1
|
Eads DA, Shriner SA, Ellis JW, Cryan PM, Hladik ML, Dooley GP, Muths E. Assessing potential collateral effects on amphibians from insecticide applications for flea control and plague mitigation. PLoS One 2025; 20:e0320382. [PMID: 40354371 PMCID: PMC12068567 DOI: 10.1371/journal.pone.0320382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/17/2025] [Indexed: 05/14/2025] Open
Abstract
Ideal disease mitigation measures for wildlife are safe and benign for target species, non-target organisms, the environment, and humans. Identifying collateral (i.e., unintended) effects is a key consideration in implementing such actions. Deltamethrin dust and fipronil-laced baits represent a group of insecticides that target fleas (pulicides) and are used to control flea (Siphonaptera) vectors of the plague bacterium Yersinia pestis to protect prairie dogs (Cynomys spp.) and their plague-susceptible obligate predators, endangered black-footed ferrets (Mustela nigripes). A variety of animals use prairie dog burrows as refuge, which potentially exposes them to deltamethrin, and to fipronil and its metabolites in fecal pellets excreted by prairie dogs and other mammals that have eaten fipronil baits. We assessed the potential effects of deltamethrin and fipronil residues on survival, body mass, and activity of western tiger salamanders (Ambystoma mavortium), a burrow-inhabiting amphibian. Pulicides were applied at realistic concentrations in mesocosms mimicking burrows. Treatments included (1) deltamethrin dust and non-treated prairie dog fecal pellets, (2) prairie dog fecal pellets containing fipronil and fipronil sulfone, and (3) un-treated prairie dog fecal pellets as controls. All 29 salamanders survived the experiment. We did not detect pulicide residues in any control salamanders. Fipronil sulfone was detected in tissues from 3 of 10 salamanders in the fipronil treatment and deltamethrin was detected in tissues from 9 of 11 salamanders in the deltamethrin treatment. Salamanders were observed outside of burrows more frequently after treatments than before. Deltamethrin concentrations in whole body samples correlated positively with the amount of time salamanders were inside burrows. Acute, lethal effects were not detected, but uptake of deltamethrin and, to a lesser extent fipronil sulfone, into salamander tissues indicated the potential for long-term effects on this non-target species. Identifying potential collateral effects is an important aspect of evaluating mitigation actions implemented to protect endangered species.
Collapse
Affiliation(s)
- David A. Eads
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Susan A. Shriner
- National Wildlife Research Center, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, Colorado, United States of America
| | - Jeremy W. Ellis
- National Wildlife Research Center, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, Colorado, United States of America
| | - Paul M. Cryan
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Michelle L. Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, California, United States of America
| | - Gregory P. Dooley
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erin Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
| |
Collapse
|
2
|
Jaiswal A, Pandey AK, Tripathi A, Dubey SK. Omics-centric evidences of fipronil biodegradation by Rhodococcus sp. FIP_B3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125320. [PMID: 39549993 DOI: 10.1016/j.envpol.2024.125320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The widespread use of the pesticide fipronil in domestic and agriculture sectors has resulted in its accumulation across the environment. Its use to assure food security has inadvertently affected soil microbiome composition, fertility and, ultimately, human health. Degradation of residual fipronil present in the environment using specific microbial species is a promising strategy for its removal. The present study delves into the omics approach for fipronil biodegradation using the native bacterium Rhodococcus sp. FIP_B3. It has been observed that within 40 days, nearly 84% of the insecticide gets degraded. The biodegradation follows a pseudo-first-order kinetics (k = 0.0197/d with a half-life of ∼11 days). Whole genome analysis revealed Cytochrome P450 monooxygenase, peroxidase-related enzyme, haloalkane dehalogenase, 2-nitropropane dioxygenase, and aconitate hydratase are involved in the degradation process. Fipronil-sulfone, 5-amino-1-(2-chloro-4-(trifluoromethyl)phenyl)-4- ((trifluoromethyl)sulfonyl)-1H-pyrazole-3-carbonitrile, (E)-5-chloro-2-oxo-3- (trifluoromethyl)pent-4-enoic acid, 4,4,4-trifluoro-2-oxobutanoic acid, and 3,3,3- trifluoropropanoic acid were identified as the major metabolites that support the bacterial degradation of fipronil. In-silico molecular docking and molecular dynamic simulation-based analyses of degradation pathway intermediates with their respective enzymes have indicated stable interactions with significant binding energies (-5.9 to -9.7 kcal/mol). These results have provided the mechanistic cause of the elevated potential of Rhodococcus sp. FIP_B3 for fipronil degradation and will be advantageous in framing appropriate strategies for the bioremediation of fipronil-contaminated environment.
Collapse
Affiliation(s)
- Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Animesh Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India.
| |
Collapse
|
3
|
Zarate-Insúa J, Fonovich T, Nuñez-Cresto F, Pastrana G, Dufou L, Amable V, Pérez-Coll C, Svartz G. Toxicological assessment of the effects of CuCl 2 and CuO nanoparticles on early developmental stages of the South American toad, Rhinella arenarum by standardized bioassays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64644-64655. [PMID: 39546244 DOI: 10.1007/s11356-024-35566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The release in aquatic environments of emergent contaminants such as copper oxide nanoparticles (CuO-NPs) has generated concerns on their short- and long-term toxicity and the potential risk for more vulnerable animal groups, such as amphibians. In this sense, the aim of this work was to evaluate the toxicity of CuO-NPs in comparison with its respective salt (CuCl2) in embryos and larvae of a native amphibian, Rhinella arenarum, by acute (96 h) and chronic (504 h) standardized bioassays. Lethality and sublethal effects such as developmental, morphological, and ethological alterations were assessed in a wide range of concentrations (0.001-100 mg/L). Neurotoxic effects by acetyl (AChE) and butyrylcholinesterase (BChE) activity levels and changes in the lipid content were also assessed at sublethal concentrations. Results showed that CuCl2 caused higher lethality than CuO-NPs in both developmental periods. Embryos were more sensitive than larvae with LC50-96 h = 0.080 mg CuCl2/L and 1.26 mg CuO-NPs/L and 0.21 mg CuCl2/L and 20.17 mg CuO-NPs/L, respectively. At acute exposure, embryos exhibited several developmental abnormalities such as developmental delay, edema, axial flexure, and microcephaly. Larvae presented spasmodic contractions and weak movements. Regarding neurotoxicity, a significant increase in AChE activity at low concentrations as well as an inhibition of BChE activity at all tested concentrations was evidenced for both substances at acute exposure. Moreover, an increment in phospholipid and triglyceride levels was observed at the highest concentration of CuO-NPs (10 mg/L) at chronic exposure. The chromatographic separation of lipids showed no apparent differences in acylglycerols and free fatty acid bands, between the treatments and the control. The differences in toxicity between CuO-NPs and CuCl2 could be due to structural and physicochemical characteristics that influence their bioavailability and toxicity. Considering the exponential growth in the production and use of these substances, it is expected that the levels of contamination will rise considerably in the future, so that wildlife, particularly aquatic organisms, will be more increasingly exposed, representing a potential risk for their populations.
Collapse
Affiliation(s)
- Julieta Zarate-Insúa
- IIIA-UNSAM-CONICET, Instituto de Investigación E Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1021 (CP. 1650), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Teresa Fonovich
- IIIA-UNSAM-CONICET, Instituto de Investigación E Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1021 (CP. 1650), Buenos Aires, Argentina
| | - Florencia Nuñez-Cresto
- IIIA-UNSAM-CONICET, Instituto de Investigación E Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1021 (CP. 1650), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Pastrana
- Complejo Tecnológico Pilcaniyeu, Centro Atómico Bariloche, CNEA, Bariloche, Río Negro, Argentina
| | - Leandro Dufou
- Complejo Tecnológico Pilcaniyeu, Centro Atómico Bariloche, CNEA, Bariloche, Río Negro, Argentina
| | | | - Cristina Pérez-Coll
- IIIA-UNSAM-CONICET, Instituto de Investigación E Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1021 (CP. 1650), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriela Svartz
- IIIA-UNSAM-CONICET, Instituto de Investigación E Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1021 (CP. 1650), Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Azevedo-Santos VM, Fernandes JA, de Souza Andrade G, de Moraes PM, Magurran AE, Pelicice FM, Giarrizzo T. An overview of vinasse pollution in aquatic ecosystems in Brazil. ENVIRONMENTAL MANAGEMENT 2024; 74:1037-1044. [PMID: 38907108 DOI: 10.1007/s00267-024-01999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/25/2024] [Indexed: 06/23/2024]
Abstract
We review the negative impacts of vinasse, a byproduct of alcohol distillation, on Brazil's freshwater ecosystems. We found a total of 37 pollution events between the years 1935 and 2023, with this number almost certainly an underestimate due to underreporting and/or unassessed events. Pollution by vinasse occurred both through accidents (e.g., tank failure) and deliberately (i.e., opening of floodgates), although in many cases the causes remain undetermined. All pollution events caused fish kills, with some records reporting negative effects on other organisms as well (i.e., crustaceans and reptiles). Pollution by vinasse, and associated negative effects, was reported for 11 states, with a notable number of cases in São Paulo. Most cases of vinasse pollution and negative impacts on biodiversity were recorded in rivers, followed by streams and reservoirs. Some of the affected river systems harbour threatened freshwater fishes. Hydrological connectivity means that pollution could have propagated along watercourses. Given these consequences of vinasse pollution on biodiversity, ecosystem functioning and services, we recommend a number of remedial actions.
Collapse
Affiliation(s)
- Valter M Azevedo-Santos
- Programa de Pós-Graduação em Biodiversidade, Ecologia, e Conservação, Universidade Federal do Tocantins, Porto Nacional, Tocantins, Brazil.
- Grupo de Ecologia Aquática, Espaço Inovação do Parque de Ciência e Tecnologia Guamá, Belém, Pará, Brazil.
- Faculdade Eduvale de Avaré, Avaré, São Paulo, Brazil.
| | - Juliana Aparecida Fernandes
- Programa de Pós-Graduação em Biodiversidade, Ecologia, e Conservação, Universidade Federal do Tocantins, Porto Nacional, Tocantins, Brazil
| | - Geovana de Souza Andrade
- Programa de Pós-Graduação em Biodiversidade, Ecologia, e Conservação, Universidade Federal do Tocantins, Porto Nacional, Tocantins, Brazil
| | - Paula Mendes de Moraes
- Programa de Pós-Graduação em Biodiversidade, Ecologia, e Conservação, Universidade Federal do Tocantins, Porto Nacional, Tocantins, Brazil
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Fernando M Pelicice
- Programa de Pós-Graduação em Biodiversidade, Ecologia, e Conservação, Universidade Federal do Tocantins, Porto Nacional, Tocantins, Brazil
| | - Tommaso Giarrizzo
- Grupo de Ecologia Aquática, Espaço Inovação do Parque de Ciência e Tecnologia Guamá, Belém, Pará, Brazil
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
5
|
Martin C, Capilla-Lasheras P, Monaghan P, Burraco P. The impact of chemical pollution across major life transitions: a meta-analysis on oxidative stress in amphibians. Proc Biol Sci 2024; 291:20241536. [PMID: 39191283 PMCID: PMC11349447 DOI: 10.1098/rspb.2024.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.
Collapse
Affiliation(s)
- Colette Martin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig38106, Germany
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, Sempach6204, Switzerland
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
| |
Collapse
|
6
|
Baima Ferreira Freitas I, Duarte-Neto PJ, Sorigotto LR, Cardoso Yoshii MP, de Palma Lopes LF, de Almeida Pereira MM, Girotto L, Badolato Athayde D, Veloso Goulart B, Montagner CC, Schiesari LC, Martinelli LA, Gaeta Espíndola EL. Effects of pasture intensification and sugarcane cultivation on non-target species: A realistic evaluation in pesticide-contaminated mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171425. [PMID: 38432384 DOI: 10.1016/j.scitotenv.2024.171425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Conventional soil management in agricultural areas may expose non-target organisms living nearby to several types of contaminants. In this study, the effects of soil management in extensive pasture (EP), intensive pasture (IP), and sugarcane crops (C) were evaluated in a realistic-field-scale study. Thirteen aquatic mesocosms embedded in EP, IP, and C treatments were monitored over 392 days. The recommended management for each of the areas was simulated, such as tillage, fertilizer, pesticides (i.e. 2,4-D, fipronil) and vinasse application, and cattle pasture. To access the potential toxic effects that the different steps of soil management in these areas may cause, the cladoceran Ceriophania silvestrii was used as aquatic bioindicator, the dicot Eruca sativa as phytotoxicity bioindicator in water, and the dipteran Chironomus sancticaroli as sediment bioindicator. Generalized linear mixed models were used to identify differences between the treatments. Low concentrations of 2,4-D (<97 μg L-1) and fipronil (<0.21 μg L-1) in water were able to alter fecundity, female survival, and the intrinsic rate of population increase of C. silvestrii in IP and C treatments. Similarly, the dicot E. sativa had germination, shoot and root growth affected mainly by 2,4-D concentrations in the water. For C. sancticarolli, larval development was affected by the presence of fipronil (<402.6 ng g-1). The acidic pH (below 5) reduced the fecundity and female survival of C. silvestrii and affected the germination and growth of E. sativa. Fecundity and female survival of C. silvestrii decrease in the presence of phosphorus-containing elements. The outcomes of this study may improve our understanding of the consequences of exposure of freshwater biota to complex stressors in an environment that is rapidly and constantly changing.
Collapse
Affiliation(s)
- Isabele Baima Ferreira Freitas
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil.
| | - Paulo José Duarte-Neto
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, 52171900 Recife, PE, Brazil
| | - Lais Roberta Sorigotto
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Maria Paula Cardoso Yoshii
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Laís Fernanda de Palma Lopes
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Mickaelle Maria de Almeida Pereira
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, 52171900 Recife, PE, Brazil
| | - Laís Girotto
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Danillo Badolato Athayde
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Bianca Veloso Goulart
- LQA, Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Rua Josué de Castro, s/n, 13083-970 Campinas, SP, Brazil
| | - Cassiana Carolina Montagner
- LQA, Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Rua Josué de Castro, s/n, 13083-970 Campinas, SP, Brazil
| | - Luis Cesar Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, 03828-000 São Paulo, SP, Brazil
| | - Luiz Antônio Martinelli
- CENA, USP - Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13416-000 São Paulo, SP, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
7
|
Cuzziol Boccioni AP, Peltzer PM, Attademo AM, Leiva L, Colussi CL, Repetti MR, Russell-White K, Di Conza N, Lajmanovich RC. High toxicity of agro-industrial wastewater on aquatic fauna of a South American stream: Mortality of aquatic turtles and amphibian tadpoles as bioindicators of environmental health. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11010. [PMID: 38433361 DOI: 10.1002/wer.11010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
The aim of this study was to characterize an aquatic system of Santa Fe province (Argentina) receiving wastewater from agro-industrial activities (mainly dairy) by in situ assessment (fauna mortality, physicochemical, microbiological, and pesticide residues measurement), and ecotoxicity bioassays on amphibian tadpoles. Water and sediment samples were obtained from the Los Troncos Stream (LTS), previous to the confluence with the "San Carlos" drainage channel (SCC), and from the SCC. Biological parameters (mortality and sublethal biomarkers) were used to evaluate ecotoxicity during 10-day exposure of Rhinella arenarum tadpoles to LTS and SCC samples. Nine pesticides were detected in both LTS and SCC. Chemical and biochemical oxygen demand, ammonia, and coliform count recorded in SCC greatly exceeded limits for aquatic life protection. At SCC and LTS after the confluence with SCC, numerous dying and dead aquatic turtles (Phrynops hilarii) were recorded. In the ecotoxicity assessment, no mortality of tadpoles was observed in LTS treatment, whereas total mortality (100%) was observed in SCC treatments in dilution higher than 50% of water and sediment. For SCC, median lethal concentration and the 95% confidence limits was 18.30% (14.71-22.77) at 24 h; lowest-observed and no-observed effect concentrations were 12.5% and 6.25%, respectively. Oxidative stress and neurotoxicity were observed in tadpoles exposed to 25% SCC dilution treatment. In addition, there was a large genotoxic effect (micronuclei test) in all sublethal SCC dilution treatments (6.25%, 12.5%, and 25%). These results alert about the high environmental quality deterioration and high ecotoxicity for aquatic fauna of aquatic ecosystems affected by agro-industrial wastewater. PRACTITIONER POINTS: Great mortality of turtles was observed in a basin with a high load of agro-industrial wastewater. San Carlos Channel (SCC), where effluents are spilled, is environmentally deteriorated. The water-sediment matrix of SCC caused 100% lethality in tadpoles. SCC dilutions caused neurotoxicity, oxidative stress, and genotoxicity on tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Leonardo Leiva
- Museo Provincial de Ciencias Naturales Florentino Ameghino, Santa Fe, Argentina
| | - Carlina L Colussi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Karen Russell-White
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Noelia Di Conza
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
8
|
Ruggiero KLF, da Silva Pinto TJ, Gomes DF, Dias MA, Montagner CC, Rocha O, Moreira RA. Ecological Implications on Aquatic Food Webs Due to Effects of Pesticides on Invertebrate Predators in a Neotropical Region. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:112-124. [PMID: 38265449 DOI: 10.1007/s00244-024-01052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Predation presents specific behavioral characteristics for each species, and the interaction between prey and predator influences the structuring of the food web. Concerning insects, predation can be affected in different ways, such as exposure to chemical stressors, e.g., pesticides. Therefore, analyses were carried out of the effects of exposure to insecticide fipronil and the herbicide 2,4-D on predation, parameters of food selectivity, and the swimming behavior of two neotropical predatory aquatic insects of the families Belostomatidae (giant water bugs) and larvae of Libellulidae (dragonfly). These predatory insects were exposed for 24 h to a commercial formulation of the chlorophenoxy herbicide, 2,4-D at nominal concentrations of 200, 300, 700, and 1400 μg L-1, and to a commercial formulation of the phenylpyrazole insecticide, fipronil at nominal concentrations of 10, 70, 140, and 250 µg L-1. In a control treatment, the insects were placed in clean, unspiked water. At the end of the exposure, the maximum swimming speed of the predators was evaluated. Afterward, the predators were placed in clean water in a shared environment for 24 h with several prey species, including the cladoceran Ceriodaphnia silvestrii, larvae of the insect Chironomus sancticaroli, the amphipod Hyalella meinerti, the ostracod Strandesia trispinosa, and the oligochaete Allonais inaequalis for 24 h. After this period, the consumed prey was counted. The results reveal that predators from both families changed prey consumption compared with organisms from the control treatment, marked by a decrease after exposure to fipronil and an increase in consumption caused by 2,4-D. In addition, there were changes in the food preferences of both predators, especially when exposed to the insecticide. Exposure to fipronil decreased the swimming speed of Belostomatidae individuals, possibly due to its neurotoxic effect. Exposure to the insecticide and the herbicide altered prey intake by predators, which could negatively influence the complex prey-predator relationship and the functioning of aquatic ecosystems in contaminated areas.
Collapse
Affiliation(s)
- Kaue Leopoldo Ferraz Ruggiero
- NEEA/SHS and PPG-SEA, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Thandy Júnio da Silva Pinto
- NEEA/SHS and PPG-SEA, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Diego Ferreira Gomes
- Department of Ecology and Evolutionary Biology and PPG-ERN, Federal University of São Carlos, Rodovia Washington Luis, Km 235, São Carlos, SP, 13565‑905, Brazil
| | - Mariana Amaral Dias
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology and PPG-ERN, Federal University of São Carlos, Rodovia Washington Luis, Km 235, São Carlos, SP, 13565‑905, Brazil
| | - Raquel Aparecida Moreira
- NEEA/SHS and PPG-SEA, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil.
- Institute of Biological Sciences, Federal University of Rio Grande - FURG, Avenida Itália, Km 8, Rio Grande, Rio Grande do Sul, 96203-900, Brazil.
| |
Collapse
|
9
|
Veloso Goulart B, De Caroli Vizioli B, Junio da Silva Pinto T, Silberschmidt Freitas J, Moreira RA, da Silva LCM, Yoshii MPC, Lopes LFDP, Pretti Ogura A, Henry TB, Gaeta Espindola EL, Montagner CC. Fate and toxicity of 2,4-D and fipronil in mesocosm systems. CHEMOSPHERE 2024; 346:140569. [PMID: 37918533 DOI: 10.1016/j.chemosphere.2023.140569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
2,4-D and fipronil are among Brazil's most used pesticides. The presence of these substances in surface waters is a concern for the aquatic ecosystem health. Thus, understanding the behavior of these substances under environmentally relevant conditions is essential for an effective risk assessment. This study aimed to determine the degradation profiles of 2,4-D and fipronil after controlled application in aquatic mesocosm systems under influencing factors such as environmental aspects and vinasse application, evaluate pesticide dissipation at the water-sediment interface, and perform an environmental risk assessment in water and sediment compartments. Mesocosm systems were divided into six different treatments, namely: control (C), vinasse application (V), 2,4-D application (D), fipronil application (F), mixture of 2,4-D and fipronil application (M), and mixture of 2,4-D and fipronil with vinasse application (MV). Pesticide application was performed according to typical Brazilian sugarcane management procedures, and the experimental systems were monitored for 150 days. Pesticide dissipation kinetics was modeled using first-order reaction models. The estimated half-life times of 2,4-D were 18.2 days for individual application, 50.2 days for combined application, and 9.6 days for combined application with vinasse. For fipronil, the respective half-life times were 11.7, 13.8, and 24.5 days. The dynamics of pesticides in surface waters resulted in the deposition of these compounds in the sediment. Also, fipronil transformation products fipronil-sulfide and fipronil-sulfone were quantified in water 21 days after pesticide application. Finally, performed risk assessments showed significant potential risk to environmental health, with RQ values for 2,4-D up to 1359 in freshwater and 98 in sediment, and RQ values for fipronil up to 22,078 in freshwater and 2582 in sediment.
Collapse
Affiliation(s)
- Bianca Veloso Goulart
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, Campinas, SP, 13083-970, Brazil
| | - Beatriz De Caroli Vizioli
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, Campinas, SP, 13083-970, Brazil
| | - Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Juliane Silberschmidt Freitas
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | | | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Laís Fernanda de Palma Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Theodore Burdick Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Cassiana Carolina Montagner
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
10
|
Madeira CL, Acayaba RD, Santos VS, Villa JEL, Jacinto-Hernández C, Azevedo JAT, Elias VO, Montagner CC. Uncovering the impact of agricultural activities and urbanization on rivers from the Piracicaba, Capivari, and Jundiaí basin in São Paulo, Brazil: A survey of pesticides, hormones, pharmaceuticals, industrial chemicals, and PFAS. CHEMOSPHERE 2023; 341:139954. [PMID: 37660794 DOI: 10.1016/j.chemosphere.2023.139954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Rivers in Southeast Brazil are essential as sources of drinking water, energy production, irrigation, and industrial processes. The Piracicaba, Capivari, and Jundiaí rivers basin, known as the PCJ basin, comprises major cities, industrial hubs, and large agricultural areas, which have impacted the water quality in the region. Emerging contaminants such as pesticides, hormones, pharmaceuticals, industrial chemicals, and per- and polyfluoroalkyl substances (PFAS) are likely to be released into the rivers in the PCJ basin; however, the current Brazilian legislation does not require monitoring of most of these chemicals. Thus, the extent of emerging contaminants pollution and their risks to aquatic and human life in the basin are largely unknown. In this study, we investigated the occurrence of several pesticides, hormones, pharmaceuticals, and personal care products in 15 sampling points across the PCJ basin, while industrial chemicals and PFAS were assessed in 11 sampling points. The results show that agriculture and industrial activities are indeed causing the pollution of most rivers. Multivariate analysis indicates that some sampling points, such as Jundiaí, Capivari, and Piracicaba rivers, are largely impacted by pesticides used in agriculture. In addition, to the best of our knowledge, this is the first study reporting the presence of PFAS in rivers in São Paulo, the most populous state in Brazil. Four out of eight species of PFAS assessed in our study were detected in at least 5 sampling points at concentrations ranging from 2.0 to 50.0 ng L-1. The preliminary risk assessment indicates that various pesticides, caffeine, industrial chemicals, and PFAS were present at concentrations that could threaten aquatic life. Notably, risk quotients of 414, 340, and 178 were obtained for diuron, atrazine, and imidacloprid, respectively, in the Jundiaí River. Our study suggests that establishing a comprehensive monitoring program is needed to ensure the protection of aquatic life and human health.
Collapse
Affiliation(s)
- Camila Leite Madeira
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, 13083970, Brazil
| | - Raphael D'Anna Acayaba
- School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, 13484-332, Brazil; Eurofins do Brasil, Rod. Eng. Ermênio de Oliveira Penteado, Indaiatuba, São Paulo, 13337-300, Brazil
| | | | - Javier E L Villa
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, 13083970, Brazil
| | | | | | - Vladimir Oliveira Elias
- Eurofins do Brasil, Rod. Eng. Ermênio de Oliveira Penteado, Indaiatuba, São Paulo, 13337-300, Brazil
| | - Cassiana Carolina Montagner
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, 13083970, Brazil; School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, 13484-332, Brazil.
| |
Collapse
|
11
|
Salaro AL, Silva SB, Ferraz RB, Salinas Jiménez LG, Carneiro CLS, Quadros ASG, Machado JP, Freitas MB, Oliveira EE. Acute sublethal exposure to ethiprole impairs physiological and oxidative status in the Neotropical fish Astyanax altiparanae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122152. [PMID: 37414119 DOI: 10.1016/j.envpol.2023.122152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Ethiprole, a phenylpyrazole insecticide, has been increasingly used in the Neotropical region to control stink bug pests in soybean and maize fields. However, such abrupt increases in use may have unintended effects on non-target organisms, including those inhabiting freshwater ecosystems. Here, we evaluated the effects of acute (96 h) sublethal exposure to ethiprole (up to 180 μg/L, which is equivalent to 0.013% of the recommended field dose) on biomarkers of stress in the gills, liver, and muscle of the Neotropical fish Astyanax altiparanae. We further recorded potential ethiprole-induced effects on the structural histology of A. altiparanae gills and liver. Our results showed that ethiprole exposure increased glucose and cortisol levels in a concentration-dependent manner. Ethiprole-exposed fish also exhibited higher levels of malondialdehyde and greater activity of antioxidant enzymes, such as glutathione-S-transferase and catalase, in both gills and liver. Furthermore, ethiprole exposure led to increased catalase activity and carbonylated protein levels in muscle. Morphometric and pathological analyses of the gills revealed that increasing ethiprole concentration resulted in hyperemia and loss of integrity of the secondary lamellae. Similarly, histopathological analysis of the liver demonstrated higher prevalence of necrosis and inflammatory infiltrates with increasing ethiprole concentration. Altogether, our findings demonstrated that sublethal exposure to ethiprole can trigger a stress response in non-target fish species, which may lead to potential ecological and economic imbalances in Neotropical freshwater systems.
Collapse
Affiliation(s)
- Ana Lúcia Salaro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Stella B Silva
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Renato B Ferraz
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luis G Salinas Jiménez
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Cristiana L S Carneiro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, 4450-208, Portugal
| | - Alessandro S G Quadros
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - João Paulo Machado
- Departamento de Medicina Veterinaria, Centro Universitário de Viçosa (UNIVIÇOSA), Viçosa, Minas Gerais, 36576-340, Brazil
| | - Mariella B Freitas
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
12
|
de Palma Lopes LF, Rocha GS, de Medeiros JF, Montagner CC, Espíndola ELG. The acute effects of fipronil and 2,4-D, individually and in mixture: a threat to the freshwater Calanoida copepod Notodiaptomus iheringi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80335-80348. [PMID: 37294488 DOI: 10.1007/s11356-023-28066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
The magnitude of copepods' responses to pesticides, individually and in mixture, is little understood. The aims of this study were to evaluate: (i) the effects of the pesticides fipronil and 2,4-D, individually and in mixture, on the freshwater copepod Notodiaptomus iheringi; and (ii) the survival and the feeding rate of copepods after the exposure. Acute toxicity tests using the commercial formulations of fipronil and 2,4-D, individually and in mixture, were performed. The LC10-48h, LC20-48h, and LC50-48h of fipronil to N. iheringi were 2.38 ± 0.48, 3.08 ± 1.14, and 4.97 ± 3.30 μg L-1, respectively. For 2,4-D the LC10-48h, LC20-48h, and LC50-48h were 371.18 ± 29.20, 406.93 ± 53.77, and 478.24 ± 107.77 mg L-1, respectively. Morphological damages on the copepods exposed to pesticides were observed at all concentrations. Fungal filaments covering dead organisms were presented at the treatment highest concentration (R5:7.43 ± 2.78 μg L-1 fipronil). The mixture of the pesticides presented synergistic effects on the mortality of N. iheringi. Post-exposure tests showed no difference between the treatments and the control on the mortality and on the feeding rate for 4 h. However, since delayed toxicity of pesticides can occur, longer post-exposure tests using N. iheringi should be tested. N. iheringi is a key species in the aquatic Brazilian ecosystem and showed sensitivity to fipronil and 2,4-D; thus, more studies with this species assessing other responses are recommended.
Collapse
Affiliation(s)
- Laís Fernanda de Palma Lopes
- NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, São Carlos, São Paulo, 13560-970, Brazil.
| | - Giseli Swerts Rocha
- NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Jéssyca Ferreira de Medeiros
- LQA, Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-970, Brazil
| | - Cassiana Carolina Montagner
- LQA, Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-970, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, São Carlos, São Paulo, 13560-970, Brazil
| |
Collapse
|
13
|
Gallo NC, Lopes LFP, Montagner CC, Espíndola ELG, Moreira RA. Toxicity of fipronil and 2,4-D pesticides in Daphnia similis: a multiple endpoint approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63479-63490. [PMID: 37052836 DOI: 10.1007/s11356-023-26847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
In Brazil, among the pesticides widely applied simultaneously in sugarcane monocultures are the Regent® 800 WG insecticide (active ingredient (a.i.) fipronil) and the DMA® 806 BR herbicide (a.i. 2,4-D). Thus, this study aimed to investigate, through different endpoints, the effects of the fipronil and 2,4-D pesticides, isolated and as mixtures, on the cladoceran Daphnia similis. To do this, acute toxicity tests were carried out with the compounds acting in isolation and in mixture, where the survival of the organisms was evaluated, and chronic toxicity tests with the isolated compounds, where reproduction and maternal and neonatal body length were evaluated. In this study, the physiological endpoints of D. similis were also analyzed, through the analysis of feeding rates (filtration and ingestion) in exposure and post-exposure scenarios, in order to verify the cladoceran food recovery capacity. In addition, D. similis data were compared with other species when exposed to the studied pesticides, using species sensitivity distribution curves. Acute toxicity tests of the fipronil and 2,4-D showed an average EC50-48 h of 66.68 μg a.i./L and 327.07 mg a.i./L, respectively. In both cases, D. similis showed lower sensitivity compared to other species. For the mixture test, the evaluation by the IA model (independent action) and deviation DR (dose ratio dependent) indicated the occurrence of mostly antagonistic effects. The chronic test with fipronil showed a decrease in the fecundity of the organism at a concentration of 16 μg a.i./L, a concentration already found in aquatic environments. For 2,4-D, no significant differences were observed for reproduction at the concentrations tested. Regarding the maternal body length, there were no significant changes when D. similis were exposed to both fipronil and 2,4-D, but these differences were observed in the body length of the neonates only for 2,4-D. There were no significant changes in the feeding rates of the organisms when exposed to both pesticides.
Collapse
Affiliation(s)
- Natália C Gallo
- NEEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís F P Lopes
- NEEA/SHS and PPG-SEA, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Cassiana C Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Evaldo L G Espíndola
- NEEA/SHS and PPG-SEA, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Raquel A Moreira
- NEEA/SHS and PPG-SEA, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.
| |
Collapse
|
14
|
Ogura AP, Lima JZ, Silva LCMD, Dias MA, Rodrigues VGS, Montagner CC, Espíndola ELG. Phytotoxicity of 2,4-D and fipronil mixtures to three green manure species. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:262-272. [PMID: 36799483 DOI: 10.1080/03601234.2023.2178789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sugarcane expansion has been associated with soil contamination by agrochemicals. Pesticides can affect plant growth, and their mixture might have potentiated effects on exposed species. This research aimed to evaluate the influence of fipronil on the phytotoxicity of 2,4-D on three green manure plant species: Canavalia ensiformis, Dolichos lablab, and Lupinus albus. Plants were exposed (for 21 days, at 25 °C) to a control soil and five concentrations of each pesticide and their combinations (36 treatments, considering a full-factorial approach). Effect concentrations of 50% growth inhibition (EC50) were estimated. No phytotoxicity effects were identified when plants were exposed to different fipronil concentrations (up to 0.12 mg kg-1). All species exposed to 2,4-D showed a decrease in shoot and root length and fresh/dry biomass. L. albus and D. lablab roots showed the highest sensitivity when exposed to 2,4-D among the endpoints (EC50 = 0.02 and 0.05 mg kg-1, respectively), while C. ensiformis roots were the most tolerant (EC50 = 0.98 mg kg-1). However, the interference of fipronil on the toxicity of 2,4-D was not detected in different mixture proportions, indicating no interaction between pesticides. Residues of 2,4-D might also impair other crops' growth, compromise productivity, and limit phytotechnologies for soil recovery.
Collapse
Affiliation(s)
- Allan Pretti Ogura
- PPG-SEA and NEEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Jacqueline Zanin Lima
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | | | - Mariana Amaral Dias
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | | | | | | |
Collapse
|
15
|
Girotto L, Freitas IBF, Yoshii MPC, Goulart BV, Montagner CC, Schiesari LC, Espíndola ELG, Freitas JS. Using mesocosms to evaluate the impacts of pasture intensification and pasture-sugarcane conversion on tadpoles in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21010-21024. [PMID: 36264462 DOI: 10.1007/s11356-022-23691-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the effects of environmental contamination caused by pasture intensification and pasture-sugarcane conversion on oxidative stress, biotransformation, esterase enzymes, and development of Scinax fuscovarious and Physalaemus nattereri. Tadpoles were exposed in mesocosms allocated in three treatments: (1) untreated extensive pasture (EP); (2) intensive-pasture conversion (IP) (2,4-D herbicide + fertilizers); and (3) pasture-sugarcane conversion (SC) (fipronil + 2,4-D + fertilizers). After 7 days of exposure, IP reduced catalase (CAT) and increased malondialdehyde (MDA) levels in P. nattereri, while this treatment decreased glucose-6-phosphate dehydrogenase (G6PDH) and CAT activities in S. fuscovarious. SC decreased CAT, G6PDH, and glutathione S-transferase (GST) activities in P. nattereri. In S. fuscovarius, SC reduced G6PDH, acetylcholinesterase (AChE), and carboxylesterase (CbE) activities. MDA was raised in both tadpole species exposed to SC, evidencing oxidative stress. Integrated biomarker responses showed higher scores in both species exposed to SC. Our results warn that management practices currently applied to sugarcane cultivation in Brazil can negatively impact the functional responses of amphibians at natural systems.
Collapse
Affiliation(s)
- Lais Girotto
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Isabele Baima Ferreira Freitas
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, , São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, , São Paulo, Brazil
| | - Luis César Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP, 03828-000, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Juliane Silberschmidt Freitas
- Department of Agricultural and Natural Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, S/N - Universitário, Ituiutaba, MG, 38302-192, Brazil.
| |
Collapse
|
16
|
Pinto TJDS, Moreira RA, Freitas JSS, da Silva LCM, Yoshii MPC, de Palma Lopes LF, Ogura AP, de Mello Gabriel GV, Rosa LMT, Schiesari L, do Carmo JB, Montagner CC, Daam MA, Espindola ELG. Responses of Chironomus sancticaroli to the simulation of environmental contamination by sugarcane management practices: Water and sediment toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159643. [PMID: 36306835 DOI: 10.1016/j.scitotenv.2022.159643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane management practices include the application of pesticides, including the herbicide 2,4-D and the insecticide fipronil. In addition, a by-product from the ethanol industry, called vinasse, is commonly applied to fertilize sugarcane areas. The potential risks of these practices to the edge-of-field aquatic ecosystems were assessed in the present study. This was done by contaminating mesocosms with (single and mixtures of) both pesticides and vinasse and evaluating the effects on the midge Chironomus sancticaroli through in-situ and laboratory bioassays. To this end, outdoor mesocosms were treated with fipronil (F), 2,4-D (D), and vinasse (V) alone and with the mixture of fipronil and 2,4-D (M), as well as with both pesticides and vinasse (MV). C. sancticaroli was deployed in mesocosms before contamination in cages, which were taken out 4- and 8-days-post-contamination. Water and sediment samples were also taken for laboratory bioassays on the first day of contamination, as well as 7-, 14-, 21-, 30-, 45-, and 75-days post-contamination. The responses assessed in subchronic assays (8-day) were survival, growth, head capsule width, development, and mentum deformities. Low survival occurred in the in-situ experiments of all treatments due to the low oxygen levels. In the laboratory tests, effects on survival occurred for F, V, and M over time after exposure to both water and sediment. All organisms died post-exposure to water samples from the MV treatment, even 75-days-post-contamination. Impairments in body length and head capsule width occurred for F, V, and M for water and F, V, M, and MV for sediment samples over time. All treatments increased mentum deformities in exposed larvae for any of the sampling periods. The negative effects observed were more significant in the mixture mesocosms (M and MV), thus indicating increased risks from management practices applying these compounds together or with a short time interval in crops.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Juliane Silber Schmidt Freitas
- Department of Biological Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, s/n - Universitário, 38302-192 Ituiutaba, MG, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Laís Fernanda de Palma Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Gabriele Verônica de Mello Gabriel
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Luana Maria Tavares Rosa
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Luis Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP 03828-000, Brazil
| | - Janaina Braga do Carmo
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| |
Collapse
|