levels of systolic and diastolic blood pressure, along with a reduced risk of hypertension. Conclusion Some heavy metals demonstrate an inverse association with the BP of children and adolescents, particularly notable in groups with fish consumption and older children and adolescents. Future studies are warranted to validate these findings and delve deeper into the interplay of heavy metals.
Collapse
Affiliation(s)
| | | | | | - Liqing Zhao
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Zhou YH, Bai YJ, Zhao XY. Combined exposure to multiple metals on abdominal aortic calcification: results from the NHANES study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24282-24301. [PMID: 38438641 DOI: 10.1007/s11356-024-32745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Exposure to metals increases the risk of many diseases and has become a public health concern. However, few studies have focused on the effect of metal on abdominal aortic calcification (AAC), especially the combined effects of metal mixtures. In this study, we aim to investigate the combined effect of metals on AAC risk and determine the key components in the multiple metals. We tried to investigate the relationship between multiple metal exposure and AAC risk. Fourteen urinary metals were analyzed with five statistical models as follows: generalized linear regression, weighted quantile sum regression (WQS), quantile g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR) models. A total of 838 participants were involved, of whom 241 (28.8%) had AAC. After adjusting for covariates, in multiple metal exposure logistic regression, cadmium (Cd) (OR = 1.364, 95% CI = 1.035-1.797) was positively associated with AAC risk, while cobalt (Co) (OR = 0.631, 95% CI = 0.438-0.908) was negatively associated with AAC risk. A significant positive effect between multiple metal exposure and AAC risk was observed in WQS (OR = 2.090; 95% CI = 1.280-3.420, P < 0.01), Qgcomp (OR = 1.522, 95% CI = 1.012-2.290, P < 0.05), and BKMR models. It was found that the positive association may be driven primarily by Cd, lead (Pb), uranium (U), and tungsten (W). Subgroups analysis showed the association was more significant in participants with BMI ≥ 25 kg/m2, abdominal obesity, drinking, and smoking. Our study shows that exposure to multiple metals increases the risk of AAC in adults aged ≥ 40 years in the USA and that Cd, Pb, U, and W are the main contributors. The association is stronger in participants who are obese, smoker, or drinker.
Collapse
Affiliation(s)
- Yuan-Hang Zhou
- Department of Cardiology, Cardiovascular Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Yu-Jie Bai
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao-Yan Zhao
- Department of Cardiology, Cardiovascular Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Sazakli E. Human Health Effects of Oral Exposure to Chromium: A Systematic Review of the Epidemiological Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:406. [PMID: 38673319 PMCID: PMC11050383 DOI: 10.3390/ijerph21040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The toxicity and carcinogenicity of hexavalent chromium via the inhalation route is well established. However, a scientific debate has arisen about the potential effects of oral exposure to chromium on human health. Epidemiological studies evaluating the connection between ingested chromium and adverse health effects on the general population are limited. In recent years, a wealth of biomonitoring studies has emerged evaluating the associations between chromium levels in body fluids and tissues and health outcomes. This systematic review brings together epidemiological and biomonitoring evidence published over the past decade on the health effects of the general population related to oral exposure to chromium. In total, 65 studies were reviewed. There appears to be an inverse association between prenatal chromium exposure and normal fetal development. In adults, parameters of oxidative stress and biochemical alterations increase in response to chromium exposure, while effects on normal renal function are conflicting. Risks of urothelial carcinomas cannot be overlooked. However, findings regarding internal chromium concentrations and abnormalities in various tissues and systems are, in most cases, controversial. Environmental monitoring together with large cohort studies and biomonitoring with multiple biomarkers could fill the scientific gap.
Collapse
Affiliation(s)
- Eleni Sazakli
- Lab of Public Health, Medical School, University of Patras, GR 26504 Patras, Greece
| |
Collapse
|
16
|
Wu L, Zhang S, Zhang J, Xin Y, Niu P, Li J. Associations of heavy metal mixtures with blood pressure among U.S. adults in NHANES 2017-2018 by four statistical models. Chin Med J (Engl) 2024; 137:628-630. [PMID: 38282382 PMCID: PMC10932526 DOI: 10.1097/cm9.0000000000002956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 01/30/2024] Open
Affiliation(s)
- Luli Wu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shixuan Zhang
- Department of Nutrition, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Junrou Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ye Xin
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
17
|
Hu WL, Xiao W, Shen WB, Wu YY, Li X, Zhong Q, Li GA, Lu HH, Liu JJ, Zhang ZH, Huang F. Effect of exposures to multiple metals on blood pressure and hypertension in the elderly: a community-based study. Biometals 2024; 37:211-222. [PMID: 37792258 DOI: 10.1007/s10534-023-00543-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
A chronic disease, hypertension (HTN) is prevalent among the elderly. Exploring the factors that influence HTN and blood pressure (BP) changes is of great public health significance. However, mixed exposure to multiple serum metals has had less research on the effects on BP and HTN for the elderly. From April to August 2019, 2372 people participated in the community physical examination program for the elderly in Tongling City, Anhui Province. We measured BP and serum levels of 10 metals and collected basic demographic information. We analyzed the relationship between metal levels and changes in BP and HTN by the least absolute shrinkage and selection operator regression, Bayesian kernel machine regression model, and generalized linear model. In multiple models, lead (Pb) and cadmium (Cd) were still significantly associated with HTN occurrence after adjusting for potential confounders (Pb: ORquartile 4 VS quartile 1 = 1.20, 95% CI 1.01-1.43; Cd: ORquartile 4 VS quartile 1 = 1.37, 95% CI 1.16-1.62). In the male subgroup, results were similar to those of the general population. In the female group, Cd was positively correlated with HTN and systolic blood pressure, while Pb was not. According to this study, Pb and Cd were correlated with BP and HTN positively, and there was a certain joint effect. To some extent, our findings provide clues for the prevention of hypertension in the elderly.
Collapse
Affiliation(s)
- Wen-Lei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Wei Xiao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Wen-Bin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Yue-Yang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Xue Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Qi Zhong
- Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guo-Ao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Huan-Huan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Jian-Jun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Zhi-Hua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
18
|
Jin T, Park EY, Kim B, Oh JK. Environmental exposure to lead and cadmium are associated with triglyceride glucose index. Sci Rep 2024; 14:2496. [PMID: 38291186 PMCID: PMC10827717 DOI: 10.1038/s41598-024-52994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
The triglyceride glucose (TyG) index was suggested as a novel reliable surrogate marker for insulin resistance and related cardiovascular-metabolic diseases. We aimed to evaluate the association between the TyG index and environmental exposure to lead (Pb), mercury (Hg), and cadmium (Cd). A total of 9645 adults who enrolled in the Korea National Health and Nutrition Examination Survey in 2005, 2008-2013, and 2016 were included. Fasting plasma glucose and triglyceride levels were used to calculate the TyG index. Multivariate logistic regression model was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). We noted an increasing trend in the TyG index with increment of blood Pb and Cd concentrations. Participants in the highest quartile of blood Pb and Cd concentrations had higher TyG index values than those in the lowest quartile, with ORs (95% CIs) of 1.32 (1.07-1.63) and 1.29 (1.04-1.59) for Pb and Cd, respectively. Strong associations between blood Pb and Cd concentrations and the TyG index were found in men. Blood Hg concentrations did not show a significant association with the TyG index. Our study suggests that public health strategies for cardiovascular-metabolic disorder prevention should be directed toward individuals exposed to priority heavy metals.
Collapse
Affiliation(s)
- Taiyue Jin
- Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, Korea
| | - Eun Young Park
- Department of Preventive Medicine, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea.
| | - Byungmi Kim
- Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, Korea
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, Korea
| | - Jin-Kyoung Oh
- Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, Korea
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, Korea
| |
Collapse
|
19
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
20
|
Han Z, Gong S, Tu Y, Lang C, Tang J, Wang T, Xia ZL. The Relationships Between Blood Pb Levels and Blood Pressure Among Lead-Exposed Workers in China: A Repeated-Measure Study. J Occup Environ Med 2023; 65:e759-e763. [PMID: 37757745 DOI: 10.1097/jom.0000000000002974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
OBJECTIVES To explore the differences in the increase of systolic blood pressure (SBP) and diastolic blood pressure (DBP) in 3 consecutive years among lead (Pb) workers. METHODS Four hundred forty-eight Pb workers were enrolled in this repeated-measure study. Blood Pb, SBP, and DBP were measured in 2015 to 2017. Repeated measure of analysis of variance was used to compare the differences in the increase of SBP and DBP. RESULTS The mean SBP values were 124.0/125.5/126.9 mm Hg, and the mean DBP values were 75.4/77.4/77.8 mm Hg from 2015 to 2017. The differences in the increase of SBP and DBP were 2.94/2.42 mm Hg during the 3-year period. The average annual increase of SBP or DBP showed an upward trend in different Pb dose groups ( F = 4.904, P = 0.002; F = 3.612, P = 0.013). CONCLUSIONS Lead exposure caused average annual increases in SBP and DBP with 0.98 and 0.81 mm Hg, which provided basic data for health surveillance.
Collapse
Affiliation(s)
- Zhiyuan Han
- From the Department of Environmental Health, College of Public Health, Weifang Medical University, Weifang City, Shandong Province, China (Z.H., C.L., J.T., T.W.); Department of Occupational Health and Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, China (S.G., Y.T., Z.X.); and School of Public Health, Xinjiang Medical University, Urumqi, China (Z.X.)
| | | | | | | | | | | | | |
Collapse
|
21
|
Boafo YS, Mostafa S, Obeng-Gyasi E. Association of Combined Metals and PFAS with Cardiovascular Disease Risk. TOXICS 2023; 11:979. [PMID: 38133380 PMCID: PMC10748340 DOI: 10.3390/toxics11120979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
This study sought to investigate the impact of exposure to metals and per- and polyfluoroalkyl substances (PFASs) on cardiovascular disease (CVD)-related risk. PFASs, including PFOA, PFOS, PFNA, and PFHxS, as well as metals such as lead (Pb), cadmium (Cd), and mercury (Hg), were analyzed to elucidate their combined effects on CVD risk. METHODS Utilizing data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2007 to 2014, this investigation explored the effects of PFASs and metals on CVD risk. A spectrum of individual CVD markers, encompassing systolic blood pressure (SBP), diastolic blood pressure (DBP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, and triglycerides, was examined. Additionally, comprehensive CVD risk indices were evaluated, namely the Overall Cardiovascular Biomarkers Index (OCBI), including the Framingham Risk Score and an Overall Cardiovascular Index. Linear regression analysis was employed to probe the relationships between these variables. Furthermore, to assess dose-response relationships between exposure mixtures and CVD while mitigating the influence of multicollinearity and potential interaction effects, Bayesian Kernel Machine Regression (BKMR) was employed. RESULTS Our findings indicated that exposure to PFAS and metals in combination increased CVD risk, with combinations occurring with lead bringing forth the largest impact among many CVD-related markers. CONCLUSIONS This study finds that combined exposure to metals and PFASs significantly elevates the likelihood of CVD risk. These results highlight the importance of understanding the complex interplay between multipollutant exposures and their potential implications for cardiovascular health.
Collapse
Affiliation(s)
- Yvonne S. Boafo
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Sayed Mostafa
- Department of Mathematics and Statistics, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
22
|
Xie J, Zhou F, Ouyang L, Li Q, Rao S, Su R, Yang S, Li J, Wan X, Yan L, Liu P, Cheng H, Li L, Du G, Feng C, Fan G. Insight into the effect of a heavy metal mixture on neurological damage in rats through combined serum metabolomic and brain proteomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165009. [PMID: 37353033 DOI: 10.1016/j.scitotenv.2023.165009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/26/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
The heavy metals lead (Pb), cadmium (Cd), and mercury (Hg) that cause neurocognitive impairment have been extensively studied. These elements typically do not exist alone in the environment; they are often found with other heavy metals and can enter the body through various routes, thereby impacting health. Our previous research showed that low Pb, Cd, and Hg levels cause neurobehavioral impairments in weaning and adult rats. However, little is known about the biomarkers and mechanisms underlying Pb, Cd, and Hg mixture-induced neurological impairments. A combined analysis of metabolomic and proteomic data may reveal heavy metal-induced alterations in metabolic and protein profiles, thereby improving our understanding of the molecular mechanisms underlying heavy metal-induced neurological impairments. Therefore, brain tissue and serum samples were collected from rats exposed to a Pb, Cd, and Hg mixture for proteomic and metabolomic analyses, respectively. The analysis revealed 363 differential proteins in the brain and 206 metabolites in serum uniquely altered in the Pb, Cd, and Hg mixture exposure group, compared to those of the control group. The main metabolic impacted pathways were unsaturated fatty acids biosynthesis, linoleic acid metabolism, phenylalanine metabolism, and tryptophan metabolism. We further identified that the levels of arachidonic acid (C20:4 n-3) and, adrenic acid (C22:4 n-3) were elevated and that kynurenic acid (KA) and quinolinic acid (QA) levels and the KA/QA ratio, were decreased in the group exposed to the Pb, Cd, and Hg mixture. A joint analysis of the proteome and metabolome showed that significantly altered proteins such as LPCAT3, SLC7A11, ASCL4, and KYAT1 may participate in the neurological impairments induced by the heavy metal mixture. Overall, we hypothesize that the dysregulation of ferroptosis and kynurenine pathways is associated with neurological damage due to chronic exposure to a heavy metal mixture.
Collapse
Affiliation(s)
- Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Rui Su
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jiajun Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Xin Wan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingyu Yan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Peishan Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Hui Cheng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingling Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
23
|
Halabicky OM, Téllez-Rojo MM, Miller AL, Goodrich JM, Dolinoy DC, Hu H, Peterson KE. Associations of prenatal and childhood Pb exposure with allostatic load in adolescence: Findings from the ELEMENT cohort study. ENVIRONMENTAL RESEARCH 2023; 235:116647. [PMID: 37442254 PMCID: PMC10839745 DOI: 10.1016/j.envres.2023.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
The biological pathways which link lead (Pb) and long-term outcomes are unclear, though rodent models and a few human studies suggest Pb may alter the body's stress response systems, which over time, can elicit dysregulated stress responses with cumulative impacts. This study examined associations between prenatal and early childhood Pb exposure and adolescent allostatic load, an index of an individual's body burden of stress in multiple biological systems, and further examined sex-based associations. Among 391 (51% male) participants in the ELEMENT birth cohort, we related trimester-specific maternal blood Pb, 1-month postpartum maternal tibia and patella Pb, and child blood Pb at 12-24 months to an allostatic load index in adolescence comprised of biomarkers of cardiovascular, metabolic, neuroendocrine, and immune function. The results were overall mixed, with prenatal exposure, particularly maternal bone Pb, being positively associated with allostatic load, and early childhood Pb showing mixed results for males and females. In adjusted Poisson regression models, 1 mcg/g increase in tibia Pb was associated with a 1% change in expected allostatic load (IRR = 1.01; 95%CI 0.99, 1.02). We found a significant Pb × sex interaction (IRR = 1.05; 95%CI 1.01, 1.10); where males saw an increasing percent change in allostatic load as 12 month Pb levels increased compared to females who saw a decreasing allostatic load. Further examination of allostatic load will facilitate the determination of potential mechanistic pathways between developmental toxicant exposures and later-in-life cardiometabolic outcomes.
Collapse
Affiliation(s)
- O M Halabicky
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - M M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - A L Miller
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - J M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - D C Dolinoy
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - H Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K E Peterson
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Luo KH, Wu CH, Yang CC, Chen TH, Tu HP, Yang CH, Chuang HY. Exploring the association of metal mixture in blood to the kidney function and tumor necrosis factor alpha using machine learning methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115528. [PMID: 37783110 DOI: 10.1016/j.ecoenv.2023.115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
This research aimed to approach relationships between metal mixture in blood and kidney function, tumor necrosis factor alpha (TNF-α) by machine learning. Metals levels were measured by Inductively Couple Plasma Mass Spectrometry in blood from 421 participants. We applied K Nearest Neighbor (KNN), Naive Bayes classifier (NB), Support Vector Machines (SVM), random forest (RF), Gradient Boosting Decision Tree (GBDT), Categorical boosting (CatBoost), eXtreme Gradient Boosting (XGBoost), Whale Optimization-based XGBoost (WXGBoost) to identify the effect of plasma metals, TNF-α, and estimated glomerular filtration rate (eGFR by CKD-EPI equation). We conducted not only toxic metals, lead (Pb), arsenic (As), cadmium (Cd) but also included trace essential metals, selenium (Se), copper (Cu), zinc (Zn), cobalt (Co), to predict the interaction of TNF-α, TNF-α/white blood count, and eGFR. The high average TNF-α level group was observed among subjects with higher Pb, As, Cd, Cu, and Zn levels in blood. No associations were shown between the low and high TNF-α level group in blood Se and Co levels. Those with lower eGFR group had high Pb, As, Cd, Co, Cu, and Zn levels. The crucial predictor of TNF-α level in metals was blood Pb, and then Cd, As, Cu, Se, Zn and Co. The machine learning revealed that As was the major role among predictors of eGFR after feature selection. The levels of kidney function and TNF-α were modified by co-exposure metals. We were able to acquire highest accuracy of over 85% in the multi-metals exposure model. The higher Pb and Zn levels had strongest interaction with declined eGFR. In addition, As and Cd had synergistic with prediction model of TNF-α. We explored the potential of machine learning approaches for predicting health outcomes with multi-metal exposure. XGBoost model added SHAP could give an explicit explanation of individualized and precision risk prediction and insight of the interaction of key features in the multi-metal exposure.
Collapse
Affiliation(s)
- Kuei-Hau Luo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medicine University, Kaohsiung City 807, Taiwan
| | - Chih-Hsien Wu
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Chen-Cheng Yang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medicine University, Kaohsiung City 807, Taiwan; Department of Occupational Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Tzu-Hua Chen
- Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cheng-Hong Yang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Information Management, Tainan University of Technology, Tainan 71002, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Ph. D. Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Yi Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medicine University, Kaohsiung City 807, Taiwan; Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Occupational and Environmental Medicine, Kaohsiung Medicine University Hospital, Kaohsiung Medicine University, Kaohsiung City 807, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, and Research Center for Precision Environmental Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
25
|
Li Y, Pan Y, Wang K, Ding Y, Li Z, Lu M, Xu D. Association of urinary thallium with hypertension in children and adolescents aged 8-17 years: NHANES 2005-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102927-102935. [PMID: 37676453 DOI: 10.1007/s11356-023-29683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Hypertension is a key risk factor for cardiovascular disease (CVD). Thallium is a highly toxic metal that exists in all aspects of our lives and can cause damage to human health. The aim of this study was to identify the potential correlation between urinary thallium (U-Tl) and hypertension in American youth aged 8-17 years. The National Health and Nutritional Examination Survey (NHANES) database was mined for cross-sectional information on 2295 American children and adolescents aged 8-17 years. Inductively coupled plasma mass spectrometry (ICP-MS) was utilized to measure U-Tl levels, and the results were categorized into four quartiles (Q1-Q4). Logistic generalized linear models and unweighted restricted cubic spline (RCS) regression were used to investigate the relationship between U-Tl and hypertension. After adjusting for covariates, the odds ratios (ORs) at 95% confidence intervals (CIs) for hypertension prevalence in the 2nd, 3rd, and 4th quartiles were 0.43 (0.22-0.81), 0.54 (0.29-0.99), and 0.43 (0.22-0.81), when compared to the lowest quartile (P for trend = 0.024). RCS plot showed a negative linear correlation between log2-transformed U-Tl levels and hypertension (P for non-linearity = 0.869). Subgroup analysis based on sex indicated a statistically significant link between U-Tl and hypertension in male (P < 0.05). There is a negative linear relationship between U-Tl and hypertension in American children and adolescents aged 8-17 years with low thallium exposure. Due to the nature of cross-sectional studies, further studies are necessary to validate our conclusions and elucidate possible mechanisms.
Collapse
Affiliation(s)
- Yansong Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yiting Pan
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Kai Wang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yinzhang Ding
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Zhongming Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Miao Lu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Di Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
26
|
Zhou F, Ouyang L, Li Q, Yang S, Liu S, Yu H, Jia Q, Rao S, Xie J, Du G, Feng C, Fan G. Hippocampal LIMK1-mediated Structural Synaptic Plasticity in Neurobehavioral Deficits Induced by a Low-dose Heavy Metal Mixture. Mol Neurobiol 2023; 60:6029-6042. [PMID: 37407880 DOI: 10.1007/s12035-023-03458-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 06/18/2023] [Indexed: 07/07/2023]
Abstract
Humans are commonly exposed to the representative neurotoxic heavy metals lead (Pb), cadmium (Cd), and mercury (Hg). These three substances can be detected simultaneously in the blood of the general population. We have previously shown that a low-dose mixture of these heavy metals induces rat learning and memory impairment at human exposure levels, but the pathogenic mechanism is still unclear. LIM kinase 1 (LIMK1) plays a critical role in orchestrating synaptic plasticity during brain function and dysfunction. Hence, we investigated the role of LIMK1 activity in low-dose heavy metal mixture-induced neurobehavioral deficits and structural synaptic plasticity disorders. Our results showed that heavy metal mixture exposure altered rat fear responses and spatial learning at general population exposure levels and that these alterations were accompanied by downregulation of LIMK1 phosphorylation and structural synaptic plasticity dysfunction in rat hippocampal tissues and cultured hippocampal neurons. In addition, upregulation of LIMK1 phosphorylation attenuated heavy metal mixture-induced structural synaptic plasticity, dendritic actin dynamics, and cofilin phosphorylation damage. The potent LIMK1 inhibitor BMS-5 yielded similar results induced by heavy metal mixture exposure and aggravated these impairments. Our findings demonstrate that LIMK1 plays a crucial role in neurobehavioral deficits induced by low-dose heavy metal mixture exposure by suppressing structural synaptic plasticity.
Collapse
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Sisi Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Han Yu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Qiyue Jia
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China.
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China.
| |
Collapse
|
27
|
Zhou F, Ouyang L, Xie J, Liu S, Li Q, Yang S, Li J, Su R, Rao S, Yan L, Wan X, Cheng H, Liu P, Li L, Zhu Y, Du G, Feng C, Fan G. Co-exposure to low-dose lead, cadmium, and mercury promotes memory deficits in rats: Insights from the dynamics of dendritic spine pruning in brain development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115425. [PMID: 37660527 DOI: 10.1016/j.ecoenv.2023.115425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Lead (Pb), cadmium (Cd), and mercury (Hg) are environmentally toxic heavy metals that can be simultaneously detected at low levels in the blood of the general population. Although our previous studies have demonstrated neurodevelopmental toxicity upon co-exposure to these heavy metals at these low levels, the precise mechanisms remain largely unknown. Dendritic spines are the structural foundation of memory and undergo significant dynamic changes during development. This study focused on the dynamics of dendritic spines during brain development following Pb, Cd, and Hg co-exposure-induced memory impairment. First, the dynamic characteristics of dendritic spines in the prefrontal cortex were observed throughout the life cycle of normal rats. We observed that dendritic spines increased rapidly from birth to their peak value at weaning, followed by significant pruning and a decrease during adolescence. Dendritic spines tended to be stable until their loss in old age. Subsequently, a rat model of low-dose Pb, Cd, and Hg co-exposure from embryo to adolescence was established. The results showed that exposure to low doses of heavy metals equivalent to those detected in the blood of the general population impaired spatial memory and altered the dynamics of dendritic spine pruning from weaning to adolescence. Proteomic analysis of brain and blood samples suggested that differentially expressed proteins upon heavy metal exposure were enriched in dendritic spine-related cytoskeletal regulation and axon guidance signaling pathways and that cofilin was enriched in both of these pathways. Further experiments confirmed that heavy metal exposure altered actin cytoskeleton dynamics and disturbed the dendritic spine pruning-related LIM domain kinase 1-cofilin pathway in the rat prefrontal cortex. Our findings demonstrate that low-dose Pb, Cd, and Hg co-exposure may promote memory impairment by perturbing dendritic spine dynamics through dendritic spine pruning-related signaling pathways.
Collapse
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Sisi Liu
- Jiangxi Academy of Medical Science, Nanchang 330006, PR China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jiajun Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Rui Su
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingyu Yan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Xin Wan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Hui Cheng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Peishan Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingling Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Yanhui Zhu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
28
|
Zhao S, Fan L, Wang Y, Dong S, Han M, Qin Y, Chen J, Liu A. Combined exposure to multiple metals on hypertension in NHANES under four statistical models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92937-92949. [PMID: 37498425 DOI: 10.1007/s11356-023-28902-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Metals exposure has gained increasing attention in the hypertension prevention. However, previous studies have focused on the impacts of single or separated metals on hypertension, and the critical metals contributing to the prevalence of hypertension are still under discussion. We collected data from 5092 participants across three consecutive National Health and Nutrition Examination Survey (NHANES) circles (2011-2016). Weighted logistic regression, weighted quantile sum (WQS) regression, quantile-based g-computation (QGC), and Bayesian kernel machine regression (BKMR) analyses were conducted to evaluate the combined and individual effects of 15 urinary metals, as well as to identify the critical metals on the development of hypertension. In our study, the weighted prevalence of hypertension was 37.9%, and the average age was 47.42 years. Manganese, uranium and tin were found as the independent risk factors for hypertension, while barium, lead, and thallium were found to have protective effects against hypertension. Lead, barium, tungsten, uranium, and tin were determined as critical elements for the prediction of hypertension. No significant interaction relationship was detected between multiple metals. There might be potential positive combined effects of urinary metal mixture on hypertension. Tungsten, uranium, and tin were positively associated with hypertension while lead and barium were negatively associated with hypertension. The underlying mechanisms of urinary metal exposure on the risk of hypertension deserve further investigations.
Collapse
Affiliation(s)
- Songfeng Zhao
- Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Hunan, China
| | - Liqiaona Fan
- Department of General Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yutong Wang
- Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Hunan, China
| | - Siyuan Dong
- Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Hunan, China
| | - Mingyang Han
- Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Hunan, China
| | - Yongkai Qin
- Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Hunan, China
| | - Jigang Chen
- Department of Burn and Plastic Surgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Aihua Liu
- Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Hunan, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
29
|
Zhao S, Wang S, Yang X, Shen L. Dose-response relationship between multiple trace elements and risk of all-cause mortality: a prospective cohort study. Front Nutr 2023; 10:1205537. [PMID: 37533572 PMCID: PMC10391637 DOI: 10.3389/fnut.2023.1205537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Objectives We aimed to prospectively investigate the independent and combined relationship between trace elements concentrations [blood (selenium, manganese), serum (copper, zinc), and urine (cobalt, molybdenum, tin, strontium, iodine)] and all-cause mortality. Methods This study included 5,412 individuals with demographical, examination, and laboratory data from the National Health and Nutrition Examination Survey. Three statistical models, including Cox proportional hazards models, restricted cubic spline models, and Bayesian kernel machine regression (BKMR) models, were conducted to estimate the longitudinal relationship between trace elements and all-cause mortality. Results There were 356 deaths documented with a median follow-up time of 70 months. In the single-exposure model, the results showed that compared with the lowest quartile, the adjusted hazard ratios (HRs) of mortality for the highest quartile of selenium, manganese, and strontium were 0.47 (95% CI: 0.28-0.79), 1.57 (95% CI: 1.14-2.14), and 0.47 (95% CI: 0.26-0.86), respectively. A nonlinear relationship between zinc, cobalt and mortality was also observed. Furthermore, a significant overall effect of mixtures of trace elements on all-cause mortality was identified, especially when the mixture was at the 60th percentile or lower. Conclusion The association of multiple trace elements with all-cause mortality was identified in this study. It is recommended that healthcare providers and relevant public health agencies should strengthen the surveillance and management of trace elements. Emphasis should be placed on monitoring the sources of trace elements such as the body, food, and environment. More population studies and animal experiments should be conducted to identify the underlying mechanisms.
Collapse
Affiliation(s)
- Shaohua Zhao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Shaohua Wang
- Department of Internal Medicine, Jinan Hospital, Jinan, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Shen
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
30
|
Wu YJ, Wang SB, Sun JT, Gu LF, Wang ZM, Deng B, Wang H, Wang LS. Association between urinary cadmium level and subclinical myocardial injury in the general population without cardiovascular disease aged ≥ 50 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27923-0. [PMID: 37261691 DOI: 10.1007/s11356-023-27923-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal linked to an increased risk of cardiovascular disease (CVD). But the relationship between urinary Cd (U-Cd) and electrocardiographic subclinical myocardial injury (SC-MI) in older people is unclear. This study evaluated the connection between U-Cd and SC-MI in people who did not have CVD. The study involved 4269 participants from the National Health and Nutrition Examination Survey III(NHANES III) aged ≥ 50 years and had no history of CVD. The relationship between U-Cd and cardiac infarction/injury score (CIIS) was assessed by multivariable linear regression. Whether U-Cd and SC-MI were correlated was determined by multivariate logistic regression, restricted cubic spline, and subgroup analysis. There was a significant association between U-Cd and CIIS (β, 1.04, 95% confidence interval (CI): 0.39-1.69; P = 0.003) in the highest quartile and fully adjusted model. After adjusting for relevant confounders, multivariable logistic regression showed that participants in the highest quartile of U-Cd had a greater chance of having SC-MI than those in the first ( OR (95% CI), 1.37(1.13,1.66), P for trend = 0.003), and this relationship was especially strong among hypertensive participants. And a positive linear correlation between U-Cd and the prevalence of SC-MI was shown by restricted cubic spline analysis. U-Cd may be a novel risk element for SC-MI because it is independently and linearly linked to CIIS and SC-MI.
Collapse
Affiliation(s)
- Yu-Jie Wu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Si-Bo Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jia-Teng Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Ling-Feng Gu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Ze-Mu Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Bo Deng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
31
|
Guo S, Hua L, Liu W, Liu H, Chen Q, Li Y, Li X, Zhao L, Li R, Zhang Z, Zhang C, Zhu L, Sun H, Zhao H. Multiple metal exposure and metabolic syndrome in elderly individuals: A case-control study in an active mining district, Northwest China. CHEMOSPHERE 2023; 326:138494. [PMID: 36966925 DOI: 10.1016/j.chemosphere.2023.138494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
The prevalence of metabolic syndrome (MetS) is increasing at an alarming rate worldwide, particularly among elderly individuals. Exposure to various metals has been linked to the development of MetS. However, limited studies have focused attention on the elderly population living in active mining districts. Participants with MetS (N = 292) were matched for age (±2 years old) and sex with a healthy subject (N = 292). We measured the serum levels of 14 metals in older people aged 65-85 years. Conditional logistic regression, restricted cubic spline model, multiple linear regression, and Bayesian Kernel Machine Regression (BKMR) were applied to estimate potential associations between multiple metals and the risk of MetS. Serum levels of Sb and Fe were significantly higher than the controls (0.58 μg/L vs 0.46 μg/L, 2167 μg/L vs 2042 μg/L, p < 0.05), while Mg was significantly lower (20035 μg/L vs 20,394 μg/L, p < 0.05). An increased risk of MetS was associated with higher serum Sb levels (adjusted odds ratio (OR) = 1.61 for the highest tertile vs. the lowest tertile, 95% CI = 1.08-2.40, p-trend = 0.018) and serum Fe levels (adjusted OR = 1.55 for the highest tertile, 95% CI = 1.04-2.33, p-trend = 0.032). Higher Mg levels in serum may have potential protective effects on the development of MetS (adjusted OR = 0.61 for the highest tertile, 95% CI = 0.41-0.91, p-trend = 0.013). A joint exposure analysis by the BKMR model revealed that the mixture of 12 metals (except Tl and Cd) was associated with increased risk of MetS. Our results indicated that exposure to Sb and Fe might increase the risk of MetS in an elderly population living in mining-intensive areas. Further work is needed to confirm the protective effect of Mg on MetS.
Collapse
Affiliation(s)
- Sai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Liting Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wu Liu
- Jingyuan County Center for Disease Control and Prevention, Baiyin, Gansu, 730699, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Qiusheng Chen
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruoqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zining Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
32
|
Zhang Z, Guo S, Hua L, Wang B, Chen Q, Liu L, Xiang L, Sun H, Zhao H. Urinary Levels of 14 Metal Elements in General Population: A Region-Based Exploratory Study in China. TOXICS 2023; 11:488. [PMID: 37368588 DOI: 10.3390/toxics11060488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Metal pollution may lead to a variety of diseases; for this reason, it has become a matter of public concern worldwide. However, it is necessary to use biomonitoring approaches to assess the risks posed to human health by metals. In this study, the concentrations of 14 metal elements in 181 urine samples obtained from the general population of Gansu Province, China, were analyzed using inductively coupled plasma mass spectrometry. Eleven out of fourteen target elements had detection frequencies above 85%, namely, Cr, Ni, As, Se, Cd, Al, Fe, Cu and Rb. The concentrations of most metal elements in the urine of our subjects corresponded to the medium levels of subjects in other regional studies. Gender exerted a significant influence (p < 0.05) on the concentrations of Tl, Rb and Zn. The concentrations of Ni, As, Pb, Sr, Tl, Zn, Cu and Se showed significant differences among different age groups and the age-related concentration trends varied among these elements. There were significant differences in the urine concentrations of Zn and Sr between those subjects in the group who were frequently exposed to soil (exposed soil > 20 min/day) and those in the group who were not, indicating that people in regular contact with soil may be more exposed to metals. This study provides useful information for evaluating the levels of metal exposure among general populations.
Collapse
Affiliation(s)
- Zining Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiusheng Chen
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Lu Liu
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
33
|
Duan S, Wang R, He P, Sun J, Yang H. Associations between multiple urinary metals and the risk of hypertension in community-dwelling older adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27797-2. [PMID: 37233942 DOI: 10.1007/s11356-023-27797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Although metal exposure has been associated with hypertension, the conclusions remain controversial, and studies investigating the predictive effect of multiple metals on hypertension are limited. In this study, we aimed to evaluate the nonlinear dose-response relationship between a single urinary metal and the risk of hypertension, and to assess the predictive effect of multiple urinary metals on hypertension. Of the Yinchuan community-dwelling elderly cohort launched in 2020, 3,733 participants (803 with hypertension and 2,930 without hypertension) were analysed in this study, and the concentrations of 13 metal elements in urine were measured. We found that urinary vanadium (odds ratio (OR): 1.16, 95% confidence interval [CI]: 1.08-1.25), molybdenum (OR: 1.08, 95% CI: 1.01-1.16), and tellurium (OR: 1.14, 95% CI: 1.06-1.22) were associated with higher risk of hypertension, whereas iron (OR: 0.92, 95% CI: 0.85-0.98) and strontium (0.92, 95% CI: 0.85-0.99) were significantly associated with lower risk of hypertension. Restricted cubic splines analysis was conducted in patients with iron concentrations of ≥ 15.48 μg/g and ≤ 399.41 μg/g and a strontium concentration of ≤ 69.41 μg/g, results showed that the risk of hypertension decreased gradually as the urinary concentrations of these metals increased. With an increase in the vanadium concentration in urine, the risk of hypertension gradually increased. In patients with a molybdenum concentration of ≥ 56.82 μg/g and a tellurium concentration of ≥ 21.98 μg/g, the risk of hypertension gradually decreased as the urinary concentrations of these metals increased. Predictive scores based on the 13 metallic elements were significantly associated with a higher risk of hypertension (OR: 1.34 (95% CI: 1.25-1.45). After additionally including urinary metal concentrations as a parameter variable in the traditional hypertension risk assessment model, integrated discrimination and net reclassification increased by 8.00% (P < 0.001) and 2.41% (P < 0.001), respectively. Urinary vanadium, Mo, and Te concentrations were associated with a higher risk of hypertension, while iron and strontium concentrations were associated with a lower risk of hypertension. Multiple urinary metal concentrations can significantly improve the predictive ability of traditional hypertension risk-assessment models.
Collapse
Affiliation(s)
- Siyu Duan
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Rui Wang
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Pei He
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Jian Sun
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Huifang Yang
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China.
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, 750004, People's Republic of China.
| |
Collapse
|
34
|
Chen H, Zou Y, Leng X, Huang F, Huang R, Wijayabahu A, Chen X, Xu Y. Associations of blood lead, cadmium, and mercury with resistant hypertension among adults in NHANES, 1999-2018. Environ Health Prev Med 2023; 28:66. [PMID: 37914348 PMCID: PMC10636284 DOI: 10.1265/ehpm.23-00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Resistant hypertension (RHTN), a clinically complex condition with profound health implications, necessitates considerable time and allocation of medical resources for effective management. Unraveling the environmental risk factors associated with RHTN may shed light on future interventional targets aimed at reducing its incidence. Exposure to heavy metal has been linked to an increased risk of hypertension, while the relationship with RHTN remains poorly understood. METHODS Using the 1999-2018 National Health and Nutrition Examination Survey (NHANES) data, we examined the association of blood lead (Pb), cadmium (Cd), and mercury (Hg) with RHTN using a multinomial logistic regression model. The combined effects of the metals and the contribution of each metal were assessed using a weighted quantile sum (WQS) analysis. RESULTS A total of 38281 participants were included in the analysis. Compared with no resistant hypertension (NRHTN), per 1 µg/dL increase in blood Pb concentration, the proportion of RHTN increased by 16% [adjusted odds ratio (aOR), 1.16; 95% confidence interval (CI) 1.01-1.32]. When analyzed by quartiles (Q), the aOR [95% CI] for Pd was 1.30[1.01,1.67] (Q4 vs. Q1); there was a significant dose-response relationship (p < 0.05). Likewise, as a continuous variable, each 1 µg/dL increase in blood Cd level was associated with a 13% increase in the proportion of RHTN (aOR: 1.13; 95%CI: [1.00,1.27]); when analyzed as quartile, aOR [95% CI] for Cd were 1.30[1.01,1.69] (Q3 vs. Q1), and 1.35[1.03,1.75] (Q4 vs. Q1); the dose-response relationship was significant (p < 0.05). WQS analysis showed a significant combined effects of Pb, Cd, and Hg on RHTN, with Pb as the highest weight (0.64), followed by Cd (0.25) and Hg (0.11). Stratified analysis indicated that the associations for the two heavy metals were significant for participants who were male, ≼ 60 years old, and with kidney dysfunction. CONCLUSION Findings of this study with national data provide new evidence regarding the role of environmental heavy metal exposure in RHTN. The prevention strategies aimed at reducing heavy metal exposure should particularly focus on Americans who are middle-aged, male, and afflicted with kidney dysfunction.
Collapse
Affiliation(s)
- Hao Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xuebing Leng
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, US
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China
| | - Rongjie Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China
| | - Akemi Wijayabahu
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Occupational Health, George Washington University, Washington, D.C., USA
| | - Xinguang Chen
- Global Health Institute, Xi’an Jiaotong University, Xi’an, 710020, China
| | - Yunan Xu
- Department of Medical Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
35
|
Relationship between Occupational Metal Exposure and Hypertension Risk Based on Conditional Logistic Regression Analysis. Metabolites 2022; 12:metabo12121259. [PMID: 36557298 PMCID: PMC9784465 DOI: 10.3390/metabo12121259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Occupational exposure is a significant source of metal contact; previous studies have been limited regarding the effect of occupational metal exposure on the development of hypertension. This study was conducted to assess the levels of exposure of certain metals (chromium (Cr), iron (Fe), manganese (Mn), and nickel (Ni)) in hypertensive and non-hypertensive workers and to assess the relationship between the risk of hypertension and metal exposure level. Our study included 138 hypertensive patients as case groups and 138 non-hypertensive participants as controls. The exposure risk level was divided according to the limit value after collecting and testing the metal dust in the workshop. Considering the influence of single- and poly-metal, single factor analysis and conditional logistic regression analysis of poly-metal were carried out. The results of the model indicated that the incidence of hypertension increased with an increase in Cr exposure level, and the risk of hypertension was 1.85 times higher in the highest exposure than in the lowest exposure (95% CI: 1.20−2.86, p < 0.05). Mn has the same effect as Cr. There was no significant correlation between Fe or Ni and hypertension. Our findings suggested that Cr and Mn exposure in the work environment might increase the risk of hypertension, while no effect of Fe and Ni on blood pressure was found. Prospective study designs in larger populations are needed to confirm our findings.
Collapse
|
36
|
Li G, Su W, Zhong Q, Hu M, He J, Lu H, Hu W, Liu J, Li X, Hao J, Huang F. Individual PM 2.5 component exposure model, elevated blood pressure and hypertension in middle-aged and older adults: A nationwide cohort study from 125 cities in China. ENVIRONMENTAL RESEARCH 2022; 215:114360. [PMID: 36184965 DOI: 10.1016/j.envres.2022.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Recently, elevated blood pressure (BP) and hypertension (HTN) have caused a huge burden of health loss. Previous studies used ambient air pollutants as a proxy for individual exposure, limiting the assessment of its multiple exposure to health effects. For the first time, this study constructed individual PM2.5 component (SO42-, NO3-, NH4+, OM, and BC) exposure model DAG (Directed Acyclic Graph), DAG-oriented generalized linear model and random forest model, and explored the effects of single and multiple exposures to PM2.5 components on BP at different stages by the generalized linear model (GLM) and Quantile g-Computation (QgC) model based on a large cohort study in China. We defined BP in four stages according to the 2017 ACC/AHA guidelines. After excluding the lack of key information, the cohort analyses ultimately included 9031 participants. Our results showed that the individual PM2.5 component exposure model had good efficacy. Single or multiple exposure to PM2.5 components had significant positive effects on normal BP to elevated BP and elevated BP to stage 1 HTN. In addition, males, the elderly and urban residents were more sensitive to PM2.5 components. This study provided implications for environmental exposure assessment and control of particulate pollution in the future.
Collapse
Affiliation(s)
- Guoao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Wanying Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Qi Zhong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Mingjun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jialiu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Huanhuan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Wenlei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jianjun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Xue Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
37
|
Guo X, Li N, Wang H, Su W, Song Q, Liang Q, Liang M, Sun C, Li Y, Lowe S, Bentley R, Song EJ, Zhou Q, Ding X, Sun Y. Combined exposure to multiple metals on cardiovascular disease in NHANES under five statistical models. ENVIRONMENTAL RESEARCH 2022; 215:114435. [PMID: 36174761 DOI: 10.1016/j.envres.2022.114435] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND It is well-documented that heavy metals are associated with cardiovascular disease (CVD). However, there is few studies exploring effect of metal mixture on CVD. Therefore, the primary objective of present study was to investigate the joint effect of heavy metals on CVD and to identify the most influential metals in the mixture. METHODS Original data for study subjects were obtained from the National Health and Nutrition Examination Survey. In this study, adults with complete data on 12 kinds of urinary metals (antimony, arsenic, barium, cadmium, cobalt, cesium, molybdenum, mercury, lead, thallium, tungsten, and uranium), cardiovascular disease, and core covariates were enrolled. We applied five different statistical strategies to examine the CVD risk with metal exposure, including multivariate logistic regression, adaptive elastic net combined with Environmental Risk Score, Quantile g-computation, Weighted Quantile Sum regression, and Bayesian kernel machine regression. RESULTS Higher levels of cadmium, tungsten, cobalt, and antimony were significantly associated with Increased risk of CVD when covariates were adjusted for multivariate logistic regression. The results from multi-pollutant strategies all indicated that metal mixture was positively associated with the risk of CVD. Based on the results of multiple statistical strategies, it was determined that cadmium, tungsten, cobalt, and antimony exhibited the strongest positive correlations, whereas barium, lead, molybdenum, and thallium were most associated with negative correlations. CONCLUSION Overall, our study demonstrates that exposure to heavy metal mixture is linked to a higher risk of CVD. Meanwhile, this association may be driven primarily by cadmium, tungsten, cobalt, and antimony. Further prospective studies are warranted to validate or refute our primary findings as well as to identify other important heavy metals linked with CVD.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Yaru Li
- Internal Medicine, Swedish Hospital, 5140 N California Ave, Chicago, IL, 60625, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Evelyn J Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Qin Zhou
- Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Chaohu Hospital, Anhui Medical University, Hefei, 238006, Anhui, PR China.
| |
Collapse
|
38
|
Liu M, Li M, Guo W, Zhao L, Yang H, Yu J, Liu L, Fang Q, Lai X, Yang L, Zhu K, Dai W, Mei W, Zhang X. Co-exposure to priority-controlled metals mixture and blood pressure in Chinese children from two panel studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119388. [PMID: 35526645 DOI: 10.1016/j.envpol.2022.119388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Metals may affect adversely cardiovascular system, but epidemiological evidence on the associations of priority-controlled metals including antimony (Sb), arsenic (As), cadmium, lead, and thallium with children's blood pressure (BP) was scarce and inconsistent. We conducted two panel studies with 3 surveys across 3 seasons among 144 and 142 children aged 4-12 years in Guangzhou and Weinan, respectively. During each seasonal survey, urine samples were collected for 4 consecutive days and BP was measured on the 4th day. We obtained 786 BP values and urinary metals measurements at least once within 4 days, while 773, 596, 612, and 754 urinary metals measurements were effective on the health examination day (Lag 0), and the 1st, 2nd, and 3rd day preceding BP measurement (Lag 1, lag 2 and lag 3), respectively. We used linear mixed-effect models, generalized estimating equations and multiple informant models to assess the associations of individual metal at each lag day and accumulated lag day (4 days averaged, lag 0-3) with BP and hypertension, and Bayesian Kernel Machine Regression to evaluate the relations of metals mixture at lag 0-3 and BP outcomes. We found Sb was positively and consistently related to systolic BP (SBP), mean arterial pressure (MAP), and odds of having hypertension within 4 days, which were the strongest at lag 0 and declined over time. And such relationships at lag 0-3 showed in a dose-response manner. Meanwhile, Sb was the only contributor to the relations of mixture with SBP, MAP, and odds of having hypertension. Also, synergistic interaction between Sb and As was significant. In addition, modification effect of passive smoking status on the association of Sb and SBP was more evident in passive smokers. Accordingly, urinary Sb was consistently and dose-responsively associated with increased BP and hypertension, of which Sb was the major contributor among children.
Collapse
Affiliation(s)
- Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Public Health, Medical College of Qinghai University, Xining, Qinghai, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Fang
- Department of Medical affairs, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kejing Zhu
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, China
| | - Wencan Dai
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|