1
|
Agache I, Akdis C, Akdis M, Al-Hemoud A, Annesi-Maesano I, Balmes J, Cecchi L, Damialis A, Haahtela T, Haber AL, Hart JE, Jutel M, Mitamura Y, Mmbaga BT, Oh JW, Ostadtaghizadeh A, Pawankar R, Prunicki M, Renz H, Rice MB, Filho NAR, Sampath V, Skevaki C, Thien F, Traidl-Hoffmann C, Wong GW, Nadeau KC. Immune-mediated disease caused by climate change-associated environmental hazards: mitigation and adaptation. FRONTIERS IN SCIENCE 2024; 2:1279192. [PMID: 40444110 PMCID: PMC12121949 DOI: 10.3389/fsci.2024.1279192] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Global warming and climate change have increased the pollen burden and the frequency and intensity of wildfires, sand and dust storms, thunderstorms, and heatwaves - with concomitant increases in air pollution, heat stress, and flooding. These environmental stressors alter the human exposome and trigger complex immune responses. In parallel, pollutants, allergens, and other environmental factors increase the risks of skin and mucosal barrier disruption and microbial dysbiosis, while a loss of biodiversity and reduced exposure to microbial diversity impairs tolerogenic immune development. The resulting immune dysregulation is contributing to an increase in immune-mediated diseases such as asthma and other allergic diseases, autoimmune diseases, and cancer. It is now abundantly clear that multi-sectoral, multidisciplinary, and transborder efforts based on Planetary Health and One Health approaches (which consider the dependence of human health on the environment and natural ecosystems) are urgently needed to adapt to and mitigate the effects of climate change. Key actions include reducing emissions and improving air quality (through reduced fossil fuel use), providing safe housing (e.g., improving weatherization), improving diets (i.e., quality and diversity) and agricultural practices, and increasing environmental biodiversity and green spaces. There is also a pressing need for collaborative, multidisciplinary research to better understand the pathophysiology of immune diseases in the context of climate change. New data science techniques, biomarkers, and economic models should be used to measure the impact of climate change on immune health and disease, to inform mitigation and adaptation efforts, and to evaluate their effectiveness. Justice, equity, diversity, and inclusion (JEDI) considerations should be integral to these efforts to address disparities in the impact of climate change.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Allergy and Clinical Immunology, Transilvania University of Brasov, Brasov, Romania
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE),Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ali Al-Hemoud
- Crisis Decision Support Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Isabella Annesi-Maesano
- Institute Debrest of Epidemiology and Public Health, UMR1318 INSERM and Montpellier University, Montpellier, France
- Department of Pulmonology, Allergy and Thoracic Oncology, University Hospital of Montpellier, Montpellier, France
| | - John Balmes
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - Lorenzo Cecchi
- SOS Allergy and Clinical Immunology, USL Toscana Centro, Prato, Italy
| | - Athanasios Damialis
- Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki,Thessaloniki, Greece
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Adam L. Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Jaime E. Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Blandina T. Mmbaga
- Department of Pediatrics, Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jae-Won Oh
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Abbas Ostadtaghizadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Mary Prunicki
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Harald Renz
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Institute of Laboratory Medicine and Pathobiochemistry, Philipps-University Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Mary B. Rice
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | | | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine and Pathobiochemistry, Philipps-University Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health & Monash University, Melbourne, VIC, Australia
| | - Claudia Traidl-Hoffmann
- Christine Kühne-Center for Allergy Research and Education (CK-CARE),Davos, Switzerland
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Augsburg, Germany
| | - Gary W.K. Wong
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong,Hong Kong SAR, China
| | - Kari C. Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| |
Collapse
|
2
|
Zhang J, Ren D, Wang S, Zhu S, Qu K, Yuan Y. Effects of air pollution on cardiovascular health in patients with type 2 diabetes mellitus: Evidence from a large tertiary hospital in Shandong Province, China. Front Public Health 2022; 10:1050676. [PMID: 36438234 PMCID: PMC9682228 DOI: 10.3389/fpubh.2022.1050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Air pollution has posed serious threats to human health. Based on the microdata of a large tertiary hospital in Shandong Province from 2016 to 2021, combined with the macro data such as air quality monitoring data, meteorological data, and city-level regional socio-economic data, this paper empirically tests the impact of air pollution instrumented by thermal inversions on the cardiovascular health of patients with type 2 diabetes mellitus (T2DM) and its group differences. The results show that: (1) Air pollution has a negative impact on the cardiovascular health of patients with T2DM, that is, the cardiovascular health of patients with T2DM will decline in regions with high air pollution; (2) The impact of air pollution on cardiovascular health in T2DM patients is heterogeneous, with males and older patients bearing greater air pollution health losses; (3) From the perspective of the external environment, the negative effects of environmental pollution on patients' health were significantly reduced in areas with higher environmental regulation intensity and better public health conditions, indicating the necessity of strengthening environmental governance and increasing public health expenditure.
Collapse
Affiliation(s)
- Jitian Zhang
- Clinical Nutrition Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dong Ren
- Scientific Research Management Department, Shandong Academy of Macroeconomic Research, Jinan, China
| | - Shuo Wang
- The Center for Economic Research, Shandong University, Jinan, China
| | - Sha Zhu
- Medical Administration Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kai Qu
- Shandong Provincial Eco-environment Monitoring Center, Jinan, China
| | - Yuan Yuan
- Clinical Nutrition Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Yuan Yuan
| |
Collapse
|
3
|
Jin JQ, Han D, Tian Q, Chen ZY, Ye YS, Lin QX, Ou CQ, Li L. Individual exposure to ambient PM 2.5 and hospital admissions for COPD in 110 hospitals: a case-crossover study in Guangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11699-11706. [PMID: 34545525 PMCID: PMC8794997 DOI: 10.1007/s11356-021-16539-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 05/22/2023]
Abstract
Few studies have evaluated the short-term association between hospital admissions and individual exposure to ambient particulate matter (PM2.5). Particularly, no studies focused on hospital admissions for chronic obstructive pulmonary disease (COPD) at the individual level. We assessed the short-term effects of PM2.5 on hospitalization admissions for COPD in Guangzhou, China, during 2014-2015, based on satellite-derived estimates of ambient PM2.5 concentrations at a 1-km resolution near the residential address as individual-level exposure for each patient. Around 40,002 patients with COPD admitted to 110 hospitals were included in this study. A time-stratified case-crossover design with conditional logistic regression models was applied to assess the effects of PM2.5 based on a 1-km grid data of aerosol optical depth provided by the National Aeronautics and Space Administration on hospital admissions for COPD. Further, we performed stratified analyses by individual demographic characteristics and season of hospital admission. Around 10 μg/m3 increase in individual-level PM2.5 was associated with an increase of 1.6% (95% confidence interval [CI]: 0.6%, 2.7%) in hospitalization for COPD at a lag of 0-5 days. The impact of PM2.5 on hospitalization for COPD was greater significantly in males and patients admitted in summer. Our study strengthened the evidence for the adverse effect of PM2.5 based on satellite-based individual-level exposure data.
Collapse
Affiliation(s)
- Jie-Qi Jin
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Dong Han
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Qi Tian
- Guangzhou Health Technology Identification & Human Resources Assessment Center, Guangzhou, 510080, China
| | - Zhao-Yue Chen
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Shao Ye
- Guangzhou Health Technology Identification & Human Resources Assessment Center, Guangzhou, 510080, China
| | - Qiao-Xuan Lin
- Guangzhou Health Technology Identification & Human Resources Assessment Center, Guangzhou, 510080, China
| | - Chun-Quan Ou
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Lai X, Sun J, He B, Li D, Wang S, Zhan S. Associations between pulmonary function and cognitive decline in the middle-aged and older adults: evidence from the China Health and Retirement Longitudinal Study. Environ Health Prev Med 2022; 27:48. [PMID: 36529486 PMCID: PMC9792564 DOI: 10.1265/ehpm.22-00158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/12/2022] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Studies observing the relationship between pulmonary function and the risk of cognitive impairment in middle-aged and older adults was increasing, but the results were inconsistent. To date, evidence from longitudinal data is scarce and further research is urgently needed. METHODS We used data from the China Health and Retirement Longitudinal Study. Participants were enrolled in 2011/2013 and followed up in 2013, 2015 and 2018. Pulmonary function was assessed via peak expiratory flow (PEF). Cognitive function, measured by episodic memory and mental status, was assessed through a face-to-face interview in each survey. RESULTS A total of 8,274 participants (52.86% males; mean age, 56.44 years) were included. The scores of global cognition (12.46 versus 11.51, P < 0.001) of men were significantly higher than women at baseline, with a total of 5096 participants (61.59%) declining during the follow-up. Higher baseline PEF was associated with lower absolute decline in global cognition (OR per 1-SD difference 0.921; P = 0.031) and mental status (OR per 1-SD difference 0.9889; P = 0.002) during follow-up in men, and significant associations between higher baseline PEF and a lower absolute decline in the episodic memory were both found in men (OR per 1-SD difference 0.907; P = 0.006) and women (OR per 1-SD difference 0.915; P = 0.022). Second analysis showed that the significant associations between positive PEF variation and a lower rate of 4-year decline in global cognition, mental status and episodic memory were all only found in men. In subgroup analyses, higher PEF at baseline was significantly associated with a lower absolute decline of global cognition among male individuals >60 years. Significant associations between higher PEF at baseline and lower absolute decline in global cognition and episodic memory during follow-up were only found in never-smokers, while higher PEF was related to lower absolute decline in mental status among non-smoking and smoking males. CONCLUSIONS Pulmonary function correlates with cognitive functions in middle-aged and older people, especially males. Additional studies characterizing early and long-term PEF changes are needed.
Collapse
Affiliation(s)
- Xuefeng Lai
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan 250021, China
| | - Bingjie He
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Daowei Li
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan 250021, China
| | - Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing 100191, China
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Differences in Airborne Particulate Matter Concentration in Urban Green Spaces with Different Spatial Structures in Xi’an, China. FORESTS 2021. [DOI: 10.3390/f13010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With the acceleration of urbanization and industrialization, air pollution is becoming one of the most serious problems in cities. Urban green spaces, as “green infrastructure”, are an important part of urban ecosystems for air purification. Therefore, 10 typical green spaces of urban parks in the city of Xi’an, China, were selected as study areas according to vegetation structure and species composition. Considering meteorological factors and time changes, the effects of the selected green spaces with different vegetation structures of different heights on the reduction in airborne particulate matter concentration were explored. The results showed that the following: (1) Temperature, relative humidity, wind speed, and air pressure had significant correlation with the concentration of airborne particulate matter at the different heights, and the correlations were the same at 1.5 m and 5 m. (2) After heating in winter, the concentration of airborne particulate matter with different particle sizes increased significantly. The concentration of airborne particulate matter showed different trends throughout the day, and the small particles (PM1 and PM2.5) had a trend of “lower in the morning and evening, and higher at noon”, while the large particles (PM10 and TSP) gradually decreased over time. (3) In the selected green spaces with different vegetation structure types, the concentration of airborne particulate matter below the canopy (1.5 m) was generally higher than that in the middle of the canopy (5 m), but the effects of reducing the concentration of airborne particulate matter were consistent at the different heights. (4) The adsorption capacity of PM1 and PM2.5 concentration was strong in the partially closed broad-leaved one-layered forest (PBO), and poor in the partially closed broad-leaved multi-layered forest (PBM). Partially closed broad-leaved multi-layered forest (PBM) and partially closed coniferous and broad-leaved mixed multi-layered forest (PMM) also had strong dust-retention effect on PM10 and TSP, while closed broad-leaved one-layered forest (CBO) had a poor dust-retention effect. The results showed that the reduction effects of urban green spaces with different spatial structures on air particles were different, and were restricted by various environmental factors, which could provide a theoretical basis for the optimization of urban green space structure and the improvement of urban air quality.
Collapse
|
6
|
Chen R, Li T, Huang C, Yu Y, Zhou L, Hu G, Yang F, Zhang L. Characteristics and health risks of benzene series and halocarbons near a typical chemical industrial park. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117893. [PMID: 34385133 DOI: 10.1016/j.envpol.2021.117893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Health risks of typical benzene series and halocarbons (BSHs) in a densely populated area near a large-scale chemical industrial park were investigated. Ambient and indoor air and tap water samples were collected in summer and winter; and the concentration characteristics, sources, and exposure risks of typical BSH species, including five benzene series (benzene, toluene, ethylbenzene, o-xylene, m,p-xylene) and five halocarbons (dichloromethane, trichloromethane, trichloroethylene, tetrachloromethane, and tetrachloroethylene), were analysed. The total mean concentrations of BSHs were 53.32 μg m-3, 36.29 μg m-3, and 26.88 μg L-1 in indoor air, ambient air, and tap water, respectively. Halocarbons dominated the total BSHs with concentrations relatively higher than those in many other industrial areas. Industrial solvent use, industrial processes, and vehicle exhaust emissions were the principal sources of BSHs in ambient air. The use of household products (e.g., detergents and pesticides) was the principal source of indoor BSHs. Inhalation is the primary human exposure route. Ingestion of drinking water was also an important exposure route but had less impact than inhalation. Lifetime non-cancer risks of individual and cumulative BSHs were below the threshold (HQ = 1), indicating no significant lifetime non-cancer risks in the study area. However, tetrachloromethane, benzene, trichloromethane, ethylbenzene, and trichloroethylene showed potential lifetime cancer risk. The cumulative lifetime cancer risks exceeded the tolerable benchmark (1 × 10-4), indicating a lifetime cancer risk of BSHs to residents near the chemical industry park. This study provides valuable information for the management of public health in chemical industrial parks.
Collapse
Affiliation(s)
- Ruonan Chen
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China
| | - Tingzhen Li
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China
| | - Chengtao Huang
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China
| | - Yunjiang Yu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Li Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Guocheng Hu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Fumo Yang
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China; National Engineering Research Center for Flue Gas Desulfurization, Department of Environmental Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Liuyi Zhang
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China.
| |
Collapse
|
7
|
Park HJ, Lee HY, Suh CH, Kim HC, Kim HC, Park YJ, Lee SW. The Effect of Particulate Matter Reduction by Indoor Air Filter Use on Respiratory Symptoms and Lung Function: A Systematic Review and Meta-analysis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:719-732. [PMID: 34486257 PMCID: PMC8419638 DOI: 10.4168/aair.2021.13.5.719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE Exposure to particulate matter (PM) is a key public health issue, but effective intervention has not yet been established. A systematic literature review and meta-analysis has been conducted to assess the relationship between the use of air filters, one of the most commonly studied interventions, and respiratory outcomes in patients with chronic respiratory diseases. METHODS We systematically reviewed intervention studies on PM using PubMed, EMBASE, and Cochrane databases up to September 2019. Studies that included data on PM concentration changes and respiratory symptoms or lung function in patients with respiratory diseases were eligible for inclusion. Effect estimates were quantified separately using the random-effects model. RESULTS Six studies were included in the quantitative analysis. Air filter use reduced indoor PM2.5 by 11.45 µg/m3 (95% confidence interval [CI], 6.88, 16.01 µg/m3). Air filter use was not associated with improvements in respiratory symptoms in 5 of the 6 studies or significant changes in the predicted forced expiratory volume in one second (FEV1) (mean change, -1.77%; 95% CI, -8.25%, 4.71%). Air filter use was associated with improved peak expiratory flow rate by 5.86 (95% CI, 3.5, 8.19 of standardized difference). CONCLUSIONS The findings of this systematic review suggest that air filters may reduce indoor PM and increase peak expiratory rate in asthmatic patients. However, most studies showed no significant effects of air filters on respiratory symptoms or FEV1. Further studies in regions with high-density PM may provide additional information on this issue. TRIAL REGISTRATION PROSPERO Identifier: CRD42020156258.
Collapse
Affiliation(s)
- Hyung Jun Park
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Young Lee
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Cheol Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hwan Cheol Kim
- Department of Occupational and Environmental Medicine, College of Medicine, Inha University, Incheon, Korea
| | - Young-Jun Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Zhu K, Browne RW, Blair RH, Bonner MR, Tian M, Niu Z, Deng F, Farhat Z, Mu L. Changes in arachidonic acid (AA)- and linoleic acid (LA)-derived hydroxy metabolites and their interplay with inflammatory biomarkers in response to drastic changes in air pollution exposure. ENVIRONMENTAL RESEARCH 2021; 200:111401. [PMID: 34089746 PMCID: PMC11483949 DOI: 10.1016/j.envres.2021.111401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Untargeted metabolomics analyses have indicated that fatty acids and their hydroxy derivatives may be important metabolites in the mechanism through which air pollution potentiates diseases. This study aimed to use targeted analysis to investigate how metabolites in arachidonic acid (AA) and linoleic acid (LA) pathways respond to short-term changes in air pollution exposure. We further explored how they might interact with markers of antioxidant enzymes and systemic inflammation. METHODS This study included a subset of participants (n = 53) from the Beijing Olympics Air Pollution (BoaP) study in which blood samples were collected before, during, and after the Beijing Olympics. Hydroxy fatty acids were measured by liquid chromatography/mass spectrometry (LC/MS). Native total fatty acids were measured as fatty acid methyl esters (FAMEs) using gas chromatography. A set of chemokines were measured by ELISA-based chemiluminescent assay and antioxidant enzyme activities were analyzed by kinetic enzyme assays. Changes in levels of metabolites over the three time points were examined using linear mixed-effects models, adjusting for age, sex, body mass index (BMI), and smoking status. Pearson correlation and repeated measures correlation coefficients were calculated to explore the relationships of metabolites with levels of serum chemokines and antioxidant enzymes. RESULTS 12-hydroxyeicosatetraenoic acid (12-HETE) decreased by 50.5% (95% CI: -66.5, -34.5; p < 0.0001) when air pollution dropped during the Olympics and increased by 119.4% (95% CI: 36.4, 202.3; p < 0.0001) when air pollution returned to high levels after the Olympics. In contrast, 13-hydroxyoctadecadienoic acid (13-HODE) elevated significantly (p = 0.023) during the Olympics and decreased nonsignificantly after the games (p = 0.104). Interleukin 8 (IL-8) correlated with 12-HETE (r = 0.399, BH-adjusted p = 0.004) and 13-HODE (r = 0.342, BH-adjusted p = 0.014) over the three points; it presented a positive and moderate correlation with 12-HETE during the Olympics (r = 0.583, BH-adjusted p = 0.002) and with 13-HODE before the Olympics (r = 0.543, BH-adjusted p = 0.008). CONCLUSION AA- and LA-derived hydroxy metabolites are associated with air pollution and might interact with systemic inflammation in response to air pollution exposure.
Collapse
Affiliation(s)
- Kexin Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Mingmei Tian
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Zhongzheng Niu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Furong Deng
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Zeinab Farhat
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
9
|
Association between a Rapid Reduction in Air Particle Pollution and Improved Lung Function in Adults. Ann Am Thorac Soc 2021; 18:247-256. [PMID: 32810417 DOI: 10.1513/annalsats.202003-246oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale: Lung function impairment is reportedly associated with elevated exposure to ambient fine particles (particulate matter ≤2.5 μm in aerodynamic diameter [PM2.5]). However, whether improvement of air quality prevents respiratory diseases is unclear.Objectives: To examine whether the policy-driven reduction in PM2.5 concentration after 2013 was associated with improved lung function among Chinese adults.Methods: We compared the longitudinal measurements of peak expiratory flow (PEF) before (2011) and after (2013 and 2015) China's clean air actions. Long-term exposure to ambient pollution was assessed using a state-of-the-art estimator of historical PM2.5 concentration, and its association with PEF was examined using a linear mixed-effects model. The robustness and homogeneity of the association were examined via sensitivity analyses.Results: We analyzed 35,055 repeated measurements from 13,959 adults. Mean of age at survey was 60.5 years (standard deviation = 9.7 yr). Compared with the reference in 2011, after the policy was implemented, the mean PEF was elevated by 9.19 (6.79-11.59) L/min and 36.64 (33.53-39.75) L/min in 2013 and 2015, respectively. According to the regression results, each 10-μg/m3 reduction of PM2.5 was associated with a 14.95 (12.62-17.28) L/min improvement of PEF. The significance of the association was not affected by adjustments for covariates, inclusion criteria, or the approach to control for the effects of age. Adults of lower socioeconomic status (e.g., those with an educational level of below middle school or rural residents) were more susceptible to the adverse effects of PM2.5 on PEF.Conclusions: We found a robust association between a reduction in PM2.5 and an increase in PEF among Chinese adults. The findings suggest that mitigation of air pollution can promote respiratory health.
Collapse
|
10
|
Lan C, Liu Y, Li Q, Wang B, Xue T, Chen J, Jiangtulu B, Ge S, Wang X, Gao M, Yu Y, Xu Y, Zhao X, Li Z. Internal metal(loid)s are potentially involved in the association between ambient fine particulate matter and blood pressure: A repeated-measurement study in north China. CHEMOSPHERE 2021; 267:129146. [PMID: 33338725 DOI: 10.1016/j.chemosphere.2020.129146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The effects of ambient fine particulate matter (PM2.5) exposure on blood pressure have been widely reported. However, there remains uncertainty regarding the underlying roles of particulate matter components. We aimed to investigate the association between ambient PM2.5 exposure and blood pressure, as well as the potential effects of trace metal(loid)s, in a repeated-measurement study that enrolled women of childbearing age. Our study included 35 participants from Hebei Province, China, each of whom was visited for five times. During each visit, we conducted questionnaire surveys, measured blood pressure, and collected blood. The daily PM2.5 exposure of participants was estimated according to their residential addresses using a spatiotemporal model that combined monitoring data with satellite measurements and chemical-transport model simulations. This model was used to calculate average PM2.5 concentrations in 1, 3, 7, 15, 30, and 60 days prior to each visit. Serum concentrations of various trace metal(loid)s were measured. A linear mixed-effects model was used to investigate associations among study variables. Overall, the mean (standard deviation) 60 days PM2.5 concentration over all five visits was 108.1(43.3) μg/m3. PM2.5 concentration was positively associated with both systolic and diastolic blood pressures. Likewise, ambient PM2.5 concentration was positively associated with serum concentrations of manganese and arsenic, and negatively associated with serum concentrations of nickel, tin, and chromium. Only the serum concentration of molybdenum was negatively associated with systolic blood pressure. We concluded that ambient PM2.5 exposure may contribute to elevated blood pressure, potentially by interfering with internal intake of various metal(loid)s in the human body.
Collapse
Affiliation(s)
- Changxin Lan
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Yingying Liu
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Qi Li
- Jiangxi Environmental Engineering Vocational College, Ganzhou City, 341002, PR China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China.
| | - Tao Xue
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Junxi Chen
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Bahabaike Jiangtulu
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Shufang Ge
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xuepeng Wang
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Miaomiao Gao
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yanxin Yu
- School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing, 100084, PR China
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| |
Collapse
|
11
|
Díaz-Fonseca OD, Rojas-Roa NY, Rodríguez-Pulido AI. [Evaluation of cyclists exposure to air pollution: a literature review]. ACTA ACUST UNITED AC 2020; 20:764-770. [PMID: 33206903 DOI: 10.15446/rsap.v20n6.72744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/20/2018] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To describe and interpret the methodologies and results of the main studies related to the monitoring of exposure of cyclists to air pollution. METHODS Research and analysis of national and international research of the last ten years in the Cochrane, Scopus, Embase, Science Direct and Pubmed databases. The search was conducted in August and September 2017 using the following search descriptors for MeSH: air pollution, bicycle riding, environmental exposure, environmental health, exposure by inhalation, environmental pollutants, transportation, public health and toxicology. For DeCS: air Pollution, cycling, exposure to environmental risks, environmental pollutants, inhalation, transportation, public health and toxicology. RESULTS Nineteen eligible published articles were identified. Most studies were conducted in Europe and the United States. Four studies have been reported in South America. Other studies seek comparisons on different bicycle routes, compare exposure during variations of the same route, and others determine the distance-exposure relationship. In the same way, variables such as vehicular traffic, distance to the emission sources and the type of bike path, play a fundamental role in the exposure to pollutants in cyclists. CONCLUSIONS Several variables were found that influence, directly or indirectly, the cyclists exposure to air pollution, as well as some factors that can reduce this exposure.
Collapse
Affiliation(s)
| | - Néstor Y Rojas-Roa
- NR: Ing. Químico. Ph. D. Fuel and Energy en University of Leeds. Profesor asociado Departamento de Ingeniería Química y Ambiental de la Universidad Nacional de Colombia. Bogotá, Colombia.
| | - Alba I Rodríguez-Pulido
- AR: MD. Especialista en Salud Ocupacional y Medicina del Trabajo. M. Sc. Toxicología Clínica en Universite Catholique de Louvain. Profesora asociada al Departamento de Toxicología, Universidad Nacional de Colombia. Bogotá, Colombia.
| |
Collapse
|
12
|
Kelly FJ, Mudway IS, Fussell JC. Air Pollution and Asthma: Critical Targets for Effective Action. Pulm Ther 2020; 7:9-24. [PMID: 33161530 PMCID: PMC7648850 DOI: 10.1007/s41030-020-00138-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
Evidence to advocate for cleaner air for people with asthma is not in short supply. We know that air pollution is associated with the development and worsening of the condition and that mitigating interventions can improve respiratory outcomes. We have clear targets, particularly traffic emissions, especially in urban areas, and plenty of potentially effective actions. Road traffic must be reduced, and what remains should be cleaner and greener. Urban green spaces, safe cycle networks and wider pavements will promote active travel and leisure time exercise. Healthcare professionals must ensure people are aware of their air quality, its impact on asthma and the appropriate behaviour to safeguard health. What remains are realistic policies and effective measures, based on the correct scientific evidence, to be taken forth with political courage and investment so that air pollution no longer contributes to the development or worsening of respiratory ill health.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, Sir Micheal Uren Building, White City Campus, 80-92 Wood Lane, London, W12 0BZ, UK.
| | - Ian S Mudway
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, Sir Micheal Uren Building, White City Campus, 80-92 Wood Lane, London, W12 0BZ, UK
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, Sir Micheal Uren Building, White City Campus, 80-92 Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
13
|
Abstract
Air pollution is a grave risk to human health that affects nearly everyone in the world and nearly every organ in the body. Fortunately, it is largely a preventable risk. Reducing pollution at its source can have a rapid and substantial impact on health. Within a few weeks, respiratory and irritation symptoms, such as shortness of breath, cough, phlegm, and sore throat, disappear; school absenteeism, clinic visits, hospitalizations, premature births, cardiovascular illness and death, and all-cause mortality decrease significantly. The interventions are cost-effective. Reducing factors causing air pollution and climate change have strong cobenefits. Although regions with high air pollution have the greatest potential for health benefits, health improvements continue to be associated with pollution decreases even below international standards. The large response to and short time needed for benefits of these interventions emphasize the urgency of improving global air quality and the importance of increasing efforts to reduce pollution at local levels.
Collapse
|
14
|
Chen TT, Zhan ZY, Yu YM, Xu LJ, Guan Y, Ou CQ. Effects of hourly levels of ambient air pollution on ambulance emergency call-outs in Shenzhen, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24880-24888. [PMID: 32337675 DOI: 10.1007/s11356-020-08416-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Some researches have shown the associations between air pollution and hospital-based emergency department visits, while the evidence about the acute effects of air pollution on emergency ambulance dispatches for the whole population is rarely available, especially on an hourly time scale. This paper aimed to investigate the effects of hourly concentrations of ambient air pollution on hourly number of ambulance emergency call-outs (AECOs) in Shenzhen, China. AECO data were collected from Shenzhen Emergency Center from January 2013 to December 2016. A time-stratified case-crossover design with conditional Poisson regression was performed to fit the relationship between hourly air pollution and AECOs. The distributed lag model was applied to determine lag structure of the effects of air pollutants. There were a total of 502,862 AECOs during the study period. The significant detrimental effects of SO2, PM2.5, and PM10 appeared immediately with a following harvesting effect after 5 h and the effects lasted for about 96 h. The cumulative effect estimates of four pollutants over 0-96 h were 13.99% (95% CI 7.52-20.85%), 2.07% (95% CI 0.72-3.43%), 1.20% (95% CI 0.54-1.87%), and 2.46% (95% CI 1.63-3.29%), respectively. We did not observe significant effects of O3. This population-based study quantifies the adverse effects of air pollution on ambulance dispatches and provides evidence of the lag structure of the effects on an hourly time scale.
Collapse
Affiliation(s)
- Ting-Ting Chen
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhi-Ying Zhan
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yi-Min Yu
- Shenzhen Center for Prehospital Care, Shenzhen, China
- The People's Hospital of Longhua, Shenzhen, China
| | - Li-Jun Xu
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ying Guan
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chun-Quan Ou
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
15
|
Nayeem AA, Majumder AK, Hossain MS, Carter WS. The Impact of Air Pollution on Lung Function: A Case Study on the Rickshaw Pullers in Dhaka City, Bangladesh. ACTA ACUST UNITED AC 2020. [DOI: 10.29252/jhehp.6.2.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Jiao A, Xiang Q, Ding Z, Cao J, Ho HC, Chen D, Cheng J, Yang Z, Zhang F, Yu Y, Zhang Y. Short-term impacts of ambient fine particulate matter on emergency department visits: Comparative analysis of three exposure metrics. CHEMOSPHERE 2020; 241:125012. [PMID: 31606575 DOI: 10.1016/j.chemosphere.2019.125012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/15/2019] [Accepted: 09/29/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Research argued that daily excessive concentration hours (DECH) could be more informative through accounting for within-day variations, when assessing population-level exposure to ambient fine particle (PM2.5). However, few studies have comparatively investigated PM2.5-associated risks using DECH and two common metrics of daily mean and hourly peak concentration. METHODS We collected daily records of all-cause emergency department visits (EDVs) and hourly data on air pollutants and meteorological factors from Shenzhen, China, 2015-2018. According to guidelines proposed by the World Health Organization, DECH was calculated by summing up daily concentrations exceeding 25 μg/m3. Based on time-stratified case-crossover design, we adopted conditional logistic regression models to assess short-term attributable risks of EDVs associated with PM2.5 using three exposure metrics. RESULTS DECH and daily average of PM2.5 strongly elevated risks of EDVs, while less evident associations were observed using hourly peak metric. Estimated excess relative risks at lag 0 day were 0.56% (95% confidence interval [CI]: 0.21 to 0.91), 0.69% (95% CI: 0.25 to 1.13) and 0.37% (95% CI: 0.02 to 0.76), respectively, associated with an interquartile range increase in DECH (420.2 μg/m3), 24-h average (24.9 μg/m3) and hourly peak concentration (38 μg/m3). More emergency visits could be attributed to DECH than daily mean PM2.5, with attributable fractions of 2.02% (95% CI: 1.42 to 2.61) and 1.09% (95% CI: 0.69 to 1.49), respectively. CONCLUSIONS This study added evidence for increased risk of EDVs associated with exposure to ambient PM2.5. DECH was a potential alternative exposure metric for PM2.5 assessment, which may have implications for future revision of air quality standards.
Collapse
Affiliation(s)
- Anqi Jiao
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China; Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Qianqian Xiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Zan Ding
- The Institute of Metabolic Diseases, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518102, China
| | - Jiguo Cao
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Hung Chak Ho
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China
| | - Dieyi Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Jian Cheng
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, 4059, Australia
| | - Zhiming Yang
- Donlinks School of Economics and Management, University of Science and Technology Beijing, Beijing, 100083, China
| | - Faxue Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Yong Yu
- School of Public Health and Management, Hubei University of Medicine, Shiyan, 442000, China.
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
17
|
Li Y, Bonner MR, Browne RW, Deng F, Tian L, Jim Zhang J, Swanson M, Rittenhouse-Olson K, Farhat Z, Mu L. Responses of serum chemokines to dramatic changes of air pollution levels, a panel study. Biomarkers 2019; 24:712-719. [PMID: 31456427 DOI: 10.1080/1354750x.2019.1658803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Despite the in vitro and in vivo evidence, studies are limited in evaluating whether chemokines are potential inflammatory mediators in response to air pollution exposure in humans. Methods: We conducted a panel study coinciding with the Beijing Olympics, when temporary air pollution controls were implemented. We measured a suite of serum chemokines among healthy adults before, during and after the Olympics, respectively. Linear mixed-effect models were used to evaluate changes in chemokine levels over the three time periods. Results: In response to the 50% drop in air pollution levels during the games, levels of RANTES, MCP-2, and TARC decreased by 25.8%, 20.9% and 35.3%, respectively (p < 0.001) from pre-Olympics, and then increased by 45.8%, 34.9% and 61.5%, respectively (p < 0.001) after the games when air pollution levels went up again. Similar patterns were observed in subgroup analyses by sex, age, smoking and body mass index. GRO-α and IL-8 decreased significantly during the games (22.5% and 30.4%), and increased non-significantly after the games. Eotaxin-1 only increased significantly from during- to post-games. Conclusions: The strongest associations with air pollution levels were observed among RANTES, TARC and MCP-2. Those chemokines may play important roles in the air pollution-induced inflammatory pathway.
Collapse
Affiliation(s)
- Yanli Li
- Department of Epidemiology and Environmental Health, State University of New York at Buffalo , Buffalo , NY , USA
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, State University of New York at Buffalo , Buffalo , NY , USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, State University of New York at Buffalo , Buffalo , NY , USA
| | - Furong Deng
- Department of Environmental Health, Peking University Health Science Center , Beijing , China
| | - Lili Tian
- Department of Biostatistics, State University of New York at Buffalo , Buffalo , NY , USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University , Durham , NC , USA
| | - Mya Swanson
- Department of Epidemiology and Environmental Health, State University of New York at Buffalo , Buffalo , NY , USA
| | - Kate Rittenhouse-Olson
- Department of Biotechnical and Clinical Laboratory Sciences, State University of New York at Buffalo , Buffalo , NY , USA
| | - Zeinab Farhat
- Department of Epidemiology and Environmental Health, State University of New York at Buffalo , Buffalo , NY , USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, State University of New York at Buffalo , Buffalo , NY , USA
| |
Collapse
|
18
|
Bo Y, Guo C, Lin C, Chang LY, Chan TC, Huang B, Lee KP, Tam T, Lau AKH, Lao XQ, Yeoh EK. Dynamic Changes in Long-Term Exposure to Ambient Particulate Matter and Incidence of Hypertension in Adults. Hypertension 2019; 74:669-677. [PMID: 31303109 DOI: 10.1161/hypertensionaha.119.13212] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many countries dedicated in mitigation of air pollution in the past several decades. However, little is known about how air quality improvement affects health. Therefore, we conducted current study to investigate dynamic changes in long-term exposure to ambient particulate matter (PM2.5) and incidence of hypertension in a large longitudinal cohort. We recruited 134 978 adults aged 18 years or above between 2001 and 2014. All the participants received a series of standard medical examinations, including measurements of blood pressure. The PM2.5 concentration was estimated using a satellite-based spatiotemporal model at a high resolution (1×1 km2). The change in long-term exposure to PM2.5 (ΔPM2.5) was defined as the difference between the values measured during follow-up and during the immediately preceding visit, and a negative value indicated an improvement in PM2.5 air quality. Time-varying Cox model was used to examine the associations between ΔPM2.5 and the development of hypertension. The results show that PM2.5 concentrations increased in 2002, 2003, and 2004, but began to decrease in 2005. Every 5 µg/m3 change in exposure to PM2.5 (ie, a ΔPM2.5 of 5 µg/m3) was associated with a 16% change in the incidence of hypertension (hazard ratio, 0.84; 95% CI, 0.82-0.86). Both stratified and sensitivity analyses generally yielded similar results. We found that an improvement in PM2.5 exposure is associated with a decreased incidence of hypertension. Our findings demonstrate that air pollution mitigation is an effective strategy to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Yacong Bo
- From the Jockey Club School of Public Health and Primary Care (Y.B., C.G., K.-P.L., X.Q.L., E.-K.Y.), the Chinese University of Hong Kong
| | - Cui Guo
- From the Jockey Club School of Public Health and Primary Care (Y.B., C.G., K.-P.L., X.Q.L., E.-K.Y.), the Chinese University of Hong Kong
| | - Changqing Lin
- Division of Environment and Sustainability (C.L., A.K.H.L.), the Hong Kong University of Science and Technology.,Department of Civil and Environmental Engineering (C.L., A.K.H.L.), the Hong Kong University of Science and Technology
| | - Ly-Yun Chang
- Gratia Christian College, Hong Kong (L.-Y.C.).,Institute of Sociology (L.-Y.C), Academia Sinica, Taiwan
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences (T.-C.C.), Academia Sinica, Taiwan.,Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei City, Taiwan (T.-C.C.)
| | - Bo Huang
- Department of Geography and Resource Management (B.H.), the Chinese University of Hong Kong
| | - Kam-Pui Lee
- From the Jockey Club School of Public Health and Primary Care (Y.B., C.G., K.-P.L., X.Q.L., E.-K.Y.), the Chinese University of Hong Kong
| | - Tony Tam
- Department of Sociology (T.T.), the Chinese University of Hong Kong
| | - Alexis K H Lau
- Division of Environment and Sustainability (C.L., A.K.H.L.), the Hong Kong University of Science and Technology.,Department of Civil and Environmental Engineering (C.L., A.K.H.L.), the Hong Kong University of Science and Technology
| | - Xiang Qian Lao
- From the Jockey Club School of Public Health and Primary Care (Y.B., C.G., K.-P.L., X.Q.L., E.-K.Y.), the Chinese University of Hong Kong
| | - Eng-Kiong Yeoh
- From the Jockey Club School of Public Health and Primary Care (Y.B., C.G., K.-P.L., X.Q.L., E.-K.Y.), the Chinese University of Hong Kong.,Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen, China (X.Q.L.)
| |
Collapse
|
19
|
Short-Term Effects of Carbonaceous Components in PM 2.5 on Pulmonary Function: A Panel Study of 37 Chinese Healthy Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132259. [PMID: 31248029 PMCID: PMC6651261 DOI: 10.3390/ijerph16132259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To explore the health effects of indoor/outdoor carbonaceous compositions in PM2.5 on pulmonary function among healthy students living in the local university campus. METHODS Daily peak expiratory flow (PEF) and forced expiratory volume in 1 second (FEV1) were measured among 37 healthy students in the morning and evening for four two-week periods. Concurrent concentrations of indoor and outdoor PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5μm), carbonaceous components in PM2.5, ambient temperature, and relative humidity in the study area were also obtained. Mixed-effects model was applied to evaluate the associations between carbonaceous components and lung function. Different lags for the carbonaceous components were investigated. RESULTS In single-pollutant model, a 10 μg/m3 increase of indoor and outdoor EC (elemental carbon) associated with -3.93 (95%CI: -6.89, -0.97) L/min and -3.21 (95%CI: -5.67, -0.75) L/min change in evening PEF at lag 0 day, respectively. Also, a 10 μg/m3 increase of indoor and outdoor POC (primary organic carbon) concentration was significantly associated with -5.82 (95%CI: -10.82, -0.81) L/min and -7.32 (95%CI: -12.93, -1.71) L/min change of evening PEF at lag 0 day. After adjusting total mass of PM2.5, indoor EC consistently had a significant adverse impact on evening PEF and FEV1 at lag3 day and a cumulative effect at lag0-3 day. CONCLUSIONS This study suggests that carbonaceous components in PM2.5 indeed have impacts on pulmonary function among healthy young adults especially on evening PEF. Thus, the local mitigation strategies on pollution are needed.
Collapse
|
20
|
Burns J, Boogaard H, Polus S, Pfadenhauer LM, Rohwer AC, van Erp AM, Turley R, Rehfuess E. Interventions to reduce ambient particulate matter air pollution and their effect on health. Cochrane Database Syst Rev 2019; 5:CD010919. [PMID: 31106396 PMCID: PMC6526394 DOI: 10.1002/14651858.cd010919.pub2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ambient air pollution is associated with a large burden of disease in both high-income countries (HICs) and low- and middle-income countries (LMICs). To date, no systematic review has assessed the effectiveness of interventions aiming to reduce ambient air pollution. OBJECTIVES To assess the effectiveness of interventions to reduce ambient particulate matter air pollution in reducing pollutant concentrations and improving associated health outcomes. SEARCH METHODS We searched a range of electronic databases with diverse focuses, including health and biomedical research (CENTRAL, Cochrane Public Health Group Specialised Register, MEDLINE, Embase, PsycINFO), multidisciplinary research (Scopus, Science Citation Index), social sciences (Social Science Citation Index), urban planning and environment (Greenfile), and LMICs (Global Health Library regional indexes, WHOLIS). Additionally, we searched grey literature databases, multiple online trial registries, references of included studies and the contents of relevant journals in an attempt to identify unpublished and ongoing studies, and studies not identified by our search strategy. The final search date for all databases was 31 August 2016. SELECTION CRITERIA Eligible for inclusion were randomized and cluster randomized controlled trials, as well as several non-randomized study designs, including controlled interrupted time-series studies (cITS-EPOC), interrupted time-series studies adhering to EPOC standards (ITS-EPOC), interrupted time-series studies not adhering to EPOC standards (ITS), controlled before-after studies adhering to EPOC standards (CBA-EPOC), and controlled before-after studies not adhering to EPOC standards (CBA); these were classified as main studies. Additionally, we included uncontrolled before-after studies (UBA) as supporting studies. We included studies that evaluated interventions to reduce ambient air pollution from industrial, residential, vehicular and multiple sources, with respect to their effect on mortality, morbidity and several air pollutant concentrations. We did not restrict studies based on the population, setting or comparison. DATA COLLECTION AND ANALYSIS After a calibration exercise among the author team, two authors independently assessed studies for inclusion, extracted data and assessed risk of bias. We conducted data extraction, risk of bias assessment and evidence synthesis only for main studies; we mapped supporting studies with regard to the types of intervention and setting. To assess risk of bias, we used the Graphic Appraisal Tool for Epidemiological studies (GATE) for correlation studies, as modified and employed by the Centre for Public Health Excellence at the UK National Institute for Health and Care Excellence (NICE). For each intervention category, i.e. those targeting industrial, residential, vehicular and multiple sources, we synthesized evidence narratively, as well as graphically using harvest plots. MAIN RESULTS We included 42 main studies assessing 38 unique interventions. These were heterogeneous with respect to setting; interventions were implemented in countries across the world, but most (79%) were implemented in HICs, with the remaining scattered across LMICs. Most interventions (76%) were implemented in urban or community settings.We identified a heterogeneous mix of interventions, including those aiming to address industrial (n = 5), residential (n = 7), vehicular (n = 22), and multiple sources (n = 4). Some specific interventions, such as low emission zones and stove exchanges, were assessed by several studies, whereas others, such as a wood burning ban, were only assessed by a single study.Most studies assessing health and air quality outcomes used routine monitoring data. Studies assessing health outcomes mostly investigated effects in the general population, while few studies assessed specific subgroups such as infants, children and the elderly. No identified studies assessed unintended or adverse effects.The judgements regarding the risk of bias of studies were mixed. Regarding health outcomes, we appraised eight studies (47%) as having no substantial risk of bias concerns, five studies (29%) as having some risk of bias concerns, and four studies (24%) as having serious risk of bias concerns. Regarding air quality outcomes, we judged 11 studies (31%) as having no substantial risk of bias concerns, 16 studies (46%) as having some risk of bias concerns, and eight studies (23%) as having serious risk of bias concerns.The evidence base, comprising non-randomized studies only, was of low or very low certainty for all intervention categories and primary outcomes. The narrative and graphical synthesis showed that evidence for effectiveness was mixed across the four intervention categories. For interventions targeting industrial, residential and multiple sources, a similar pattern emerged for both health and air quality outcomes, with essentially all studies observing either no clear association in either direction or a significant association favouring the intervention. The evidence base for interventions targeting vehicular sources was more heterogeneous, as a small number of studies did observe a significant association favouring the control. Overall, however, the evidence suggests that the assessed interventions do not worsen air quality or health. AUTHORS' CONCLUSIONS Given the heterogeneity across interventions, outcomes, and methods, it was difficult to derive overall conclusions regarding the effectiveness of interventions in terms of improved air quality or health. Most included studies observed either no significant association in either direction or an association favouring the intervention, with little evidence that the assessed interventions might be harmful. The evidence base highlights the challenges related to establishing a causal relationship between specific air pollution interventions and outcomes. In light of these challenges, the results on effectiveness should be interpreted with caution; it is important to emphasize that lack of evidence of an association is not equivalent to evidence of no association.We identified limited evidence for several world regions, notably Africa, the Middle East, Eastern Europe, Central Asia and Southeast Asia; decision-makers should prioritize the development and implementation of interventions in these settings. In the future, as new policies are introduced, decision-makers should consider a built-in evaluation component, which could facilitate more systematic and comprehensive evaluations. These could assess effectiveness, but also aspects of feasibility, fidelity and acceptability.The production of higher quality and more uniform evidence would be helpful in informing decisions. Researchers should strive to sufficiently account for confounding, assess the impact of methodological decisions through the conduct and communication of sensitivity analyses, and improve the reporting of methods, and other aspects of the study, most importantly the description of the intervention and the context in which it is implemented.
Collapse
Affiliation(s)
- Jacob Burns
- Ludwig‐Maximilians‐University MunichInstitute for Medical Informatics, Biometry and Epidemiology, Pettenkofer School of Public HealthMarchioninistr. 15MunichGermany
| | | | - Stephanie Polus
- Ludwig‐Maximilians‐University MunichInstitute for Medical Informatics, Biometry and Epidemiology, Pettenkofer School of Public HealthMarchioninistr. 15MunichGermany
| | - Lisa M Pfadenhauer
- Ludwig‐Maximilians‐University MunichInstitute for Medical Informatics, Biometry and Epidemiology, Pettenkofer School of Public HealthMarchioninistr. 15MunichGermany
| | - Anke C Rohwer
- Stellenbosch UniversityCentre for Evidence‐based Health Care, Faculty of Medicine and Health SciencesFrancie van Zijl DriveCape TownSouth Africa7505
| | | | - Ruth Turley
- Cardiff UniversityCentre for the Development and Evaluation of Complex Interventions for Public Health Improvement (DECIPHer)1 Museum PlaceCardiffUKCF10 3BD
| | - Eva Rehfuess
- Ludwig‐Maximilians‐University MunichInstitute for Medical Informatics, Biometry and Epidemiology, Pettenkofer School of Public HealthMarchioninistr. 15MunichGermany
| |
Collapse
|
21
|
Mu L, Niu Z, Blair RH, Yu H, Browne RW, Bonner MR, Fanter T, Deng F, Swanson M. Metabolomics Profiling before, during, and after the Beijing Olympics: A Panel Study of Within-Individual Differences during Periods of High and Low Air Pollution. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57010. [PMID: 31140880 PMCID: PMC6791568 DOI: 10.1289/ehp3705] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The metabolome is a collection of exogenous chemicals and metabolites from cellular processes that may reflect the body's response to environmental exposures. Studies of air pollution and metabolomics are limited. OBJECTIVES To explore changes in the human metabolome before, during, and after the 2008 Beijing Olympics Games, when air pollution was high, low, and high, respectively. METHODS Serum samples were collected before, during, and after the Olympics from 26 participants in an existing panel study. Gas and ultra-high performance liquid chromatography/mass spectrometry were used in metabolomics analysis. Repeated measures ANOVA, network analysis, and enrichment analysis methods were employed to identify metabolites and classes associated with air pollution changes. RESULTS A total of 886 molecules were measured in our metabolomics analysis. Network partitioning identified four modules with 65 known metabolites that significantly changed across the three time points. All known molecules in the first module ([Formula: see text]) were lipids (e.g., eicosapentaenoic acid, stearic acid). The second module consisted primarily of dipeptides ([Formula: see text], e.g., isoleucylglycine) plus 8 metabolites from four other classes (e.g., hypoxanthine, 12-hydroxyeicosatetraenoic acid). Most of the metabolites in Modules 3 (19 of 23) and 4 (5 of 5) were unknown. Enrichment analysis of module-identified metabolites indicted significantly overrepresented pathways, including long- and medium-chain fatty acids, polyunsaturated fatty acids (n3 and n6), eicosanoids, lysolipid, dipeptides, fatty acid metabolism, and purine metabolism [(hypo) xanthine/inosine-containing pathways]. CONCLUSIONS We identified two major metabolic signatures: one consisting of lipids, and a second that included dipeptides, polyunsaturated fatty acids, taurine, and xanthine. Metabolites in both groups decreased during the 2008 Beijing Olympics, when air pollution was low, and increased after the Olympics, when air pollution returned to normal (high) levels. https://doi.org/10.1289/EHP3705.
Collapse
Affiliation(s)
- Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Zhongzheng Niu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Richard W. Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Matthew R. Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Tiffany Fanter
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Furong Deng
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Mya Swanson
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
22
|
Ji X, Yue H, Ku T, Zhang Y, Yun Y, Li G, Sang N. Histone modification in the lung injury and recovery of mice in response to PM 2.5 exposure. CHEMOSPHERE 2019; 220:127-136. [PMID: 30579949 DOI: 10.1016/j.chemosphere.2018.12.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 05/05/2023]
Abstract
Epidemiological and experimental studies have progressively provided a better knowledge of the underlying mechanisms by which fine particulate matter (PM2.5) exerts its harmful health effects. However, limited studies focused on the effect and following recovery after the particulate exposure ended. In this study, we determined PM2.5 exposure-caused effects on the lung and their recovery in mice after terminating aspiration, and clarified the possible molecular modification. The results revealed that PM2.5 exposure for 4 weeks significantly decreased the lung function, and the changes returned to normal levels after 1-week recovery. However, we observed persistent particle alveolar load following 2-week recovery. Interestingly, the alterations of H3K27ac expression and related enzyme activities mimicked the changes of respiratory function during the process, and chromatin immunoprecipitation-seqences (ChIP-seq) suggested that these PM2.5-associated differential H3K27ac markers participated in immune responses and chemokine signaling pathway with stat2 and bcar1 being two important genes. Consistently, the expression of pro-inflammatory cytokines and chemokines elevated after PM2.5 exposure for 4-week, and reversed to normal levels following 2-week recovery. The study highlighted that PM2.5 aspiration caused histone modification associated lung dysfunction and inflammation, and the action restored after exposure ending and 2-week recovery. Also, persistent particle alveolar load might be a long-term potential risk for lung diseases.
Collapse
Affiliation(s)
- Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
23
|
North CM, Rice MB, Ferkol T, Gozal D, Hui C, Jung SH, Kuribayashi K, McCormack MC, Mishima M, Morimoto Y, Song Y, Wilson KC, Kim WJ, Fong KM. Air pollution in the Asia-Pacific Region: A Joint Asian Pacific Society of Respirology/American Thoracic Society perspective (Republication). Respirology 2019; 24:484-491. [PMID: 30920029 DOI: 10.1111/resp.13531] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Crystal M North
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary B Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Thomas Ferkol
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - David Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA
| | | | - Soon-Hee Jung
- Department of Pathology, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Kozo Kuribayashi
- Department of Respiratory Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, John Hopkins School of Medicine, Baltimore, MD, USA
| | - Michiaki Mishima
- Department of Physical Therapeutics, Kyoto University Hospital of Medicine, Kyoto, Japan
| | - Yasuo Morimoto
- University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai, China.,Fudan University, Shanghai, China
| | - Kevin C Wilson
- Division of Allergy, Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, South Korea
| | - Kwun M Fong
- The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, QLD, Australia.,The University of Queensland Thoracic Research Centre at The Prince Charles Hospital, Brisbane, QLD, Australia
| |
Collapse
|
24
|
North CM, Rice MB, Ferkol T, Gozal D, Hui C, Jung SH, Kuribayashi K, McCormack MC, Mishima M, Morimoto Y, Song Y, Wilson KC, Kim WJ, Fong KM. Air Pollution in the Asia-Pacific Region. A Joint Asian Pacific Society of Respirology/American Thoracic Society Perspective. Am J Respir Crit Care Med 2019; 199:693-700. [DOI: 10.1164/rccm.201804-0673pp] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Crystal M. North
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Massachusetts
| | - Mary B. Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Thomas Ferkol
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - David Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, Missouri
| | | | - Soon-Hee Jung
- Department of Pathology, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Kozo Kuribayashi
- Department of Respiratory Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Meredith C. McCormack
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, John Hopkins School of Medicine, Baltimore, Maryland
| | - Michiaki Mishima
- Department of Physical Therapeutics, Kyoto University Hospital of Medicine, Kyoto, Japan
| | - Yasuo Morimoto
- University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai, China
- Fudan University, Shanghai, China
| | - Kevin C. Wilson
- Division of Allergy, Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, South Korea
| | - Kwun M. Fong
- The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia; and
- The University of Queensland Thoracic Research Centre at The Prince Charles Hospital, Brisbane, Australia
| |
Collapse
|
25
|
Liu T, Zhang P, Ling Y, Hu G, Gu J, Yang H, Wei J, Wang A, Jin H. Protective Effect of Colla corii asini against Lung Injuries Induced by Intratracheal Instillation of Artificial Fine Particles in Rats. Int J Mol Sci 2018; 20:ijms20010055. [PMID: 30583600 PMCID: PMC6337124 DOI: 10.3390/ijms20010055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Environmental issues pose huge threats to public health, particularly the damage caused by fine particulate matter (PM2.5). However, the mechanisms of injury require further investigation and medical materials that can protect the lungs from PM2.5 are needed. We have found that Colla corii asini, a traditional Chinese medicine that has long been used to treat various ailments, is a good candidate to serve this purpose. To understand the mechanisms of PM2.5-induced lung toxicity and the protective effects of Colla corii asini, we established a rat model of lung injury via intratracheal instillation of artificial PM2.5 (aPM2.5). Our results demonstrated that Colla corii asini significantly protected against lung function decline and pathologic changes. Inflammation was ameliorated by suppression of Arg-1 to adjust the disturbed metabolic pathways induced by aPM2.5, such as arginine and nitrogen metabolism and aminoacyl-tRNA biosynthesis, for 11 weeks. Our work found that metabolomics was a useful tool that contributed to further understanding of PM2.5-induced respiratory system damage and provided useful information for further pharmacological research on Colla corii asini, which may be valuable for therapeutic intervention.
Collapse
Affiliation(s)
- Tiantian Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Piaopiao Zhang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Yahao Ling
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Guang Hu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jianjun Gu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Shandong 252299, China.
| | - Hong Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jinfeng Wei
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
- Beijing Union-Genius Pharmaceutical Technology Co., Ltd., Beijing 100176, China.
| | - Aiping Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
- Beijing Union-Genius Pharmaceutical Technology Co., Ltd., Beijing 100176, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
- Beijing Union-Genius Pharmaceutical Technology Co., Ltd., Beijing 100176, China.
| |
Collapse
|
26
|
Yang X, Jia X, Dong W, Wu S, Miller MR, Hu D, Li H, Pan L, Deng F, Guo X. Cardiovascular benefits of reducing personal exposure to traffic-related noise and particulate air pollution: A randomized crossover study in the Beijing subway system. INDOOR AIR 2018; 28:777-786. [PMID: 29896813 DOI: 10.1111/ina.12485] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/08/2018] [Indexed: 05/06/2023]
Abstract
To assess the cardiovascular benefits of protecting against particulate air pollution and noise, we conducted a randomized crossover study with 40 young healthy college students from March to May 2017 in the underground subway, Beijing. Participants each received 4 treatments (no intervention phase [NIP], respirator intervention phase [RIP], headphone intervention phase [HIP], respirator plus headphone intervention phase [RHIP]) in a randomized order during 4 different study periods with 2-week washout intervals. We measured personal exposure to particulate matter (PM), noise and electrocardiogram (ECG) parameters (heart rate variability (HRV), heart rate (HR) and ST segment changes), ambulatory blood pressure (BP) continuously for 4 hours to investigate the cardiovascular effects. Compared with NIP, most of the HRV parameters increased, especially high frequency (HF) [21.1% (95% CI: 15.7%, 26.9%), 18.2% (95% CI: 12.8%, 23.9%), and 35.5% (95% CI: 29.3%, 42.0%) in RIP, HIP, and RHIP, respectively], whereas ST segment elevation and HR decreased for all 3 modes of interventions. However, no significant differences were observed in BP among the 4 treatments. In summary, short-term wearing of a respirator and/or headphone may be an effective way to minimize cardiovascular risk induced by air pollution in the subway by improving autonomic nervous function.
Collapse
Affiliation(s)
- X Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - X Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - W Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - S Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - M R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - D Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - H Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - L Pan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - F Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - X Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
27
|
Yang D, Yang X, Deng F, Guo X. Ambient Air Pollution and Biomarkers of Health Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1017:59-102. [PMID: 29177959 DOI: 10.1007/978-981-10-5657-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| |
Collapse
|
28
|
Szyszkowicz M, Kousha T, Castner J, Dales R. Air pollution and emergency department visits for respiratory diseases: A multi-city case crossover study. ENVIRONMENTAL RESEARCH 2018; 163:263-269. [PMID: 29459308 DOI: 10.1016/j.envres.2018.01.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/27/2018] [Accepted: 01/28/2018] [Indexed: 05/23/2023]
Abstract
Increasing evidence suggests that ambient air pollution is a major risk factor for both acute and chronic respiratory disease exacerbations and emergencies. The objective of this study was to determine the association between ambient air pollutants and emergency department (ED) visits for respiratory conditions in nine districts across the province of Ontario in Canada. Health, air pollutant (PM2.5, NO2, O3, and SO2), and meteorological data were retrieved from April 2004 to December 2011. Respiratory diseases were categorized as: chronic obstructive pulmonary disease (COPD, including bronchiectasis) and acute upper respiratory diseases. A case-crossover design was used to test the associations between ED visits and ambient air pollutants, stratified by sex and season. For COPD among males, positive results were observed for NO2 with lags of 3-6 days, for PM2.5 with lags 1-8, and for SO2 with lags of 4-8 days. For COPD among females, positive results were observed for O3 with lags 2-4 days, and for SO2 among lags of 3-6 days. For upper respiratory disease emergencies among males, positive results were observed for NO2 (lags 5-8 days), for O3, (lags 0-6 days), PM2.5 (all lags), and SO2 (lag 8), and among females, positive results were observed for NO2 for lag 8 days, for O3, PM2.5 among all lags. Our study provides evidence of the associations between short-term exposure to air pollution and increased risk of ED visits for upper and lower respiratory diseases in an environment where air pollutant concentrations are relatively low.
Collapse
Affiliation(s)
| | - Termeh Kousha
- Population Studies Division, Health Canada, Ottawa, Canada; Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada.
| | | | - Robert Dales
- Population Studies Division, Health Canada, Ottawa, Canada; University of Ottawa and The Ottawa Hospital Research Institute, Canada.
| |
Collapse
|
29
|
Farhat Z, Browne RW, Bonner MR, Tian L, Deng F, Swanson M, Mu L. How do glutathione antioxidant enzymes and total antioxidant status respond to air pollution exposure? ENVIRONMENT INTERNATIONAL 2018; 112:287-293. [PMID: 29324239 PMCID: PMC5899033 DOI: 10.1016/j.envint.2017.12.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 05/02/2023]
Abstract
This study aims to investigate how antioxidant enzyme activity and overall antioxidant capacity respond to short-term changes in exposure to air pollution. 201 participants were recruited before- and followed up during- and after- the 2008 Beijing Olympics. Serum levels of antioxidant enzymes including glutathione S-transferases (GST), glutathione peroxidase (GPx), glutathione reductase (GR), and total antioxidant status (TAS) were measured. We used linear mixed-effects models to compare changes in antioxidant enzymes across the three periods after adjusting for potential confounding factors. Among all participants, glutathione peroxidase (GPx) levels decreased by 12.0% when air pollution dropped by 50-60% during the Olympics and increased by 6.5% when air pollution levels rose after the Olympics. The magnitude of increase among males, smokers, and older individuals was relatively smaller compared to females, nonsmokers, and younger individuals. Among all participants, total antioxidant status (TAS) significantly decreased by 6.23% during the games and continued to decrease by 4.41% after the games. However, among females, nonsmokers, and younger participants, there was an increase in TAS response to the elevated air pollution levels. Our study observed strong responses in GPx and TAS levels to the short-term decrease and increase of air pollution levels and responses varied among subgroups.
Collapse
Affiliation(s)
- Zeinab Farhat
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Lili Tian
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Furong Deng
- Furong Deng, Department of Occupational & Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Mya Swanson
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
30
|
Zhang J, Hu X, Shan G. Spirometry reference values for population aged 7-80 years in China. Respirology 2017; 22:1630-1636. [PMID: 28681568 DOI: 10.1111/resp.13118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Lung function tests are widely used in clinical and public health practice; however, no valid spirometry reference values were available for the general population in China. This study aimed to provide valid spirometry predictive equations for the general population in China, and to evaluate the predictive performance of previously used equations. METHODS Data from the China National Health Survey 2012-2015 and the 'Generalized Additive Models for Location, Scale and Shape' statistical modelling method were used to establish spirometry predictive equations for forced expiratory volume in 1 s (FEV1 ), forced vital capacity (FVC) and FEV1 /FVC. Paired t-tests were used to examine differences between spirometry measurements in this sample and predicted values of four previous spirometry predictive equations. RESULTS This study included 3130 lifetime non-smokers (713 males and 2417 females) aged 7-80 years in China. Spirometry predictive equations with age and height as predictive variables plus age-specific splines were established separately by gender. Most previous spirometry predictive equations were found to significantly overestimate (maximum of 3.69% in FEV1 , 1.87% in FVC and 4.19% in FEV1 /FVC for males; 11.46% in FEV1 , 7.28% in FVC and 3.78% in FEV1 /FVC for females) or underestimate (maximum of 5.75% in FEV1 and 8.12% in FVC for males; 7.89% in FEV1 and 9.32% in FVC for females) lung function measurements when applied to this sample population. CONCLUSION This study addressed the urgent need for valid and up-to-date spirometry reference values for the general population in China. Moreover, previous spirometry predictive equations showed unfavourable generalizability to this sample population.
Collapse
Affiliation(s)
- Jingzhou Zhang
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,School of Basic Medicine, Peking Union Medical College, Beijing, China.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Xiao Hu
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,School of Basic Medicine, Peking Union Medical College, Beijing, China.,Advanced Professional MPH Program, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Guangliang Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Wang C, Cai J, Chen R, Shi J, Yang C, Li H, Lin Z, Meng X, Liu C, Niu Y, Xia Y, Zhao Z, Li W, Kan H. Personal exposure to fine particulate matter, lung function and serum club cell secretory protein (Clara). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:450-455. [PMID: 28284549 DOI: 10.1016/j.envpol.2017.02.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The underlying mechanisms about the association between ambient fine particulate matter (PM2.5) and lung function were unclear. Few epidemiological studies have evaluated the potential mediating effects of serum club cell secretory protein (Clara) (CC16), a biomarker of pulmonary epithelium integrity. OBJECTIVES To evaluate the short-term effect of personal PM2.5 exposure on lung function and to explore the potential mediating role of CC16 in this effect. METHODS We enrolled 36 healthy, nonsmoking college students for a panel study in Shanghai, China from December 17, 2014 to July 11, 2015. We measured personal and real-time exposure to PM2.5 for 72 h preceding each of four rounds of health examinations, including lung function test and serum CC16 measurement. We used linear mixed-effect models to examine the effects of PM2.5 on lung function and CC16 over various lag times. Furthermore, we analyzed the mediating effect of CC16 in the association between PM2.5 and lung function. RESULTS Average PM2.5 exposure ranged from 36 to 52 μg/m3 across different lag periods. PM2.5 exposure was negatively associated with lung function and positively associated with serum CC16 concentration. The effect of PM2.5 on CC16 occurred earlier than that on lung function. For instance, an interquartile range (IQR) increase in 0-2 h average exposure to PM2.5 was significantly associated with a 4.84% increase in serum CC16; and an IQR increase in 3-6 h average exposure to PM2.5 was significantly associated with a 1.08% decrease in 1-sec forced expiratory volume. These effects lasted up to 24 h after exposure. Increased serum CC16 contributed 3.9%-36.3% of the association between PM2.5 and impaired lung function. CONCLUSIONS Acute exposure to PM2.5 might induce an immediate decrease in lung function by virtue of the loss of pulmonary epithelium integrity.
Collapse
Affiliation(s)
- Cuicui Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| | - Jingjin Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Changyuan Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Huichu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China.
| |
Collapse
|
32
|
Ye W, Zhang X, Gao J, Cao G, Zhou X, Su X. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:696-729. [PMID: 28215812 DOI: 10.1016/j.scitotenv.2017.02.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
After nearly twenty years of rapid modernization and urbanization in China, huge achievements have transformed the daily lives of the Chinese people. However, unprecedented environmental consequences in both indoor and outdoor environments have accompanied this progress and have triggered public awareness and demands for improved living standards, especially in residential environments. Indoor pollution data measured for >7000 dwellings (approximately 1/3 were newly decorated and were tested for volatile organic compound (VOC) measurements, while the rest were tested for particles, phthalates and other semi-volatile organic compounds (SVOCs), moisture/mold, inorganic gases and radon) in China within the last ten years were reviewed, summarized and compared with indoor concentration recommendations based on sensory or health end-points. Ubiquitous pollutants that exceed the concentration recommendations, including particulate matter, formaldehyde, benzene and other VOCs, moisture/mold, inorganic gases and radon, were found, indicating a common indoor air quality (IAQ) issue in Chinese dwellings. With very little prevention, oral, inhalation and dermal exposure to those pollutants at unhealthy concentration levels is almost inevitable. CO2, VOCs, humidity and radon can serve as ventilation determinants, each with different ventilation demands and strategies, at typical occupant densities in China; and particle reduction should be a prerequisite for determining ventilation requirements. Two directional ventilation modes would have profound impacts on improving IAQ for Chinese residences are: 1) natural (or window) ventilation with an air cleaner and 2) mechanical ventilation with an air filtration unit, these two modes were reviewed and compared for their applicability and advantages and disadvantages for reducing human exposure to indoor air pollutants. In general, mode 2 can more reliably ensure good IAQ for occupants; while mode 1 is more applicable due to its low cost and low energy consumption. However, besides a roadmap, substantial efforts are still needed to develop affordable, applicable and general ventilation solutions to improve the IAQ of residential buildings in China.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, PR China; School of Mechanical Engineering, Tongji University, Shanghai, PR China
| | - Xu Zhang
- School of Mechanical Engineering, Tongji University, Shanghai, PR China.
| | - Jun Gao
- School of Mechanical Engineering, Tongji University, Shanghai, PR China
| | - Guangyu Cao
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Xiang Zhou
- School of Mechanical Engineering, Tongji University, Shanghai, PR China
| | - Xing Su
- School of Mechanical Engineering, Tongji University, Shanghai, PR China
| |
Collapse
|
33
|
Rich DQ. Accountability studies of air pollution and health effects: lessons learned and recommendations for future natural experiment opportunities. ENVIRONMENT INTERNATIONAL 2017; 100:62-78. [PMID: 28089581 PMCID: PMC5291758 DOI: 10.1016/j.envint.2016.12.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 05/26/2023]
Abstract
To address limitations of observational epidemiology studies of air pollution and health effects, including residual confounding by temporal and spatial factors, several studies have taken advantage of 'natural experiments', where an environmental policy or air quality intervention has resulted in reductions in ambient air pollution concentrations. Researchers have examined whether the population impacted by these air quality improvements, also experienced improvements in various health indices (e.g. reduced morbidity/mortality). In this paper, I review key accountability studies done previously and new studies done over the past several years in Beijing, Atlanta, London, Ireland, and other locations, describing study design and analysis strengths and limitations of each. As new 'natural experiment' opportunities arise, several lessons learned from these studies should be applied when planning a new accountability study. Comparison of health outcomes during the intervention to both before and after the intervention in the population of interest, as well as use of a control population to assess whether any temporal changes in the population of interest were also seen in populations not impacted by air quality improvements, should aid in minimizing residual confounding by these long term time trends. Use of either detailed health records for a population, or prospectively collected data on relevant mechanistic biomarkers coupled with such morbidity/mortality data may provide a more thorough assessment of if the intervention beneficially impacted the health of the community, and if so by what mechanism(s). Further, prospective measurement of a large suite of air pollutants may allow a more thorough understanding of what pollutant source(s) is/are responsible for any health benefit observed. The importance of using multiple statistical analysis methods in each paper and the difference in how the timing of the air pollution/outcome association may impact which of these design features is most important is also discussed. Based on these and other lessons learned, researchers may provide a more epidemiologically rigorous evaluation of cause-specific health impacts of an air quality intervention or action.
Collapse
Affiliation(s)
- David Q Rich
- Departments of Public Health Sciences and Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|
34
|
He MZ, Zeng X, Zhang K, Kinney PL. Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005-2016: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020191. [PMID: 28216601 PMCID: PMC5334745 DOI: 10.3390/ijerph14020191] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
Abstract
Background: Particulate matter pollution has become a growing health concern over the past few decades globally. The problem is especially evident in China, where particulate matter levels prior to 2013 are publically unavailable. We conducted a systematic review of scientific literature that reported fine particulate matter (PM2.5) concentrations in different regions of China from 2005 to 2016. Methods: We searched for English articles in PubMed and Embase and for Chinese articles in the China National Knowledge Infrastructure (CNKI). We evaluated the studies overall and categorized the collected data into six geographical regions and three economic regions. Results: The mean (SD) PM2.5 concentration, weighted by the number of sampling days, was 60.64 (33.27) μg/m³ for all geographic regions and 71.99 (30.20) μg/m³ for all economic regions. A one-way ANOVA shows statistically significant differences in PM2.5 concentrations between the various geographic regions (F = 14.91, p < 0.0001) and the three economic regions (F = 4.55, p = 0.01). Conclusions: This review identifies quantifiable differences in fine particulate matter concentrations across regions of China. The highest levels of fine particulate matter were found in the northern and northwestern regions and especially Beijing. The high percentage of data points exceeding current federal regulation standards suggests that fine particulate matter pollution remains a huge problem for China. As pre-2013 emissions data remain largely unavailable, we hope that the data aggregated from this systematic review can be incorporated into current and future models for more accurate historical PM2.5 estimates.
Collapse
Affiliation(s)
- Mike Z He
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA.
| | - Xiange Zeng
- Program in Public Health Studies, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD 21218, USA.
| | - Kaiyue Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210000, Jiangsu, China.
- Yangzhou Center for Disease Control and Prevention, Yangzhou 225000, Jiangsu, China.
| | - Patrick L Kinney
- Department of Environmental Health, School of Public Health, Boston University, Boston, MD 02118, USA.
| |
Collapse
|
35
|
Yan XD, Wang QM, Tie C, Jin HT, Han YX, Zhang JL, Yu XM, Hou Q, Zhang PP, Wang AP, Zhang PC, Gao Z, Jiang JD. Polydatin protects the respiratory system from PM 2.5 exposure. Sci Rep 2017; 7:40030. [PMID: 28067267 PMCID: PMC5220290 DOI: 10.1038/srep40030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/01/2016] [Indexed: 01/04/2023] Open
Abstract
Atmospheric particle is one of the risk factors for respiratory disease; however, their injury mechanisms are poorly understood, and prevention methods are highly desirable. We constructed artificial PM2.5 (aPM2.5) particles according to the size and composition of actual PM2.5 collected in Beijing. Using these artificial particles, we created an inhalation-injury animal model. These aPM2.5 particles simulate the physical and chemical characteristics of the actual PM2.5, and inhalation of the aPM2.5 in rat results in a time-dependent change in lung suggesting a declined lung function, injury from oxidative stress and inflammation in lung. Thus, this aPM2.5-caused injury animal model may mimic that of the pulmonary injury in human exposed to airborne particles. In addition, polydatin (PD), a resveratrol glucoside that is rich in grapes and red wine, was found to significantly decrease the oxidative potential (OP) of aPM2.5in vitro. Treating the model rats with PD prevented the lung function decline caused by aPM2.5, and reduced the level of oxidative damage in aPM2.5-exposed rats. Moreover, PD inhibited aPM2.5-induced inflammation response, as evidenced by downregulation of white blood cells in bronchoalveolar lavage fluid (BALF), inflammation-related lipids and proinflammation cytokines in lung. These results provide a practical means for self-protection against particulate air pollution.
Collapse
Affiliation(s)
- Xiao-Dan Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Qi-Ming Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Cai Tie
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Hong-Tao Jin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xiao-Ming Yu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Qi Hou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Piao-Piao Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Ai-Ping Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
36
|
Matt F, Cole-Hunter T, Donaire-Gonzalez D, Kubesch N, Martínez D, Carrasco-Turigas G, Nieuwenhuijsen M. Acute respiratory response to traffic-related air pollution during physical activity performance. ENVIRONMENT INTERNATIONAL 2016; 97:45-55. [PMID: 27776225 DOI: 10.1016/j.envint.2016.10.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Physical activity (PA) has beneficial, whereas exposure to traffic related air pollution (TRAP) has adverse, respiratory effects. Few studies, however, have examined if the acute effects of TRAP upon respiratory outcomes are modified depending on the level of PA. OBJECTIVES The aim of our study was to disentangle acute effects of TRAP and PA upon respiratory outcomes and assess the impact of participants TRAP pre-exposure. METHODS We conducted a real-world crossover study with repeated measures of 30 healthy adults. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Measures of respiratory function were collected at three time points. Pre-exposure to TRAP was ascertained from land-use-modeled address-attributed values. Mixed-effects models were used to estimate the impact of TRAP and PA on respiratory measures as well as potential effect modifications. RESULTS We found that PA was associated with a statistically significant increases of FEV1 (48.5mL, p=0.02), FEV1/FVC (0.64%, p=0.005) and FEF25-75% (97.8mL, p=0.02). An increase in exposure to one unit (1μg/m3) of PMcoarse was associated with a decrease in FEV1 (-1.31mL, p=0.02) and FVC (-1.71mL, p=0.01), respectively. On the other hand, for an otherwise equivalent exposure an increase of PA by one unit (1%Heart rate max) was found to reduce the immediate negative effects of particulate matter (PM) upon PEF (PM2.5, 0.02L/min, p=0.047; PM10, 0.02L/min p=0.02; PMcoarse, 0.03L/min, p=0.02) and the several hours delayed negative effects of PM upon FVC (PMcoarse, 0.11mL, p=0.02). The negative impact of exposure to TRAP constituents on FEV1/FVC and PEF was attenuated in those participants with higher TRAP pre-exposure levels. CONCLUSIONS Our results suggest that associations between various pollutant exposures and respiratory measures are modified by the level of PA during exposure and TRAP pre-exposure of participants.
Collapse
Affiliation(s)
- Florian Matt
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Rudolf Boehm Institute of Pharmacology and Toxicology, PGS Toxicology and Environmental Protection, University of Leipzig, Leipzig, Germany; Biological Safety & Risk Management, Institute Straumann AG, Basel, Switzerland.
| | - Tom Cole-Hunter
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - David Donaire-Gonzalez
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Physical Activity and Sports Sciences Department, Fundació Blanquerna, Barcelona, Spain
| | - Nadine Kubesch
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - David Martínez
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Glòria Carrasco-Turigas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
37
|
Xia T, Zhu Y, Mu L, Zhang ZF, Liu S. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century. Natl Sci Rev 2016. [PMID: 28649460 PMCID: PMC5473351 DOI: 10.1093/nsr/nww064] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM2.5) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (<100 nm), although they have the highest number counts, surface area and organic chemical content, are often overlooked due to insufficient monitoring and risk assessment. Yet, ample studies have demonstrated that ambient ultrafine particles have higher toxic potential compared with PM2.5. In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future.
Collapse
Affiliation(s)
- Tian Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90034, USA
- Corresponding authors. E-mails: ;
| | - Yifang Zhu
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, SUNY, Buffalo, NY 14214, USA
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Corresponding authors. E-mails: ;
| |
Collapse
|
38
|
Li S, Williams G, Guo Y. Health benefits from improved outdoor air quality and intervention in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:17-25. [PMID: 27061471 DOI: 10.1016/j.envpol.2016.03.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
China is at its most critical stage of outdoor air quality management. In order to prevent further deterioration of air quality and to protect human health, the Chinese government has made a series of attempts to reduce ambient air pollution. Unlike previous literature reviews on the widespread hazards of air pollution on health, this review article firstly summarized the existing evidence of human health benefits from intermittently improved outdoor air quality and intervention in China. Contents of this paper provide concrete and direct clue that improvement in outdoor air quality generates various health benefits in China, and confirm from a new perspective that it is worthwhile for China to shift its development strategy from economic growth to environmental economic sustainability. Greater emphasis on sustainable environment design, consistently strict regulatory enforcement, and specific monitoring actions should be regarded in China to decrease the health risks and to avoid long-term environmental threats.
Collapse
Affiliation(s)
- Shanshan Li
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia.
| | - Gail Williams
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| | - Yuming Guo
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
Feng C, Li J, Sun W, Zhang Y, Wang Q. Impact of ambient fine particulate matter (PM2.5) exposure on the risk of influenza-like-illness: a time-series analysis in Beijing, China. Environ Health 2016; 15:17. [PMID: 26864833 PMCID: PMC4750357 DOI: 10.1186/s12940-016-0115-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Air pollution in Beijing, especially PM2.5, has received increasing attention in the past years. Although exposure to PM2.5 has been linked to many health issues, few studies have quantified the impact of PM2.5 on the risk of influenza-like illness (ILI). The aim of our study is to investigate the association between daily PM2.5 and ILI risk in Beijing, by means of a generalized additive model. METHODS Daily PM2.5, meteorological factors, and influenza-like illness (ILI) counts during January 1, 2008 to December 31, 2014 were retrieved. An inverse Gaussian generalized additive model with log link function was used to flexibly model the nonlinear relationship between the PM2.5 (single- and multiday lagged exposure) and ILI risk, adjusted for the weather conditions, seasonal and year trends. We also assessed if the effect of PM2.5 differs during flu season versus non-flu season by including the interaction term between PM2.5 and flu season in the model. Furthermore, a stratified analysis by age groups was conducted to investigate how the effect of PM2.5 differs across age groups. RESULTS Our findings suggested a strong positive relationships between PM2.5 and ILI risk at the flu season (October-April) (p-value < 0.001), after adjusting for the effects of ambient daily temperature and humidity, month and year; whereas no significant association was identified at the non-flu season (May-September) (p-value = 0.174). A short term delayed effect of PM2.5 was also identified with 2-day moving average (current day to the previous day) of PM2.5 yielding the best predictive power. Furthermore, PM2.5 was strongly associated with ILI risk across all age groups (p-value < 0.001) at the flu season, but the effect was the most pronounced among adults (age 25-59), followed by young adults (age 15-24), school children (age 5-14) and the elderly (age 60+) and the effect of PM2.5 was the least pronounced for children under 5 years of age (age < 5). CONCLUSIONS Ambient PM2.5 concentrations were significantly associated with ILI risk in Beijing at the flu season and the effect of PM2.5 differed across age groups, in Beijing, China.
Collapse
Affiliation(s)
- Cindy Feng
- School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| | - Jian Li
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Wenjie Sun
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China.
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Yi Zhang
- Beijing Center for Disease Prevention and Control (CDC), Beijing, 100013, China.
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control (CDC), Beijing, 100013, China.
| |
Collapse
|
40
|
Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution. Nutrients 2015; 7:10398-416. [PMID: 26690474 PMCID: PMC4690091 DOI: 10.3390/nu7125539] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/22/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022] Open
Abstract
Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors—including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)—as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions.
Collapse
|
41
|
Cortez-Lugo M, Ramírez-Aguilar M, Pérez-Padilla R, Sansores-Martínez R, Ramírez-Venegas A, Barraza-Villarreal A. Effect of Personal Exposure to PM2.5 on Respiratory Health in a Mexican Panel of Patients with COPD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:10635-47. [PMID: 26343703 PMCID: PMC4586633 DOI: 10.3390/ijerph120910635] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 11/21/2022]
Abstract
Background: Air pollution is a problem, especially in developing countries. We examined the association between personal exposure to particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) on respiratory health in a group of adults with chronic obstructive pulmonary disease (COPD). Methods: All participants resided in Mexico City and during follow-up, personal exposure to PM2.5, respiratory symptoms, medications, and daily activity were registered daily. Peak expiratory flow (PEF) was measured twice daily, from February through December, 2000, in 29 adults with moderate, severe, and very severe COPD. PEF changes were estimated for each 10 µg/m3 increment of PM2.5, adjustment for severity of COPD, minimum temperature, and day of the sampling. Results: For a 10-µg/m3 increase in the daily average of a two-day personal exposure to PM2.5, there was a significant 33% increase in cough (95% CI, range, 5‒69%), and 23% in phlegm (95% CI, range, 2‒54%), a reduction of the PEF average in the morning of −1.4 L/min. (95% CI , range, −2.8 to −0.04), and at night of −3.0 L/min (95% CI, range, −5.7 to −0.3), respectively. Conclusions: Exposure to PM2.5 was associated with reductions in PEF and increased respiratory symptoms in adults with COPD. The PEF reduction was observed both at morning and at night.
Collapse
Affiliation(s)
- Marlene Cortez-Lugo
- Instituto Nacional de Salud Pública, Morelos, Av. Universidad #655, Col. Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, México.
| | - Matiana Ramírez-Aguilar
- Comisión Federal para la Protección contra Riesgos Sanitarios, Monterrey #33, Col. Roma, Del. Cuauhtémoc, C.P. 06700 México, D.F., México.
| | - Rogelio Pérez-Padilla
- Instituto Nacional de Enfermedades Respiratorias, Calz. Tlalpan #4502, Col. Sección XVI, Del. Tlalpan, C.P. 14080 México, D.F., México.
| | - Raúl Sansores-Martínez
- Instituto Nacional de Enfermedades Respiratorias, Calz. Tlalpan #4502, Col. Sección XVI, Del. Tlalpan, C.P. 14080 México, D.F., México.
| | - Alejandra Ramírez-Venegas
- Instituto Nacional de Enfermedades Respiratorias, Calz. Tlalpan #4502, Col. Sección XVI, Del. Tlalpan, C.P. 14080 México, D.F., México.
| | - Albino Barraza-Villarreal
- Instituto Nacional de Salud Pública, Morelos, Av. Universidad #655, Col. Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, México.
| |
Collapse
|
42
|
Hu G, Zhong N, Ran P. Air pollution and COPD in China. J Thorac Dis 2015; 7:59-66. [PMID: 25694818 PMCID: PMC4311081 DOI: 10.3978/j.issn.2072-1439.2014.12.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 12/24/2014] [Indexed: 11/14/2022]
Abstract
Recently, many researchers paid more attentions to the association between air pollution and chronic obstructive pulmonary disease (COPD). Haze, a severe form of outdoor air pollution, affected most parts of northern and eastern China in the past winter. In China, studies have been performed to evaluate the impact of outdoor air pollution and biomass smoke exposure on COPD; and most studies have focused on the role of air pollution in acutely triggering symptoms and exacerbations. Few studies have examined the role of air pollution in inducing pathophysiological changes that characterise COPD. Evidence showed that outdoor air pollution affects lung function in both children and adults and triggers exacerbations of COPD symptoms. Hence outdoor air pollution may be considered a risk factor for COPD mortality. However, evidence to date has been suggestive (not conclusive) that chronic exposure to outdoor air pollution increases the prevalence and incidence of COPD. Cross-sectional studies showed biomass smoke exposure is a risk factor for COPD. A long-term retrospective study and a long-term prospective cohort study showed that biomass smoke exposure reductions were associated with a reduced decline in forced expiratory volume in 1 second (FEV1) and with a decreased risk of COPD. To fully understand the effect of air pollution on COPD, we recommend future studies with longer follow-up periods, more standardized definitions of COPD and more refined and source-specific exposure assessments.
Collapse
|
43
|
Bai Y, Brugha RE, Jacobs L, Grigg J, Nawrot TS, Nemery B. Carbon loading in airway macrophages as a biomarker for individual exposure to particulate matter air pollution - A critical review. ENVIRONMENT INTERNATIONAL 2015; 74:32-41. [PMID: 25318022 DOI: 10.1016/j.envint.2014.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 08/07/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
Exposure to particulate matter (PM) is associated with adverse health effects, including chronic lung diseases, lung cancer and cardiovascular disease. Personal exposure varies depending on the generation of particles locally, background levels, activity patterns and meteorology. Carbon loading in airway macrophages (AM) is a novel marker to assess personal exposure to combustion-derived particles. This review summarizes the published evidence and describes the validity and reliability of this marker with a focus on the technical aspects. Carbon loading in AM is reported in nine published studies assessing personal exposure to particulate air pollution. The carbon content is quantified by image analysis and is suggested to be suited to assess cumulative exposures. While there is some variation in study technique, these studies each indicate that internal AM carbon reflects either external exposure or important health effects. However, some uncertainty remains regarding potentially confounding materials within particles, the time frame of exposures that this technique reflects, and the optimal strategy to accurately quantify AM carbon. These aspects need to be clarified or optimized before applying this technique in larger populations.
Collapse
Affiliation(s)
- Yang Bai
- Department of Public Health and Primary Care, Center for Environment and Health, Katholieke Universiteit Leuven, Herestraat 49, O&N 1, Box 706, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
Positive relationship between total antioxidant status and chemokines observed in adults. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:693680. [PMID: 25254081 PMCID: PMC4164799 DOI: 10.1155/2014/693680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 12/24/2022]
Abstract
Objective. Human evidence is limited regarding the interaction between oxidative stress biomarkers and chemokines, especially in a population of adults without overt clinical disease. The current study aims to examine the possible relationships of antioxidant and lipid peroxidation markers with several chemokines in adults. Methods. We assessed cross-sectional associations of total antioxidant status (TAS) and two lipid peroxidation markers malondialdehyde (MDA) and thiobarbituric acid reactive substances (TBARS) with a suite of serum chemokines, including CXCL-1 (GRO-α), CXCL-8 (IL-8), CXCL-10 (IP-10), CCL-2 (MCP-1), CCL-5 (RANTES), CCL-8 (MCP-2), CCL-11 (Eotaxin-1), and CCL-17 (TARC), among 104 Chinese adults without serious preexisting clinical conditions in Beijing before 2008 Olympics. Results. TAS showed significantly positive correlations with MCP-1 (r = 0.15751, P = 0.0014), MCP-2 (r = 0.3721, P = 0.0001), Eotaxin-1 (r = 0.39598, P < 0.0001), and TARC (r = 0.27149, P = 0.0053). The positive correlations remained unchanged after controlling for age, sex, body mass index, smoking, and alcohol drinking status. No associations were found between any of the chemokines measured in this study and MDA or TBARS. Similar patterns were observed when the analyses were limited to nonsmokers. Conclusion. Total antioxidant status is positively associated with several chemokines in this adult population.
Collapse
|