1
|
Bereketoglu C, Häggblom I, Turanlı B, Pradhan A. Comparative analysis of diisononyl phthalate and di(isononyl)cyclohexane-1,2 dicarboxylate plasticizers in regulation of lipid metabolism in 3T3-L1 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:1245-1257. [PMID: 37927243 DOI: 10.1002/tox.24010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Diisononyl phthalate (DINP) and di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) are plasticizers introduced to replace previously used phthalate plasticizers in polymeric products. Exposure to DINP and DINCH has been shown to impact lipid metabolism. However, there are limited studies that address the mechanisms of toxicity of these two plasticizers. Here, a comparative toxicity analysis has been performed to evaluate the impacts of DINP and DINCH on 3T3-L1 cells. The preadipocyte 3T3-L1 cells were exposed to 1, 10, and 100 μM of DINP or DINCH for 10 days and assessed for lipid accumulation, gene expression, and protein analysis. Lipid staining showed that higher concentrations of DINP and DINCH can induce adipogenesis. The gene expression analysis demonstrated that both DINP and DINCH could alter the expression of lipid-related genes involved in adipogenesis. DINP and DINCH upregulated Pparγ, Pparα, C/EBPα Fabp4, and Fabp5, while both compounds significantly downregulated Fasn and Gata2. Protein analysis showed that both DINP and DINCH repressed the expression of FASN. Additionally, we analyzed an independent transcriptome dataset encompassing temporal data on lipid differentiation within 3T3-L1 cells. Subsequently, we derived a gene set that accurately portrays significant pathways involved in lipid differentiation, which we subsequently subjected to experimental validation through quantitative polymerase chain reaction. In addition, we extended our analysis to encompass a thorough assessment of the expression profiles of this identical gene set across 40 discrete transcriptome datasets that have linked to diverse pathological conditions to foreseen any potential association with DINP and DINCH exposure. Comparative analysis indicated that DINP could be more effective in regulating lipid metabolism.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Isabel Häggblom
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Beste Turanlı
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Seewoo BJ, Goodes LM, Mofflin L, Mulders YR, Wong EV, Toshniwal P, Brunner M, Alex J, Johnston B, Elagali A, Gozt A, Lyle G, Choudhury O, Solomons T, Symeonides C, Dunlop SA. The plastic health map: A systematic evidence map of human health studies on plastic-associated chemicals. ENVIRONMENT INTERNATIONAL 2023; 181:108225. [PMID: 37948868 DOI: 10.1016/j.envint.2023.108225] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The global production and use of plastic materials has increased dramatically since the 1960s and there is increasing evidence of human health impacts related to exposure to plastic-associated chemicals. There is, however, no comprehensive, regulatory, post-market monitoring for human health effects of plastic-associated chemicals or particles and it is unclear how many of these have been investigated for effects in humans, and therefore what the knowledge gaps are. OBJECTIVE To create a systematic evidence map of peer-reviewed human studies investigating the potential effects of exposure to plastic-associated particles/chemicals on health to identify research gaps and provide recommendations for future research and regulation policy. METHODS Medline and Embase databases were used to identify peer-reviewed primary human studies published in English from Jan 1960 - Jan 2022 that investigated relationships between exposures to included plastic-associated particles/chemicals measured and detected in bio-samples and human health outcomes. Plastic-associated particles/chemicals included are: micro and nanoplastics, due to their widespread occurrence and potential for human exposure; polymers, the main building blocks of plastic; plasticizers and flame retardants, the two most common types of plastic additives with the highest concentration ranges in plastic materials; and bisphenols and per- or polyfluoroalkyl substances, two chemical classes of known health concern that are common in plastics. We extracted metadata on the population and study characteristics (country, intergenerational, sex, age, general/special exposure risk status, study design), exposure (plastic-associated particle/chemical, multiple exposures), and health outcome measures (biochemical, physiological, and/or clinical), from which we produced the interactive database 'Plastic Health Map' and a narrative summary. RESULTS We identified 100,949 unique articles, of which 3,587 met our inclusion criteria and were used to create a systematic evidence map. The Plastic Health Map with extracted metadata from included studies are freely available at https://osf.io/fhw7d/ and summary tables, plots and overall observations are included in this report. CONCLUSIONS We present the first evidence map compiling human health research on a wide range of plastic-associated chemicals from several different chemical classes, in order to provide stakeholders, including researchers, regulators, and concerned individuals, with an efficient way to access published literature on the matter and determine knowledge gaps. We also provide examples of data clusters to facilitate systematic reviews and research gaps to help direct future research efforts. Extensive gaps are identified in the breadth of populations, exposures and outcomes addressed in studies of potential human health effects of plastic-associated chemicals. No studies of the human health effects of micro and/or nanoplastics were found, and no studies were found for 26/1,202 additives included in our search that are of known hazard concern and confirmed to be in active production. Few studies have addressed recent "substitution" chemicals for restricted additives such as organophosphate flame retardants, phthalate substitutes, and bisphenol analogues. We call for a paradigm shift in chemical regulation whereby new plastic chemicals are rigorously tested for safety before being introduced in consumer products, with ongoing post-introduction biomonitoring of their levels in humans and health effects throughout individuals' life span, including in old age and across generations.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M Goodes
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise Mofflin
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R Mulders
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch Vs Wong
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Priyanka Toshniwal
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Manuel Brunner
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jennifer Alex
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Brady Johnston
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Ahmed Elagali
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Aleksandra Gozt
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Greg Lyle
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Population Health, Curtin University, Kent St, Bentley WA 6102, Australia
| | - Omrik Choudhury
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Terena Solomons
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Health and Medical Sciences (Library), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A Dunlop
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
3
|
Muncke J, Andersson AM, Backhaus T, Belcher SM, Boucher JM, Carney Almroth B, Collins TJ, Geueke B, Groh KJ, Heindel JJ, von Hippel FA, Legler J, Maffini MV, Martin OV, Peterson Myers J, Nadal A, Nerin C, Soto AM, Trasande L, Vandenberg LN, Wagner M, Zimmermann L, Thomas Zoeller R, Scheringer M. A vision for safer food contact materials: Public health concerns as drivers for improved testing. ENVIRONMENT INTERNATIONAL 2023; 180:108161. [PMID: 37758599 DOI: 10.1016/j.envint.2023.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Anna-Maria Andersson
- Dept. of Growth and Reproduction, Rigshospitalet and Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Backhaus
- Dept of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Scott M Belcher
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia J Groh
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Durham, NC, USA
| | - Frank A von Hippel
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Juliette Legler
- Dept. of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Netherlands
| | | | - Olwenn V Martin
- Plastic Waste Innovation Hub, Department of Arts and Science, University College London, UK
| | - John Peterson Myers
- Dept. of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; Environmental Health Sciences, Charlottesville, VA, USA
| | - Angel Nadal
- IDiBE and CIBERDEM, Miguel Hernández University of Elche, Alicante, Spain
| | - Cristina Nerin
- Dept. of Analytical Chemistry, I3A, University of Zaragoza, Zaragoza, Spain
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| | - Leonardo Trasande
- College of Global Public Health and Grossman School of Medicine and Wagner School of Public Service, New York University, New York, NY, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Wagner
- Dept. of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - R Thomas Zoeller
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Scheringer
- RECETOX, Masaryk University, Brno, Czech Republic; Department of Environmental Systems Science, ETH Zurich, Switzerland.
| |
Collapse
|
4
|
Cui H, Culty M. Do macrophages play a role in the adverse effects of endocrine disrupting chemicals (EDCs) on testicular functions? FRONTIERS IN TOXICOLOGY 2023; 5:1242634. [PMID: 37720385 PMCID: PMC10501733 DOI: 10.3389/ftox.2023.1242634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
During the past decades, several endocrine disrupting chemicals (EDCs) have been confirmed to affect male reproductive function and fertility in animal studies. EDCs are suspected to exert similar effects in humans, based on strong associations between levels of antiandrogenic EDCs in pregnant women and adverse reproductive effects in infants. Testicular macrophages (tMΦ) play a vital role in modulating immunological privilege and maintaining normal testicular homeostasis as well as fetal development. Although tMΦ were not historically studied in the context of endocrine disruption, they have emerged as potential targets to consider due to their critical role in regulating cells such as spermatogonial stem cells (SSCs) and Leydig cells. Few studies have examined the impact of EDCs on the ability of testicular cells to communicate and regulate each other's functions. In this review, we recapitulate what is known about tMΦ functions and interactions with other cell types in the testis that support spermatogenesis and steroidogenesis. We also surveyed the literature for reports on the effects of the EDCs genistein and DEHP on tMΦ, SSCs, Sertoli and Leydig cells. Our goal is to explore the possibility that EDC disruption of tMΦ interactions with other cell types may play a role in their adverse effects on testicular developmental programming and functions. This approach will highlight gaps of knowledge, which, once resolved, should improve the risk assessment of EDC exposure and the development of safeguards to protect male reproductive functions.
Collapse
Affiliation(s)
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Schwendt A, Chammas JB, Maric M, Nicell JA, Leask R, Chalifour LE. Exposure to the non-phthalate plasticizer di-heptyl succinate is less disruptive to C57bl/6N mouse recovery from a myocardial infarction than DEHP, TOTM or related di-octyl succinate. PLoS One 2023; 18:e0288491. [PMID: 37440506 DOI: 10.1371/journal.pone.0288491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Phthalate plasticizers are incorporated into plastics to make them soft and malleable, but are known to leach out of the final product into their surroundings with potential detrimental effects to human and ecological health. The replacement of widely-used phthalate plasticizers, such as di-ethylhexyl phthalate (DEHP), that are of known toxicity, by the commercially-available alternative Tris(2-ethylhexyl) tri-mellitate (TOTM) is increasing. Additionally, several newly designed "green" plasticizers, including di-heptyl succinate (DHPS) and di-octyl succinate (DOS) have been identified as potential replacements. However, the impact of plasticizer exposure from medical devices on patient recovery is unknown and, moreover, the safety of TOTM, DHPS, and DOS is not well established in the context of patient recovery. To study the direct effect of clinically based chemical exposures, we exposed C57bl/6 N male and female mice to DEHP, TOTM, DOS, and DHPS during recovery from cardiac surgery and assessed survival, cardiac structure and function, immune cell infiltration into the cardiac wound and activation of the NLRP3 inflammasome. Male, but not female, mice treated in vivo with DEHP and TOTM had greater cardiac dilation, reduced cardiac function, increased infiltration of neutrophils, monocytes, and macrophages and increased expression of inflammasome receptors and effectors, thereby suggesting impaired recovery in exposed mice. In contrast, no impact was detected in female mice and male mice exposed to DOS and DHPS. To examine the direct effects in cells involved in wound healing, we treated human THP-1 macrophages with the plasticizers in vitro and found DEHP induced greater NLRP3 expression and activation. These results suggest that replacing current plasticizers with non-phthalate-based plasticizers may improve patient recovery, especially in the male population. In our assessment, DHPS is a promising possibility for a non-toxic biocompatible plasticizer.
Collapse
Affiliation(s)
- Adam Schwendt
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | | | - Milan Maric
- Department of Chemical Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada
| | - Jim A Nicell
- Department of Civil Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada
| | - Richard Leask
- Department of Chemical Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada
| | - Lorraine E Chalifour
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| |
Collapse
|
6
|
Lenzi L, Degli Esposti M, Braccini S, Siracusa C, Quartinello F, Guebitz GM, Puppi D, Morselli D, Fabbri P. Further Step in the Transition from Conventional Plasticizers to Versatile Bioplasticizers Obtained by the Valorization of Levulinic Acid and Glycerol. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9455-9469. [PMID: 37389191 PMCID: PMC10302884 DOI: 10.1021/acssuschemeng.3c01536] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Indexed: 07/01/2023]
Abstract
In the last two decades, the use of phthalates has been restricted worldwide due to their well-known toxicity. Nonetheless, phthalates are still widely used for their versatility, high plasticization effect, low cost, and lack of valuable alternatives. This study presents the fully bio-based and versatile glycerol trilevulinate plasticizer (GT) that was obtained by the valorization of glycerol and levulinic acid. The mild-conditions and solvent-free esterification used to synthesize GT was optimized by investigating the product by Fourier transform infrared and NMR spectroscopy. An increasing content of GT, from 10 to 40 parts by weight per hundred parts of resin (phr), was tested with poly(vinyl chloride), poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(lactic acid), and poly(caprolactone), which typically present complicated processability and/or mechanical properties. GT produced a significant plasticization effect on both amorphous and semicrystalline polymers, reducing their glass-transition temperature and stiffness, as observed by differential scanning calorimetry measurements and tensile tests. Remarkably, GT also decreased both the melting temperature and crystallinity degree of semicrystalline polymers. Furthermore, GT underwent enzyme-mediated hydrolysis to its initial constituents, envisioning a promising prospective for environmental safety and upcycling. Furthermore, 50% inhibitory concentration (IC50) tests, using mouse embryo fibroblasts, proved that GT is an unharmful alternative plasticizer, which makes it potentially applicable in the biomedical field.
Collapse
Affiliation(s)
- Luca Lenzi
- Department
of Civil, Chemical, Environmental, and Materials Engineering (DICAM), Università di Bologna, Via U. Terracini 28, 40131 Bologna, Italy
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Micaela Degli Esposti
- Department
of Civil, Chemical, Environmental, and Materials Engineering (DICAM), Università di Bologna, Via U. Terracini 28, 40131 Bologna, Italy
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Simona Braccini
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
- BIOLab
Research Group, Department of Chemistry and Industrial Chemistry, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Chiara Siracusa
- Institute
of Environmental Biotechnology University of Natural Resources and
Life Sciences Vienna, Department of Agrobiotechnology, IFA-Tulln, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Felice Quartinello
- Institute
of Environmental Biotechnology University of Natural Resources and
Life Sciences Vienna, Department of Agrobiotechnology, IFA-Tulln, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Georg M. Guebitz
- Institute
of Environmental Biotechnology University of Natural Resources and
Life Sciences Vienna, Department of Agrobiotechnology, IFA-Tulln, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Dario Puppi
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
- BIOLab
Research Group, Department of Chemistry and Industrial Chemistry, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Davide Morselli
- Department
of Civil, Chemical, Environmental, and Materials Engineering (DICAM), Università di Bologna, Via U. Terracini 28, 40131 Bologna, Italy
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Paola Fabbri
- Department
of Civil, Chemical, Environmental, and Materials Engineering (DICAM), Università di Bologna, Via U. Terracini 28, 40131 Bologna, Italy
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
7
|
Weng X, Zhu Q, Liao C, Jiang G. Cumulative Exposure to Phthalates and Their Alternatives and Associated Female Reproductive Health: Body Burdens, Adverse Outcomes, and Underlying Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37196176 DOI: 10.1021/acs.est.3c00823] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The global birth rate has recently shown a decreasing trend, and exposure to environmental pollutants has been identified as a potential factor affecting female reproductive health. Phthalates have been widely used as plasticizers in plastic containers, children's toys, and medical devices, and their ubiquitous presence and endocrine-disrupting potential have already raised particular concerns. Phthalate exposure has been linked to various adverse health outcomes, including reproductive diseases. Given that many phthalates are gradually being banned, a growing number of phthalate alternatives are becoming popular, such as di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), di(2-ethylhexyl) adipate (DEHA), and di(2-ethylhexyl) terephthalate (DEHTP), and they are beginning to have a wide range of environmental effects. Studies have shown that many phthalate alternatives may disrupt female reproductive function by altering the estrous cycle, causing ovarian follicular atresia, and prolonging the gestational cycle, which raises growing concerns about their potential health risks. Herein, we summarize the effects of phthalates and their common alternatives in different female models, the exposure levels that influence the reproductive system, and the effects on female reproductive impairment, adverse pregnancy outcomes, and offspring development. Additionally, we scrutinize the effects of phthalates and their alternatives on hormone signaling, oxidative stress, and intracellular signaling to explore the underlying mechanisms of action on female reproductive health, because these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption. Given the declining global trends of female reproductive capacity and the potential ability of phthalates and their alternatives to negatively impact female reproductive health, a more comprehensive study is needed to understand their effects on the human body and their underlying mechanisms. These findings may have an important role in improving female reproductive health and in turn decreasing the number of complications during pregnancy.
Collapse
Affiliation(s)
- Xueyu Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhao D, Zhu Y, Huang F, Chen M. Phthalate metabolite concentrations and effects on albuminuria in the US population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114453. [PMID: 38321672 DOI: 10.1016/j.ecoenv.2022.114453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND The usage pattern of phthalates has changed with the introduction of new alternatives such as 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) and di-isodecyl phthalate (DiDP). However, the concentrations of these alternatives at the population level and their effects on endothelial function are under-studied. OBJECTIVES We examined the concentrations of the new alternatives and their previous counterparts, as well as the associations between phthalate exposure and albuminuria in the general US population. METHODS In total, 2672 participants from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 were enrolled in this study, and we obtained data on 19 urinary phthalate metabolites, albumin, and creatinine. The distributions of urinary phthalates were studied by age and sex. Linear and logistic regressions were used to estimate the association between urinary phthalate metabolites and albumin. RESULTS The geometric mean of the total phthalate concentrations in males and females was 124.97 and 113.09 ng/mL respectively. The detection rates of most urinary phthalate metabolites were greater than 95 %. The major phthalate metabolites found in the US population were MEP (24.20 %) and MECPTP (23.76 %). More positive relationships between phthalate and micro- plus albuminuria were found in females aged ≥ 60 years group(1.49 (95 % CI: 1.08-1.90), 1.44 (95 % CI: 1.06-1.81), 1.52 (95 % CI: 1.14-1.90), 1.41(95 % CI: 1.04-1.78), 1.29(95 % CI: 1.01-1.58), 1.60(95 % CI: 1.20-2.01), 1.45(95 % CI:1.14-1.77), and 1.55(95 % CI: 1.22-1.87) in MECPP, MEHHP, MEOHP, MEHP, MCPP, MHBP, MHNCH and MCOCH respectively). In total population, logistic regression showed that all traditional phthalate metabolites were associated with an increased proportion of albuminuria (OR range from 1.19 to 1.40, all p < 0.05). However, three new alternatives were not associated with albuminuria (OR range from 1.01 to 1.05, all p > 0.05), and six new alternatives were associated with an increased proportion of albuminuria (OR range from 1.14 to 1.30, all p < 0.05). CONCLUSIONS Children have higher metabolite concentrations than adults. Exposure to certain phthalates may disrupt albuminuria homeostasis, especially in older females. Alternative phthalates may have a lower impact on albuminuria than conventional phthalates. The safety of the new alternatives should be interpreted with caution, as more research is still required.
Collapse
Affiliation(s)
- Dongdong Zhao
- Department of Medical Administration, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yuanduo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fang Huang
- Department of Medical Administration, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
9
|
Screening of Potential Plasticizer Alternatives for Their Toxic Effects on Male Germline Stem Cells. Biomedicines 2022; 10:biomedicines10123217. [PMID: 36551973 PMCID: PMC9776359 DOI: 10.3390/biomedicines10123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Plasticizers give flexibility to a wide range of consumer and medical plastic products. Among them, phthalate esters are recognized as endocrine disruptors that target male reproductive functions. With this notion, past studies designed and produced alternative plasticizers that could replace phthalates with limited toxicity to the environment and to male reproductive functions. Here, we focused on one reproductive cell type that was not investigated in past studies-spermatogonial stem cells (SSCs)-and examined in vitro the effects on 22 compounds (seven plasticizers currently in use and 15 newly synthesized potential alternative plasticizers) for their effects on SSCs. Our in vitro compound screening analyses showed that a majority of the compounds examined had a limited level of toxicity to SSCs. Yet, some commercial plasticizers and their derivatives, such as DEHP (di-(2-ethylhexyl) phthalate) and MEHP (mono-(2-ethylhexyl) phthalate), were detrimental at 10-5 to 10-4 M. Among new compounds, some of maleate- and fumarate-derivatives showed toxic effects. In contrast, no detrimental effects were detected with two new compounds, BDDB (1,4 butanediol dibenzoate) and DOS (dioctyl succinate). Furthermore, SSCs that were exposed to BDDB and DOS in vitro successfully established spermatogenic colonies in testes of recipient mice after transplantation. These results demonstrate that SSC culture acts as an effective platform for toxicological tests on SSC function and provide novel information that two new compounds, BDDB and DOS, are alternative plasticizers that do not have significant negative impacts on SSC integrity.
Collapse
|
10
|
Alhasnani MA, Loeb S, Hall SJ, Caruolo Z, Simmonds F, Solano AE, Spade DJ. Interaction between mono-(2-ethylhexyl) phthalate and retinoic acid alters Sertoli cell development during fetal mouse testis cord morphogenesis. Curr Res Toxicol 2022; 3:100087. [PMID: 36189433 PMCID: PMC9520016 DOI: 10.1016/j.crtox.2022.100087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022] Open
Abstract
Phthalic acid esters (phthalates) are a class of industrial chemicals that cause developmental and reproductive toxicity, but there are significant gaps in knowledge of phthalate toxicity mechanisms. There is evidence that phthalates disrupt retinoic acid signaling in the fetal testis, potentially disrupting control of spatial and temporal patterns of testis development. Our goal was to determine how a phthalate would interact with retinoic acid signaling during fetal mouse testis development. We hypothesized that mono-(2-ethylhexyl) phthalate (MEHP) would exacerbate the adverse effect of all-trans retinoic acid (ATRA) on seminiferous cord development in the mouse fetal testis. To test this hypothesis, gestational day (GD) 14 C57BL/6 mouse testes were isolated and cultured on media containing MEHP, ATRA, or a combination of both compounds. Cultured testes were collected for global transcriptome analysis after one day in culture and for histology and immunofluorescent analysis of Sertoli cell differentiation after three days in culture. ATRA disrupted seminiferous cord morphogenesis and induced aberrant FOXL2 expression. MEHP alone had no significant effect on cord development, but combined exposure to MEHP and ATRA increased the number of FOXL2-positive cells, reduced seminiferous cord number, and increased testosterone levels, beyond the effect of ATRA alone. In RNA-seq analysis, ATRA treatment and MEHP treatment resulted in differential expression of genes 510 and 134 genes, respectively, including 70 common differentially expressed genes (DEGs) between the two treatments, including genes with known roles in fetal testis development. MEHP DEGs included RAR target genes, genes involved in angiogenesis, and developmental patterning genes, including members of the homeobox superfamily. These results support the hypothesis that MEHP modulates retinoic acid signaling in the mouse fetal testis and provide insight into potential mechanisms by which phthalates disrupt seminiferous cord morphogenesis.
Collapse
Key Words
- ATRA, All-trans retinoic acid. CAS # 302-79-4
- DMSO, dimethyl sulfoxide
- Fetal testis development
- GD, gestational day
- GO, Gene Ontology
- IPA, Ingenuity Pathway Analysis
- ITCN, Image-based Tool for Counting Nuclei
- MEHP, mono-(2-ethylheyxl) phthalate. CAS # 4376-20-9
- MNGs, multinucleated germ cells
- PVC, polyvinyl chloride
- Phthalate toxicity
- Retinoic acid
- Sertoli cell
- TDS, testicular dysgenesis syndrome
Collapse
Affiliation(s)
- Maha A. Alhasnani
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Skylar Loeb
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Susan J. Hall
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Zachary Caruolo
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Faith Simmonds
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Amanda E. Solano
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Daniel J. Spade
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| |
Collapse
|
11
|
Tran-Guzman A, Moradian R, Walker C, Cui H, Corpuz M, Gonzalez I, Nguyen C, Meza P, Wen X, Culty M. Toxicity Profiles and Protective Effects of Antifreeze Proteins From Insect in Mammalian Models. Toxicol Lett 2022; 368:9-23. [PMID: 35901986 PMCID: PMC10174066 DOI: 10.1016/j.toxlet.2022.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
Antifreeze proteins (AFPs), found in many cold-adapted organisms, can protect them from cold and freezing damages and have thus been considered as additional protectants in current cold tissue preservation solutions that generally include electrolytes, osmotic agents, colloids and antioxidants, to reduce the loss of tissue viability associated with cold-preservation. Due to the lack of toxicity profile studies on AFPs, their inclusion in cold preservation solutions has been a trial-and-error process limiting the development of AFPs' application in cold preservation. To assess the feasibility of translating the technology of AFPs for mammalian cell cold or cryopreservation, we determined the toxicity profile of two highly active beetle AFPs, DAFP1 and TmAFP, from Dendroides canadensis and Tenebrio molitor in this study. Toxicity was examined on a panel of representative mammalian cell lines including testicular spermatogonial stem cells and Leydig cells, macrophages, and hepatocytes. Treatments with DAFP1 and TmAFP at up to 500μg/mL for 48 and 72hours were safe in three of the cell lines, except for a 20% decrease in spermatogonia treated with TmAFP. However, both AFPs at 500μg/mL or below reduced hepatocyte viability by 20 to 40% at 48 and 72h. At 1000μg/mL, DAFP1 and TmAFP reduced viability in most cell lines. While spermatogonia and Leydig cell functions were not affected by 1000μg/mL DAFP1, this treatment induced inflammatory responses in macrophages. Adding 1000μg/ml DAFP1 to rat kidneys stored at 4°C for 48hours protected the tissues from cold-related damage, based on tissue morphology and gene and protein expression of two markers of kidney function. However, DAFP1 and TmAFP did not prevent the adverse effects of cold on kidneys over 72hours. Overall, DAFP1 is less toxic at high dose than TmAFP, and has potential for use in tissue preservation at doses up to 500μg/mL. However, careful consideration must be taken due to the proinflammatory potential of DAFP1 on macrophages at higher doses and the heighten susceptibility of hepatocytes to both AFPs.
Collapse
Affiliation(s)
- A Tran-Guzman
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - R Moradian
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - C Walker
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - H Cui
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - M Corpuz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - I Gonzalez
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, USA
| | - C Nguyen
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, USA
| | - P Meza
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, USA
| | - X Wen
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, USA
| | - M Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Crobeddu B, Jutras-Carignan A, Kolasa É, Mounier C, Robaire B, Plante I. Gestational and lactational exposure to the emergent alternative plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) impairs lipid metabolism to a greater extent than the commonly used Di(2-ethylhexyl) phthalate (DEHP) in the adult rat mammary gland. Toxicol Sci 2022; 189:268-286. [PMID: 35861430 DOI: 10.1093/toxsci/kfac076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to their endocrine disruption properties, phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) can affect the hormone-dependent development of the mammary gland. Over the past few years, DEHP has been partially replaced by 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) which also have potential endocrine disrupting properties. The goal of the present study is to understand the impact of a gestational and lactational exposure to DEHP and DINCH on mammary gland development using Sprague-Dawley rats. Both plasticizers altered the adipocytes of the mammary gland fat pad of adult progeny, as demonstrated by a decrease in their size, folding of their membrane and modulations of the lipid profiles. DEHP treatments decreased the expression of Rxrα and Scd1 at the low and high dose, respectively, but did not affect any of the other genes studied. DINCH modulation of lipid metabolism could be observed at puberty by a decreased expression of genes implicated in triglyceride synthesis, lipid transport and lipolysis, but by an increased expression of genes of the β-oxidation pathway and of genes involved in lipid storage and fatty acid synthesis at adulthood, compared to control and DEHP-treated rats. A strong upregulation of different inflammatory markers was observed following DINCH exposure only. Together, our results indicate that a gestational and lactational exposure to DINCH has earlier and more significant effects on lipid homeostasis, adipogenesis and the inflammatory state of the adult mammary gland than DEHP exposure. The long-term consequence of these effects on mammary gland health remained to be determined.
Collapse
Affiliation(s)
- Bélinda Crobeddu
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Antoine Jutras-Carignan
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Élise Kolasa
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Catherine Mounier
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
13
|
Rajkumar A, Luu T, Beal MA, Barton-Maclaren TS, Hales BF, Robaire B. Phthalates and Alternative Plasticizers Differentially affect Phenotypic Parameters in Gonadal Somatic and Germ Cell Lines. Biol Reprod 2021; 106:613-627. [PMID: 34792101 DOI: 10.1093/biolre/ioab216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/11/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
The developmental and reproductive toxicity associated with exposure to phthalates has motivated a search for alternatives. However, there is limited knowledge regarding the adverse effects of some of these chemicals. We used high-content imaging to compare the effects of mono (2-ethylhexyl) phthalate (MEHP) with six alternative plasticizers: di-2-ethylhexyl terephthalate (DEHTP); diisononyl-phthalate (DINP); di-isononylcyclohexane-1,2-dicarboxylate (DINCH); 2-ethylhexyl adipate (DEHA); 2,2,4-trimethyl 1,3-pentanediol diisobutyrate (TXIB) and di-iso-decyl-adipate (DIDA). A male germ spermatogonial cell line (C18-4), a Sertoli cell line (TM4) and two steroidogenic cell lines (MA-10 Leydig and KGN granulosa) were exposed for 48h to each chemical (0.001-100 μM). Cell images were analyzed to assess cytotoxicity and effects on phenotypic endpoints. Only MEHP (100 μM) was cytotoxic and only in C18-4 cells. However, several plasticizers had distinct phenotypic effects in all four cell lines. DINP increased Calcein intensity in C18-4 cells, whereas DIDA induced oxidative stress. In TM4 cells, MEHP, and DINCH affected lipid droplet numbers, while DEHTP and DINCH increased oxidative stress. In MA-10 cells, MEHP increased lipid droplet areas and oxidative stress; DINP decreased the number of lysosomes, while DINP, DEHA and DIDA altered mitochondrial activity. In KGN cells, MEHP, DINP and DINCH increased the number of lipid droplets, whereas DINP decreased the number of lysosomes, increased oxidative stress and affected mitochondria. The Toxicological Priority Index (ToxPi) provided a visual illustration of the cell line specificity of the effects on phenotypic parameters. The lowest administered equivalent doses were observed for MEHP. We propose that this approach may assist in screening alternative plasticizers.
Collapse
Affiliation(s)
- Abishankari Rajkumar
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada, KIA 0K9
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada, KIA 0K9
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, Canada. H3G 1Y6
| |
Collapse
|
14
|
Enangue Njembele AN, Tremblay JJ. Mechanisms of MEHP Inhibitory Action and Analysis of Potential Replacement Plasticizers on Leydig Cell Steroidogenesis. Int J Mol Sci 2021; 22:ijms222111456. [PMID: 34768887 PMCID: PMC8584274 DOI: 10.3390/ijms222111456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid production in Leydig cells is stimulated mainly by the pituitary luteinizing hormone, which leads to increased expression of genes involved in steroidogenesis, including the gene encoding the steroidogenic acute regulatory (STAR) protein. Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of the widely used plasticizer DEHP, is known to disrupt Leydig steroidogenesis but its mechanisms of action remain poorly understood. We found that MEHP caused a significant reduction in hormone-induced steroid hormone production in two Leydig cell lines, MA-10 and MLTC-1. Consistent with disrupted cholesterol transport, we found that MEHP represses cAMP-induced Star promoter activity. MEHP responsiveness was mapped to the proximal Star promoter, which contains multiple binding sites for several transcription factors. In addition to STAR, we found that MEHP also reduced the levels of ferredoxin reductase, a protein essential for electron transport during steroidogenesis. Finally, we tested new plasticizers as alternatives to phthalates. Two plasticizers, dioctyl succinate and 1,6-hexanediol dibenzoate, had no significant effect on hormone-induced steroidogenesis. Our current findings reveal that MEHP represses steroidogenesis by affecting cholesterol transport and its conversion into pregnenolone. We also found that two novel molecules with desirable plasticizer properties have no impact on Leydig cell steroidogenesis and could be suitable phthalate replacements.
Collapse
Affiliation(s)
- Annick N. Enangue Njembele
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 46254)
| |
Collapse
|
15
|
Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) alters transcriptional profiles, lipid metabolism and behavior in zebrafish larvae. Heliyon 2021; 7:e07951. [PMID: 34553086 PMCID: PMC8441171 DOI: 10.1016/j.heliyon.2021.e07951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 01/11/2023] Open
Abstract
Plasticizers are commonly used in different consumer goods and personal care products to provide flexibility, durability and elasticity to polymers. Due to their reported toxicity, the use of several plasticizers, including phthalates has been regulated and/or banned from the market. Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) is an alternative plasticizer that was introduced to replace toxic plasticizers. Increasing global demand and lack of toxicity data and safety assessment of DINCH have raised the concern to human and animal health. Hence, in the present study, we investigated the adverse effects of DINCH (at concentrations ranging from 0.01 to 10 μM) in early developmental stages of zebrafish using different endpoints such as hatching rate, developmental abnormalities, lipid content, behavior analysis and gene expression. We found that DINCH caused hatching delay in a dose-dependent manner and altered the expression of genes involved in stress response. Lipid staining using Oil Red O stain showed a slight lipid accumulation around the yolk, brain, eye and neck with increasing concentration. Genes associated with lipid transport such as fatty acid synthesis, β-oxidation, elongation, lipid transport were significantly altered by DINCH. Genes involved in cholesterol biosynthesis and homeostasis were also affected by DINCH indicating possible developmental neurotoxicity. Behavioral analysis of larvae demonstrated a distinct locomotor activity upon exposure to DINCH. The present data shows that DINCH could induce physiological and metabolic toxicity to aquatic organisms. Hence, further analyses and environmental monitoring of DINCH should be conducted to determine its safety and toxicity levels.
Collapse
|
16
|
Qin Y, Kang G, Cao Y. Finely tuned polyamide structure with green plasticizers to construct ultrafast water channels for effective desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147089. [PMID: 33901955 DOI: 10.1016/j.scitotenv.2021.147089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Highly permeable reverse osmosis (RO) membranes are desirable for alleviating the energy burden and ensuring future water sustainability. Herein, the effectiveness of green plasticizer-assisted interfacial polymerization (GPAIP) for preparing polyamide thin-film composite (TFC) RO membranes with significantly enhanced water permeability was demonstrated. The presence of green citrate plasticizers, namely tributyl citrate (TBC) or acetyl tributyl citrate (ATBC), led to the formation of new hydrogen bonds and inhibited the formation of the initial interchain amide-amide bonding, thus markedly reducing chain rigidity as demonstrated by the decreased elasticity modulus. More flexible polyamide chains resulted in the creation of more ultrafast water channels during filtration. Furthermore, TBC-modified membranes exhibited more elastic polyamide layers and higher water flux than that of ATBC-modified membranes on account of the presence of both hydrogen bond acceptors (OH) and hydrogen bond donors (C=O) in TBC molecules. Specifically, water flux of 0.6 wt% TBC-modified and 0.6 wt% ATBC-modified membranes was 83.6 L m-2 h-1 and 49.7 L m-2 h-1 respectively, more than 5 times and 3 times that of the pristine membrane. The excellent performance of TFC RO membranes fabricated via GPAIP together with the facile membrane manufacturing process offered the possibility of breaking the predicament in desalination field, which could eventually help ease the current freshwater crisis.
Collapse
Affiliation(s)
- Yitian Qin
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Kang
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yiming Cao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
17
|
Effect of benzene ring and alkane chain contained bio-based plasticizers on the plasticizing performance of polyvinyl chloride films. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01629-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Räägel H, Turley A, Fish T, Franson J, Rollins T, Campbell S, Jorgensen MR. Medical Device Industry Approaches for Addressing Sources of Failing Cytotoxicity Scores. Biomed Instrum Technol 2021. [PMID: 34043008 DOI: 10.2345/0890-8205-55.2.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To ensure patient safety, medical device manufacturers are required by the Food and Drug Administration and other regulatory bodies to perform biocompatibility evaluations on their devices per standards, such as the AAMI-approved ISO 10993-1:2018 (ANSI/AAMI/ISO 10993-1:2018).However, some of these biological tests (e.g., systemic toxicity studies) have long lead times and are costly, which may hinder the release of new medical devices. In recent years, an alternative method using a risk-based approach for evaluating the toxicity (or biocompatibility) profile of chemicals and materials used in medical devices has become more mainstream. This approach is used as a complement to or substitute for traditional testing methods (e.g., systemic toxicity endpoints). Regardless of the approach, the one test still used routinely in initial screening is the cytotoxicity test, which is based on an in vitro cell culture system to evaluate potential biocompatibility effects of the final finished form of a medical device. However, it is known that this sensitive test is not always compatible with specific materials and can lead to failing cytotoxicity scores and an incorrect assumption of potential biological or toxicological adverse effects. This article discusses the common culprits of in vitro cytotoxicity failures, as well as describes the regulatory-approved methodology for cytotoxicity testing and the approach of using toxicological risk assessment to address clinical relevance of cytotoxicity failures for medical devices. Further, discrepancies among test results from in vitro tests, use of published half-maximal inhibitory concentration data, and the derivation of their relationship to tolerable exposure limits, reference doses, or no observed adverse effect levels are highlighted to demonstrate that although cytotoxicity tests in general are regarded as a useful sensitive screening assays, specific medical device materials are not compatible with these cellular/in vitro systems. For these cases, the results should be analyzed using more clinically relevant approaches (e.g., through chemical analysis or written risk assessment).
Collapse
|
19
|
Walker C, Garza S, Papadopoulos V, Culty M. Impact of endocrine-disrupting chemicals on steroidogenesis and consequences on testicular function. Mol Cell Endocrinol 2021; 527:111215. [PMID: 33657436 DOI: 10.1016/j.mce.2021.111215] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
Testicular steroidogenesis is a tightly regulated process that produces the androgens important for the development, maintenance and function of the male reproductive system. These androgens are also essential for overall health, and well-being. Disruptions in the ability of the testis to form steroids can result in developmental abnormalities, dysfunction, and infertility. Endocrine-disrupting chemicals (EDCs) can interfere with the intricate signaling and metabolizing networks that produce androgens and promote their dysfunction. These chemicals are found ubiquitously in our environment, as they are integral components of products that are used every day. The effects of EDCs, such as bisphenols, phthalates, and alkyl chemicals, have been studied independently, revealing deleterious effects; but the combined influence of these structures on steroidogenesis has yet to be completely elucidated. This manuscript presents an updated review on EDC mixtures and their impact on testicular function and fertility, highlighting new findings that illustrate the anti-androgenic capabilities of EDC mixtures.
Collapse
Affiliation(s)
- Casandra Walker
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Samuel Garza
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Räägel H, Turley A, Fish T, Franson J, Rollins T, Campbell S, Jorgensen MR. Medical Device Industry Approaches for Addressing Sources of Failing Cytotoxicity Scores. Biomed Instrum Technol 2021; 55:69-84. [PMID: 34043008 PMCID: PMC8641414 DOI: 10.2345/0899-8205-55.2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To ensure patient safety, medical device manufacturers are required by the Food and Drug Administration and other regulatory bodies to perform biocompatibility evaluations on their devices per standards, such as the AAMI-approved ISO 10993-1:2018 (ANSI/AAMI/ISO 10993-1:2018).However, some of these biological tests (e.g., systemic toxicity studies) have long lead times and are costly, which may hinder the release of new medical devices. In recent years, an alternative method using a risk-based approach for evaluating the toxicity (or biocompatibility) profile of chemicals and materials used in medical devices has become more mainstream. This approach is used as a complement to or substitute for traditional testing methods (e.g., systemic toxicity endpoints). Regardless of the approach, the one test still used routinely in initial screening is the cytotoxicity test, which is based on an in vitro cell culture system to evaluate potential biocompatibility effects of the final finished form of a medical device. However, it is known that this sensitive test is not always compatible with specific materials and can lead to failing cytotoxicity scores and an incorrect assumption of potential biological or toxicological adverse effects. This article discusses the common culprits of in vitro cytotoxicity failures, as well as describes the regulatory-approved methodology for cytotoxicity testing and the approach of using toxicological risk assessment to address clinical relevance of cytotoxicity failures for medical devices. Further, discrepancies among test results from in vitro tests, use of published half-maximal inhibitory concentration data, and the derivation of their relationship to tolerable exposure limits, reference doses, or no observed adverse effect levels are highlighted to demonstrate that although cytotoxicity tests in general are regarded as a useful sensitive screening assays, specific medical device materials are not compatible with these cellular/in vitro systems. For these cases, the results should be analyzed using more clinically relevant approaches (e.g., through chemical analysis or written risk assessment).
Collapse
Affiliation(s)
- Helin Räägel
- Helin Räägel, PhD, is a senior biocompatibility expert at Nelson Laboratories in Salt Lake City, UT.
| | - Audrey Turley
- Audrey Turley, BS, is a senior biocompatibility expert at Nelson Laboratories in Salt Lake City, UT.
| | - Trevor Fish
- Trevor Fish, MS, is a toxicologist at Nelson Laboratories in Salt Lake City, UT.
| | - Jeralyn Franson
- Jeralyn Franson, MS, is an associate technical consultant at Nelson Laboratories in Salt Lake City, UT.
| | - Thor Rollins
- Thor Rollins, BS, is a director of toxicology and E&L consulting at Nelson Laboratories in Salt Lake City, UT.
| | - Sarah Campbell
- Sarah Campbell, PhD, DABT, is a principal toxicologist at Nelson Laboratories in Salt Lake City, UT, and a title in the College of Pharmacy at the University of Utah, in Salt Lake City, UT.
| | - Matthew R. Jorgensen
- Matthew R Jorgensen, PhD, DABT, is a chemist, materials scientist, and toxicologist at Nelson Laboratories in Salt Lake City, UT.
| |
Collapse
|
21
|
Rajkumar A, Luu T, Beal MA, Barton-Maclaren TS, Robaire B, Hales BF. Elucidation of the Effects of Bisphenol A and Structural Analogs on Germ and Steroidogenic Cells Using Single Cell High-Content Imaging. Toxicol Sci 2021; 180:224-238. [PMID: 33501994 DOI: 10.1093/toxsci/kfab012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Concerns about the potential adverse effects of bisphenol A (BPA) have led to an increase in the use of replacements, yet the toxicity data for several of these chemicals are limited. Using high-content imaging, we compared the effects of BPA, BPAF, BPF, BPS, BPM, and BPTMC in germ (C18-4 spermatogonial) and steroidogenic (MA-10 Leydig and KGN granulosa) cell lines. Effects on cell viability and phenotypic markers were analyzed to determine benchmark concentrations (BMCs) and estimate administered equivalent doses (AEDs). In all 3 cell lines, BPA was one of the least cytotoxic bisphenol compounds tested, whereas BPM and BPTMC were the most cytotoxic. Interestingly, BPF and BPS were cytotoxic only in MA-10 cells. Effects on phenotypic parameters, including mitochondria, lysosomes, lipid droplets, and oxidative stress, were both bisphenol- and cell-line specific. BPA exposure affected mitochondria (BMC: 1.2 μM; AED: 0.09 mg/kg/day) in C18-4 cells. Lysosome numbers were increased in MA-10 cells exposed to BPA or BPAF but decreased in KGN cells exposed to BPAF or BPM. Lipid droplets were decreased in C18-4 cells exposed to BPF and in MA-10 cells exposed to BPTMC but increased in BPF, BPM, and BPTMC-exposed KGN cells. BPA and BPM exposure induced oxidative stress in MA-10 and KGN cells, respectively. In summary, structurally similar bisphenols displayed clear cell-line-specific differences in BMC and AED values for effects on cell viability and phenotypic endpoints. This approach, together with additional data on human exposure, may aid in the selection and prioritization of responsible replacements for BPA. .
Collapse
Affiliation(s)
- Abishankari Rajkumar
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
22
|
Comparison of In Vitro Endocrine Activity of Phthalates and Alternative Plasticizers. J Toxicol 2021; 2021:8815202. [PMID: 33628236 PMCID: PMC7886589 DOI: 10.1155/2021/8815202] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
Because of the deleterious effects of phthalates, regulations have been taken to decrease their use, and the needs for alternatives are increasing. Due to the concerns about the endocrine-disrupting properties of phthalates, it was deemed necessary to particularly investigate these effects for potential substitutes. In this study, we compared the in vitro endocrine activity of several already used potential alternative plasticizers (DEHT, DINCH, and TOTM) or new substitutes (POLYSORB® isosorbide and POLYSORB® ID 46) to one of 2 phthalates, DEHP and DINP. Effects of these chemicals on 3 common mechanisms of endocrine disruption, i.e., interaction with estrogen receptors (ER), androgen receptors (AR), or steroidogenesis, were studied using extensively used in vitro methods. In the E-Screen assay, only DEHP moderately induced MCF-7 cell proliferation; none of the other tested substances were estrogenic or antiestrogenic. No androgenic or antiandrogenic activity in MDA-kb2 cells was shown for any of the tested phthalates or alternatives. On the other hand, both DEHP and DINP, as well as DEHT, DINCH, and TOTM, disrupted steroidogenesis in the H295R assay, mainly by inducing an increase in estradiol synthesis; no such effect was observed for POLYSORB® isosorbide and POLYSORB® ID 46.
Collapse
|
23
|
Bi C, Wang X, Li H, Li X, Xu Y. Direct Transfer of Phthalate and Alternative Plasticizers from Indoor Source Products to Dust: Laboratory Measurements and Predictive Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:341-351. [PMID: 33287540 DOI: 10.1021/acs.est.0c05131] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phthalate and alternative plasticizers are semivolatile organic compounds (SVOCs) and among the most abundant indoor pollutants. Although ingestion of dust is one of the major exposure pathways to them, migration knowledge from source products to indoor dust is still limited. Systematic chamber measurements were conducted to investigate the direct transfer of these SVOCs between source products and dust in contact with the source. Substantial direct source-to-dust transfer of SVOCs was observed for all tests. The concentration of bis(2-ethylhexyl)phthalate in dust was 12 times higher than the pre-experimental level after only two days of source-dust contact. A mechanistic model was developed to predict the direct transfer process, and a reasonable agreement between model predictions and measurements was achieved. The octanol/air partition coefficient (Koa) of SVOCs, the emission parameter of the source product (y0), and the characteristics of the dust layer (i.e., porosity and thickness) control the transfer, affecting the SVOC concentration in dust, the kinetics of direct transfer, or both. Dust mass loading has a significant influence on the transfer, while relative humidity only has a limited effect. The findings suggest that minimizing the use of SVOC-containing products and house vacuuming are effective intervention strategies to reduce young children's exposure to SVOCs.
Collapse
Affiliation(s)
- Chenyang Bi
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712-1139, United States of America
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongwan Li
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712-1139, United States of America
| | - Xiaofeng Li
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Ying Xu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712-1139, United States of America
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Wenzel AG, Reiner JL, Kohno S, Wolf BJ, Brock JW, Cruze L, Newman RB, Kucklick JR. Biomonitoring of emerging DINCH metabolites in pregnant women in charleston, SC: 2011-2014. CHEMOSPHERE 2021; 262:128369. [PMID: 33182099 PMCID: PMC7670082 DOI: 10.1016/j.chemosphere.2020.128369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 05/14/2023]
Abstract
Due to the mounting evidence that phthalates, specifically di-2-ethylhexyl phthalate and dibutyl phthalate, produce adverse endocrine effects in humans and wildlife, the use of other chemicals as replacements has increased. One of the most commonly encountered phthalate replacements is di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH). Currently, little is known about the prevalence of human exposure, bioactivity, and endocrine disrupting potential of DINCH. We sampled urine from 100 pregnant women during the second trimester of pregnancy living in Charleston, SC between 2011 and 2014 and measured the following DINCH metabolites by LC-MS/MS: cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester (OH-MINCH), cyclohexane-1,2-dicarboxylic acid-mono(oxo-isononyl) ester (oxo-MINCH), and cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl ester (cx-MINCH). These metabolites were also tested on human estrogen receptor alpha and progesterone receptor beta transactivation assays in vitro. OH-MINCH was detected in 98% of urine samples. The specific gravity-adjusted median (interquartile range) OH-MINCH concentration was 0.20 (0.25) ng/mL, and concentrations were significantly higher in African American women compared to Caucasian women (p = 0.01). DINCH metabolite concentrations were consistent between years, and they did not exhibit estrogenic or progestogenic activity in vitro. Human exposure to these emerging compounds should continue to be monitored, especially in vulnerable populations, to ensure the replacement of phthalates by DINCH is not a case of regrettable substitution.
Collapse
Affiliation(s)
- Abby G Wenzel
- Department of Obstetrics and Gynecology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC, 29425, USA; National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Jessica L Reiner
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, USA.
| | - Satomi Kohno
- Department of Biology, St. Cloud State University, 720 4thAvenue South, St. Cloud, MN, 56301, USA
| | - Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Suite 303, MSC 835, Charleston, SC, 29425, USA
| | - John W Brock
- Department of Chemistry, University of North Carolina Asheville, CPO #2010, One University Heights, Asheville, NC, 28804, USA
| | - Lori Cruze
- Department of Biology, Wofford College, 429 North Church Street, Spartanburg, SC, 29303, USA
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC, 29425, USA
| | - John R Kucklick
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| |
Collapse
|
25
|
Llanes LC, Clasen SH, Pires AT, Gross IP. Mechanical and thermal properties of poly(lactic acid) plasticized with dibutyl maleate and fumarate isomers: Promising alternatives as biodegradable plasticizers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110112] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Lee G, Kim S, Bastiaensen M, Malarvannan G, Poma G, Caballero Casero N, Gys C, Covaci A, Lee S, Lim JE, Mok S, Moon HB, Choi G, Choi K. Exposure to organophosphate esters, phthalates, and alternative plasticizers in association with uterine fibroids. ENVIRONMENTAL RESEARCH 2020; 189:109874. [PMID: 32678732 DOI: 10.1016/j.envres.2020.109874] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 05/05/2023]
Abstract
Exposure to endocrine disrupting chemicals is suggested to be responsible for the development or progression of uterine fibroids. However, little is known about risks related to emerging chemicals, such as organophosphate esters (OPEs) and alternative plasticizers (APs). A case-control study was conducted to investigate whether exposures to OPEs, APs, and phthalates, were associated with uterine fibroids in women of reproductive age. For this purpose, the cases (n = 32) and the matching controls (n = 79) were chosen based on the results of gynecologic ultrasonography among premenopausal adult women in Korea and measured for metabolites of several OPEs, APs, and major phthalates. Logistic regression models were employed to assess the associations between chemical exposure and disease status. Factor analysis was conducted for multiple chemical exposure assessments as a secondary analysis. Among OPE metabolites, diphenyl phosphate (DPHP), 2-ethylhexyl phenyl phosphate (EHPHP), and 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) were detected in >80% of the subjects. Among APs, metabolites of di-isononyl phthalate (DINP) and di(2-propylheptyl) phthalate (DPrHpP) were detected in >75% of the urine samples. The odds ratios (ORs) of uterine fibroids were significantly higher among the women with higher exposures to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-butoxyethyl) phosphate (TBOEP), di(2-ethylhexyl) terephthalate (DEHTP), DPrHpP, and di-(iso-nonyl)-cyclohexane-1,2-dicarboxylate (DINCH). In addition, urinary concentrations of mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), a sum of five di(2-ethylhexyl) phthalate metabolites (∑5DEHP), and mono(4-methyl-7-hydroxyoctyl) phthalate (OH-MINP) were significantly higher in the cases. In factor analysis, a factor heavily loaded with DPrHpP and DEHP was significantly associated with uterine fibroids, supporting the observation from the single chemical regression model. We found for the first time that several metabolites of OPEs and APs are associated with increased risks of uterine fibroids among pre-menopausal women. Further epidemiological and mechanistic studies are warranted to validate the associations observed in the present study.
Collapse
Affiliation(s)
- Gowoon Lee
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sunmi Kim
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Govindan Malarvannan
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | | | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Republic of Korea
| | - Sori Mok
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Republic of Korea
| | - Gyuyeon Choi
- College of Medicine, Soonchunhyang University, Seoul, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Duan C, Fang Y, Sun J, Li Z, Wang Q, Bai J, Peng H, Liang J, Gao Z. Effects of fast food packaging plasticizers and their metabolites on steroid hormone synthesis in H295R cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138500. [PMID: 32334352 DOI: 10.1016/j.scitotenv.2020.138500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
The health risks of exposure to plasticizers have received widespread attention, however, little is known about the effects of fast food packaging plasticizers on steroid hormone synthesis. In the present study, the types and migration of plasticizers in some commonly used fast-food packaging materials were detected by GC-MS, and the interference effects of these plasticizers and their metabolites on steroid hormone synthesis in the human body were evaluated by the H295R steroidogenesis assay. The GC-MS results showed that the main plasticizer compounds that migrated from fast food packaging into food were di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and bis(2-ethylhexyl) adipate (DEHA). Exposure to these chemicals (100-1000 μM) can significantly reduce the viability of H295R cells in a dose-response manner, and these plasticizers and their metabolites that migrated into oily foods at high temperatures (0.25-25 μM) could significantly increase the E2 level and reduce the T level in H295R cells. According to the qRT-PCR data, 0.25 to 25 μM mono(2-ethylhexyl) phthalate (MEHP) significantly upregulated the expression levels of 17β-HSD1 and CYP19A1, and downregulated those of CYP17A1, CYP11A1 and StAR. The Western blot results were consistent with those of qRT-PCR. In summary, these results indicated that even exposure to low concentrations (≤1 mg/l or 2.5 μM) of these chemicals and their metabolites can cause significant endocrine-disrupting effects.
Collapse
Affiliation(s)
- Chenhui Duan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 30045, China; Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jingran Sun
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhenxin Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Qiangqiang Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jialei Bai
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Hui Peng
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 30045, China.
| | - Zhixian Gao
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
28
|
Walker C, Ghazisaeidi S, Collet B, Boisvert A, Culty M. In utero exposure to low doses of genistein and di-(2-ethylhexyl) phthalate (DEHP) alters innate immune cells in neonatal and adult rat testes. Andrology 2020; 8:943-964. [PMID: 32533902 DOI: 10.1111/andr.12840] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Although humans are exposed to mixtures of endocrine disruptor chemicals, few studies have examined their toxicity on male reproduction. We previously found that fetal exposure to a mixture of the phytoestrogen genistein (GEN) and the plasticizer di(2-ethylhexyl) phthalate (DEHP) altered gene expression in adult rat testes. OBJECTIVES Our goal was to investigate the effects of fetal exposure to GEN-DEHP mixtures at two doses relevant to humans on testicular function and transcriptome in neonatal and adult rats. MATERIALS AND METHODS Pregnant SD rats were gavaged with vehicle, GEN or DEHP, alone or mixed at 0.1 and 10 mg/kg/day, from gestation day 14 to birth. Fertility, steroid levels, and testis morphology were examined in neonatal and adult rats. Testicular transcriptomes were examined by gene array and functional pathway analyses. Cell-specific genes/proteins were determined by quantitative real-time PCR and immunohistochemistry. RESULTS GEN-DEHP mixtures increased the rates of infertility and abnormal testes in adult rats. Gene array analysis identified more genes exclusively altered by the mixtures than individual compounds. Altered top canonical pathways included urogenital/reproductive developmental and inflammatory processes. GEN-DEHP mixtures increased innate immune cells and macrophages markers at both doses and ages, more strongly and consistently than DEHP or GEN alone. Genes exclusively increased by the mixture in adult testis related to innate immune cells and macrophages included Kitlg, Rps6ka3 (Rsk2), Nr3c1, Nqo1, Lif, Fyn, Ptprj (Dep-1), Gpr116, Pfn2, and Ptgr1. DISCUSSION AND CONCLUSION These findings demonstrate that GEN-DEHP mixtures at doses relevant to human induce adverse testicular phenotypes, concurrent with age-dependent and non-monotonic changes in testicular transcriptomes. The involvement of innate immune cells such as macrophages suggests immediate and delayed inflammatory responses which may contribute to testicular dysfunction. Moreover, these effects are complex and likely involve multiple interactions between immune and non-immune testicular cell types that will entail further studies.
Collapse
Affiliation(s)
- Casandra Walker
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Shahrzad Ghazisaeidi
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Berenice Collet
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.,The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Spade DJ, Hall SJ, Wortzel JD, Reyes G, Boekelheide K. All-trans Retinoic Acid Disrupts Development in Ex Vivo Cultured Fetal Rat Testes. II: Modulation of Mono-(2-ethylhexyl) Phthalate Toxicity. Toxicol Sci 2020; 168:149-159. [PMID: 30476341 DOI: 10.1093/toxsci/kfy283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Humans are universally exposed to low levels of phthalate esters (phthalates), which are used to plasticize polyvinyl chloride. Phthalates exert adverse effects on the development of seminiferous cords in the fetal testis through unknown toxicity pathways. To investigate the hypothesis that phthalates alter seminiferous cord development by disrupting retinoic acid (RA) signaling in the fetal testis, gestational day 15 fetal rat testes were exposed for 1-3 days to 10-6 M all-trans retinoic acid (ATRA) alone or in combination with 10-6-10-4 M mono-(2-ethylhexyl) phthalate (MEHP) in ex vivo culture. As previously reported, exogenous ATRA reduced seminiferous cord number. This effect was attenuated in a concentration-dependent fashion by MEHP co-exposure. ATRA and MEHP-exposed testes were depleted of DDX4-positive germ cells but not Sertoli cells. MEHP alone enhanced the expression of the RA receptor target Rbp1 and the ovary development-associated genes Wnt4 and Nr0b1, and suppressed expression of the Leydig cell marker, Star, and the germ cell markers, Ddx4 and Pou5f1. In co-exposures, MEHP predominantly enhanced the gene expression effects of ATRA, but the Wnt4 and Nr0b1 concentration-responses were nonlinear. Similarly, ATRA increased the number of cells expressing the granulosa cell marker FOXL2 in testis cultures, but this induction was attenuated by addition of MEHP. These results indicate that MEHP can both enhance and inhibit actions of ATRA during fetal testis development and provide evidence that RA signaling is a target for phthalate toxicity in the fetal testis.
Collapse
Affiliation(s)
- Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Susan J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Jeremy D Wortzel
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Gerardo Reyes
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912.,Division of Natural Sciences, College of Mount Saint Vincent, Riverdale, New York 10471
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
30
|
O’Flaherty C, Boisvert A, Manku G, Culty M. Protective Role of Peroxiredoxins against Reactive Oxygen Species in Neonatal Rat Testicular Gonocytes. Antioxidants (Basel) 2019; 9:antiox9010032. [PMID: 31905831 PMCID: PMC7022870 DOI: 10.3390/antiox9010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/27/2022] Open
Abstract
Peroxiredoxins (PRDXs) are antioxidant enzymes that protect cells from oxidative stress and play a role in reactive oxygen species (ROS)-mediated signaling. We reported that PRDXs are critical for human fertility by maintaining sperm viability and regulating ROS levels during capacitation. Moreover, studies on Prdx6−/− mice revealed the essential role of PRDX6 in the viability, motility, and fertility competence of spermatozoa. Although PRDXs are abundant in the testis and spermatozoa, their potential role at different phases of spermatogenesis and in perinatal germ cells is unknown. Here, we examined the expression and role of PRDXs in isolated rat neonatal gonocytes, the precursors of spermatogonia, including spermatogonial stem cells. Gene array, qPCR analyses showed that PRDX1, 2, 3, 5, and 6 transcripts are among the most abundant antioxidant genes in postnatal day (PND) 3 gonocytes, while immunofluorescence confirmed the expression of PRDX1, 2, and 6 proteins. The role of PRDXs in gonocyte viability was examined using PRDX inhibitors, revealing that the 2-Cys PRDXs and PRDX6 peroxidases activities are critical for gonocytes viability in basal condition, likely preventing an excessive accumulation of endogenous ROS in the cells. In contrast to its crucial role in spermatozoa, PRDX6 independent phospholipase A2 (iPLA2) activity was not critical in gonocytes in basal conditions. However, under conditions of H2O2-induced oxidative stress, all these enzymatic activities were critical to maintain gonocyte viability. The inhibition of PRDXs promoted a two-fold increase in lipid peroxidation and prevented gonocyte differentiation. These results suggest that ROS are produced in neonatal gonocytes, where they are maintained by PRDXs at levels that are non-toxic and permissive for cell differentiation. These findings show that PRDXs play a major role in the antioxidant machinery of gonocytes, to maintain cell viability and allow for differentiation.
Collapse
Affiliation(s)
- Cristian O’Flaherty
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
- Department of Surgery (Urology Division), McGill University, Montreal, QC H4A 3J1, Canada
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
| | - Gurpreet Manku
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA
- Correspondence: ; Tel.: +1-323-865-1677
| |
Collapse
|
31
|
Glycerin Monostearate Aggravates Male Reproductive Toxicity Caused by Di(2-ethylhexyl) Phthalate in Rats. Curr Med Sci 2019; 39:1003-1008. [DOI: 10.1007/s11596-019-2135-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/17/2019] [Indexed: 11/27/2022]
|
32
|
Campioli E, Lau M, Papadopoulos V. Effect of subacute and prenatal DINCH plasticizer exposure on rat dams and male offspring hepatic function: The role of PPAR-α. ENVIRONMENTAL RESEARCH 2019; 179:108773. [PMID: 31605871 DOI: 10.1016/j.envres.2019.108773] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Plasticizers are compounds added to plastics to modify their physical proprieties. The most well-known class of plasticizers, the phthalates, has been shown to possess antiandrogenic and tumor promoting activities. 1,2-Cyclohexane dicarboxylic acid diisononyl ester (DINCH) was approved for use in food contact containers in 2006 and has been used as a replacement for phthalates in toys and children products. However, we reported previously that the DINCH metabolite MINCH acts on primary rat adipocytes through the peroxisome proliferator activated receptor (PPAR)-α pathway in a manner similar to phthalates. Evidence from our studies, as well as from the current bibliography on DINCH, suggests that the liver might be one of its target organs. In the present study, we collected tissues from dams exposed subacutely and progeny at postnatal day (PND) 3 and 60 exposed in utero to DINCH (1, 10 and 100 mg/kg bw/day). Exposure to DINCH drastically affected liver gene expression in all 3 age groups tested and in particular at the dose of 1 mg/kg bw/day. The PPAR-α pathway along with other metabolic and DNA replication pathways were affected by DINCH. Modifications in PPAR-α and superoxide dismutase (SOD)-1 protein levels were observed in dams at PND21, as well as male progeny at PND3 and 60. No sign of fibrosis or direct liver toxicity was observed after 8 days of stimulus with low doses of DINCH. This study provides evidence that DINCH is not a biologically inert molecule in the rat, and in the liver its actions are mediated, at least in part, by PPAR-α.
Collapse
Affiliation(s)
- Enrico Campioli
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Matthew Lau
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Manku G, Papadopoulos P, Boisvert A, Culty M. Cyclooxygenase 2 (COX2) expression and prostaglandin synthesis in neonatal rat testicular germ cells: Effects of acetaminophen and ibuprofen. Andrology 2019; 8:691-705. [DOI: 10.1111/andr.12727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Gurpreet Manku
- The Research Institute of the McGill University Health Centre Montreal QC Canada
- Department of Medicine McGill University Montreal QC Canada
| | - Philippos Papadopoulos
- The Research Institute of the McGill University Health Centre Montreal QC Canada
- Department of Regulatory and Quality Sciences School of Pharmacy University of Southern California Los Angeles CA USA
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre Montreal QC Canada
- Department of Medicine McGill University Montreal QC Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre Montreal QC Canada
- Department of Medicine McGill University Montreal QC Canada
- Department of Pharmacology and Pharmaceutical Sciences School of Pharmacy University of Southern California Los Angeles CA USA
| |
Collapse
|
34
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Vasconcelos AL, Silva MJ, Louro H. In vitro exposure to the next-generation plasticizer diisononyl cyclohexane-1,2-dicarboxylate (DINCH): cytotoxicity and genotoxicity assessment in human cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:526-536. [PMID: 31242819 DOI: 10.1080/15287394.2019.1634376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasticizers are currently present in many consumer products, particularly food packaging, children's toys, and medical devices. There are concerns regarding potential leaching to environment or food, thus increasing the risk of human exposure by inhalation, ingestion and/or dermal absorption potentially leading to adverse health consequences. Hexamoll diisononyl cyclohexane-1,2-dicarboxylate (Hexamoll® DINCH®), a non-phthalate plasticizer, has been used as a safer alternative to hazardous phthalates. In contrast to phthalates, evidence indicates that DINCH did not produce endocrine disruption, reproductive dysfunctions, genotoxicity or mutagenicity. However, there are limited data available regarding safety assessment, especially with respect to genotoxicity in human cells. The aim of this study was to assess DINCH cytotoxic and genotoxic effects in human liver and kidney cell lines following several exposure periods. For this purpose, the MTT cell viability, micronucleus, conventional and formamidopyrimidine DNA glycosylase (FPG)-modified comet assays were employed to detect cell death and genotoxicity, respectively. Data demonstrated that DINCH induced cytotoxicity in kidney cells exposed for 48hr, but not in liver cells. No marked chromosomal damage was noted after short-term or longer following treatment of both cell lines. However, DINCH produced oxidative DNA damage in liver cells exposed for 3 h, which decreased after a more prolonged incubation period. The occurrence of oxidative lesions, even transiently, indicates that mutation fixation may occur leading to adverse effects in liver. Therefore, these findings suggest that DINCH may be hazardous to humans and that further investigation is necessary to warrant its safety.
Collapse
Affiliation(s)
- Ana Luísa Vasconcelos
- a Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA) , Lisbon , Portugal
- b Faculdade de Ciências, Universidade de Lisboa , Lisbon , Portugal
| | - Maria João Silva
- a Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA) , Lisbon , Portugal
- c Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa , Lisbon , Portugal
| | - Henriqueta Louro
- a Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA) , Lisbon , Portugal
- c Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa , Lisbon , Portugal
| |
Collapse
|
36
|
Parekh PA, Garcia TX, Waheeb R, Jain V, Gandhi P, Meistrich ML, Shetty G, Hofmann MC. Undifferentiated spermatogonia regulate Cyp26b1 expression through NOTCH signaling and drive germ cell differentiation. FASEB J 2019; 33:8423-8435. [PMID: 30991836 DOI: 10.1096/fj.201802361r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cytochrome P450 family 26 subfamily B member 1 (CYP26B1) regulates the concentration of all-trans retinoic acid (RA) and plays a key role in germ cell differentiation by controlling local distribution of RA. The mechanisms regulating Cyp26b1 expression in postnatal Sertoli cells, the main components of the stem cell niche, are so far unknown. During gonad development, expression of Cyp26b1 is maintained by Steroidogenic Factor 1 (SF-1) and Sex-Determining Region Y Box-9 (SOX9), which ensure that RA is degraded and germ cell differentiation is blocked. Here, we show that the NOTCH target Hairy/Enhancer-of-Split Related with YRPW Motif 1 (HEY1), a transcriptional repressor, regulates germ cell differentiation via direct binding to the Cyp26b1 promoter and thus inhibits its expression in Sertoli cells. Further, using in vivo germ cell ablation, we demonstrate that undifferentiated type A spermatogonia are the cells that activate NOTCH signaling in Sertoli cells through their expression of the NOTCH ligand JAGGED-1 (JAG1) at stage VIII of the seminiferous epithelium cycle, therefore mediating germ cell differentiation by a ligand concentration-dependent process. These data therefore provide more insights into the mechanisms of germ cell differentiation after birth and potentially explain the spatiotemporal RA pulses driving the transition between undifferentiated to differentiating spermatogonia.-Parekh, P. A., Garcia, T. X., Waheeb, R., Jain, V., Gandhi, P., Meistrich, M. L., Shetty, G., Hofmann, M.-C. Undifferentiated spermatogonia regulate Cyp26b1 expression through NOTCH signaling and drive germ cell differentiation.
Collapse
Affiliation(s)
- Parag A Parekh
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Thomas X Garcia
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, Texas, USA
| | - Reham Waheeb
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Theriogenology, University of Alexandria, Alexandria, Egypt
| | - Vivek Jain
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, Texas, USA
| | - Pooja Gandhi
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Gunapala Shetty
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
37
|
Albert O, Nardelli TC, Hales BF, Robaire B. Identifying Greener and Safer Plasticizers: A 4-Step Approach. Toxicol Sci 2019; 161:266-275. [PMID: 29036695 DOI: 10.1093/toxsci/kfx156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The health and economic burden of endocrine disrupting chemicals, such as the plasticizer di(2-ethylhexyl) phthalate (DEHP), is prompting industry to develop alternatives. However, the absence of requirements for manufacturers to ensure the safety of these alternatives has led to the generation of replacements that may have similar or worse effects than the original chemicals. Consequently, there is increasing recognition by scientists, regulators and industry that proactive approaches are needed to develop safe chemical substitutes. We propose a 4-step approach for the design, characterization and toxicological testing of responsible alternative chemicals that we illustrate with our ongoing studies on DEHP replacements. Our approach is comprised of: (1) the design and characterization of alternative chemicals based on innovative chemical structures and environmental considerations; (2) large-scale in vitro cell-based high throughput and selective ex vivo studies to preselect the most innocuous alternatives; (3) an acute toxicity in vivo study to rule out overt toxicity of the selected candidates; and (4) an in utero and lactational exposure study comparing the effects of selected candidates to those currently in use, emphasizing commonly described phenotypes after exposure to the latter. Using this 4-step approach, we have identified 2 alternative chemicals displaying good plasticizing properties, better biodegradability, and less leaching than DEHP without any apparent toxicity in vivo. This process has thus far proven useful in the proactive identification of responsible chemical replacements for DEHP.
Collapse
Affiliation(s)
- Océane Albert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Thomas C Nardelli
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
38
|
Jiang L, Wang L, Fang T, Papadopoulos V. Disruption of ergosterol and tryptophan biosynthesis, as well as cell wall integrity pathway and the intracellular pH homeostasis, lead to mono-(2-ethylhexyl)-phthalate toxicity in budding yeast. CHEMOSPHERE 2018; 206:643-654. [PMID: 29783050 DOI: 10.1016/j.chemosphere.2018.05.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/13/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are substances in the environment, food, and consumer products that interfere with hormone homeostasis, metabolism or reproduction in humans and animals. One such EDC, the plasticizer di-(2-ethylhexyl)-phthalate (DEHP), exerts its function through its principal bioactive metabolite, mono-(2-ethylhexyl)-phthalate (MEHP). To fully understand the effects of MEHP on cellular processes and metabolism as well as to assess the impact of genetic alteration on the susceptibility to MEHP-induced toxicity, we screened MEHP-sensitive mutations on a genome-scale in the eukaryotic model organism Saccharomyces cerevisiae. We identified a total of 96 chemical-genetic interactions between MEHP and gene mutations in this study. In response to MEHP treatment, most of these gene mutants accumulated higher intracellular MEHP content, which correlated with their MEHP sensitivity. Twenty-seven of these genes are involved in the metabolism, twenty-two of them play roles in protein sorting, and ten of them regulate ion homeostasis. Functional categorization of these genes indicated that the biosynthetic pathways of both ergosterol and tryptophan, as well as cell wall integrity and the intracellular pH homeostasis, were involved in the protective response of yeast cells to the MEHP toxicity. Our study demonstrated that a collection of yeast gene deletion mutants is useful for a functional toxicogenomic analysis of EDCs, which could provide important clues to the effects of EDCs on higher eukaryotic organisms.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Litong Wang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
39
|
Jamarani R, Erythropel HC, Nicell JA, Leask RL, Marić M. How Green is Your Plasticizer? Polymers (Basel) 2018; 10:E834. [PMID: 30960759 PMCID: PMC6403783 DOI: 10.3390/polym10080834] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 01/16/2023] Open
Abstract
Plasticizers are additives that are used to impart flexibility to polymer blends and improve their processability. Plasticizers are typically not covalently bound to the polymers, allowing them to leach out over time, which results in human exposure and environmental contamination. Phthalates, in particular, have been the subject of increasing concern due to their established ubiquity in the environment and their suspected negative health effects, including endocrine disrupting and anti-androgenic effects. As there is mounting pressure to find safe replacement compounds, this review addresses the design and experimental elements that should be considered in order for a new or existing plasticizer to be considered green. Specifically, a multi-disciplinary and holistic approach should be taken which includes toxicity testing (both in vitro and in vivo), biodegradation testing (with attention to metabolites), as well as leaching studies. Special consideration should also be given to the design stages of producing a new molecule and the synthetic and scale-up processes should also be optimized. Only by taking a multi-faceted approach can a plasticizer be considered truly green.
Collapse
Affiliation(s)
- Roya Jamarani
- Department of Chemical Engineering, McGill University, 3610 University St, Montréal, QC H3A 0C5, Canada.
| | - Hanno C Erythropel
- Department of Chemical Engineering, McGill University, 3610 University St, Montréal, QC H3A 0C5, Canada.
- Center for Green Chemistry and Green Engineering, Yale University, 370 Prospect St, New Haven, CT 06511, USA.
| | - James A Nicell
- Department of Civil Engineering & Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 0C3, Canada.
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, 3610 University St, Montréal, QC H3A 0C5, Canada.
| | - Milan Marić
- Department of Chemical Engineering, McGill University, 3610 University St, Montréal, QC H3A 0C5, Canada.
| |
Collapse
|
40
|
Albert O, Nardelli TC, Lalancette C, Hales BF, Robaire B. Effects of In Utero and Lactational Exposure to New Generation Green Plasticizers on Adult Male Rats: A Comparative Study With Di(2-Ethylhexyl) Phthalate. Toxicol Sci 2018; 164:129-141. [PMID: 29945229 PMCID: PMC6016686 DOI: 10.1093/toxsci/kfy072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a widely used plasticizer, is a ubiquitous environmental contaminant and may act as an endocrine disruptor. Early life exposures to DEHP may result in anti-androgenic effects, impairing the development of the male reproductive tract. However, data on the long-lasting consequences of such DEHP exposures on adult male reproductive function are still rare and discrepant. Previously, we identified 2 novel plasticizers, 1,4-butanediol dibenzoate (BDB) and dioctyl succinate (DOS), as potential substitutes for DEHP that did not reproduce classically described endocrine disrupting phenotypes in prepubertal male offspring after maternal exposure. Here, we investigated the consequences of in utero and lactational exposure to BDB and DOS on adult male rat reproductive function in a comparative study with DEHP and a commercially available alternative plasticizer, 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH). Timed pregnant Sprague Dawley rats were gavaged with vehicle or a test chemical (30 or 300 mg/kg/day) from gestation day 8 to postnatal day 21. While DEHP exposure (300 mg/kg/day) significantly increased epididymal weight in the adult, exposure to DINCH, BDB, or DOS did not affect reproductive organ weights, steroid levels, or sperm quality. Using a toxicogenomic microarray approach, we found that adult testicular gene expression was affected by exposure to the higher dose of DEHP; transcripts such as Nr5a2, Ltf, or Runx2 were significantly downregulated, suggesting that DEHP was targeting estrogen signaling. Lesser effects were observed after treatment with either DINCH or BDB. DOS exposure did not produce such effects, confirming its potential as a responsible substitute for DEHP.
Collapse
Affiliation(s)
- Océane Albert
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G1Y6, Canada
| | - Thomas C Nardelli
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G1Y6, Canada
| | - Claudia Lalancette
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G1Y6, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H4A3J1, Canada
| |
Collapse
|
41
|
Wu H, Estill MS, Shershebnev A, Suvorov A, Krawetz SA, Whitcomb BW, Dinnie H, Rahil T, Sites CK, Pilsner JR. Preconception urinary phthalate concentrations and sperm DNA methylation profiles among men undergoing IVF treatment: a cross-sectional study. Hum Reprod 2018; 32:2159-2169. [PMID: 29024969 DOI: 10.1093/humrep/dex283] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Are preconception phthalate and phthalate replacements associated with sperm differentially methylated regions (DMRs) among men undergoing IVF? SUMMARY ANSWER Ten phthalate metabolites were associated with 131 sperm DMRs that were enriched in genes related to growth and development, cell movement and cytoskeleton structure. WHAT IS KNOWN ALREADY Several phthalate compounds and their metabolites are known endocrine disrupting compounds and are pervasive environmental contaminants. Rodent studies report that prenatal phthalate exposures induce sperm DMRs, but the influence of preconception phthalate exposure on sperm DNA methylation in humans is unknown. STUDY DESIGN, SIZE, DURATION An exploratory cross-sectional study with 48 male participants from the Sperm Environmental Epigenetics and Development Study (SEEDS). PARTICIPANTS/MATERIALS, SETTING, METHODS The first 48 couples provided a spot urine sample on the same day as semen sample procurement. Sperm DNA methylation was assessed with the HumanMethylation 450 K array. Seventeen urinary phthalate and 1,2-Cyclohexane dicarboxylic acid diisononyl ester (DINCH) metabolite concentrations were measured from spot urine samples. The A-clust algorithm was employed to identify co-regulated regions. DMRs associated with urinary metabolite concentrations were identified via linear models, corrected for false discovery rate (FDR). MAIN RESULTS AND ROLE OF CHANCE Adjusting for age, BMI, and current smoking, 131 DMRs were associated with at least one urinary metabolite. Most sperm DMRs were associated with anti-androgenic metabolites, including mono(2-ethylhexyl) phthalate (MEHP, n = 83), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP, n = 16), mono-n-butyl phthalate (MBP, n = 22) and cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl (MCOCH, n = 7). The DMRs were enriched in lincRNAs as well as in regions near coding regions. Functional analyses of DMRs revealed enrichment of genes related to growth and development as well as cellular function and maintenance. Finally, 13% of sperm DMRs were inversely associated with high quality blastocyst-stage embryos after IVF. LIMITATIONS, REASONS FOR CAUTION Our modest sample size only included 48 males and additional larger studies are necessary to confirm our observed results. Non-differential misclassification of exposure is also a concern given the single spot urine collection. WIDER IMPLICATIONS OF THE FINDINGS To our knowledge, this is the first study to report that preconception urinary phthalate metabolite concentrations are associated with sperm DNA methylation in humans. These results suggest that paternal adult environmental conditions may influence epigenetic reprogramming during spermatogenesis, and in turn, influence early-life development. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grant K22-ES023085 from the National Institute of Environmental Health Sciences. The authors declare no competing interests.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA 01003, USA
| | - Molly S Estill
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 3127 Scott Hall, 540 East Canfield, Detroit, MI 48201, USA.,Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 253 C.S. Mott 275 East. Hancock, Detroit, MI 48201, USA
| | - Alexander Shershebnev
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA 01003, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA 01003, USA
| | - Stephen A Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 3127 Scott Hall, 540 East Canfield, Detroit, MI 48201, USA.,Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 253 C.S. Mott 275 East. Hancock, Detroit, MI 48201, USA
| | - Brian W Whitcomb
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, 715 North Pleasant Street Amherst, MA 01003, USA
| | - Holly Dinnie
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA
| | - Tayyab Rahil
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA
| | - Cynthia K Sites
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA
| | - J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
42
|
Erythropel HC, Börmann A, Nicell JA, Leask RL, Maric M. Designing Green Plasticizers: Linear Alkyl Diol Dibenzoate Plasticizers and a Thermally Reversible Plasticizer. Polymers (Basel) 2018; 10:polym10060646. [PMID: 30966680 PMCID: PMC6404088 DOI: 10.3390/polym10060646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 12/04/2022] Open
Abstract
Several linear alkyl diol dibenzoate compounds, ranging from C3 to C6 in central diol length, were evaluated for their plasticizing effectiveness in blends with poly(vinyl chloride) (PVC). The results were compared to blends of PVC/di(2-ethylhexyl) phthalate (DEHP), the most commonly used commercial plasticizer. DEHP has come under scrutiny, due to its suspected endocrine-disrupting behaviour, and the proposed diol dibenzoates have previously been shown to have the potential to be green, safe candidates for DEHP replacement. The thermal and mechanical properties of PVC/dibenzoate blends were determined, and include glass transition temperature (Tg), the elongation at break, maximum stress, apparent moduli, torsional modulus, and surface hardness. The C3, C5, and C6 dibenzoates performed as well as or better than DEHP, with the exception of torsional modulus, further supporting their use as green plasticizers. For blends with 1,4-butanediol dibenzoate, differential scanning calorimetry and torsional temperature sweeps suggested that the compound partly crystallizes within PVC blends over the course of two days, thereby losing the ability to effectively plasticize PVC. However, upon heating to temperatures above 60 °C, effective plasticization was again observed. 1,4-Butanediol dibenzoate is thereby a reversible heat-activated plasticizer or processing aid with excellent plasticizer properties at mildly elevated temperatures.
Collapse
Affiliation(s)
- Hanno C Erythropel
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.
- Department of Chemical and Environmental Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT 06511, USA.
| | - Aurélie Börmann
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.
| | - Jim A Nicell
- Department of Civil Engineering & Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada.
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.
| | - Milan Maric
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.
| |
Collapse
|
43
|
Jia P, Zhang M, Hu L, Wang R, Sun C, Zhou Y. Cardanol Groups Grafted on Poly(vinyl chloride)-Synthesis, Performance and Plasticization Mechanism. Polymers (Basel) 2017; 9:E621. [PMID: 30965920 PMCID: PMC6418606 DOI: 10.3390/polym9110621] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 11/16/2022] Open
Abstract
Internally plasticized poly(vinyl chloride) (PVC) materials are investigated via grafting of propargyl ether cardanol (PEC). The chemical structure of the materials was studied by FT-IR and ¹H NMR. The performace of the obtained internally plasticized PVC materials was also investigated with TGA, DSC and leaching tests. The results showed that grafting of propargyl ether cardanol (PEC) on PVC increased the free volume and distance of PVC chains, which efficiently decreased the glass transition temperature (Tg). No migration was found in the leaching tests for internally plasticized PVC films compared with plasticized PVC materials with commercial plasticizer dioctyl phthalate (DOP). The internal plasticization mechanism was also disscussed according to lubrication theory and free volume theory. This work provides a meaningful strategy for designing no-migration PVC materials by introducing cardanol groups as branched chains.
Collapse
Affiliation(s)
- Puyou Jia
- National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration, and Key Lab of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| | - Meng Zhang
- National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration, and Key Lab of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
- Institute of New Technology of Forestry, Chinese Academy of Forest (CAF), Beijing 100091, China.
| | - Lihong Hu
- National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration, and Key Lab of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
- Institute of New Technology of Forestry, Chinese Academy of Forest (CAF), Beijing 100091, China.
| | - Rui Wang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Chao Sun
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Yonghong Zhou
- National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration, and Key Lab of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| |
Collapse
|
44
|
Campioli E, Lee S, Lau M, Marques L, Papadopoulos V. Effect of prenatal DINCH plasticizer exposure on rat offspring testicular function and metabolism. Sci Rep 2017; 7:11072. [PMID: 28894178 PMCID: PMC5593853 DOI: 10.1038/s41598-017-11325-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
In 2002, the plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) was introduced in the European market as a substitute for endocrine-disrupting phthalates. We found that in utero exposure of rats to DINCH from gestational day 14 until parturition affected reproductive organ physiology and reduced circulating testosterone levels at post-natal day 60, indicating a long-term effect on Leydig cells of the testis. Metabolically, animals exhibited randomly increased serum glucose concentrations not associated with impaired glucose utilization. Analysis of liver markers in the serum showed a hepatic effect; e.g. reduced bilirubin levels and albumin/globulin ratio. At post-natal day 200, random appearance of testicular atrophy was noted in exposed offspring, and limited changes in other reproductive parameters were observed. In conclusion, DINCH exposure appears to directly affect Leydig cell function, likely causing premature aging of the testes and impaired liver metabolic capacity. These effects might be attenuated with physiologic aging.
Collapse
Affiliation(s)
- Enrico Campioli
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sunghoon Lee
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Matthew Lau
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Lucas Marques
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Department of Medicine, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
- Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
45
|
Rheology of Green Plasticizer/Poly(vinyl chloride) Blends via Time–Temperature Superposition. Processes (Basel) 2017. [DOI: 10.3390/pr5030043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Groh KJ, Muncke J. In Vitro Toxicity Testing of Food Contact Materials: State-of-the-Art and Future Challenges. Compr Rev Food Sci Food Saf 2017; 16:1123-1150. [PMID: 33371616 DOI: 10.1111/1541-4337.12280] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/15/2017] [Accepted: 05/25/2017] [Indexed: 12/22/2022]
Abstract
Currently, toxicological testing of food contact materials (FCMs) is focused on single substances and their genotoxicity. However, people are exposed to mixtures of chemicals migrating from food contact articles (FCAs) into food, and toxic effects other than genotoxic damage may also be relevant. Since FCMs can be made of more than 8 thousand substances, assessing them one-by-one is very resource-consuming. Moreover, finished FCAs usually contain non-intentionally added substances (NIAS). NIAS toxicity can only be tested if a substance's chemical identity is known and if it is available as a pure chemical. Often, this is not the case. Nonetheless, regulations require safety assessments for all substances migrating from FCAs, including NIAS, hence new approaches to meet this legal obligation are needed. Testing the overall migrate or extract from an FCM/FCA is an option. Ideally, such an assessment would be performed by means of in vitro bioassays, as they are rapid and cost-effective. Here, we review the studies using in vitro bioassays to test toxicity of FCMs/FCAs. Three main categories of in vitro assays that have been applied include assays for cytotoxicity, genotoxicity, and endocrine disruption potential. In addition, we reviewed studies with small multicellular animal-based bioassays. Our overview shows that in vitro testing of FCMs is in principle feasible. We discuss future research needs and FCM-specific challenges. Sample preparation procedures need to be optimized and standardized. Further, the array of in vitro tests should be expanded to include those of highest relevance for the most prevalent human diseases of concern.
Collapse
Affiliation(s)
- Ksenia J Groh
- Food Packaging Forum Foundation, Staffelstrasse 8, CH-8045, Zürich, Switzerland
| | - Jane Muncke
- Food Packaging Forum Foundation, Staffelstrasse 8, CH-8045, Zürich, Switzerland
| |
Collapse
|
47
|
Abstract
Di(2-ethylhexyl) phthalate (DEHP) and other phthalates are ubiquitous environmental contaminants with endocrine disrupting properties. Two novel plasticizers, 1,4 butanediol dibenzoate (BDB) and dioctyl succinate (DOS), have been proposed as potential replacements. Both have desirable properties as plasticizers and minimal in vitro biological effects. Herein, we present an in utero and lactational exposure study comparing DEHP with BDB, DOS, and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), a commercial alternative. Timed-pregnant Sprague-Dawley rats were gavaged with vehicle or one of these chemicals at 30 or 300 mg/kg/day from gestational day 8 until postnatal day (PND) 21. The offspring were examined for effects on developmental and endocrine markers until PND 46. DEHP treatment (300 mg/kg) decreased heart weights in dams and induced a significant decrease in anogenital index and an increase in hemorrhagic testes and multinucleated gonocytes in PND 3 male pups. An increase in the incidence of hemorrhagic testes was also observed on PND 8 after exposure to DINCH (30 and 300 mg/kg). The only other effects observed were decreases in serum alanine transaminase and magnesium in BDB 30 exposed dams. These data suggest that both BDB and DOS are viable alternative plasticizers.
Collapse
|
48
|
Mínguez-Alarcón L, Souter I, Chiu YH, Williams PL, Ford JB, Ye X, Calafat AM, Hauser R. Urinary concentrations of cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester, a metabolite of the non-phthalate plasticizer di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), and markers of ovarian response among women attending a fertility center. ENVIRONMENTAL RESEARCH 2016; 151:595-600. [PMID: 27591839 PMCID: PMC5071161 DOI: 10.1016/j.envres.2016.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 05/04/2023]
Abstract
Di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), a non-phthalate plasticizer, was introduced commercially in 2002 as an alternative to ortho-phthalate esters because of its favorable toxicological profile. However, the potential health effects from DINCH exposure remain largely unknown. We explored the associations between urinary concentrations of metabolites of DINCH on markers of ovarian response among women undergoing in vitro fertilization (IVF) treatments. Between 2011 and 2015, 113 women enrolled a prospective cohort study at the Massachusetts General Hospital Fertility Center and provided up to two urine samples prior to oocyte retrieval. The urinary concentrations of two DINCH metabolites, cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester (MHiNCH) and cyclohexane-1,2-dicarboxylic acid monocarboxyisooctyl ester (MCOCH), were quantified by isotope dilution tandem mass spectrometry. We used generalized linear mixed models to evaluate the association between urinary metabolite concentrations and markers of ovarian response, accounting for multiple IVF cycles per woman via random intercepts. On average, women with detectable urinary MHiNCH concentrations, as compared to those below LOD, had a lower estradiol levels (-325 pmol/l, p=0.09) and number of retrieved oocytes (-1.8, p=0.08), with a stronger association among older women. However, urinary MHiNCH concentrations were unrelated to mature oocyte yield and endometrial wall thickness. In conclusion, we found suggestive negative associations between urinary MHiNCH concentrations and peak estradiol levels and number of total oocyte yields. This is the first study evaluating the effect of DINCH exposure on human reproductive health and raises the need for further experimental and epidemiological studies to better understand the potential effects of this chemical on health.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, United States.
| | - Irene Souter
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Yu-Han Chiu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Paige L Williams
- Department of Epidemiology, and Harvard T.H. Chan School of Public Health, Boston, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Xiaoyun Ye
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, United States
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, United States
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, United States; Department of Epidemiology, and Harvard T.H. Chan School of Public Health, Boston, United States; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| |
Collapse
|