1
|
Introna M, Juárez-Facio AT, Srikanth Vallabani NV, Tu MH, Heikkilä P, Colombo A, Liboni V, Tsyupa B, Mancini A, Keskinen J, Olofsson U, Steimer SS, Karlsson HL, Elihn K. Toxicity of real-world PM 2.5 road tunnel emissions using a mobile Air-Liquid Interface system and submerged exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126486. [PMID: 40403919 DOI: 10.1016/j.envpol.2025.126486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/30/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Traffic-related air pollution is a major public health concern, contributing to respiratory and cardiovascular diseases worldwide. The aim of this study was to investigate the feasibility of using a mobile Air-Liquid Interface (ALI) system to assess the cytotoxicity and inflammatory potential of freshly generated PM2.5 (particle matter with aerodynamic diameter <2.5 μm) in a road tunnel in Stockholm. We hypothesized that cellular effects would be detectable at lower doses compared to submerged exposures. The mean particle dose in ALI was 1.4±0.8 μg/cm2, whereas a wide range of doses was used for submerged exposures. ALI and submerged results showed that PM2.5 from the road tunnel did not affect the viability of A549 cells, whereas a significant and dose-dependent decrease in viability of dTHP-1 (in submerged exposure) was observed. Furthermore, in A549 in ALI a slight increase in inflammatory response (IL-8, IL-6, and IL-1β) was observed. In submerged exposure, the inflammatory response was clearer, particularly in the dTHP-1 cells. In conclusion, this study presents the first successfully conducted in situ ALI exposure in a road tunnel. The results demonstrate that dTHP-1 cells exhibit clear cytotoxic and inflammatory responses, while A549 show only weak effects. These findings suggest that co-cultures of A549 and dTHP-1 may be valuable in future ALI studies.
Collapse
Affiliation(s)
- Micol Introna
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden.
| | | | | | - Ming Hui Tu
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paavo Heikkilä
- Aerosol physics laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland
| | - Andrea Colombo
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri"- IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Valentina Liboni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri"- IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Bozhena Tsyupa
- Materials Engineering & Laboratories, GCF R&D, Brembo NV, 24040 Stezzano (BG), Italy
| | - Alessandro Mancini
- Materials Engineering & Laboratories, GCF R&D, Brembo NV, 24040 Stezzano (BG), Italy
| | - Jorma Keskinen
- Aerosol physics laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Hanna Lovisa Karlsson
- Institute of Environmental Medicine, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
2
|
Hussain S, Siddique A, Hassan M, Rasool K, Shahzad A, Asad Naqvi SA, Ul Mustafa MR. Characteristics and health implications of fine particulate matter near urban road site in Islamabad, Pakistan. ENVIRONMENTAL RESEARCH 2024; 252:118862. [PMID: 38574984 DOI: 10.1016/j.envres.2024.118862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The escalating issue of air pollution has become a significant concern in urban regions, including Islamabad, Pakistan, due to the rise in air pollutant emissions driven by economic and industrial expansion. To gain a deeper understanding of air pollution, a study was conducted during winter 2022-2023, assessing physical, chemical, and biological factors in Islamabad. The findings revealed that the average concentration of fine particulate matter (PM2.5) was notably greater than the World Health Organization (WHO) guidelines, reaching 133.39 μg/m³. Additionally, the average concentration of bacteria (308.64 CFU/m³) was notably greater than that of fungi (203.55 CFU/m³) throughout the study. Analytical analyses, including SEM-EDS and FTIR, showed that the PM2.5 in Islamabad is composed of various particles such as soot aggregates, coal fly ash, minerals, bio-particles, and some unidentified particles. EF analysis distinguished PM2.5 sources, enhancing understanding of pollutants origin, whereas Spearman's correlation analysis elucidated constituent interactions, further explaining air quality impact. The results from the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) indicated a gradual increase in the total elemental composition of PM2.5 from autumn to winter, maintaining high levels throughout the winter season. Furthermore, a significant variation was found in the mass concentration of PM2.5 when comparing samples collected in the morning and evening. The study also identified the presence of semi-volatile organic compounds (SVOCs) in PM2.5 samples, including polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds, with notable variations in their concentrations. Utilizing health risk assessment models developed by the US EPA, we estimated the potential health risks associated with PM2.5 exposure, highlighting the urgency of addressing air quality issues. These findings provide valuable insights into the sources and composition of PM2.5 in Islamabad, contributing to a comprehensive understanding of air quality and its potential environmental and health implications.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Space Sciences, Institute of Space Technology, Islamabad, 44000, Pakistan
| | - Azhar Siddique
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Mujtaba Hassan
- Department of Space Sciences, Institute of Space Technology, Islamabad, 44000, Pakistan.
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Asif Shahzad
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Syed Ali Asad Naqvi
- Department of Geography, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Raza Ul Mustafa
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
3
|
Zeng H, Chen W, Li M, Shao Y, Li X, Zhang R, Jiang Y. Temporal analysis of lung injury induced by real-ambient PM 2 .5 exposure in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:377-387. [PMID: 37782690 DOI: 10.1002/tox.23985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/19/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Fine particulate matter (PM2.5 ) has been shown to induce lung injury. However, the pathophysiological mechanisms of PM2.5 -induced pulmonary injury after different exposure times are poorly understood. In this study, we exposed male ICR mice to a whole-body PM2.5 inhalation system at daily mean concentration range from 92.00 to 862.00 μg/m3 for 30, 60, and 90 days. We found that following prolonged exposure to PM2.5 , pulmonary injury was increasingly evident with significant histopathological alterations. Notably, the pulmonary inflammatory response and fibrosis caused by PM2.5 after different exposure times were closely associated with histopathological changes. In addition, PM2.5 exposure caused oxidative stress, DNA damage and impairment of DNA repair in a time-dependent manner in the lung. Importantly, exposure to PM2.5 eventually caused apoptosis in the lung through upregulation of cleaved-caspase-3 and downregulation of Bcl-2. Overall, our data demonstrated that PM2.5 led to pulmonary injury in a time-dependent manner via upregulation of proinflammatory and fibrosis-related genes, and activation of the DNA damage response. Our findings provided a novel perspective on the pathophysiology of respiratory diseases caused by airborne pollution.
Collapse
Affiliation(s)
- Huixian Zeng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Wei Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Meizhen Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Xun Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Madonsela BS. A meta-analysis of particulate matter and nitrogen dioxide air quality monitoring associated with the burden of disease in sub-Saharan Africa. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:737-749. [PMID: 37602776 DOI: 10.1080/10962247.2023.2248928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Exposure to air pollution is a fundamental obstacle that makes it complex to realize the Sustainable Development Goals (SDGs 3) for good health and wellbeing. It is for this reason that air pollution has been characterized as the global environmental health risk facing the current generation. The risks of air pollution on morbidity, and life expectancy are well documented. This feeds directly to the substantial body of the literature that exists regarding the burden of diseases associated with ambient air pollution. However, the bulk of this literature originates from developed countries. Whilst most of the sub-Saharan African studies extrapolate literature from developed countries to contextualize the risks of elevated air pollution exposure levels associated with the burden of disease. However, extrapolation of epidemiological evidence from developed countries is problematic given that it disregards the social vulnerability. Therefore, given this observation, it is ideal to evaluate if the monitoring executions of hazardous particulate matter and nitrogen dioxide do take into consideration the concerted necessary efforts to associate monitored air pollution exposure levels with the burden of disease. Therefore, based on this background, the current meta-analysis evaluated air quality monitoring associated with the burden of disease across sub-Saharan Africa. To this extent, the current meta-analysis strictly included peer-reviewed published journal articles from the sub-Saharan African regions to gain insight on air quality monitoring associated with the burden of disease. The collected meta-analysis data was captured and subsequently analyzed using Microsoft Excel 2019. This program facilitated the presentation of the meta-analysis data in the form of graphs and numerical techniques. Generally, the results indicate that the sub-Saharan Africa is characterized by a substantial gap in the number of regional studies that evaluate the burden of disease in relation with exposure to air quality.Implications: The work presented here is an original contribution and provides a comprehensive yet succinct overview of the monitoring associated with the burden of disease in sub-Saharan Africa. The author explores if the monitoring executions of hazardous particulate matter and nitrogen dioxide do take into considerations the concerted necessary efforts to associate monitored air pollution exposure levels with the burden of disease. The manuscript includes the most relevant and current literature in a field of study that has not received a deserving degree of research attention in recent years. This is especially true in sub-Saharan Africa, characterized by insufficient monitoring of air quality exposure concentrations.
Collapse
Affiliation(s)
- Benett Siyabonga Madonsela
- Department of Environmental and Occupational Studies, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
5
|
He B, Xu HM, Liu HW, Zhang YF. Unique regulatory roles of ncRNAs changed by PM 2.5 in human diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114812. [PMID: 36963186 DOI: 10.1016/j.ecoenv.2023.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 is a type of particulate matter with an aerodynamic diameter smaller than 2.5 µm, and exposure to PM2.5 can adversely damage human health. PM2.5 may impair health through oxidative stress, inflammatory reactions, immune function alterations and chromosome or DNA damage. Through increasing in-depth studies, researchers have found that noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs), circular RNAs (circRNAs) as well as long noncoding RNAs (lncRNAs), might play significant roles in PM2.5-related human diseases via some of the abovementioned mechanisms. Therefore, in this review, we mainly discuss the regulatory function of ncRNAs altered by PM2.5 in human diseases and summarize the potential molecular mechanisms. The findings reveal that these ncRNAs might induce or promote diseases via inflammation, the oxidative stress response, cell autophagy, apoptosis, cell junction damage, altered cell proliferation, malignant cell transformation, disruption of synaptic function and abnormalities in the differentiation and status of immune cells. Moreover, according to a bioinformatics analysis, the altered expression of potential genes caused by these ncRNAs might be related to the development of some human diseases. Furthermore, some ncRNAs, including lncRNAs, miRNAs and circRNAs, or processes in which they are involved may be used as biomarkers for relevant diseases and potential targets to prevent these diseases. Additionally, we performed a meta-analysis to identify more promising diagnostic ncRNAs as biomarkers for related diseases.
Collapse
Affiliation(s)
- Bo He
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Hao-Wen Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
6
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
7
|
Moufarrej L, Verdin A, Cazier F, Ledoux F, Courcot D. Oxidative stress response in pulmonary cells exposed to different fractions of PM 2.5-0.3 from urban, traffic and industrial sites. ENVIRONMENTAL RESEARCH 2023; 216:114572. [PMID: 36244444 DOI: 10.1016/j.envres.2022.114572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The aim of this work was to study the relationship between oxidative stress damages and particulate matter (PM) chemical composition, sources, and PM fractions. PM2.5-0.3 (PM with equivalent aerodynamic diameter between 2.5 and 0.3 μm) were collected at urban, road traffic and industrial sites in the North of France, and were characterized for major and minor chemical species. Four different fractions (whole PM2.5-0.3, organic, water-soluble and non-extractable matter) were considered for each of the PM2.5-0.3 samples from the three sites. After exposure of BEAS-2B cells to the four different fractions, oxidative stress was studied in cells by quantifying reactive oxygen species (ROS) accumulation, oxidative damage to proteins (carbonylated proteins), membrane alteration (8-isoprostane) and DNA damages (8-OHdG). Whole PM2.5-0.3 was capable of inducing ROS overproduction and caused damage to proteins at higher levels than other fractions. Stronger cell membrane and DNA damages were found associated with PM and organic fractions from the urban site. ROS overproduction was correlated with level of expression of carbonylated proteins, DNA damages and membrane alteration markers. The PM2.5-0.3 collected under industrial influence appears to be the less linked to cell damages and ROS production in comparison with the other influences.
Collapse
Affiliation(s)
- Lamia Moufarrej
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France.
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| |
Collapse
|
8
|
Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol 2022; 19:67. [PMID: 36447278 PMCID: PMC9707232 DOI: 10.1186/s12989-022-00507-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The impacts of air pollution on public health have become a great concern worldwide. Ambient particulate matter (PM) is a major air pollution that comprises a heterogeneous mixture of different particle sizes and chemical components. The chemical composition and physicochemical properties of PM change with space and time, which may cause different impairments. However, the mechanisms of the adverse effects of PM on various systems have not been fully elucidated and systematically integrated. The Adverse Outcome Pathway (AOP) framework was used to comprehensively illustrate the molecular mechanism of adverse effects of PM and its components, so as to clarify the causal mechanistic relationships of PM-triggered toxicity on various systems. The main conclusions and new insights of the correlation between public health and PM were discussed, especially at low concentrations, which points out the direction for further research in the future. With the deepening of the study on its toxicity mechanism, it was found that PM can still induce adverse health effects with low-dose exposure. And the recommended Air Quality Guideline level of PM2.5 was adjusted to 5 μg/m3 by World Health Organization, which meant that deeper and more complex mechanisms needed to be explored. Traditionally, oxidative stress, inflammation, autophagy and apoptosis were considered the main mechanisms of harmful effects of PM. However, recent studies have identified several emerging mechanisms involved in the toxicity of PM, including pyroptosis, ferroptosis and epigenetic modifications. This review summarized the comprehensive evidence on the health effects of PM and the chemical components of it, as well as the combined toxicity of PM with other air pollutants. Based on the AOP Wiki and the mechanisms of PM-induced toxicity at different levels, we first constructed the PM-related AOP frameworks on various systems.
Collapse
Affiliation(s)
- Tianyu Li
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Yang Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
9
|
Cytotoxicity of Particulate Matter PM10 Samples from Ouagadougou, Burkina Faso. J Toxicol 2022; 2022:1786810. [PMID: 36310640 PMCID: PMC9616664 DOI: 10.1155/2022/1786810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Particulate matter (PM) is one of the main air pollutants with 257,000 deaths per year in Africa. Studying their toxic mechanisms of action could provide a better understanding of their effects on the population health. The objective of this study was to describe the PM10 toxic mechanism of action collected in 3 districts of Ouagadougou. Once per month and per site between November 2015 and February 2016, PM10 was sampled for 24 hours using the MiniVol TAS (AirMetrics, Eugene, USA). The collected filters were then stored in Petri dishes at room temperature for in vitro toxicological studies using human pulmonary artery endothelial cells (HPAEC) at the Bordeaux INSERM-U1045 Cardio-thoracic Research Center. The three study districts were classified based on PM10 level (high, intermediate, and low, respectively, for districts 2, 3, and 4). PM10 induced a concentration-dependent decrease in cell viability. A significant decrease in cell viability was observed at 1 µg/cm2, 10 µg/cm2, and 25 µg/cm2 for, respectively, districts 2, 3, and 4. A significant increase in the production of reactive oxygen species (ROS) was observed at 10 µg/cm2 for district 2 versus 5 µg/cm2 and 1 µg/cm2 for districts 3 and 4, respectively. Finally, a significant production of IL-6 was recorded from 5 µg/cm2 for district 4 versus 10 µg/cm2 for districts 2 and 3. Consequently, Ouagadougou is subjected to PM10 pollution, which can induce a significant production of ROS and IL-6 to cause adverse effects on the health of the population.
Collapse
|
10
|
Jiao Y, Wang S, Jiang L, Sun X, Li J, Liu X, Yao X, Zhang C, Wang N, Deng H, Yang G. 2-undecanone protects against fine particles-induced heart inflammation via modulating Nrf2/HO-1 and NF-κB pathways. ENVIRONMENTAL TOXICOLOGY 2022; 37:1642-1652. [PMID: 35285579 DOI: 10.1002/tox.23513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/26/2022] [Accepted: 03/06/2022] [Indexed: 05/20/2023]
Abstract
Exposure to air pollution has been closely associated with some cardiovascular disease. One of the mechanisms of PM2.5 -mediated heart injury may be to promote inflammation. We aim to investigate whether the main extract of Houttuynia cordata, 2-undecanone, can prevent the inflammation caused by PM2.5 , and to reveal the underlying mechanisms. The results showed that PM2.5 increased the expression of certain inflammatory cytokines, and caused oxidative damage in BALB/c mice and H9C2 cells. Supplementation with 2-undecanone attenuated this PM2.5 -induced inflammatory injury and oxidative damage. Further, we elucidated that the protective effect of 2-undecanone may be associated with NF-κB and Nrf2/HO-1 pathways. The NF-κB pathway was distinctly activated after treated by PM2.5 , which can be blocked by 2-undecanone, accompanied by increasing Nrf2 and HO-1 levels. To figure out the relationship between NF-κB and Nrf2/HO-1 pathways, we knocked down Nrf2 gene. NF-κB pathway proteins and downstream inflammatory cytokines were significantly increased after treatment with PM2.5 , while 2-undecanone could decrease expression of these proteins. In conclusion, it is possible that 2-undecanone can induce the expression of the antioxidant enzyme HO-1 by activating Nrf2, thereby reducing NF-κB pathway and inflammatory damage of mouse myocardium caused by PM2.5 exposure.
Collapse
Affiliation(s)
- Yuhang Jiao
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Matei E, Predescu AM, Râpă M, Țurcanu AA, Mateș I, Constantin N, Predescu C. Natural Polymers and Their Nanocomposites Used for Environmental Applications. NANOMATERIALS 2022; 12:nano12101707. [PMID: 35630932 PMCID: PMC9146209 DOI: 10.3390/nano12101707] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023]
Abstract
The aim of this review is to bring together the main natural polymer applications for environmental remediation, as a class of nexus materials with advanced properties that offer the opportunity of integration in single or simultaneous decontamination processes. By identifying the main natural polymers derived from agro-industrial sources or monomers converted by biotechnology into sustainable polymers, the paper offers the main performances identified in the literature for: (i) the treatment of water contaminated with heavy metals and emerging pollutants such as dyes and organics, (ii) the decontamination and remediation of soils, and (iii) the reduction in the number of suspended solids of a particulate matter (PM) type in the atmosphere. Because nanotechnology offers new horizons in materials science, nanocomposite tunable polymers are also studied and presented as promising materials in the context of developing sustainable and integrated products in society to ensure quality of life. As a class of future smart materials, the natural polymers and their nanocomposites are obtained from renewable resources, which are inexpensive materials with high surface area, porosity, and high adsorption properties due to their various functional groups. The information gathered in this review paper is based on the publications in the field from the last two decades. The future perspectives of these fascinating materials should take into account the scale-up, the toxicity of nanoparticles, and the competition with food production, as well as the environmental regulations.
Collapse
|
12
|
Cao L, Ping F, Zhang F, Gao H, Li P, Ning X, Cui G, Ma Z, Jiang X, Li S, Han S. Tissue-Protective Effect of Erdosteine on Multiple-Organ Injuries Induced by Fine Particulate Matter. Med Sci Monit 2021; 27:e930909. [PMID: 34873140 PMCID: PMC8665604 DOI: 10.12659/msm.930909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background Fine particulate matter (PM2.5) is the air pollutant that most threatens global public health. The purpose of this study was to observe the inflammatory and oxidative stress injury of multiple organs induced by PM2.5 in rats and to explore the tissue-protective effect of erdosteine. Material/Methods We randomly divided 40 male Wistar rats into a blank control group, a saline group, a PM2.5 exposure group, and an erdosteine intervention group. We assessed changes in organs tissue homogenate and biomarkers of inflammation and oxidative stress in serum and bronchoalveolar lavage fluid (BALF). Results (1) The expressions of IL-6, IL-1β, TNF-α, 8-OHdG, 4-HNE, and PCC in serum and BALF of the PM2.5 exposure group increased, but decreased after treatment with erdosteine, suggesting that erdosteine treatment attenuates inflammatory and oxidative stress injury. (2) The expression of γ-GCS in serum and lungs in the PM2.5 exposure group increased, but did not change significantly after treatment with erdosteine. This suggests that PM2.5 upregulates the level of γ-GCS, while erdosteine does not affect this protective response. (3) The expression of T-AOC in serum, lungs, spleens, and kidneys of the PM2.5 exposure group decreased, but increased after treatment with erdosteine. Our results suggest that PM2.5 can cause imbalance of oxidation/anti-oxidation in multiple organs, and erdosteine can alleviate this imbalance. Conclusions PM2.5 exposure can lead to inflammatory and oxidative stress damage in serum and organ tissues of rats. Erdosteine may be an effective anti-inflammatory and antioxidant that can reduce this injury.
Collapse
Affiliation(s)
- Lei Cao
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Fen Ping
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Fengrui Zhang
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Haixiang Gao
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Ping Li
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Xiaohui Ning
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Guohuan Cui
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Zheng Ma
- International Department, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China (mainland)
| | - Xin Jiang
- Third Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Suyan Li
- Department of General Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Shuzhi Han
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
13
|
Kermani M, Rahmatinia T, Oskoei V, Norzaee S, Shahsavani A, Farzadkia M, Kazemi MH. Potential cytotoxicity of trace elements and polycyclic aromatic hydrocarbons bounded to particulate matter: a review on in vitro studies on human lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55888-55904. [PMID: 34490568 DOI: 10.1007/s11356-021-16306-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies have been conducted for clarifying toxicological mechanisms of particulate matter (PM) aimed to investigate the physicochemical properties of PM and providing biological endpoints such as inflammation, perturbation of cell cycle, oxidative stress, or DNA damage. However, although several studies have presented some effects, there is still no consensus on the determinants of biological responses. This review attempts to summarize all past research conducted in recent years on the physicochemical properties of environmental PM in different places and the relationship between different PM components and PM potential cytotoxicity on the human lung epithelial cells. Among 447 papers with our initial principles, a total of 50 articles were selected from 1986 to April 2020 based on the chosen criteria for review. According to the results of selected studies, it is obvious that cytotoxicity in human lung epithelial cells is created both directly or indirectly by transition metals (such as Cu, Cr, Fe, Zn), polycyclic aromatic hydrocarbons (PAH), and ions that formed on the surface of particles. In the selected studies, the findings of the correlation analysis indicate that there is a significant relationship between cell viability reduction and secretion of inflammatory mediators. As a result, it seems that the observed biological responses are related to the composition and the physicochemical properties of the PMs. Therefore, the physicochemical properties of PM should be considered when explaining PM cytotoxicity, and long-term research data will lead to improved strategies to reduce air pollution.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Tahere Rahmatinia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Oskoei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahsavani
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Krzyszczak A, Czech B. Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147738. [PMID: 34023603 DOI: 10.1016/j.scitotenv.2021.147738] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
In the last years, there is great attention paid to the determination of polycyclic aromatic hydrocarbons (PAHs) in different environmental matrices. Extensive reviews on PAHs presence and toxicity were published recently. However, PAHs formation and transformation in the environment lead to the production of PAHs derivatives containing oxygen (O-PAHs), nitrogen (N-PAHs and aazarenes AZA) or sulfur (PASHs) in the aromatic ring. The development of new analytical methods enabled the determination of these novel contaminants. The presence of oxygen, nitrogen, or sulfur in PAHs aromatic rings increased their toxicity. The most common primary sources of PAHs derivatives are biological processes such as microbial activity (in soil, water, and wastewater treatment plants (O-PAHs)) and all processes involving combustion of fuel, coal, and biomass (O-PAHs, N-PAHs, AZA, PASHs). The secondary resources involved i) photochemical (UV light), ii) radical-mediated (OH, NO3), and iii) reactions with oxidants (O3, NOx) (O-PAHs, N-PAHs, AZA). Furthermore, N-PAHs were able to transform to their corresponding O-PAHs, while other derivatives were not. It indicated that N-PAHs are more vulnerable to photooxidation in the environment. 85% of O- and N-PAHs were detected with particle matter below 2.5 μm suggesting their easier bioaccessibility. More than 90% of compounds with four and more aromatic cycles were present in the particle phase in the air. Although the concentrations of N-PAHs or O-PAHs may be similar to PAHs concentration or even 1000 times lower than parent PAHs, PAHs derivatives accounted for a significant portion of the total mutagenicity. The present review is describing the results of the studies on the determination of PAHs derivatives in different environmental matrices including airborne particles, sediments, soil, and organisms. The mechanisms of their formation and toxicity were assessed.
Collapse
Affiliation(s)
- Agnieszka Krzyszczak
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Sklodowska, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Sklodowska, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
15
|
Zhou L, Liu H, Zhang R, Yin J, Huo C, WangMo K, Hua S, Ye L. MUC5B regulates the airway inflammation induced by atmospheric PM 2.5 in rats and A549 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112448. [PMID: 34174739 DOI: 10.1016/j.ecoenv.2021.112448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric PM2.5 can induce airway inflammation and mucin secretion. MUC5B is required for airway defense. However, the research on the role of MUC5B in airway inflammation induced by atmospheric PM2.5 remains limited. This study was designed to explore the role of MUC5B in airway inflammation induced by atmospheric PM2.5. In vivo, Wistar rats were exposed to 0, 1.5, 7.5, 37.5 mg/ kg PM2.5 saline suspension via intratracheal instillation. HE staining and AB-PAS staining were used to observe the airway inflammation and goblet cell hyperplasia. In vitro, normal A549 cells and MUC5B-knockdown A549 cells were exposed to 0, 100, 200 and 400 μg/mL PM2.5 for 6 h, 12 h, 24 h and 48 h. ELISA was used to measure the levels of TNF-α and IL-1β in serum and bronchoalveolar lavage fluid of rats and in cell culture. Real time-PCR and ELISA were used to quantify the mRNA and protein levels of MUC5B in trachea and lung of rats and in A549 cells. PM2.5 could cause the infiltration of inflammatory cells and increase the mucus secretions and goblet cell metaplasia. MUC5B is related to rats' airway inflammation induced by PM2.5. A549 cells exposed to PM2.5 in higher concentration and longer time, the protein level of MUC5B was significantly increased, while the levels of IL-1β, TNF-α and MUC5B mRNA were significantly decreased. Compared with normal A549 cells, the levels of IL-1β and TNF-α were significantly higher in Muc5b-knockdown cells. Atmospheric PM2.5 can induce airway inflammation and mucin secretion. MUC5B played a critical role in controlling the inflammatory response induced by PM2.5.
Collapse
Affiliation(s)
- Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China; Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China; Department of Disease Control and Management, Fuling District Center for Disease Control and Prevention of Chongqing, China
| | - Ruxuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China
| | - Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China
| | - Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China
| | - Kelsang WangMo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China.
| |
Collapse
|
16
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
17
|
Lan Y, Ng CT, Ong CN, Yu LE, Bay BH. Transcriptomic analysis identifies dysregulated genes and functional networks in human small airway epithelial cells exposed to ambient PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111702. [PMID: 33396033 DOI: 10.1016/j.ecoenv.2020.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Cellular models exhibiting human physiological features of pseudostratified columnar epithelia, provide a more realistic approach for elucidating detailed mechanisms underlying PM2.5-induced pulmonary toxicity. In this study, we characterized the barrier and mucociliary functions of differentiated human small airway epithelial cells (SAECs), cultured at the air-liquid interface (ALI). Due to the presence of mucociliary protection, particle internalization was reduced, with a concomitant decrease in cytotoxicity in differentiated S-ALI cells, as compared to conventional submerged SAEC cultures. After 24-hour exposure to PM2.5 surrogates, 117 up-regulated genes and 156 down-regulated genes were detected in S-ALI cells, through transcriptomic analysis using the Affymetrix Clariom™ S Human Array. Transcription-level changes in >60 signaling pathways, were revealed by functional annotation of the 273 differentially expressed genes, using the PANTHER Gene List Analysis. These pathways are involved in multiple cellular processes, that include inflammation and apoptosis. Exposure to urban PM2.5 led to complex responses in airway epithelia, including a net induction of downstream pro-inflammatory and pro-apoptotic responses. Collectively, this study highlights the importance of using the more advanced ALI model rather than the undifferentiated submerged model, to avoid over-assessment of inhaled particle toxicity in human. The results of our study also suggest that reduction of ambient PM2.5 concentrations would have a protective effect on respiratory health in humans.
Collapse
Affiliation(s)
- Yang Lan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Cheng Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Liya E Yu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
18
|
Xin L, Wang J, Sun J, Zhang C, Tong X, Wan J, Feng J, Tian H, Zhang Z. Cellular effects of PM 2.5 from Suzhou, China: relationship to chemical composition and endotoxin content. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:287-299. [PMID: 32809125 DOI: 10.1007/s11356-020-10403-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Exposure to PM2.5 can cause adverse health outcomes. In this study, we analyzed PM2.5 samples collected from suburban and urban sites, including a traffic tunnel in Suzhou, China, for their physicochemical properties, endotoxin contents, and effects on HepG2 and A549 cells in vitro. The greatest cellular responses, including oxidative stress, cytotoxicity, genotoxicity, inflammatory, and transcriptional activation of stress-responsive genes (i.e., HSPA1A, GADD45α), were observed in cells treated with traffic tunnel PM2.5. Cytokine expression was also measured and closely correlated with endotoxin content, while other toxic effects were largely related to PM2.5-bound metals and polycyclic aromatic hydrocarbons (PAHs). These findings suggested that chemical and biological composition of PM2.5, including adsorbed trace metals, PAHs, and endotoxin, may contribute significantly to their toxicity. In addition to commonly used in vitro toxicity tests, HSPA1A and GADD45α promoter-driven luciferase reporter cells may provide a potential new tool for rapid screening and quantification of PM2.5 toxicity.
Collapse
Affiliation(s)
- Lili Xin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jianshu Wang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, Jiangsu, China
| | - Jiaojiao Sun
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Chen Zhang
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Xing Tong
- Laboratory Center, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jianmei Wan
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jialiang Feng
- Institute of Environmental Pollution and Health, Shanghai University, Shanghai, 200444, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Zengli Zhang
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
19
|
Niu X, Wang Y, Ho SSH, Chuang HC, Sun J, Qu L, Wang G, Ho KF. Characterization of organic aerosols in PM 1 and their cytotoxicity in an urban roadside area in Hong Kong. CHEMOSPHERE 2021; 263:128239. [PMID: 33297186 DOI: 10.1016/j.chemosphere.2020.128239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Organic compounds in fine particles play major roles in cardiopulmonary diseases. A study was conducted to determine the characteristics and cytotoxicity of organic aerosols (OA) in an urban roadside area in Hong Kong. Chemical components in nonrefractory submicron aerosol (NR-PM1) were observed using a Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM), and the chemical profile of organic compounds in NR-PM1 was examined with filter-based approach. Associations between cytotoxicity and organic sources and compositions were evaluated. NR-PM1 contributed to 84% of the PM1 concentrations. The NR-PM1 was composed of organics (55 ± 15%), followed by sulfate (21 ± 9%), ammonium (13 ± 6%), nitrate (10 ± 6%) and chloride (1 ± 1%). Three major organic sources were identified using positive matrix factorization, namely primary organic aerosol (POA, 40 ± 19%), more-oxidized oxygenated OA (MO-OOA, 32 ± 22%) and less-oxidized oxygenated OA (LO-OOA, 28 ± 19%). Variations in organic groups, including alkanes, hopanes, steranes, polycyclic aromatic hydrocarbons (PAHs), oxy-PAHs (OPAHs), and fatty acids, demonstrated that traffic and cooking emissions were dominant pollution sources in this roadside station. Human lung alveolar epithelial (A549) cells were exposed to PM1, revealing increases in lactate dehydrogenase (LDH), reactive oxygen species (ROS), and interlukin-6 (IL-6), which indicated the occurrence of inflammatory and oxidative responses. POA was significantly associated with ROS and IL-6, and alkanes, hopanes, steranes, PAHs and OPAHs, and fatty acids presented medium to high correlations with LDH and IL-6, demonstrating the importance of primary emissions and organic compounds in cytotoxicity. This study demonstrated that organic compounds emitted from traffic and cooking play critical roles in PM-induced oxidative stress and inflammation in urban areas.
Collapse
Affiliation(s)
- Xinyi Niu
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yichen Wang
- School of Humanities, Economics and Law, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, 89512, United States; Hong Kong Premium Services and Research Laboratory, Hong Kong, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Linli Qu
- Hong Kong Premium Services and Research Laboratory, Hong Kong, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210062, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
de Almeida DS, Martins LD, Muniz EC, Rudke AP, Squizzato R, Beal A, de Souza PR, Bonfim DPF, Aguiar ML, Gimenes ML. Biodegradable CA/CPB electrospun nanofibers for efficient retention of airborne nanoparticles. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2020; 144:177-185. [PMID: 32834561 PMCID: PMC7366959 DOI: 10.1016/j.psep.2020.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 05/18/2023]
Abstract
The increase of the industrialization process brought the growth of pollutant emissions into the atmosphere. At the same time, the demand for advances in aerosol filtration is evolving towards more sustainable technologies. Electrospinning is gaining notoriety, once it enables to produce polymeric nanofibers with different additives and also the obtaining of small pore sizes and fiber diameters; desirable features for air filtration materials. Therefore, this work aims to evaluate the filtration performance of cellulose acetate (CA) nanofibers and cationic surfactant cetylpyridinium bromide (CPB) produced by electrospinning technique for retention of aerosol nanoparticles. The pressure drop and collection efficiency measurements of sodium chloride (NaCl) aerosol particles (diameters from 7 to 300 nm) were performed using Scanning Mobility Particle Sizer (SMPS). The average diameter of the electrospun nanofibers used was 239 nm, ranging from 113 to 398 nm. Experimental results indicated that the nanofibers showed good permeability (10-11 m2) and high-efficiency filtration for aerosol nanoparticles (about 100 %), which can include black carbon (BC) and the new coronavirus. The pressure drop was 1.8 kPa at 1.6 cm s-1, which is similar to reported for some high-efficiency nanofiber filters. In addition, it also retains BC particles present in air, which was about 90 % for 375 nm and about 60 % for the 880 nm wavelength. Finally, this research provided information for future designs of indoor air filters and filter media for facial masks with renewable, non-toxic biodegradable, and potential antibacterial characteristics.
Collapse
Affiliation(s)
- Daniela Sanches de Almeida
- State University of Maringá, Av. Colombo, 5790 - Vila Esperança, Maringá, PR, 87020-900, Brazil
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, Londrina, PR, 86036-370, Brazil
| | | | - Edvani Curti Muniz
- State University of Maringá, Av. Colombo, 5790 - Vila Esperança, Maringá, PR, 87020-900, Brazil
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, Londrina, PR, 86036-370, Brazil
- Federal University of Piauí, Campus Petrônio Portella, Bairro Ininga, Teresina, PI, 64049-550, Brazil
| | - Anderson Paulo Rudke
- Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafaela Squizzato
- University of São Paulo, Rua do Matão, 1226 - Cidade Universitária, 05508-090, São Paulo, SP, Brazil
| | - Alexandra Beal
- State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, 86057-970, Londrina, Brazil
| | - Paulo Ricardo de Souza
- State University of Maringá, Av. Colombo, 5790 - Vila Esperança, Maringá, PR, 87020-900, Brazil
| | | | - Mônica Lopes Aguiar
- Federal University of São Carlos, Rod. Washington Luiz, Km 235, SP310, São Carlos, SP, 13565-905, Brazil
| | - Marcelino Luiz Gimenes
- State University of Maringá, Av. Colombo, 5790 - Vila Esperança, Maringá, PR, 87020-900, Brazil
| |
Collapse
|
21
|
Cochard M, Ledoux F, Landkocz Y. Atmospheric fine particulate matter and epithelial mesenchymal transition in pulmonary cells: state of the art and critical review of the in vitro studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:293-318. [PMID: 32921295 DOI: 10.1080/10937404.2020.1816238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has been associated with several diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung cancer. Mechanisms such as oxidative stress and inflammation are well-documented and are considered as the starting point of some of the pathological responses. However, a number of studies also focused on epithelial-mesenchymal transition (EMT), which is a biological process involved in fibrotic diseases and cancer progression notably via metastasis induction. Up until now, EMT was widely reported in vivo and in vitro in various cell types but investigations dealing with in vitro studies of PM2.5 induced EMT in pulmonary cells are limited. Further, few investigations combined the necessary endpoints for validation of the EMT state in cells: such as expression of several surface, cytoskeleton or extracellular matrix biomarkers and activation of transcription markers and epigenetic factors. Studies explored various cell types, cultured under differing conditions and exposed for various durations to different doses. Such unharmonized protocols (1) might introduce bias, (2) make difficult comparison of results and (3) preclude reaching a definitive conclusion regarding the ability of airborne PM2.5 to induce EMT in pulmonary cells. Some questions remain, in particular the specific PM2.5 components responsible for EMT triggering. The aim of this review is to examine the available PM2.5 induced EMT in vitro studies on pulmonary cells with special emphasis on the critical parameters considered to carry out future research in this field. This clarification appears necessary for production of reliable and comparable results.
Collapse
Affiliation(s)
- Margaux Cochard
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| | - Yann Landkocz
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| |
Collapse
|
22
|
Nascimento AP, Santos JM, Mill JG, Toledo de Almeida Albuquerque T, Reis Júnior NC, Reisen VA, Pagel ÉC. Association between the incidence of acute respiratory diseases in children and ambient concentrations of SO 2, PM 10 and chemical elements in fine particles. ENVIRONMENTAL RESEARCH 2020; 188:109619. [PMID: 32531523 DOI: 10.1016/j.envres.2020.109619] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study consists of investigating the effects of the SO2, PM10, inorganic chemical elements and black carbon (BC) present in fine particulates on the acute outcomes of respiratory diseases in children up to 12 years of age living in Brazilian urban area in the southern hemisphere during the winter (2013) and summer (2013-2014) months. SO2 and PM10 concentration data were obtained from six air quality monitoring stations spatially distributed in the area. PM2.5 samples were collected at the same locations with a MiniVol sampler over a 24-h period on alternating days. The PM2.5 components were analysed using the energy dispersive X-ray fluorescence and reflectance techniques. Hospital care and admission events due to acute respiratory diseases (n = 8,987) of the coded groups JJ00-JJ99 of the International Code of Diseases (ICD-10) were obtained from three hospitals (one public and two private hospitals). To quantify the association of acute respiratory disease events with pollutant concentrations, a generalized additive model (GAM) with a Poisson distribution was applied. The results showed a greater risk of acute respiratory events due to exposure to SO2 with a relative risk of 1.28 (95% CI: 1.22-1.34) and to PM10 with a risk of 1.14 (95% CI: 1.09-1.20) on the day of exposure (lag 0). The chemical constituents present in the fine particles with the highest risk for acute respiratory diseases were Si with a risk of 1.22 (95% CI: 1.15-1.29), S with a risk of 1.09 (95% CI: 1.06-1.12), Ti with a risk of 1.09 (95% CI: 1.01-1.17), BC with a risk of 1.07 (95% CI: 1.03-1.11), Se with a risk of 1.03 (95% CI: 0.96-1.10) and Ni with a risk of 1.03 (95% CI: 0.96-1.10).
Collapse
Affiliation(s)
- Antonio Paula Nascimento
- Department of Industrial Technology, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória, ES, 29.060-910, Brazil
| | - Jane Meri Santos
- Department of Environmental Engineering, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória, ES, 29.060-910, Brazil.
| | - José Geraldo Mill
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória, ES, 29.060-910, Brazil
| | - Taciana Toledo de Almeida Albuquerque
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Bloco 3, Belo Horizonte, MG, 31270-901, Brazil
| | - Neyval Costa Reis Júnior
- Department of Environmental Engineering, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória, ES, 29.060-910, Brazil
| | - Valdério Anselmo Reisen
- Department of Statistics, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória, ES, 29.060-910, Brazil
| | - Érica Coelho Pagel
- Department of Architecture and City, Universidade Vila Velha, Av Comissario Jose Dantas De Mello, 21, Boa Vista II, Vila Velha, ES, 29102-920, Brazil
| |
Collapse
|
23
|
Jia Y, Li X, Nan A, Zhang N, Chen L, Zhou H, Zhang H, Qiu M, Zhu J, Ling Y, Jiang Y. Circular RNA 406961 interacts with ILF2 to regulate PM 2.5-induced inflammatory responses in human bronchial epithelial cells via activation of STAT3/JNK pathways. ENVIRONMENT INTERNATIONAL 2020; 141:105755. [PMID: 32388272 DOI: 10.1016/j.envint.2020.105755] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter (PM2.5) has been verified to augmented the incidence of pneumonia, asthma, pulmonary fibrosis, and other pulmonary diseases. Airway inflammation is the pathological basis of the respiratory system, and understanding the molecular mechanisms responsible for airway inflammation may thus support the diagnosis and treatment of respiratory diseases. In our study, human bronchial epithelial cells (BEAS-2B) were exposed to various concentrations of PM2.5 for 48 h. PM2.5 entered the cells, resulting in increased production of interleukin 6 (IL-6) and interleukin 8 (IL-8) and decreased the expression of circular RNA 406961 (circ_406961). Further, PM2.5 with a concentration of 75 μg/mL was applied to mechanism study. Functional experiments further confirmed that circ_406961 inhibited PM2.5-induced BEAS-2B cell inflammation. RNA pull-down and mass spectrometry showed that circ_406961 interacted with interleukin enhancer-binding factor 2 (ILF2), which could regulate phosphorylation of signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase 8 (MAPK8, JNK). Our studies showed that circ_406961 inhibited activation of STAT3/JNK pathways via interacting with ILF2 protein, thereby inhibiting the PM2.5-induced inflammatory reaction.
Collapse
Affiliation(s)
- Yangyang Jia
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Aruo Nan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Nan Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Lijian Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Hanyu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Han Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Miaoyun Qiu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Jialu Zhu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
24
|
Dong TTT, Stock WD, Callan AC, Strandberg B, Hinwood AL. Emission factors and composition of PM 2.5 from laboratory combustion of five Western Australian vegetation types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134796. [PMID: 31731149 DOI: 10.1016/j.scitotenv.2019.134796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 05/27/2023]
Abstract
This study investigated the emission of PM10 and PM2.5 (particulates with diameters of less than 10 µm and 2.5 µm, respectively) and the chemical composition of PM2.5 from laboratory combustion of five Australian vegetation types (three grasslands, a woodland and a forest). A mix of plants representative of Banksia (woodland) and Jarrah (forest) and three types of grasses (Spinifex - Triodia basedowii; Kimberley grass - Sehima nervosum and Heteropogon contortus; and an invasive grass (Veldt) - Ehrharta calycina) were burnt in 9 combustion conditions comprised of 3 fuel moisture levels (dry, moist, wet) and 3 air flow rates (no, low and high flow). PM (particulate matter) samples were collected onto filters and measured using gravimetric analysis. PM2.5 was then extracted and analyzed for water-soluble metals and polycyclic aromatic hydrocarbons (PAH) concentrations. The largest proportion of PM10 (98%) from vegetation fires was PM2.5. Banksia yielded the highest PM2.5 emission factor (EF), followed by Jarrah and Spinifex. Veldt grass combustion generated significantly higher emissions of PM2.5 compared with the other two grass types. High moisture contents and flow rates resulted in larger emissions of PM2.5. A strong correlation (R2 = 0.84) was observed between the EF for PM2.5 and combustion efficiency, suggesting higher PM emission with lower combustion efficiencies. Potassium and sodium were the most abundant PM2.5-bound water soluble metals, accounting for more than 97% of the total mass of metals analyzed. PAHs were found in significant concentrations, including the carcinogenic benzo(a)pyrene. Pyrene and fluoranthene were the most abundant PAHs detected, accounting for nearly 40% mass of the total PAHs. Indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene ratio (IND/IND + BghiP) appeared to be produced in a diagnostic ratio that indicated that the PAHs were derived from vegetation fires rather than other sources of emissions. The EF for PM2.5 and its chemical composition (water-soluble metals and PAHs) were strongly influenced by the type of vegetation burned. The results presented in this study could be useful in predicting the risks of human health effects on firefighters and the public who may be exposed to regular bushfires in Australia.
Collapse
Affiliation(s)
- Trang T T Dong
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6027, Australia.
| | - William D Stock
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6027, Australia
| | - Anna C Callan
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia
| | - Bo Strandberg
- Department of Public Health and Community, Medicine at Institute of Medicine, University of Gothenburg, Sweden; Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Andrea L Hinwood
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6027, Australia; Environment Protection Authority Victoria, 200 Victoria Street, Carlton, VIC 3053, Australia
| |
Collapse
|
25
|
Liu L, Song C, Li J, Wang Q, Zhu M, Hu Y, Chen J, Chen C, Zhang JS, Dong N, Chen C. Fibroblast growth factor 10 alleviates particulate matter-induced lung injury by inhibiting the HMGB1-TLR4 pathway. Aging (Albany NY) 2020; 12:1186-1200. [PMID: 31958320 PMCID: PMC7053597 DOI: 10.18632/aging.102676] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Exposure to particulate matter (PM) is associated with increased incidence of respiratory diseases. The present study aimed to investigate the roles of fibroblast growth factor 10 (FGF10) in PM-induced lung injury. Mice were intratracheally instilled with FGF10 or phosphate-buffered saline at one hour before instillation of PM for two consecutive days. In addition, the anti-inflammatory impact of FGF10 in vitro and its effect on the high-mobility group box 1 (HMGB1)-toll-like receptor 4 (TLR4) pathway was investigated. It was found that PM exposure is associated with increased inflammatory cell infiltration into the lung and increased vascular protein leakage, while FGF10 pretreatment attenuated both of these effects. FGF10 also decreased the PM-induced expression of interleukin (IL)-6, IL-8, tumor necrosis factor-α and HMGB1 in murine bronchoalveolar lavage fluid and in the supernatants of human bronchial epithelial cells exposed to PM. FGF10 exerted anti-inflammatory and cytoprotective effects by inhibiting the HMGB1-TLR4 pathway. These results indicate that FGF10 may have therapeutic values for PM-induced lung injury.
Collapse
Affiliation(s)
- Lingjing Liu
- Department of Pulmonary Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325006, China
| | - Chenjian Song
- Department of Pulmonary Medicine, Yiwu Central Hospital, Yiwu 322000, China
| | - Jingli Li
- Department of Pulmonary Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325006, China
| | - Qiang Wang
- Department of Pulmonary Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325006, China
| | - Mingyang Zhu
- Department of Pulmonary Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325006, China
| | - Yiran Hu
- Department of Pulmonary Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325006, China
| | - Junjie Chen
- Department of Pulmonary Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325006, China
| | - Chaolei Chen
- Department of Pulmonary Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325006, China
| | - Jin-San Zhang
- Department of Pharmacy, Wenzhou Medical University Pharmacy School, Wenzhou 325006, China
| | - Nian Dong
- Department of Pulmonary Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325006, China
| | - Chengshui Chen
- Department of Pulmonary Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325006, China
| |
Collapse
|
26
|
Liu X, Qian X, Xing J, Wang J, Sun Y, Wang Q, Li H. Particulate Matter Triggers Depressive-Like Response Associated With Modulation of Inflammatory Cytokine Homeostasis and Brain-Derived Neurotrophic Factor Signaling Pathway in Mice. Toxicol Sci 2019; 164:278-288. [PMID: 29688525 DOI: 10.1093/toxsci/kfy086] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Particulate matter (PM) exposure may contribute to depressive-like response in mice. However, few studies have evaluated the adaptive impacts of long-term PM exposure on depressive-like response associated with systemic inflammation and brain-derived neurotrophic factor (BDNF) signaling pathway. We studied the association among depressive-like behaviors, mRNA levels of pro and anti-inflammatory cytokines, and the expression of BDNF signaling pathway in mice by long-term PM exposure. C57BL/6 male mice were exposed to ambient air alongside control mice breathing air filtered through a high-efficiency air PM (HEPA) filter. Depressive-like behaviors were assessed together with proinflammatory, anti-inflammatory cytokine mRNA levels and the modulation of BDNF pathway in hippocampus and olfactory-bulb of mice exposed to PM for 4, 8, and 12 weeks. Exposure to HEPA-filtered air for 4 weeks may exert antidepressant like effects in mice. Proinflammatory cytokines were up-regulated while the expression of BDNF, its high-affinity receptor tropomyosin-related kinase B (TrkB), and the transcription factor (cyclic adenosine monophosphate)-response element-binding protein (CREB) were down-regulated in ambient air mice. However, after 8 weeks, there was no significant difference in the rate of depressive-like behaviors between the 2 groups. After 12 weeks, mice exposed to ambient air again had a higher rate of depressive-like behaviors, significant up-regulation of proinflammatory cytokines, down-regulation of interleukin-10, BDNF, TrkB, and CREB than HEPA mice. Ultrafine PM in brain tissues of mice exposed to ambient air was observed. Our results suggest continuous high-level PM exposure alters the depressive-like response in mice and induces a damage-repair-imbalance reaction.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.,School of the Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jing Xing
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinhua Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yixuan Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qin'geng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Huiming Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
27
|
Kalisa E, Archer S, Nagato E, Bizuru E, Lee K, Tang N, Pointing S, Hayakawa K, Lacap-Bugler D. Chemical and Biological Components of Urban Aerosols in Africa: Current Status and Knowledge Gaps. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E941. [PMID: 30875989 PMCID: PMC6466367 DOI: 10.3390/ijerph16060941] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
Aerosolized particulate matter (PM) is a complex mixture that has been recognized as the greatest cause of premature human mortality in low- and middle-income countries. Its toxicity arises largely from its chemical and biological components. These include polycyclic aromatic hydrocarbons (PAHs) and their nitro-derivatives (NPAHs) as well as microorganisms. In Africa, fossil fuel combustion and biomass burning in urban settings are the major sources of human exposure to PM, yet data on the role of aerosols in disease association in Africa remains scarce. This review is the first to examine studies conducted in Africa on both PAHs/NPAHs and airborne microorganisms associated with PM. These studies demonstrate that PM exposure in Africa exceeds World Health Organization (WHO) safety limits and carcinogenic PAHs/NPAHs and pathogenic microorganisms are the major components of PM aerosols. The health impacts of PAHs/NPAHs and airborne microbial loadings in PM are reviewed. This will be important for future epidemiological evaluations and may contribute to the development of effective management strategies to improve ambient air quality in the African continent.
Collapse
Affiliation(s)
- Egide Kalisa
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland 1142, New Zealand.
- School of Sciences, College of Science and Technology, University of Rwanda, P.O. Box 4285, Kigali, Rwanda.
| | - Stephen Archer
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland 1142, New Zealand.
| | - Edward Nagato
- Institute of Natural and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Elias Bizuru
- School of Sciences, College of Science and Technology, University of Rwanda, P.O. Box 4285, Kigali, Rwanda.
| | - Kevin Lee
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland 1142, New Zealand.
| | - Ning Tang
- Institute of Natural and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Stephen Pointing
- Yale NUS-College and Department of Biological Sciences, National University of Singapore, Singapore 138527, Singapore.
| | - Kazuichi Hayakawa
- Institute of Natural and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Donnabella Lacap-Bugler
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland 1142, New Zealand.
| |
Collapse
|
28
|
Ndong Ba A, Cazier F, Verdin A, Garcon G, Cabral M, Courcot L, Diouf A, Courcot D, Gualtieri M, Fall M. Physico-chemical characterization and in vitro inflammatory and oxidative potency of atmospheric particles collected in Dakar city's (Senegal). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:568-581. [PMID: 30469127 DOI: 10.1016/j.envpol.2018.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Exposure to atmospheric pollutants has been recognized as a major risk factor of respiratory and cardiovascular diseases. Fine particles (PM2.5) and a coarser fraction (PM>2.5) sampled at an urban site in Dakar (HLM), characterized by high road traffic emissions, were compared with particles sampled at a rural area, Toubab Dialaw located about 40 km from Dakar. The physicochemical characteristics of samples revealed that PMs differ for their physical (surface area) and chemical properties (in terms of CHN, metals, ions, paraffins, VOCs and PAHs) that were 65-75% higher in urban samples. Moreover the fine PMs contain higher amounts of anthropogenic related pollutants than the PM>2.5 one. These differences are sustained by the ratios reported for the analysed PAHs which suggest as predominant primary emission sources vehicle exhausts at urban site and biomass combustion at the rural site. The inflammatory response and the oxidative damages were evaluated in BEAS-2B cells by the quantification of 4 selected inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8) and of total carbonylated proteins and the oxidative DNA adduct 8-OHdG after 8 or 24 h exposure. In accordance with the different sources and different physical and chemical properties, the inflammatory response and the oxidative damages were found higher in bronchial cells exposed to urban PMs. These data confirm the importance, also for West African countries, to evaluate the correlation between PM physico-chemical properties and potential biological impacts.
Collapse
Affiliation(s)
- Awa Ndong Ba
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, SFR Condorcet FR CNRS 3417, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, Dunkerque, France; Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Fabrice Cazier
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, SFR Condorcet FR CNRS 3417, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Guillaume Garcon
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Univ. Lille, Lille, France
| | - Mathilde Cabral
- Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Lucie Courcot
- Laboratoire d'Oceanologie et de Geosciences, F-62930, CNRS UMR8187, LOG, Université du Littoral Côte d'Opale, Wimereux, France
| | - Amadou Diouf
- Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, SFR Condorcet FR CNRS 3417, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Maurizio Gualtieri
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, SFR Condorcet FR CNRS 3417, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, Dunkerque, France.
| | - Mamadou Fall
- Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| |
Collapse
|
29
|
Leclercq B, Kluza J, Antherieu S, Sotty J, Alleman LY, Perdrix E, Loyens A, Coddeville P, Lo Guidice JM, Marchetti P, Garçon G. Air pollution-derived PM 2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1434-1449. [PMID: 30278417 DOI: 10.1016/j.envpol.2018.09.062] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 05/21/2023]
Abstract
In order to clarify whether the mitochondrial dysfunction is closely related to the cell homeostasis maintenance after particulate matter (PM2.5) exposure, oxidative, inflammatory, apoptotic and mitochondrial endpoints were carefully studied in human bronchial epithelial BEAS-2B, normal human bronchial epithelial (NHBE) and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells acutely or repeatedly exposed to air pollution-derived PM2.5. Some modifications of the mitochondrial morphology were observed within all these cell models repeatedly exposed to the highest dose of PM2.5. Dose- and exposure-dependent oxidative damages were reported in BEAS-2B, NHBE and particularly COPD-DHBE cells acutely or repeatedly exposed to PM2.5. Nuclear factor erythroid 2-p45 related factor 2 (NRF2) gene expression and binding activity, together with the mRNA levels of some NRF2 target genes, were directly related to the number of exposures for the lowest PM2.5 dose (i.e., 2 μg/cm2), but, surprisingly, inversely related to the number of exposures for the highest dose (i.e., 10 μg/cm2). There were dose- and exposure-dependent increases of both nuclear factor kappa-B (NF-κB) binding activity and NF-κB target cytokine secretion in BEAS-2B, NHBE and particularly COPD-DHBE cells exposed to PM2.5. Mitochondrial ROS production, membrane potential depolarization, oxidative phosphorylation, and ATP production were significantly altered in all the cell models repeatedly exposed to the highest dose of PM2.5. Collectively, our results indicate a cytosolic ROS overproduction, inducing oxidative damage and activating oxygen sensitive NRF2 and NF-kB signaling pathways for all the cell models acutely or repeatedly exposed to PM2.5. However, one of the important highlight of our findings is that the prolonged and repeated exposure in BEAS-2B, NHBE and in particular sensible COPD-DHBE cells further caused an oxidative boost able to partially inactivate the NRF2 signaling pathway and to critically impair mitochondrial redox homeostasis, thereby producing a persistent mitochondrial dysfunction and a lowering cell energy supply.
Collapse
Affiliation(s)
- B Leclercq
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France; IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000, Lille, France
| | - J Kluza
- Univ. Lille, UMR-S 1172 - JPArc Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - S Antherieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France
| | - J Sotty
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France
| | - L Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000, Lille, France
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000, Lille, France
| | - A Loyens
- Inserm, UMR-S 1172 - JPArc Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - P Coddeville
- IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000, Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France
| | - P Marchetti
- Univ. Lille, UMR-S 1172 - JPArc Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France.
| |
Collapse
|
30
|
Wang J, Zhang WJ, Xiong W, Lu WH, Zheng HY, Zhou X, Yuan J. PM 2.5 stimulated the release of cytokines from BEAS-2B cells through activation of IKK/NF- κB pathway. Hum Exp Toxicol 2018; 38:311-320. [PMID: 30354488 DOI: 10.1177/0960327118802628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous studies indicated that exposure to fine particulate matter (PM2.5) was related to pulmonary inflammatory diseases through activation of nuclear factor kappa B (NF-κB) signaling pathway to trigger cytokine secretions in human lung carcinoma cells. To investigate the potential mechanisms underlying expression of cytokines via activated NF-κB by PM2.5, human bronchial epithelial cells (BEAS-2B cells) were treated with PM2.5 extracts at different concentrations (6, 13, 25, 50, 100, 200, and 400 µg mL-1) for 6 and 24 h. We found that 100 µg mL-1 PM2.5 increased interleukin 6 (IL-6) and IL-8 expression at 24 h (p < 0.05 or p < 0.01). Moreover, 100 µg mL-1 PM2.5 upregulated phosphorylated IκB kinase (IKK), p65, and IκBα at 6 h, which could be reversed by the IKK inhibitor Bay11-7082 (p < 0.05 or p < 0.01). The p65 subunit of NF-κB was translocated into the nucleus of the cells treated with 100 µg mL-1 PM2.5 at 6 and 24 h. Bay11-7082 partly inhibited PM2.5-induced increases of IL-6 and IL-8 secretion. The results indicated that PM2.5 extract increased IL-6 and IL-8 levels in BEAS-2B cells through activation of IKK/NF-κB pathway. Our study will contribute to better understanding of the mechanism of PM2.5-induced pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- J Wang
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - W J Zhang
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - W Xiong
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - W H Lu
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - H Y Zheng
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - X Zhou
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Both authors have contributed equally to this work
| | - J Yuan
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Both authors have contributed equally to this work
| |
Collapse
|
31
|
Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. In Vitro and In Vivo Experimental Studies of PM 2.5 on Disease Progression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1380. [PMID: 29966381 PMCID: PMC6068560 DOI: 10.3390/ijerph15071380] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/14/2022]
Abstract
Air pollution is a very critical issue worldwide, particularly in developing countries. Particulate matter (PM) is a type of air pollution that comprises a heterogeneous mixture of different particle sizes and chemical compositions. There are various sources of fine PM (PM2.5), and the components may also have different effects on people. The pathogenesis of PM2.5 in several diseases remains to be clarified. There is a long history of epidemiological research on PM2.5 in several diseases. Numerous studies show that PM2.5 can induce a variety of chronic diseases, such as respiratory system damage, cardiovascular dysfunction, and diabetes mellitus. However, the epidemiological evidence associated with potential mechanisms in the progression of diseases need to be proved precisely through in vitro and in vivo investigations. Suggested mechanisms of PM2.5 that lead to adverse effects and chronic diseases include increasing oxidative stress, inflammatory responses, and genotoxicity. The aim of this review is to provide a brief overview of in vitro and in vivo experimental studies of PM2.5 in the progression of various diseases from the last decade. The summarized research results could provide clear information about the mechanisms and progression of PM2.5-induced disease.
Collapse
Affiliation(s)
- Ching-Chang Cho
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| | - Wen-Yeh Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chin-Hung Tsai
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, 699 Section 8, Taiwan Blvd., Taichung 435, Taiwan.
| | - Cheng-Yi Chen
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Hui-Fang Chang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Endocrinology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| |
Collapse
|
32
|
De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T. Insights in particulate matter-induced allergic airway inflammation: Focus on the epithelium. Clin Exp Allergy 2018; 48:773-786. [PMID: 29772098 DOI: 10.1111/cea.13178] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Outdoor air pollution is a major environmental health problem throughout the world. In particular, exposure to particulate matter (PM) has been associated with the development and exacerbation of several respiratory diseases, including asthma. Although the adverse health effects of PM have been demonstrated for many years, the underlying mechanisms have not been fully identified. In this review, we focus on the role of the lung epithelium and specifically highlight multiple cytokines in PM-induced respiratory responses. We describe the available literature on the topic including in vitro studies, findings in humans (ie observations in human cohorts, human controlled exposure and ex vivo studies) and in vivo animal studies. In brief, it has been shown that exposure to PM modulates the airway epithelium and promotes the production of several cytokines, including IL-1, IL-6, IL-8, IL-25, IL-33, TNF-α, TSLP and GM-CSF. Further, we propose that PM-induced type 2-promoting cytokines are important mediators in the acute and aggravating effects of PM on airway inflammation. Targeting these cytokines could therefore be a new approach in the treatment of asthma.
Collapse
Affiliation(s)
- K C De Grove
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - S Provoost
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G G Brusselle
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G F Joos
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - T Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
33
|
Galvão ES, Santos JM, Lima AT, Reis NC, Orlando MTD, Stuetz RM. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications. CHEMOSPHERE 2018; 199:546-568. [PMID: 29455125 DOI: 10.1016/j.chemosphere.2018.02.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 05/11/2023]
Abstract
Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required.
Collapse
Affiliation(s)
- Elson Silva Galvão
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.
| | - Jane Meri Santos
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Ana Teresa Lima
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Neyval Costa Reis
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | - Richard Michael Stuetz
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
34
|
Toxicity of Urban PM 10 and Relation with Tracers of Biomass Burning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020320. [PMID: 29439546 PMCID: PMC5858389 DOI: 10.3390/ijerph15020320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 11/26/2022]
Abstract
The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM10 in relation to PM-associated chemicals. PM10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM10 toxicity were seen. PM10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (−0.46 < rs < −0.35, p < 0.01) and IL-8 induction (−0.62 < rs < −0.67, p < 0.01) were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of biomass burning in the observed adverse health effect of particulate matter.
Collapse
|
35
|
Dong TTT, Hinwood AL, Callan AC, Zosky G, Stock WD. In vitro assessment of the toxicity of bushfire emissions: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 603-604:268-278. [PMID: 28628818 DOI: 10.1016/j.scitotenv.2017.06.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 05/23/2023]
Abstract
Bushfires produce many toxic pollutants and the smoke has been shown to have negative effects on human health, especially to the respiratory system. Bushfires are predicted to increase in size and frequency, leading to a greater incidence of smoke and impacts. While there are many epidemiological studies of the potential impact on populations, there are few studies using in vitro methods to investigate the biological effects of bushfire emissions to better understand its toxicity and significance. This review focused on the literature pertaining to in vitro toxicity testing to determine the state of knowledge on current methods and findings on the impacts of bushfire smoke. There was a considerable variation in the experimental conditions, outcomes and test concentrations used by researchers using in vitro methods. Of the studies reviewed, most reported adverse impacts of particulate matter (PM) on cytotoxic and genotoxic responses. Studies on whole smoke were rare. Finer primary particulates from bushfire smoke were generally found to be more toxic than the coarse particulates and the toxicological endpoints of bushfire PM different to ambient PM. However the variation in study designs and experimental conditions made comparisons difficult. This review highlights the need for standard protocols to enable appropriate comparisons between studies to be undertaken including the assessment of physiologically relevant outcomes. Further work is essential to establish the effect of burning different vegetation types and combustion conditions on the toxicity of bushfire emissions to better inform both health and response agencies on the significance of smoke from bushfires.
Collapse
Affiliation(s)
- Trang T T Dong
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6027, Australia.
| | - Andrea L Hinwood
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6027, Australia
| | - Anna C Callan
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6027, Australia
| | - Graeme Zosky
- School of Medicine, Faculty of Health, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - William D Stock
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6027, Australia
| |
Collapse
|
36
|
Leclercq B, Alleman LY, Perdrix E, Riffault V, Happillon M, Strecker A, Lo-Guidice JM, Garçon G, Coddeville P. Particulate metal bioaccessibility in physiological fluids and cell culture media: Toxicological perspectives. ENVIRONMENTAL RESEARCH 2017; 156:148-157. [PMID: 28342961 DOI: 10.1016/j.envres.2017.03.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/21/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
According to the literature, tiny amounts of transition metals in airborne fine particles (PM2.5) may induce proinflammatory cell response through reactive oxygen species production. The solubility of particle-bound metals in physiological fluids, i.e. the metal bioaccessibility is driven by factors such as the solution chemical composition, the contact time with the particles, and the solid-to-liquid phase ratio (S/L). In this work, PM2.5-bound metal bioaccessibility was assessed in various physiological-like solutions including cell culture media in order to evidence the potential impact on normal human bronchial epithelial cells (NHBE) when studying the cytotoxicity and inflammatory responses of PM2.5 towards the target bronchial compartment. Different fluids (H2O, PBS, LHC-9 culture medium, Gamble and human respiratory mucus collected from COPD patients), various S/L conditions (from 1/6000 to 1/100,000) and exposure times (6, 24 and 72h) were tested on urban PM2.5 samples. In addition, metals' total, soluble and insoluble fractions from PM2.5 in LHC-9 were deposited on NHBE cells (BEAS-2B) to measure their cytotoxicity and inflammatory potential (i.e., G6PDH activity, secretion of IL-6 and IL-8). The bioaccessibility is solution-dependent. A higher salinity or organic content may increase or inhibit the bioaccessibiliy according to the element, as observed in the complex mucus matrix. Decreasing the S/L ratio also affect the bioaccessibility depending on the solution tested while the exposure time appears less critical. The LHC-9 culture medium appears to be a good physiological proxy as it induces metal bioaccessibilities close to the mucus values and is little affected by S/L ratios or exposure time. Only the insoluble fraction can be linked to the PM2.5-induced cytotoxicity. By contrast, both soluble and insoluble fractions can be related to the secretion of cytokines. The metal bioaccessibility in LHC-9 of the total, soluble, and insoluble fractions of the PM2.5 under study did not explain alone, the cytotoxicity nor the inflammatory response observed in BEAS-2B cells. These findings confirm the urgent need to perform further toxicological studies to better evaluate the synergistic effect of both bioaccessible particle-bound metals and organic species.
Collapse
Affiliation(s)
- Bérénice Leclercq
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France; Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - Laurent Yves Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France.
| | - Esperanza Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France
| | - Véronique Riffault
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France
| | - Mélanie Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | | | | | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - Patrice Coddeville
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France
| |
Collapse
|
37
|
Hernández-Pellón A, Fernández-Olmo I, Ledoux F, Courcot L, Courcot D. Characterization of manganese-bearing particles in the vicinities of a manganese alloy plant. CHEMOSPHERE 2017; 175:411-424. [PMID: 28237517 DOI: 10.1016/j.chemosphere.2017.02.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 05/12/2023]
Abstract
Numerous studies have associated air manganese (Mn) exposure with negative health effects, primarily neurotoxic disorders. Despite there is not a specific European regulation, institutions such as the World Health Organization (WHO) have proposed an annual average guideline value of 150 ng/m3. Bioaccessibility and toxicity mechanisms of Mn remain unclear, however it is generally agreed that adverse health effects are strongly linked to particle size and morphology, chemical composition and oxidation state. This study aims to deepen the understanding of the physico-chemical characteristics of PM10 and deposition samples collected in an urban area in the proximities of a ferromanganese alloy plant. Total Mn content was determined by ICP-MS after a microwave-assisted acid digestion. The size, morphology and chemical composition of individual particles were studied by SEM-EDX. XRD was used to identify the major crystalline phases. Most of the particles observed by SEM-EDX contain Mn. 60% of Mn-PM10 particles were spheres of small size and were attributed to condensation processes at the smelting unit. Mn-bearing particles present in deposition were characterized by irregular shapes and bigger sizes, most of them consisting of SiMn slags and Mn ores and alloys, and attributed to diffuse emissions from raw material and product handling and processing. Due to the differences in the characteristics of Mn-bearing particles found in the different matrices, further studies on the potential toxicity and health effects of these particles should be done, especially in relation with the small and spherical particles present in PM10, which are expected to be more problematic.
Collapse
Affiliation(s)
- Ana Hernández-Pellón
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain.
| | - Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA4492), Université du Littoral Côte d'Opale, 145 avenue Maurice Schumann, 59140 Dunkerque, France
| | - Lucie Courcot
- Laboratoire d'Océanologie et de Géosciences (LOG, CNRS UMR8187), Université du Littoral Côte d'Opale, Wimereux, France
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA4492), Université du Littoral Côte d'Opale, 145 avenue Maurice Schumann, 59140 Dunkerque, France
| |
Collapse
|
38
|
Landkocz Y, Ledoux F, André V, Cazier F, Genevray P, Dewaele D, Martin PJ, Lepers C, Verdin A, Courcot L, Boushina S, Sichel F, Gualtieri M, Shirali P, Courcot D, Billet S. Fine and ultrafine atmospheric particulate matter at a multi-influenced urban site: Physicochemical characterization, mutagenicity and cytotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:130-140. [PMID: 27914859 DOI: 10.1016/j.envpol.2016.11.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Particulate Matter (PM) air pollution is one of the major concerns for environment and health. Understanding the heterogeneity and complexity of fine and ultrafine PM is a fundamental issue notably for the assessment of PM toxicological effects. The aim of this study was to evaluate mutagenicity and cytotoxicity of a multi-influenced urban site PM, with or without the ultrafine fraction. For this purpose, PM2.5-0.3 (PM with aerodynamic diameter ranging from 0.3 to 2.5 μm) and PM2.5 were collected in Dunkerque, a French coastal industrial city and were extensively characterized for their physico-chemical properties, including inorganic and organic species. In order to identify the possible sources of atmospheric pollution, specific criteria like Carbon Preference Index (CPI) and PAH characteristic ratios were investigated. Mutagenicity assays using Ames test with TA98, TA102 and YG1041 Salmonella strains with or without S9 activation were performed on native PM sample and PM organic extracts and water-soluble fractions. BEAS-2B cell viability and cell proliferation were evaluated measuring lactate dehydrogenase release and mitochondrial dehydrogenase activity after exposure to PM and their extracts. Several contributing sources were identified in PM: soil resuspension, marine emissions including sea-salt or shipping, road traffic and industrial activities, mainly related to steelmaking or petro-chemistry. Mutagenicity of PM was evidenced, especially for PM2.5, including ultrafine fraction, in relation to PAHs content and possibly nitro-aromatics compounds. PM induced cytotoxic effects at relatively high doses, while alteration of proliferation with low PM doses could be related to underlying mechanisms such as genotoxicity.
Collapse
Affiliation(s)
- Yann Landkocz
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Frédéric Ledoux
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France.
| | - Véronique André
- Univ. Caen-Normandie, Aliments, Bioprocédés, Toxicologie, Environnements, EA 4651, Centre François Baclesse, F-14032, Caen, France
| | - Fabrice Cazier
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, F-59140, Dunkerque, France
| | - Paul Genevray
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, F-59140, Dunkerque, France
| | - Dorothée Dewaele
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, F-59140, Dunkerque, France
| | - Perrine J Martin
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Capucine Lepers
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Anthony Verdin
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Lucie Courcot
- Univ. Littoral Côte d'Opale, CNRS UMR8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930, Wimereux, France
| | - Saâd Boushina
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - François Sichel
- Univ. Caen-Normandie, Aliments, Bioprocédés, Toxicologie, Environnements, EA 4651, Centre François Baclesse, F-14032, Caen, France
| | - Maurizio Gualtieri
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Pirouz Shirali
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Dominique Courcot
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Sylvain Billet
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| |
Collapse
|
39
|
Weight-of-evidence evaluation of associations between particulate matter exposure and biomarkers of lung cancer. Regul Toxicol Pharmacol 2016; 82:53-93. [DOI: 10.1016/j.yrtph.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/10/2016] [Accepted: 10/16/2016] [Indexed: 12/16/2022]
|
40
|
Jin L, Luo X, Fu P, Li X. Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww079] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractRapid urban and industrial development has resulted in severe air-pollution problems in developing countries such as China, especially in highly industrialized and populous urban clusters. Dissecting the complex mixtures of airborne particulate matter (PM) has been a key scientific focus in the last two decades, leading to significant advances in understanding physicochemical compositions for comprehensive source apportionment. However, identifying causative components with an attributable link to population-based health outcomes remains a huge challenge. The microbiome, an integral dimension of the PM mixture, is an unexplored frontier in terms of identities and functions in atmospheric processes and human health. In this review, we identify the major gaps in addressing these issues, and recommend a holistic framework for evaluating the sources, processes and impacts of atmospheric PM pollution. Such an approach and the knowledge generated will facilitate the formulation of regulatory measures to control PM pollution in China and elsewhere.
Collapse
Affiliation(s)
- Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
41
|
Leclercq B, Happillon M, Antherieu S, Hardy EM, Alleman LY, Grova N, Perdrix E, Appenzeller BM, Lo Guidice JM, Coddeville P, Garçon G. Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM 4. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1074-1088. [PMID: 27593349 DOI: 10.1016/j.envpol.2016.08.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/24/2016] [Accepted: 08/24/2016] [Indexed: 05/25/2023]
Abstract
While the knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects is still incomplete, detailed in vitro studies are highly needed. With the aim of getting closer to the human in vivo conditions and better integrating a number of factors related to pre-existing chronic pulmonary inflammatory, we sought to develop primary cultures of normal human bronchial epithelial (NHBE) cells and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells, grown at the air-liquid interface. Pan-cytokeratin and MUC5AC immunostaining confirmed the specific cell-types of both these healthy and diseased cell models and showed they are closed to human bronchial epithelia. Thereafter, healthy and diseased cells were repeatedly exposed to air pollution-derived PM4 at the non-cytotoxic concentration of 5 μg/cm2. The differences between the oxidative and inflammatory states in non-exposed NHBE and COPD-DHBE cells indicated that diseased cells conserved their specific physiopathological characteristics. Increases in both oxidative damage and cytokine secretion were reported in repeatedly exposed NHBE cells and particularly in COPD-DHBE cells. Diseased cells repeatedly exposed had lower capacities to metabolize the organic chemicals-coated onto the air-pollution-derived PM4, such as benzo[a]pyrene (B[a]P), but showed higher sensibility to the formation of OH-B[a]P DNA adducts, because their diseased state possibly affected their defenses. Differential profiles of epigenetic hallmarks (i.e., global DNA hypomethylation, P16 promoter hypermethylation, telomere length shortening, telomerase activation, and histone H3 modifications) occurred in repeatedly exposed NHBE and particularly in COPD-DHBE cells. Taken together, these results closely supported the highest responsiveness of COPD-DHBE cells to a repeated exposure to air pollution-derived PM4. The use of these innovative in vitro exposure systems such as NHBE and COPD-DHBE cells could therefore be consider as a very useful and powerful promising tool in the field of the respiratory toxicology, taking into account sensitive individuals.
Collapse
Affiliation(s)
- B Leclercq
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - M Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - S Antherieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - E M Hardy
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - L Y Alleman
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - N Grova
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - E Perdrix
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - B M Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - P Coddeville
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France.
| |
Collapse
|
42
|
Van Den Heuvel R, Den Hond E, Govarts E, Colles A, Koppen G, Staelens J, Mampaey M, Janssen N, Schoeters G. Identification of PM10 characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B). ENVIRONMENTAL RESEARCH 2016; 149:48-56. [PMID: 27177354 DOI: 10.1016/j.envres.2016.04.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM10 in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013-2014 PM10 was sampled (24h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with different pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM10 particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM10 particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM10 characteristics and biological effects of PM10 were assessed by single and multiple regression analyses. The reduction in cell viability was significantly correlated with BC, Cd and Pb. The induction of IL-8 in Beas-2B cells was significantly associated with Cu, Ni and Zn and endotoxin. Endotoxin levels explained 33% of the variance in IL-8 induction. A significant interaction between ambient temperature and endotoxin on the pro-inflammatory activity was seen. No association was found between OP and the cellular responses. This study supports the hypothesis that, on an equal mass basis, PM10 induced biological effects differ due to differences in PM10 characteristics. Metals (Cd, Cu, Ni and Zn), BC, and endotoxin were among the main determinants for the observed biological responses.
Collapse
Affiliation(s)
- Rosette Van Den Heuvel
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Elly Den Hond
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Eva Govarts
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Ann Colles
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Gudrun Koppen
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Jeroen Staelens
- Flanders Environment Agency (VMM), Unit Air, Kronenburgstraat 45, 2000 Antwerp, Belgium.
| | - Maja Mampaey
- LNE (Environment, Nature and Energy Department), Flemish Government, Koning Albert II-laan 20, 1000 Brussels, Belgium.
| | - Nicole Janssen
- National Institute for Public Health and the Environment (RIVM), P.O. Box, 2720 BA, Bilthoven, The Netherlands.
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium; University of Antwerp, Department of Biomedical Sciences, 2000 Antwerp, Belgium.
| |
Collapse
|
43
|
Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:67-74. [PMID: 26896893 DOI: 10.1016/j.ecoenv.2016.01.030] [Citation(s) in RCA: 574] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
The impacts of ambient PM2.5 on public health have become great concerns worldwide, especially in the developing countries. Epidemiological and toxicological studies have shown that PM2.5 does not only induce cardiopulmonary disorders and/or impairments, but also contributes to a variety of other adverse health effects, such as driving the initiation and progression of diabetes mellitus and eliciting adverse birth outcomes. Of note, recent findings have demonstrated that PM2.5 may still pose a hazard to public health even at very low levels (far below national standards) of exposure. The proposed underlying mechanisms whereby PM2.5 causes adverse effects to public health include inducing intracellular oxidative stress, mutagenicity/genotoxicity and inflammatory responses. The present review aims to provide an brief overview of new insights into the molecular mechanisms linking ambient PM2.5 exposure and health effects, which were explored with new technologies in recent years.
Collapse
Affiliation(s)
- Shaolong Feng
- The School of Public Health, University of South China, Hengyang 421001, China.
| | - Dan Gao
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Fen Liao
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Furong Zhou
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Xinming Wang
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
44
|
Bandowe BAM, Nkansah MA. Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:439-449. [PMID: 26930316 DOI: 10.1016/j.scitotenv.2016.02.142] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 05/09/2023]
Abstract
Scientific evidence suggests that the burden of disease on urban residents of sub-Saharan African Countries is increasing, partly as a result of exposure to elevated concentrations of toxic environmental chemicals. However, characterization of the levels, composition pattern and sources of polycyclic aromatic compounds (PACs) in environmental samples from African cities is still lacking. This study measured the PAHs, oxygenated-PAHs (OPAHs) and azaarene (AZAs) content of street dusts collected from Kumasi, Ghana (a major metropolis located in the tropical forest zone of West Africa). The ∑Alkyl+parent-PAHs, ∑OPAHs and ∑AZAs concentration in street dust averaged 2570 ng g(-1) (range: 181-7600 ng g(-1)), 833 ng g(-1) (57-4200 ng g(-1)) and 73 ng g(-1) (3.3-240 ng g(-1)), respectively. The concentrations of ∑Alkyl+parent-PAHs were strongly correlated (n=25) with ∑OPAHs (r=0.96, p<0.01) and ∑AZAs (r=0.94, p<0.01). The ∑OPAHs concentrations were also strongly correlated with ∑AZAs (r=0.91, p<0.01). Concentrations of individual PAHs in these street dusts were enriched at between 12 and 836 compared to their average concentrations in background soils from same city, demonstrating the high influence of traffic emissions. Several individual OPAHs and AZAs had higher concentrations than their related and often monitored parent-PAHs. The estimated incremental lifetime cancer risks due to the parent-PAHs in street dusts was >10(-6) indicating high risk of contracting cancer from exposure to street dust from Kumasi. The contribution of OPAHs, AZAs, and alkyl-PAHs in street dust to cancer risk could not be quantified because of lack of toxicity equivalency factors for these compounds; however this could be significant because of their high concentration and known higher toxicity of some polar PACs and alkyl-PAHs than their related parent-PAHs.
Collapse
Affiliation(s)
- Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012 Bern, Switzerland.
| | | |
Collapse
|
45
|
Borgie M, Dagher Z, Ledoux F, Verdin A, Cazier F, Martin P, Hachimi A, Shirali P, Greige-Gerges H, Courcot D. Comparison between ultrafine and fine particulate matter collected in Lebanon: Chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:250-260. [PMID: 26093079 DOI: 10.1016/j.envpol.2015.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
During the last few years, the induction of toxicological mechanisms by atmospheric ultrafine particles (UFP) has become one of the most studied topics in toxicology and a subject of huge debates. Fine particles (FP) and UFP collected at urban and rural sites in Lebanon were studied for their chemical composition and toxicological effects. UFP were found more enriched in trace elements, secondary inorganic ions, total carbon and organic compounds than FP. For toxicological analysis, BEAS-2B cells were exposed for 24, 48 and 72 h to increasing concentrations of FP, water-UFP suspension (UFPw) and UFP organic extract (UFPorg). Our findings showed that UFP caused earlier alterations of mitochondrial metabolism and membrane integrity from the lowest concentrations. Moreover, a significant induction of CYP1A1, CYP1B1 and AhRR genes expression was showed after cells exposure to UFPorg and to a lesser extent to UFPw and FP samples.
Collapse
Affiliation(s)
- Mireille Borgie
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon
| | - Zeina Dagher
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon; Department of Biology, Faculty of Sciences-2, Lebanese University, Beirut, Lebanon
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel 1, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Perrine Martin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Adam Hachimi
- Micropolluants Technologie, 4 Rue de Bort Les Orgues, 57070 Saint Julien Les Metz, France
| | - Pirouz Shirali
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon; Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Beirut, Lebanon
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France.
| |
Collapse
|
46
|
Dergham M, Lepers C, Verdin A, Cazier F, Billet S, Courcot D, Shirali P, Garçon G. Temporal-spatial variations of the physicochemical characteristics of air pollution Particulate Matter (PM2.5-0.3) and toxicological effects in human bronchial epithelial cells (BEAS-2B). ENVIRONMENTAL RESEARCH 2015; 137:256-267. [PMID: 25601727 DOI: 10.1016/j.envres.2014.12.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
While the evidence for the health adverse effects of air pollution Particulate Matter (PM) has been growing, there is still uncertainty as to which constituents within PM are most harmful. Hence, to contribute to fulfill this gap of knowledge, some physicochemical characteristics and toxicological endpoints (i.e. cytotoxicity, oxidative damage, cytokine secretion) of PM2.5-0.3 samples produced during two different seasons (i.e. spring/summer or autumn/winter) in three different surroundings (i.e. rural, urban, or industrial) were studied, thereby expecting to differentiate their respective adverse effects in human bronchial epithelial cells (BEAS-2B). Physicochemical characteristics were closely related to respective origins and seasons of the six PM2.5-0.3 samples, highlighting the respective contributions of industrial and heavy motor vehicle traffic sources. Space- and season-dependent differences in cytotoxicity of the six PM2.5-0.3 samples could only be supported by considering both the physicochemical properties and the variance in air PM concentrations. Whatever spaces and seasons, dose- and even time-dependent increases in oxidative damage and cytokine secretion were reported in PM2.5-0.3-exposed BEAS-2B cells. However, the relationship between the chemical composition of each of the six PM2.5-0.3 samples and their oxidative or inflammatory potentials seemed to be very complex. These results supported the role of inorganic, ionic and organic components as exogenous source of Reactive Oxygen Species and, thereafter, cytokine secretion. Nevertheless, one of the most striking observation was that some inorganic, ionic and organic chemical components were preferentially associated with early oxidative events whereas others in the later oxidative damage and/or cytokine secretion. Taken together, these results indicated that PM mass concentration alone might not be able to explain the health outcomes, because PM is chemically nonspecific, and supported growing evidence that PM-size, composition and emission source, together with sampling season, interact in a complex manner to produce PM2.5-0.3-induced human adverse health effects.
Collapse
Affiliation(s)
- Mona Dergham
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Capucine Lepers
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Anthony Verdin
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Fabrice Cazier
- Université Lille Nord de France, Lille, France; Centre Commun de Mesures, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Dominique Courcot
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Pirouz Shirali
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Guillaume Garçon
- Université Lille Nord de France, Lille, France; EA 4492, Université du Littoral-Côte d'Opale, Dunkerque, France; EA4483, Université de Lille 2, Lille, France.
| |
Collapse
|
47
|
Borgie M, Ledoux F, Verdin A, Cazier F, Greige H, Shirali P, Courcot D, Dagher Z. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. ENVIRONMENTAL RESEARCH 2015; 136:352-362. [PMID: 25460656 DOI: 10.1016/j.envres.2014.10.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/21/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Assessment of air pollution by particulate matter (PM) is strongly required in Lebanon in the absence of an air quality law including updated air quality standards. Using two different PM2.5-0.3 samples collected at an urban and a rural site, we examined genotoxic/epigenotoxic effects of PM exposure within a human bronchial epithelial cell line (BEAS-2B). Inorganic and organic contents evidence the major contribution of traffic and generating sets in the PM2.5-0.3 composition. Urban PM2.5-0.3 sample increased the phosphorylation of H2AX, the telomerase activity and the miR-21 up-regulation in BEAS-2B cells in a dose-dependent manner. Furthermore, urban PM2.5-0.3 induced a significant increase in CYP1A1, CYP1B1 and AhRR genes expression. The variable concentrations of transition metals and organic compounds detected in the collected PM2.5-0.3 samples might be the active agents leading to a cumulative DNA damage, critical for carcinogenesis.
Collapse
Affiliation(s)
- Mireille Borgie
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Groupe de Recherche Molécules Bioactives, Ecole Doctorale des Sciences et Technologies, Université Libanaise, Liban; Université Lille Nord de France, Lille, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel 1, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Hélène Greige
- Groupe de Recherche Molécules Bioactives, Ecole Doctorale des Sciences et Technologies, Université Libanaise, Liban; Département de Chimie et de Biochimie, Faculté des Sciences, Université Libanaise, Liban
| | - Pirouz Shirali
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France.
| | - Zeina Dagher
- Groupe de Recherche Molécules Bioactives, Ecole Doctorale des Sciences et Technologies, Université Libanaise, Liban; Département de Biologie, Faculté des Sciences, Université Libanaise, Liban
| |
Collapse
|
48
|
Garrison VH, Majewski MS, Konde L, Wolf RE, Otto RD, Tsuneoka Y. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 500-501:383-394. [PMID: 25243921 DOI: 10.1016/j.scitotenv.2014.08.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 06/03/2023]
Abstract
Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.
Collapse
Affiliation(s)
- V H Garrison
- US Geological Survey, 600 4th Street South, St. Petersburg, FL 33701, USA.
| | - M S Majewski
- US Geological Survey, 6000 J St., Sacramento, CA 95819-6129, USA.
| | | | - R E Wolf
- US Geological Survey, Denver Federal Center, Lakewood, CO 80225-0046, USA.
| | - R D Otto
- US Department of State, Office of Medical Services, 2401 E. Street NW, Washington, DC 20522-0101, USA.
| | - Y Tsuneoka
- Embassy of Japan in Sri Lanka, No. 20 Gregory's Road, Colombo 7, Sri Lanka.
| |
Collapse
|
49
|
Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5). PLoS One 2014; 9:e109685. [PMID: 25296036 PMCID: PMC4190364 DOI: 10.1371/journal.pone.0109685] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress, pulmonary and systemic inflammation, endothelial cell dysfunction, atherosclerosis and cardiac autonomic dysfunction have been linked to urban particulate matter exposure. The chemical composition of airborne pollutants in Milano is similar to those of other European cities though with a higher PM2.5 fraction. Milano winter fine particles (PM2.5win) are characterized by the presence of nitrate, organic carbon fraction, with high amount of polycyclic aromatic hydrocarbons and elements such as Pb, Al, Zn, V, Fe, Cr and others, with a negligible endotoxin presence. In BALB/c mice, we examined, at biochemical and transcriptomic levels, the adverse effects of repeated Milano PM2.5win exposure in lung and heart. We found that ET-1, Hsp70, Cyp1A1, Cyp1B1 and Hsp-70, HO-1, MPO respectively increased within lung and heart of PM2.5win-treated mice. The PM2.5win exposure had a strong impact on global gene expression of heart tissue (181 up-regulated and 178 down-regulated genes) but a lesser impact on lung tissue (14 up-regulated genes and 43 down-regulated genes). Focusing on modulated genes, in lung we found two- to three-fold changes of those genes related to polycyclic aromatic hydrocarbons exposure and calcium signalling. Within heart the most striking aspect is the twofold to threefold increase in collagen and laminin related genes as well as in genes involved in calcium signaling. The current study extends our previous findings, showing that repeated instillations of PM2.5win trigger systemic adverse effects. PM2.5win thus likely poses an acute threat primarily to susceptible people, such as the elderly and those with unrecognized coronary artery or structural heart disease. The study of genomic responses will improve understanding of disease mechanisms and enable future clinical testing of interventions against the toxic effects of air pollutant.
Collapse
|
50
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|