1
|
Zhou GJ, Vehniäinen ER, Hiltunen M, Rigaud C, Taipale S. Effects of microplastics and natural particles on the aquatic invertebrate Daphnia magna under different dietary quality scenarios. Oecologia 2025; 207:81. [PMID: 40369333 DOI: 10.1007/s00442-025-05723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Natural and synthetic particles co-occur in the aquatic environment. However, little information is available about the effects of natural particles on freshwater animals and how these effects differ from those of synthetic particles, especially under the scenarios of decreasing dietary quality and increasing cyanobacteria in the aquatic environment. Therefore, this study evaluated apical and molecular effects of polypropylene (PP) microplastics (MPs) and three natural non-food particles (i.e., kaolin, peat, and sediment) on the freshwater invertebrate Daphnia magna fed either a green alga or a mixture of green alga and cyanobacterium. After the 21-d chronic exposure of 10 mg/L PP when using the green alga Acutodesmus sp. as diet, the size of D. magna was significantly reduced, and the molting time was significantly extended compared with the control. However, the chronic effects of PP were masked when the cyanobacterium Pseudanabaena sp. was added to their diet. The natural particles kaolin, peat, and sediment posed insignificant effects on D. magna regardless of dietary quality. The expression of molting-related genes (e.g., ecr-a) and oxidative stress-related genes (e.g., sod2) was significantly upregulated in D. magna with the exposure of both natural and synthetic particles. The predicted no-effect concentration of PP was derived as 0.025 mg/L, raising concerns relating to their toxicity and risks in the contaminated aquatic environment. This study will improve our understanding of the effects and risks of natural and synthetic particles in freshwater environments, as well as facilitate ecoenvironmental authorities to make informed decisions on the appropriate management of MPs.
Collapse
Affiliation(s)
- Guang-Jie Zhou
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China.
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Minna Hiltunen
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Cyril Rigaud
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Sami Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| |
Collapse
|
2
|
Thevarajan S, Sun P, Wang P, Xu J, Chen J, Tan Y, Zheng J, Tong M. Morphological and Molecular Diversity of Phytoplankton in Beibu Gulf, Northern South China Sea. Ecol Evol 2025; 15:e71207. [PMID: 40212923 PMCID: PMC11981879 DOI: 10.1002/ece3.71207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
The Beibu Gulf, a vital region for marine biodiversity and aquaculture, is increasingly affected by nutrient-driven ecological shifts in the phytoplankton community. This study combined morphology and eDNA metabarcoding (18S rDNA V4) to investigate phytoplankton diversity and environmental drivers during summer and winter in the Beibu Gulf. Metabarcoding detected 3.5 times more phytoplankton species, contributing to higher species diversity and richness than morphology. Metabarcoding identified 200 phytoplankton genera from eight phyla, while morphology only identified 49 genera from six phyla. Both methods revealed different dominant phytoplankton communities. Bacillariophyta and Haptophyta dominated the phytoplankton community based on morphology, in summer and winter, respectively; meanwhile, Dinophyta dominated in both seasons under metabarcoding due to their high 18S rDNA copy number. Altogether, 83 HAB and/or toxic species were identified, among which 10 were dominant, suggesting a high risk of HAB outbreaks in the Beibu Gulf. Phytoplankton abundance increased from south to north and west to east in both seasons, following the high input of dissolved inorganic nitrogen (DIN) and silicate. Excess ammonium input can promote the dominance of Scrippsiella trochoidea and Heterocapsa circularisquama, positioning them as emerging HAB species, while excess DIN caused extreme phosphorus limitation and favored the dominance of Phaeocystis globosa in the Beibu Gulf. This study provided a comprehensive description of the influence of environmental drivers on the phytoplankton community in the Beibu Gulf.
Collapse
Affiliation(s)
- Shalini Thevarajan
- Ocean CollegeZhejiang UniversityZhoushanChina
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Pengfei Sun
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Pengbin Wang
- Ocean CollegeZhejiang UniversityZhoushanChina
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of OceanographyMinistry of Natural ResourcesHangzhouChina
| | - Jie Xu
- Centre for Regional Oceans & Department of Ocean Science and Technology, Faculty of Science and TechnologyUniversity of MacauMacauChina
| | - Jie Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Yongyu Tan
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Junjie Zheng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of OceanographyMinistry of Natural ResourcesHangzhouChina
| | - Mengmeng Tong
- Ocean CollegeZhejiang UniversityZhoushanChina
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| |
Collapse
|
3
|
Su Y, Ma J, Wu Z, Guan B, Li K. Comparison of zooplankton assimilation of different carbon sources and fatty acids in a eutrophic lake and its restored basins. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123355. [PMID: 39550954 DOI: 10.1016/j.jenvman.2024.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
The ecological restoration of eutrophic lakes significantly influences the food composition of zooplankton. Zooplankton serve as the principal trophic link, transferring energy from phytoplankton to fish. Understanding the alterations in zooplankton carbon source compositions following ecological restoration and the seasonal variations in this relationship is crucial. This study employs stable carbon isotope (δ13C) and fatty acid (FA) analyses to investigate the seasonal changes in carbon source contributions to zooplankton between the restored and unrestored segments of Lake Xuanwu. Results from FA analysis reveal higher proportions of algal dietary markers in zooplankton FAs in both segments during spring and autumn. Summer exhibits a shift with zooplankton utilizing more bacterial FAs in the restored part and more algal FAs in the unrestored part. While approaching winter, zooplankton in the restored part consume more algal FAs but less in the unrestored part. Zooplankton FAs enriched in δ13C are associated with assimilation of more terrestrial carbon, contrasting with depleted δ13C when zooplankton relies more on phytoplankton. Isotope mixing models indicate a substantial contribution of terrestrial carbon to zooplankton carbon sources, especially in autumn (42.3% unrestored, 51.2% restored) and winter (41.4% unrestored, 36.8% restored), while phytoplankton has a higher contribution in summer (34.5% restored, 46.9% unrestored). These findings contribute to a comprehensive understanding of carbon cycling variations in food webs between eutrophic lakes and ecologically restored lakes.
Collapse
Affiliation(s)
- Yaling Su
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Jingjing Ma
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; Chongqing Three Gorges University, Chongqing, 404100, China
| | - Zhaoshi Wu
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Baohua Guan
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Kuanyi Li
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
4
|
Luo Y, Wang Y, Guo F, Kainz MJ, You J, Li F, Gao W, Shen X, Tao J, Zhang Y. Sources and fate of omega-3 polyunsaturated fatty acids in a highly eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172879. [PMID: 38697529 DOI: 10.1016/j.scitotenv.2024.172879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Omega-3 polyunsaturated fatty acids (ω3-PUFA) are central to the growth and reproduction of aquatic consumers. Dissolved nutrients in aquatic ecosystems strongly affect algal taxonomic composition and thus the production and transfer of specific ω3-PUFA to consumers at higher trophic levels. However, most studies were conducted in nutrient-poor, oligotrophic lakes, leading to an insufficient understanding of how water nutrients affect algal ω3-PUFA and their trophic transfer in consumers in highly eutrophic lakes. We conducted a field investigation in a highly eutrophic lake and collected basal food sources (phytoplankton, periphyton and macrophytes) and aquatic consumers (invertebrates, zooplankton and fish), and measured their fatty acid (FA) composition. Our results showed that periphyton and phytoplankton were both important sources of ω3-PUFA supporting the highly eutrophic lake food web. High water nutrient levels led to low ω3-PUFA levels in phytoplankton and periphyton, resulting in decreased nutritional quality. Consequently, ω3-PUFA of invertebrates and zooplankton reflected variations in ω3-PUFA of phytoplankton and periphyton, respectively. The ω3-PUFA levels of fish decreased as phytoplankton and periphyton ω3-PUFA decreased. Among fish, the Redfin Culter (Cultrichthys erythropterus) and Bar Cheek Goby (Rhinogobius giurinus) exhibited significantly higher levels of EPA and DHA compared to the Pond Loach (Misgurnus anguillicaudatus), which may have been caused by their different feeding modes. Decreases in the ω3-PUFA levels of basal food sources may be one of the causes leading to the reduction of trophic links in aquatic food webs. Our study elucidated the sources and fate of ω3-PUFA in highly eutrophic lakes, complemented previous studies in oligo- and mesotrophic lakes, and emphasized the role of high-quality food sources. Our results offer new perspectives for the conservation and management of highly eutrophic lake ecosystems.
Collapse
Affiliation(s)
- Yiduo Luo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fen Guo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Lunz am See, Austria; Danube University Krems, Research Lab of Aquatic Ecosystem Research and -Health, Krems, Austria
| | - Jiaqi You
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Gao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaomei Shen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Juan Tao
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Yan K, Guo F, Kainz MJ, Bunn SE, Li F, Gao W, Ouyang X, Zhang Y. Increasing water nutrient reduces the availability of high-quality food resources for aquatic consumers and consequently simplifies river food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172706. [PMID: 38657799 DOI: 10.1016/j.scitotenv.2024.172706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
While eutrophication has led to serious habitat degradation and biotic shifts in freshwater ecosystems, most current studies have focused on changes in community assemblages, with few considering the effect of eutrophication on food webs. We conducted a field study in subtropical headwater streams with a gradient of water nutrient levels to examine the effect of increasing water nutrients on food webs by using the long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA) as a measure of the nutritional quality of food. Basal food resources (macrophytes, submerged leaf litter, and periphyton), and aquatic consumers (macroinvertebrates and fish) were collected, and their fatty acid (FA) profiles were analyzed. Our results showed that periphyton was the dominant source of EPA for macroinvertebrates and fish, and a high-quality resource for consumers. As water nutrient concentrations increased, nutritional quality of periphyton significantly decreased and, in turn, the correlation between FA profiles of periphyton and macroinvertebrates declined. However, periphyton FA profiles did not account for the variability of fish FA, which may be induced by the increasing proportions of omnivorous fish in eutrophic streams that derived EPA from other sources. Further, the reduced periphyton EPA was associated with decreased trophic links and simplified stream food webs. Our study highlights the importance of high-quality food resources for aquatic food webs as water nutrients increased in stream ecosystems and provides a nutritional perspective to understand the mechanisms how eutrophication affects aquatic ecosystems.
Collapse
Affiliation(s)
- Keheng Yan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China.
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Lunz am See, Austria; Danube University Krems, Aquatic Ecosystem Research and -Health, 3500 Krems, Austria
| | - Stuart E Bunn
- Australian Rivers Institute, Griffith University, Nathan, Qld, Australia
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China
| | - Xiaoguang Ouyang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China
| |
Collapse
|
6
|
Guo Q, Wang D, Ma F, Fang M, Zhang L, Li P, Yu L. MOF-derived nanozyme CuOx@C and its application for cascade colorimetric detection of phytosterols. Mikrochim Acta 2024; 191:312. [PMID: 38717599 DOI: 10.1007/s00604-024-06389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.
Collapse
Affiliation(s)
- Qi Guo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Mengxue Fang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
- Zhejiang Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China.
| |
Collapse
|
7
|
Wu Y, Peng C, Li G, He F, Huang L, Sun X, Wu S. Integrated evaluation of the impact of water diversion on water quality index and phytoplankton assemblages of eutrophic lake: A case study of Yilong Lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120707. [PMID: 38554455 DOI: 10.1016/j.jenvman.2024.120707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Water diversion has been widely utilized to enhance lake water quality and mitigate cyanobacterial blooms. However, previous studies have mainly focused on investigating the effects of water diversion on water quality or aquatic ecological health. Consequently, there is limited research investigating the combined impact of water diversion on the water quality and the ecological health of eutrophic lakes, and whether the WQI and phytoplankton assemblages demonstrate similar patterns following water diversion. In this study, the effects of water diversion on the ecosystem health of eutrophic lakes were comprehensively evaluated based on the WQI indices and phytoplankton assemblages during the NWDP-21 and WDP-22. The results showed that the annual mean of WQI increased from 52.02 to 54.36 after water diversion, which improved the water quality of the lake, especially NH3-N and TN decreased by 58.6% and 15.2%, respectively. The phytoplankton assemblages changed significantly before and after water diversion, and we observed that the total biomass of phytoplankton decreased by 12.3% and phytoplankton diversity indices (Shannon-Wiener diversity, Pielou evenness, and Simpson index) increased by 8.6%-8.9% after water diversion, with an improvement in the connectivity and stability of the phytoplankton. Notably, enhanced adaptations of rare sub-communities for resource use in water diversion environments, and water diversion inhibited the dispersal ability of dominant functional groups, and the effects of hydrological disturbances on the structure of phytoplankton assemblage favored the ecological health of eutrophic lakes. VPA analysis further reveals that water diversion alters the drivers of phytoplankton functional group biomass and phytoplankton diversity. The results of the PLS-PM analysis clarify that water diversion indirectly impacts the total phytoplankton biomass and phytoplankton diversity primarily by modifying light availability. Significant correlations are observed between the dominant functional groups biomass and diversity indices of WQI. The trends in changes observed in water quality indices and phytoplankton following water diversion align with the evaluation of water ecological health. This study provides valuable guidance for the ecological management of the diversion project in Yilong Lake and serves as a reference for similar projects in other lakes.
Collapse
Affiliation(s)
- Yundong Wu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| | - Genbao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming 650228, PR China.
| | - Feng He
- Kunming Dianchi and Plateau Lakes Institute, Kunming 650228, PR China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming 650228, PR China
| | - Licheng Huang
- Kunming Dianchi and Plateau Lakes Institute, Kunming 650228, PR China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming 650228, PR China
| | - Xiuqiong Sun
- Bureau of Yilong Lake Administration, Shiping 662200, PR China
| | - Sirui Wu
- Bureau of Yilong Lake Administration, Shiping 662200, PR China
| |
Collapse
|
8
|
Zhang Y, Feng K, Song D, Wang Q, Ye S, Liu J, Kainz MJ. Dietary fatty acid transfer in pelagic food webs across trophic and climatic differences of Chinese lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169562. [PMID: 38142998 DOI: 10.1016/j.scitotenv.2023.169562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
In eutrophic lake ecosystems, cyanobacteria typically lead to unbalanced phytoplankton community structure and low dietary quality for consumers at higher trophic levels. However, it still remains poorly understood how zooplankton manage to respond to seasonal and spatial differences in lake trophic gradients and temperature factors to retain highly required dietary nutrients from phytoplankton. In this field study, we investigated seston and different size classes of zooplankton of temperate and subtropical large lakes of different trophic conditions in China. We used fatty acids (FA) as dietary nutrients from seston to zooplankton to investigate how eutrophication affects the FA composition of various zooplankton size classes. This study revealed a curvilinear relationship between total phosphorus (TP) and polyunsaturated fatty acids (PUFA) contents of edible phytoplankton ("seston") across 3 seasons and 2 climatic areas. The PUFA content of seston increased until mesotrophic lake conditions (TP: 11-20 μg L-1), after which the dietary provision of PUFA for respective consumers declined. Seston FA, rather than trophic condition or water temperature, primarily predicted changes in zooplankton FA, while this predictive power decreased with zooplankton size. Despite increasing eutrophic lake conditions, LC-PUFA content of the zooplankton consistently increased per unit biomass. The results indicate that the nutritional value of phytoplankton was highest in mesotrophic lakes, and lake zooplankton selectively increased their LC-PUFA retention with body size and/or were able to convert dietary FA endogenously to meet their size-specific FA demands, independent of lake location or time (season) or the measured trophic condition of the lake (from oligo- to eutrophic).
Collapse
Affiliation(s)
- Yinzhe Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China; WasserCluster Lunz - Biologische Station, Dr. Carl Kupelwieser Promenade 5, A-3293 Lunz am See, Austria
| | - Kai Feng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Song
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qidong Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China
| | - Shaowen Ye
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China
| | - Jiashou Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Dr. Carl Kupelwieser Promenade 5, A-3293 Lunz am See, Austria; Danube University Krems, Research Lab for Aquatic Ecosystem Research and Ecosystem Health, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria
| |
Collapse
|
9
|
Abonyi A, Fornberg J, Rasconi S, Ptacnik R, Kainz MJ, Lafferty KD. The chytrid insurance hypothesis: integrating parasitic chytrids into a biodiversity-ecosystem functioning framework for phytoplankton-zooplankton population dynamics. Oecologia 2024; 204:279-288. [PMID: 38366067 PMCID: PMC10907492 DOI: 10.1007/s00442-024-05519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
In temperate lakes, eutrophication and warm temperatures can promote cyanobacteria blooms that reduce water quality and impair food-chain support. Although parasitic chytrids of phytoplankton might compete with zooplankton, they also indirectly support zooplankton populations through the "mycoloop", which helps move energy and essential dietary molecules from inedible phytoplankton to zooplankton. Here, we consider how the mycoloop might fit into the biodiversity-ecosystem functioning (BEF) framework. BEF considers how more diverse communities can benefit ecosystem functions like zooplankton production. Chytrids are themselves part of pelagic food webs and they directly contribute to zooplankton diets through spore production and by increasing host edibility. The additional way that chytrids might support BEF is if they engage in "kill-the-winner" dynamics. In contrast to grazers, which result in "eat-the-edible" dynamics, kill-the-winner dynamics can occur for host-specific infectious diseases that control the abundance of dominant (in this case inedible) hosts and thus limit the competitive exclusion of poorer (in this case edible) competitors. Thus, if phytoplankton diversity provides functions, and chytrids support algal diversity, chytrids could indirectly favour edible phytoplankton. All three mechanisms are linked to diversity and therefore provide some "insurance" for zooplankton production against the impacts of eutrophication and warming. In our perspective piece, we explore evidence for the chytrid insurance hypothesis, identify exceptions and knowledge gaps, and outline future research directions.
Collapse
Affiliation(s)
- András Abonyi
- WasserCluster Lunz-Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293, Lunz Am See, Austria.
- MTA-ÖK Lendület "Momentum" Fluvial Ecology Research Group, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina Street 29, 1113, Budapest, Hungary.
| | - Johanna Fornberg
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Serena Rasconi
- Université Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-Les-Bains, France
| | - Robert Ptacnik
- WasserCluster Lunz-Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293, Lunz Am See, Austria
| | - Martin J Kainz
- WasserCluster Lunz-Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293, Lunz Am See, Austria
- Donau-Universität Krems, Dr. Karl Dorrek Straße 30, 3500, Krems, Austria
| | - Kevin D Lafferty
- U.S. Geological Survey, Western Ecological Research Center, at Marine Science Institute, UC Santa Barbara, Santa Barbara, CA, 93106-6150, USA
| |
Collapse
|
10
|
Yan K, Guo F, Kainz MJ, Li F, Gao W, Bunn SE, Zhang Y. The importance of omega-3 polyunsaturated fatty acids as high-quality food in freshwater ecosystems with implications of global change. Biol Rev Camb Philos Soc 2024; 99:200-218. [PMID: 37724488 DOI: 10.1111/brv.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Traditionally, trophic ecology research on aquatic ecosystems has focused more on the quantity of dietary energy flow within food webs rather than food quality and its effects on organisms at various trophic levels. Recent studies emphasize that food quality is central to consumer growth and reproduction, and the importance of food quality for aquatic ecosystems has become increasingly well recognized. It is timely to synthesise these findings and identify potential future research directions. We conducted a systematic review of omega-3 polyunsaturated fatty acids (ω3-PUFAs) as a crucial component of high-quality food sources in freshwater ecosystems to evaluate their impact on a variety of consumers, and explore the effects of global change on these high-quality food sources and their transfer to higher trophic consumers within and across ecosystems. In freshwater ecosystems, algae rich in ω3 long-chain PUFAs, such as diatoms, dinoflagellates and cryptophytes, represent important high-quality food sources for consumers, whereas cyanobacteria, green algae, terrestrial vascular plants and macrophytes low in ω3 long-chain PUFAs are low-quality food sources. High-quality ω3-PUFA-containing food sources usually lead to increased growth and reproduction of aquatic consumers, e.g. benthic invertebrates, zooplankton and fish, and also provide ω3 long-chain PUFAs to riparian terrestrial consumers via emergent aquatic insects. Consumers feeding on high-quality ω3-PUFA-containing foods in turn represent high-quality food for their own predators. However, the ω3-PUFA content of food sources is sensitive to global environmental changes. Warming, eutrophication, increased light intensity (e.g. from loss of riparian shading), and pollutants potentially inhibit the synthesis of algal ω3-PUFAs while at the same time promoting the growth of lower-quality foods, such as cyanobacteria and green algae. These factors combined could lead to a significant reduction in the availability of ω3-PUFAs for consumers and constrain their overall fitness. Although the effect of individual environmental factors on high-quality ω3-PUFA-containing food sources has been investigated, multiple environmental factors (e.g. climate change, human activities, pollution) will act in combination and any synergistic effects on aquatic food webs remain unclear. Identifying the sources and fate of ω3-PUFAs within and across ecosystems could represent an important approach to understand the impact of multiple environmental factors on trophic relationships and the implications for populations of freshwater and riparian consumers. Maintaining the availability of high-quality ω3-PUFA-containing food sources may also be key to mitigating freshwater biodiversity loss due to global change.
Collapse
Affiliation(s)
- Keheng Yan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Lunz am See, 3293, Austria
- Danube University Krems, Research Lab for Aquatic Ecosystems and Health, Krems, 3500, Austria
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Stuart E Bunn
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
11
|
Verma K, Thattaramppilly RM, Manisha M, Jayakumar S, Marigoudar SR, Pranesh AT, Rao L. Determination of degradation/reaction rate for surface water quality of recycled water using Lake2K model for large-scale water recycling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120207-120224. [PMID: 37936042 DOI: 10.1007/s11356-023-30623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
The depletion of groundwater resources in the water-stressed regions has led to the overuse of surface water reservoirs. Recharging groundwater by rejuvenating dried surface reservoirs using recycled water is a new sustainable solution. To ensure the prevention of groundwater contamination and associated health risks (as recycled water is used), it is crucial to assess the surface reservoir water quality. The study for the first time suggests the Lake2K model, a one-dimensional mechanistic mass-balance model, to simulate the changes in water quality in a series of man-made surface water reservoirs where recycled water flows under an indirect groundwater recharge scheme (soil aquifer treatment system). The model was developed, calibrated, and validated using field observations to estimate degradation/reaction rate constants for various water quality parameters. The observed average degradation/reaction rate constants for parameters including ammonia-N, nitrate-N, total nitrogen, total organic carbon, and organic phosphorous were 0.043 day-1, 0.04 day-1, 0.043 day-1, 0.055 day-1, and 0.056 day-1, respectively, which were found to be relatively high compared to existing literature, indicating a greater degradation of these parameters in warmer climates. The results showed that the water quality improved significantly as the water progressed through the reservoirs, aligning with field observations. Additionally, the simulated seasonal variations revealed that the maximum growth rate of phytoplankton occurred during July, August, and September for each reservoir, while the nutrient pool (nitrate-N and orthophosphates) experienced the greatest depletion during this growth period. These findings shed light on the dynamics of surface water quality in regions facing water scarcity and contribute to the development of sustainable groundwater management strategies.
Collapse
Affiliation(s)
- Kavita Verma
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India.
| | | | - Manjari Manisha
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - Shwetha Jayakumar
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | | | | | - Lakshminarayana Rao
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
12
|
Rigaud C, Kahilainen KK, Calderini ML, Pilecky M, Kainz MJ, Tiirola M, Taipale SJ. Preparing for the future offspring: European perch (Perca fluviatilis) biosynthesis of physiologically required fatty acids for the gonads happens already in the autumn. Oecologia 2023; 203:477-489. [PMID: 37975885 PMCID: PMC10684423 DOI: 10.1007/s00442-023-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Long-chain polyunsaturated fatty acids (PUFA) are critical for reproduction and thermal adaptation. Year-round variability in the expression of fads2 (fatty acid desaturase 2) in the liver of European perch (Perca fluviatilis) in a boreal lake was tested in relation to individual variation in size, sex, and maturity, together with stable isotopes values as well as fatty acids (FA) content in different tissues and prey items. ARA and DHA primary production was restricted to the summer months, however, perch required larger amounts of these PUFA during winter, as their ARA and DHA muscle content was higher compared to summer. The expression of fads2 in perch liver increased during winter and was higher in mature females. Mature females stored DHA in their gonads already in late summer and autumn, long before the upcoming spring spawning period in May. Lower δ13CDHA values in the gonads in September suggest that these females actively synthesized DHA as part of this reproductive investment. Lower δ13CARA values in the liver of all individuals during winter suggest that perch were synthesizing essential FA to help cope with over-wintering conditions. Perch seem able to modulate its biosynthesis of physiologically required PUFA in situations of stress (fasting or cold temperatures) or in situations of high energetic demand (gonadal development). Biosynthesis of physiologically required PUFA may be an important part of survival and reproduction in aquatic food webs with long cold periods.
Collapse
Affiliation(s)
- Cyril Rigaud
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | | | - Marco L Calderini
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Matthias Pilecky
- WasserCluster Lunz-Inter-university Center for Aquatic Ecosystem Studies, Lunz am See, Austria
- Danube University Krems, Research Lab of Aquatic Ecosystem Research and Health, Krems, Austria
| | - Martin J Kainz
- WasserCluster Lunz-Inter-university Center for Aquatic Ecosystem Studies, Lunz am See, Austria
- Danube University Krems, Research Lab of Aquatic Ecosystem Research and Health, Krems, Austria
| | - Marja Tiirola
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sami J Taipale
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
13
|
Yan X, Chen X, Zhang S, Muneer MA, Xu X, Ma C, Cai Y, Cui Z, Chen X, Wu L, Zhang F. Fertilization as the most critical factor affecting yield response and agronomic efficiency of phosphorus in Chinese rice production: evidence from multi-location field trials. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7816-7828. [PMID: 37450651 DOI: 10.1002/jsfa.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/08/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Efficient utilization of phosphorus (P) has been a major challenge for sustainable agriculture. However, the responses of fertilizer rate, region, soil properties, cropping systems and genotypes to P have not been investigated comprehensively and systematically. RESULTS A comprehensive analysis of 9863 fertilizer-P experiments on rice cultivation in China showed that rice yield increased first and then fell down with the addition of P fertilizer, and the highest yield of 7963 kg ha-1 was observed under 100% P treatment. Under 100% P treatment, the yield response of applied P (YRP ) and agronomic efficiency of applied P (AEP ) were 12.8% and 30.1 kg ha-1 , respectively. Lower soil pH (< 5.5) and organic matter (< 30.0 g kg-1 ) were associated with lower YRP and AEP . By contrast, soil available P < 25.0 mg kg-1 resulted in decreased YRP (15.3 to 11.4%) and AEP (32.3 kg kg-1 to 26.2 kg kg-1 ), whereas soil available P > 25.0 mg kg-1 maintained the relatively stable YRP and AEP . Also, the YRP and AEP were significantly higher for single-cropping rice compared to other cropping systems. Moreover, the rice genotypes such as 'Longdun', 'Kendao' and 'Jigeng' had higher YRP and AEP than the average value. Overall, the fertilizer-P rate was the primary factor affecting YRP and AEP , and the recommended P fertilizer rate can be reduced by 9-21 kg P ha-1 compared to existing expert recommendations. CONCLUSION The present study highlights the role of fertilizer-P rate in maximizing the YRP and AEP , thereby providing a strong basis for future fertilizer management in rice cultivation systems. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaojun Yan
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohui Chen
- Research Centre of Phosphorous Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Siwen Zhang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuzhu Xu
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changcheng Ma
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyang Cai
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenling Cui
- National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Liangquan Wu
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fusuo Zhang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Research Centre of Phosphorous Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, College of Resources and Environment, Anhui Agricultural University, Hefei, China
- National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Ge Y, Gu X, Zeng Q, Mao Z, Chen H, Yang H. Development and testing of a planktonic index of biotic integrity (P-IBI) for Lake Fuxian, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105873-105884. [PMID: 37723388 DOI: 10.1007/s11356-023-29818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Lake Fuxian has the largest reserves of high-quality water resources in China, and understanding its ecological health status is the basis of its environmental protection. Based on a seasonal field investigation of the plankton community, we established a planktonic index of biotic integrity (P-IBI) evaluation system to assess the lake's ecosystem health. The biological integrity of Lake Fuxian was relatively good during winter and spring, but gradually deteriorated from summer to autumn. Areas with poor biological integrity were mainly distributed near tourist attractions along the lake's west coast. Redundancy analysis (RDA) was performed to explore the relationships between the P-IBI, its selected indicators, and the environmental variables. Water temperature (WT), pH, ammonia nitrogen (NH3-N), and dissolved oxygen (DO) significantly influenced the P-IBI and its selected indicators. NH3-N and DO were significantly positively correlated with the P-IBI, indicating that it could be used as a water quality indicator to indirectly reflect lake biological integrity. We demonstrated that the P-IBI can effectively reflect temporal and spatial variations of biological integrity and could be used as a potential tool to evaluate Lake Fuxian ecosystem health.
Collapse
Affiliation(s)
- You Ge
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Kozak N, Kahilainen KK, Pakkanen HK, Hayden B, Østbye K, Taipale SJ. Mercury and amino acid content relations in northern pike (Esox lucius) in subarctic lakes along a climate-productivity gradient. ENVIRONMENTAL RESEARCH 2023; 233:116511. [PMID: 37369304 DOI: 10.1016/j.envres.2023.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Mercury is a highly toxic element for consumers, but its relation to amino acids and physiology of wild fish is not well known. The main aim of this study was to evaluate how total mercury content (THg) of northern pike (Esox lucius) is related to amino acids and potentially important environmental and biological factors along a climate-productivity gradient of ten subarctic lakes. Linear regression between THg and sixteen amino acids content [nmol mg-1 dry weight] from white dorsal muscle of pike from these lakes were tested. Lastly, a general linear model (GLM) for age-corrected THg was used to test which factors are significantly related to mercury content of pike. There was a positive relationship between THg and proline. Seven out of sixteen analysed amino acids (histidine, threonine, arginine, serine, glutamic acid, glycine, and aspartic acid) were significantly negatively related to warmer and more productive lakes, while THg showed a positive relationship. GLM model indicated higher THg was found in higher trophic level pike with lower cysteine content and inhabiting warmer and more productive lakes with larger catchment containing substantial proportion of peatland area. In general, THg was not only related to the biological and environmental variables but also to amino acid content.
Collapse
Affiliation(s)
- Natalia Kozak
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad Veg 80, NO-2480, Koppang, Norway.
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900, Lammi, Finland; Kilpisjärvi Biological Station, University of Helsinki, Käsivarrentie 14622, FI-99490, Kilpisjärvi, Finland
| | - Hannu K Pakkanen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O.Box 35 (YA), FI-40014, Jyväskylä, Finland
| | - Brian Hayden
- Biology Department, Canadian Rivers Institute, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Kjartan Østbye
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad Veg 80, NO-2480, Koppang, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O.Box 1066, Blindern, NO-0316, Oslo, Norway
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O.Box 35 (YA), FI-40014, Jyväskylä, Finland
| |
Collapse
|
16
|
Calderini ML, Pääkkönen S, Salmi P, Peltomaa E, Taipale SJ. Temperature, phosphorus and species composition will all influence phytoplankton production and content of polyunsaturated fatty acids. JOURNAL OF PLANKTON RESEARCH 2023; 45:625-635. [PMID: 37483907 PMCID: PMC10361808 DOI: 10.1093/plankt/fbad026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/08/2023] [Indexed: 07/25/2023]
Abstract
Temperature increases driven by climate change are expected to decrease the availability of polyunsaturated fatty acids in lakes worldwide. Nevertheless, a comprehensive understanding of the joint effects of lake trophic status, nutrient dynamics and warming on the availability of these biomolecules is lacking. Here, we conducted a laboratory experiment to study how warming (18-23°C) interacts with phosphorus (0.65-2.58 μM) to affect phytoplankton growth and their production of polyunsaturated fatty acids. We included 10 species belonging to the groups diatoms, golden algae, cyanobacteria, green algae, cryptophytes and dinoflagellates. Our results show that both temperature and phosphorus will boost phytoplankton growth, especially stimulating certain cyanobacteria species (Microcystis sp.). Temperature and phosphorus had opposing effects on polyunsaturated fatty acid proportion, but responses are largely dependent on species. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) synthesizing species did not clearly support the idea that warming decreases the production or content of these essential polyunsaturated fatty acids. Our results suggest that warming may have different effects on the polyunsaturated fatty acid availability in lakes with different nutrient levels, and that different species within the same phytoplankton group can have contrasting responses to warming. Therefore, we conclude that future production of EPA and DHA is mainly determined by species composition.
Collapse
Affiliation(s)
| | - Salli Pääkkönen
- Spectral Imaging Laboratory, Faculty of Information Technology, University of Jyväskylä, P.O. BOX 35 FI-40014, Jyväskylä Finland
| | - Pauliina Salmi
- Spectral Imaging Laboratory, Faculty of Information Technology, University of Jyväskylä, P.O. BOX 35 FI-40014, Jyväskylä Finland
| | - Elina Peltomaa
- Department of Forest Sciences, University of Helsinki, P.O. Box 27 FI-00014, Helsinki, Finland
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. BOX 35 FI-40014, Jyväskylä, Finland
| |
Collapse
|
17
|
Peltomaa E, Asikainen H, Blomster J, Pakkanen H, Rigaud C, Salmi P, Taipale S. Phytoplankton group identification with chemotaxonomic biomarkers: In combination they do better. PHYTOCHEMISTRY 2023; 209:113624. [PMID: 36871900 DOI: 10.1016/j.phytochem.2023.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Chemotaxonomic biomarkers are needed to monitor and evaluate the nutritional quality of phytoplankton communities. The biomolecules produced by different phytoplankton species do not always follow genetic phylogeny. Therefore, we analyzed fatty acids, sterols, and carotenoids from 57 freshwater phytoplankton strains to evaluate the usability of these biomolecules as chemotaxonomic biomarkers. We found 29 fatty acids, 34 sterols, and 26 carotenoids in our samples. The strains were grouped into cryptomonads, cyanobacteria, diatoms, dinoflagellates, golden algae, green algae, and raphidophytes, and the phytoplankton group explained 61%, 54%, and 89% of the variability of fatty acids, sterols, and carotenoids, respectively. Fatty acid and carotenoid profiles distinguished most phytoplankton groups, but not flawlessly. For example, fatty acids could not distinguish golden algae and cryptomonads, whereas carotenoids did not separate diatoms and golden algae. The sterol composition was heterogeneous but seemed to be useful for distinguishing different genera within a phytoplankton group. The chemotaxonomy biomarkers yielded optimal genetic phylogeny when the fatty acids, sterols, and carotenoids were used together in multivariate statistical analysis. Our results suggest that the accuracy of phytoplankton composition modeling could be enhanced by combining these three biomolecule groups.
Collapse
Affiliation(s)
- E Peltomaa
- Department of Forest Sciences, Latokartanonkaari 7, FI-00014, University of Helsinki, Finland.
| | - H Asikainen
- Department of Biological and Environmental Science, Survontie 9 C, FI-40014, University of Jyväskylä, Finland.
| | - J Blomster
- Ecosystems and Environment Research Group, Faculty of Biological and Environmental Sciences, Viikinkaari 1, FI-00014, University of Helsinki, Finland.
| | - H Pakkanen
- Department of Biological and Environmental Science, Survontie 9 C, FI-40014, University of Jyväskylä, Finland.
| | - C Rigaud
- Department of Biological and Environmental Science, Survontie 9 C, FI-40014, University of Jyväskylä, Finland.
| | - P Salmi
- Spectral Imaging Laboratory, Faculty of Information Technology, Mattilanniemi 2, FI-40014, University of Jyväskylä, Finland.
| | - S Taipale
- Department of Biological and Environmental Science, Survontie 9 C, FI-40014, University of Jyväskylä, Finland.
| |
Collapse
|
18
|
Chong JWR, Khoo KS, Chew KW, Ting HY, Show PL. Trends in digital image processing of isolated microalgae by incorporating classification algorithm. Biotechnol Adv 2023; 63:108095. [PMID: 36608745 DOI: 10.1016/j.biotechadv.2023.108095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Identification of microalgae species is of importance due to the uprising of harmful algae blooms affecting both the aquatic habitat and human health. Despite this occurence, microalgae have been identified as a green biomass and alternative source due to its promising bioactive compounds accumulation that play a significant role in many industrial applications. Recently, microalgae species identification has been conducted through DNA analysis and various microscopy techniques such as light, scanning electron, transmission electron, and atomic force -microscopy. The aforementioned procedures have encouraged researchers to consider alternate ways due to limitations such as costly validation, requiring skilled taxonomists, prolonged analysis, and low accuracy. This review highlights the potential innovations in digital microscopy with the incorporation of both hardware and software that can produce a reliable recognition, detection, enumeration, and real-time acquisition of microalgae species. Several steps such as image acquisition, processing, feature extraction, and selection are discussed, for the purpose of generating high image quality by removing unwanted artifacts and noise from the background. These steps of identification of microalgae species is performed by reliable image classification through machine learning as well as deep learning algorithms such as artificial neural networks, support vector machines, and convolutional neural networks. Overall, this review provides comprehensive insights into numerous possibilities of microalgae image identification, image pre-processing, and machine learning techniques to address the challenges in developing a robust digital classification tool for the future.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Huong-Yong Ting
- Drone Research and Application Centre, University of Technology Sarawak, No.1, Jalan Universiti, 96000 Sibu, Sarawak, Malaysia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
19
|
Satya ADM, Cheah WY, Yazdi SK, Cheng YS, Khoo KS, Vo DVN, Bui XD, Vithanage M, Show PL. Progress on microalgae cultivation in wastewater for bioremediation and circular bioeconomy. ENVIRONMENTAL RESEARCH 2023; 218:114948. [PMID: 36455634 DOI: 10.1016/j.envres.2022.114948] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.
Collapse
Affiliation(s)
- Azalea Dyah Maysarah Satya
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Sara Kazemi Yazdi
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yu-Shen Cheng
- College of Future, National Yunlin University of Science and Technology, 123 University Road Section 3, Douliou, 64002, Yunlin, Taiwan; Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road Section 3, Douliou, 64002, Yunlin, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Xuan Dong Bui
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang st., 550 000, Danang, Viet Nam
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
20
|
Thomas PK, Kunze C, Van de Waal DB, Hillebrand H, Striebel M. Elemental and biochemical nutrient limitation of zooplankton: A meta-analysis. Ecol Lett 2022; 25:2776-2792. [PMID: 36223425 DOI: 10.1111/ele.14125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Primary consumers in aquatic ecosystems are frequently limited by the quality of their food, often expressed as phytoplankton elemental and biochemical composition. However, the effects of these food quality indicators vary across studies, and we lack an integrated understanding of how elemental (e.g. nitrogen, phosphorus) and biochemical (e.g. fatty acid, sterol) limitations interactively influence aquatic food webs. Here, we present the results of a meta-analysis using >100 experimental studies, confirming that limitation by N, P, fatty acids, and sterols all have significant negative effects on zooplankton performance. However, effects varied by grazer response (growth vs. reproduction), specific manipulation, and across taxa. While P limitation had greater effects on zooplankton growth than fatty acids overall, P and fatty acid limitation had equal effects on reproduction. Furthermore, we show that: nutrient co-limitation in zooplankton is strong; effects of essential fatty acid limitation depend on P availability; indirect effects induced by P limitation exceed direct effects of mineral P limitation; and effects of nutrient amendments using laboratory phytoplankton isolates exceed those using natural field communities. Our meta-analysis reconciles contrasting views about the role of various food quality indicators, and their interactions, for zooplankton performance, and provides a mechanistic understanding of trophic transfer in aquatic environments.
Collapse
Affiliation(s)
- Patrick K Thomas
- Plankton Ecology Lab, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Charlotte Kunze
- Plankton Ecology Lab, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Helmut Hillebrand
- Plankton Ecology Lab, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany.,Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany.,Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Maren Striebel
- Plankton Ecology Lab, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
| |
Collapse
|
21
|
Phytoplankton Community in Relation to Environmental Variables in the Tidal Mangrove Creeks of the Pasur River Estuary, Bangladesh. CONSERVATION 2022. [DOI: 10.3390/conservation2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Pasur River estuary (PRE) provides vital fishery resources and supports millions of livelihoods in the southwestern coastal region of Bangladesh. Our research focused on phytoplankton community assemblages, alpha diversity indices, and the seasonal succession of major phytoplankton species in relation to physicochemical parameters in the tidal mangrove creeks of the Pasur River estuary. Spatial and temporal variations were assessed by water sampling at 17 stations in the study area from January to December 2019. The mean salinity level in the tidal mangrove creeks of the PRE was significantly (p < 0.05) higher during the dry season than during the wet season. Spatially, no significant variation (p > 0.05) was observed in the dissolved inorganic nitrogen and dissolved inorganic phosphorus between PRE and mangrove creeks, but temporally, the variables varied significantly (p < 0.05). Spatially, no significant variation (p > 0.05) was observed in the alpha diversity of the phytoplankton community but significantly (p < 0.05) varied temporally. Blue-green algae became dominant in the oligohaline conditions during the wet season, while diatoms were dominant during the dry season which severely depleted dissolved silica. In terms of phytoplankton species diversity, our study classifies the study areas as highly diversified zones. Phytoplankton succession from diatoms (dry season) to blue-green algae (wet season) is attributed to the changes in the physicochemical and nutrient parameters depending on seasonal environmental parameter fluctuations. This study illustrated that phytoplankton diversity and density varied with the degrees of habitat and seasonal changes, implying the potential impacts of anthropogenic activities and natural causes on their community structure in tropical estuaries and mangrove creeks.
Collapse
|
22
|
Hu X, Hu M, Zhu Y, Wang G, Xue B, Shrestha S. Phytoplankton community variation and ecological health assessment for impounded lakes along the eastern route of China's South-to-North Water Diversion Project. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115561. [PMID: 35738123 DOI: 10.1016/j.jenvman.2022.115561] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Interbasin water diversion projects have been proven to effectively alleviate water resource shortages in areas along water diversion lines, but few studies have focused on ecological health in impounded lakes compared with research on water quality and pollutants. Herein, monitoring data were collected during the nonwater diversion period (NWDP) and the water diversion period (WDP) from 2018 to 2019, and the index of biological integrity (IBI) method based on phytoplankton communities was used to evaluate the ecological health of the impounded lakes (Nansi Lake and Dongping Lake) along the eastern route of the South-to-North Water Diversion Project. The results demonstrated that water diversion improved the water quality of the impounded lakes during the WDP, especially total nitrogen and ammonia nitrogen. Meanwhile, the water diversion affected the phytoplankton community structure and diversity, and network analysis further revealed water diversion could be beneficial to the ecological health of impounded lakes. Furthermore, the P-IBI showed that the overall ecological health assessment was "good" during the WDP. Water diversion substantially improved the ecological health status and stability of the impounded lakes during the dry season. Finally, the direct correlations between the water quality parameters and the P-IBI were weak, and water quality parameters could indirectly affect the P-IBI by changing the phytoplankton community structure. These findings will enhance our understanding of the ecological health of the impounded lakes of the South-to-North Water Diversion Project. Furthermore, this study will provide a reference to support the ecosystem security of impounded lakes in other large water diversion projects.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Man Hu
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yi Zhu
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Guoqiang Wang
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Baolin Xue
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Sangam Shrestha
- Water Engineering and Management, Asian Institute of Technology, Pathum Thani, 12120, Thailand
| |
Collapse
|
23
|
Li X, Wang X, Guo W, Wang Y, Hua Q, Tang F, Luan F, Tian C, Zhuang X, Zhao L. Selective Detection of Alkaline Phosphatase Activity in Environmental Water Samples by Copper Nanoclusters Doped Lanthanide Coordination Polymer Nanocomposites as the Ratiometric Fluorescent Probe. BIOSENSORS 2022; 12:372. [PMID: 35735520 PMCID: PMC9221544 DOI: 10.3390/bios12060372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
In this paper, a novel, accurate, sensitive and rapid ratiometric fluorescent sensor was fabricated using a copper nanoclusters@infinite coordination polymer (ICP), specifically, terbium ion-guanosine 5'-disodium (Cu NCs@Tb-GMP) nanocomposites as the ratiometric fluorescent probe, to detect alkaline phosphatase (ALP) in water. The fluorescence probe was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The experimental results showed that, compared with Tb-GMP fluorescent sensors, Cu ratiometric fluorescent sensors based on NCs encapsulated in Tb-GMP had fewer experimental errors and fewer false-positive signals and were more conducive to the sensitive and accurate detection of ALP. In addition, the developed fluorescent probe had good fluorescence intensity, selectivity, repeatability and stability. Under optimized conditions, the ratiometric fluorescent sensor detected ALP in the range of 0.002-2 U mL-1 (R2 = 0.9950) with a limit of detection of 0.002 U mL-1, and the recovery of ALP from water samples was less than 108.2%. These satisfying results proved that the ratiometric fluorescent probe has good application prospects and provides a new method for the detection of ALP in real water samples.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (X.W.); (Y.W.); (Q.H.); (F.T.); (F.L.); (C.T.)
| | - Xiaoling Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (X.W.); (Y.W.); (Q.H.); (F.T.); (F.L.); (C.T.)
| | - Wei Guo
- Shandong Dyne Marine Biopharmaceutical Co., Ltd., Weihai 264300, China
| | - Yunfei Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (X.W.); (Y.W.); (Q.H.); (F.T.); (F.L.); (C.T.)
| | - Qing Hua
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (X.W.); (Y.W.); (Q.H.); (F.T.); (F.L.); (C.T.)
| | - Feiyan Tang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (X.W.); (Y.W.); (Q.H.); (F.T.); (F.L.); (C.T.)
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (X.W.); (Y.W.); (Q.H.); (F.T.); (F.L.); (C.T.)
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (X.W.); (Y.W.); (Q.H.); (F.T.); (F.L.); (C.T.)
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (X.W.); (Y.W.); (Q.H.); (F.T.); (F.L.); (C.T.)
| | - Lijun Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (X.W.); (Y.W.); (Q.H.); (F.T.); (F.L.); (C.T.)
| |
Collapse
|
24
|
Taipale SJ, Pulkkinen K, Keva O, Kainz MJ, Nykänen H. Lowered nutritional quality of prey decrease the growth and biomolecule content of rainbow trout fry. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110767. [PMID: 35618185 DOI: 10.1016/j.cbpb.2022.110767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Diet quality is crucial for the development of offspring. Here, we examined how the nutritional quality of prey affects somatic growth and the lipid, carbohydrate, protein, amino acid, and polyunsaturated fatty acid content of rainbow trout (Oncorhynchus mykiss) fry using a three-trophic-level experimental setup. Diets differed especially in their content of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are physiologically essential polyunsaturated fatty acids for a fish fry. Trout were fed with an artificial diet (fish feed, DHA-rich), marine zooplankton diet (krill/Mysis, DHA-rich), or freshwater zooplankton diet (Daphnia, Cladocera, DHA-deficient). The Daphnia were grown either on a poor, intermediate, or high-quality algal/microbial diet simulating potential changes in the nutritional prey quality (EPA-content). Trout fed with the fish feed or marine zooplankton entirely replaced their muscle tissue composition with compounds of dietary origin. In contrast, fish tissue renewal was only partial in fish fed any Daphnia diet. Furthermore, fish grew five times faster on marine zooplankton than on any of the Daphnia diets. This was mainly explained by the higher dietary contents of arachidonic acid (ARA), EPA, and DHA, but also by the higher content of some amino acids in the marine zooplankton than in the Daphnia diets. Moreover, fatty acid-specific carbon isotopes revealed that trout fry could not biosynthesize ARA, EPA, or DHA efficiently from their precursors. Our results suggest that changes in the zooplankton and macroinvertebrate communities' structure in freshwater habitats from DHA-rich to DHA-poor species may reduce the somatic growth of fish fry.
Collapse
Affiliation(s)
- Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | - Katja Pulkkinen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland. https://twitter.com/Pulkkinen_K
| | - Ossi Keva
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Martin J Kainz
- WasserCluster - Biologische Station Lunz, Dr. Carl Kupelwieser Promenade 5, A-3293 Lunz am See, Austria; Department of Biomedical Research, Danube University Krems, A-3500 Krems, Austria. https://twitter.com/kainz_lab
| | - Hannu Nykänen
- Department of Environmental and Biological Sciences, Biogeochemistry Research Group, University of Eastern Finland, Finland. https://twitter.com/NykanenHannu
| |
Collapse
|
25
|
Isanta-Navarro J, Klauschies T, Wacker A, Martin-Creuzburg D. A sterol-mediated gleaner-opportunist trade-off underlies the evolution of grazer resistance to cyanobacteria. Proc Biol Sci 2022; 289:20220178. [PMID: 35538780 PMCID: PMC9091858 DOI: 10.1098/rspb.2022.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human-caused proliferation of cyanobacteria severely impacts consumers in freshwater ecosystems. Toxicity is often singled out as the sole trait to which consumers can adapt, even though cyanobacteria are not necessarily toxic and the lack of nutritionally critical sterols in cyanobacteria is known to impair consumers. We studied the relative significance of toxicity and dietary sterol deficiency in driving the evolution of grazer resistance to cyanobacteria in a large lake with a well-documented history of eutrophication and oligotrophication. Resurrecting decades-old Daphnia genotypes from the sediment allowed us to show that the evolution and subsequent loss of grazer resistance to cyanobacteria involved an adaptation to changes in both toxicity and dietary sterol availability. The adaptation of Daphnia to changes in cyanobacteria abundance revealed a sterol-mediated gleaner-opportunist trade-off. Genotypes from peak-eutrophic periods showed a higher affinity for dietary sterols at the cost of a lower maximum growth rate, whereas genotypes from more oligotrophic periods showed a lower affinity for dietary sterols in favour of a higher maximum growth rate. Our data corroborate the significance of sterols as limiting nutrients in aquatic food webs and highlight the applicability of the gleaner-opportunist trade-off for reconstructing eco-evolutionary processes.
Collapse
Affiliation(s)
| | - Toni Klauschies
- Institute for Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
| | - Alexander Wacker
- Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| | - Dominik Martin-Creuzburg
- Department of Aquatic Ecology, Research Station Bad Saarow, BTU Cottbus-Senftenberg, 15526 Bad Saarow, Germany
| |
Collapse
|
26
|
Blanchet CC, Arzel C, Davranche A, Kahilainen KK, Secondi J, Taipale S, Lindberg H, Loehr J, Manninen-Johansen S, Sundell J, Maanan M, Nummi P. Ecology and extent of freshwater browning - What we know and what should be studied next in the context of global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152420. [PMID: 34953836 DOI: 10.1016/j.scitotenv.2021.152420] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Water browning or brownification refers to increasing water color, often related to increasing dissolved organic matter (DOM) and carbon (DOC) content in freshwaters. Browning has been recognized as a significant physicochemical phenomenon altering boreal lakes, but our understanding of its ecological consequences in different freshwater habitats and regions is limited. Here, we review the consequences of browning on different freshwater habitats, food webs and aquatic-terrestrial habitat coupling. We examine global trends of browning and DOM/DOC, and the use of remote sensing as a tool to investigate browning from local to global scales. Studies have focused on lakes and rivers while seldom addressing effects at the catchment scale. Other freshwater habitats such as small and temporary waterbodies have been overlooked, making the study of the entire network of the catchment incomplete. While past research investigated the response of primary producers, aquatic invertebrates and fishes, the effects of browning on macrophytes, invasive species, and food webs have been understudied. Research has focused on freshwater habitats without considering the fluxes between aquatic and terrestrial habitats. We highlight the importance of understanding how the changes in one habitat may cascade to another. Browning is a broader phenomenon than the heretofore concentration on the boreal region. Overall, we propose that future studies improve the ecological understanding of browning through the following research actions: 1) increasing our knowledge of ecological processes of browning in other wetland types than lakes and rivers, 2) assessing the impact of browning on aquatic food webs at multiple scales, 3) examining the effects of browning on aquatic-terrestrial habitat coupling, 4) expanding our knowledge of browning from the local to global scale, and 5) using remote sensing to examine browning and its ecological consequences.
Collapse
Affiliation(s)
- Clarisse C Blanchet
- Department of Biology, FI-20014, University of Turku, Finland; Department of Forest Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Céline Arzel
- Department of Biology, FI-20014, University of Turku, Finland
| | - Aurélie Davranche
- CNRS UMR 6554 LETG, University of Angers, 2 Boulevard Lavoisier, FR-49000 Angers, France
| | - Kimmo K Kahilainen
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Jean Secondi
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France; Faculty of Sciences, University of Angers, F-49000 Angers, France
| | - Sami Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Henrik Lindberg
- HAMK University of Applied Sciences, Forestry Programme, Saarelantie 1, FI-16970 Evo, Finland
| | - John Loehr
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | | | - Janne Sundell
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Mohamed Maanan
- UMR CNRS 6554, University of Nantes, F-44000 Nantes, France
| | - Petri Nummi
- Department of Forest Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
27
|
Taipale SJ, Ventelä A, Litmanen J, Anttila L. Poor nutritional quality of primary producers and zooplankton driven by eutrophication is mitigated at upper trophic levels. Ecol Evol 2022; 12:e8687. [PMID: 35342549 PMCID: PMC8928886 DOI: 10.1002/ece3.8687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Eutrophication and rising water temperature in freshwaters may increase the total production of a lake while simultaneously reducing the nutritional quality of food web components. We evaluated how cyanobacteria blooms, driven by agricultural eutrophication (in eutrophic Lake Köyliöjärvi) or global warming (in mesotrophic Lake Pyhäjärvi), influence the biomass and structure of phytoplankton, zooplankton, and fish communities. In terms of the nutritional value of food web components, we evaluated changes in the ω-3 and ω-6 polyunsaturated fatty acids (PUFA) of phytoplankton and consumers at different trophic levels. Meanwhile, the lakes did not differ in their biomasses of phytoplankton, zooplankton, and fish communities, lake trophic status greatly influenced the community structures. The eutrophic lake, with agricultural eutrophication, had cyanobacteria bloom throughout the summer months whereas cyanobacteria were abundant only occasionally in the mesotrophic lake, mainly in early summer. Phytoplankton community differences at genus level resulted in higher arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) content of seston in the mesotrophic than in the eutrophic lake. This was also reflected in the EPA and DHA content of herbivorous zooplankton (Daphnia and Bosmina) despite more efficient trophic retention of these biomolecules in a eutrophic lake than in the mesotrophic lake zooplankton. Planktivorous juvenile fish (perch and roach) in a eutrophic lake overcame the lower availability of DHA in their prey by more efficient trophic retention and biosynthesis from the precursors. However, the most efficient trophic retention of DHA was found with benthivorous perch which prey contained only a low amount of DHA. Long-term cyanobacterial blooming decreased the nutritional quality of piscivorous perch; however, the difference was much less than previously anticipated. Our result shows that long-term cyanobacteria blooming impacts the structure of plankton and fish communities and lowers the nutritional quality of seston and zooplankton, which, however, is mitigated at upper trophic levels.
Collapse
Affiliation(s)
- Sami Johan Taipale
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | | - Jaakko Litmanen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | |
Collapse
|
28
|
Pilecky M, Kämmer SK, Mathieu‐Resuge M, Wassenaar LI, Taipale SJ, Martin‐Creuzburg D, Kainz MJ. Hydrogen isotopes (δ
2
H) of polyunsaturated fatty acids track bioconversion by zooplankton. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Pilecky
- WasserCluster Lunz—Biologische Station Lunz am See Austria
- Department for Biomedical Research Danube University Krems Krems Austria
| | | | | | | | - Sami J. Taipale
- Department of Biological and Environmental Science University of Jyväskylä Survontie Finland
| | | | - Martin J. Kainz
- WasserCluster Lunz—Biologische Station Lunz am See Austria
- Department for Biomedical Research Danube University Krems Krems Austria
| |
Collapse
|
29
|
Calderini ML, Stevčić Č, Taipale S, Pulkkinen K. Filtration of Nordic recirculating aquaculture system wastewater: Effects on microalgal growth, nutrient removal, and nutritional value. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Helminen H, Sarvala J. Trends in Vendace (Coregonus albula) Biomass in Pyhäjärvi (SW Finland) Relative to Trophic State, Climate Change, and Abundance of Other Fish Species. ANN ZOOL FENN 2021. [DOI: 10.5735/086.058.0411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Jouko Sarvala
- ) Department of Biology, FI-20014 University of Turku, Finland
| |
Collapse
|
31
|
Berthold M, Campbell DA. Restoration, conservation and phytoplankton hysteresis. CONSERVATION PHYSIOLOGY 2021; 9:coab062. [PMID: 34394942 PMCID: PMC8361504 DOI: 10.1093/conphys/coab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phytoplankton growth depends not only upon external factors that are not strongly altered by the presence of phytoplankton, such as temperature, but also upon factors that are strongly influenced by activity of phytoplankton, including photosynthetically active radiation, and the availability of the macronutrients carbon, nitrogen, phosphorus and, for some, silicate. Since phytoplankton therefore modify, and to an extent create, their own habitats, established phytoplankton communities can show resistance and resilience to change, including managed changes in nutrient regimes. Phytoplankton blooms and community structures can be predicted from the overall biogeochemical setting and inputs, but restorations may be influenced by the physiological responses of established phytoplankton taxa to nutrient inputs, temperature, second-order changes in illumination and nutrient recycling. In this review we discuss the contributions of phytoplankton ecophysiology to biogeochemical hysteresis and possible effects on community composition in the face of management, conservation or remediation plans.
Collapse
Affiliation(s)
- Maximilian Berthold
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| |
Collapse
|
32
|
Tao H, Song K, Liu G, Wen Z, Wang Q, Du Y, Lyu L, Du J, Shang Y. Songhua River basin's improving water quality since 2005 based on Landsat observation of water clarity. ENVIRONMENTAL RESEARCH 2021; 199:111299. [PMID: 33984309 DOI: 10.1016/j.envres.2021.111299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Water clarity, denoted by the Secchi disk depth (SDD), is one of the most important indicators for monitoring water quality. In the Songhua River basin (SHRB), few studies have used Landsat to monitor long-term (3-4 decades) changes in lake SDD and explore the impact of natural and human factors on SDD interannual variation at the watershed scale. Lakes in the SHRB are of great significance to local populations. Understanding the spatiotemporal dynamics of SDD could help policymakers manage, protect, and predict lake water quality. We utilized the Landsat red/blue band ratio in the Google Earth Engine to estimate the SDD of 77 lakes and generated annual mean SDD maps from 1990 to 2018. The results of the SDD interannual changes showed that the water quality in the SHRB has improved since 2005. Specifically, the SDD in the SHRB displayed a significant increasing trend (p < 0.05) from 0.29 m in 2005 to 0.37 m in 2018. Moreover, the number of lakes displaying a significant increasing trend for SDD increased from 18 between 1990 and 2005 to 31 between 2005 and 2018. We also found that use of chemical fertilizer significantly impacted lakes, followed by wastewater discharge and normalized difference vegetation index. Improvements in the quantity and ability of wastewater discharge treatment and increased vegetation cover have alleviated water pollution; however, the non-point pollution of agriculture still poses a threat to some lakes in the SHRB. Therefore, more efforts should be made to further improve the aquatic ecological environment of SHRBs.
Collapse
Affiliation(s)
- Hui Tao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaishan Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University School of Environment and Planning, Liaocheng University, Liaocheng, 252000, China.
| | - Ge Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Zhidan Wen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Qiang Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yunxia Du
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lili Lyu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Jia Du
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yingxin Shang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
33
|
Heino J, Alahuhta J, Bini LM, Cai Y, Heiskanen AS, Hellsten S, Kortelainen P, Kotamäki N, Tolonen KT, Vihervaara P, Vilmi A, Angeler DG. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol Rev Camb Philos Soc 2021; 96:89-106. [PMID: 32869448 DOI: 10.1111/brv.12647] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022]
Abstract
The Anthropocene presents formidable threats to freshwater ecosystems. Lakes are especially vulnerable and important at the same time. They cover only a small area worldwide but harbour high levels of biodiversity and contribute disproportionately to ecosystem services. Lakes differ with respect to their general type (e.g. land-locked, drainage, floodplain and large lakes) and position in the landscape (e.g. highland versus lowland lakes), which contribute to the dynamics of these systems. Lakes should be generally viewed as 'meta-systems', whereby biodiversity is strongly affected by species dispersal, and ecosystem dynamics are contributed by the flow of matter and substances among locations in a broader waterscape context. Lake connectivity in the waterscape and position in the landscape determine the degree to which a lake is prone to invasion by non-native species and accumulation of harmful substances. Highly connected lakes low in the landscape accumulate nutrients and pollutants originating from ecosystems higher in the landscape. The monitoring and restoration of lake biodiversity and ecosystem services should consider the fact that a high degree of dynamism is present at local, regional and global scales. However, local and regional monitoring may be plagued by the unpredictability of ecological phenomena, hindering adaptive management of lakes. Although monitoring data are increasingly becoming available to study responses of lakes to global change, we still lack suitable integration of models for entire waterscapes. Research across disciplinary boundaries is needed to address the challenges that lakes face in the Anthropocene because they may play an increasingly important role in harbouring unique aquatic biota as well as providing ecosystem goods and services in the future.
Collapse
Affiliation(s)
- Jani Heino
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Janne Alahuhta
- Geography Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | - Luis Mauricio Bini
- Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Yongjiu Cai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, 210008, Nanjing, China
| | - Anna-Stiina Heiskanen
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Seppo Hellsten
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Pirkko Kortelainen
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
- Biodiversity Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Niina Kotamäki
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Kimmo T Tolonen
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
- Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Petteri Vihervaara
- Biodiversity Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Annika Vilmi
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - David G Angeler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07, Uppsala, Sweden
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68583-0984, U.S.A
| |
Collapse
|
34
|
Phytoplankton alpha diversity indices response the trophic state variation in hydrologically connected aquatic habitats in the Harbin Section of the Songhua River. Sci Rep 2020; 10:21337. [PMID: 33288790 PMCID: PMC7721905 DOI: 10.1038/s41598-020-78300-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
The relationship between biodiversity and ecological functioning is a central issue in freshwater ecology, but how this relationship is influenced by hydrological connectivity stress is still unknown. In this study we analyzed the dynamic of the phytoplankton alpha diversity indices and their relationships with trophic state in two hydrologically connected aquatic habitats (Jinhewan Wetland and Harbin Section of the Songhua River) in the Songhua River Basin in northeast China. We hypothesized that the phytoplankton alpha-diversity indices have the potential to provide a signal linking trophic state variation in hydrologically connected aquatic habitats. Our results showed the Cyanophyta and Bacillariophyta were abundant at most stations. T-test showed that phytoplankton alpha diversity indices varied significantly between rainy season and dry season. Trophic State Index recorded that a meso-trophic to eutrophic states of two connected habits during study period. Multivariate statistical analysis revealed that the dynamic of phytoplankton alpha diversity index was closely associated with trophic states change. Our result indicated that hydrological connectivity is a key factor influenced phytoplankton community assembly. In addition, it is beneficial to develop an integrated approach to appropriately describe and measure the trophic state variations of hydrologically connected aquatic habits in freshwater ecosystem.
Collapse
|
35
|
Variation in ω-3 and ω-6 Polyunsaturated Fatty Acids Produced by Different Phytoplankton Taxa at Early and Late Growth Phase. Biomolecules 2020; 10:biom10040559. [PMID: 32268552 PMCID: PMC7226532 DOI: 10.3390/biom10040559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Phytoplankton synthesizes essential ω-3 and ω-6 polyunsaturated fatty acids (PUFA) for consumers in the aquatic food webs. Only certain phytoplankton taxa can synthesize eicosapentaenoic (EPA; 20:5ω3) and docosahexaenoic acid (DHA; 22:6ω3), whereas all phytoplankton taxa can synthesize shorter-chain ω-3 and ω-6 PUFA. Here, we experimentally studied how the proportion, concentration (per DW and cell-specific), and production (µg FA L−1 day−1) of ω-3 and ω-6 PUFA varied among six different phytoplankton main groups (16 freshwater strains) and between exponential and stationary growth phase. EPA and DHA concentrations, as dry weight, were similar among cryptophytes and diatoms. However, Cryptomonas erosa had two–27 times higher EPA and DHA content per cell than the other tested cryptophytes, diatoms, or golden algae. The growth was fastest with diatoms, green algae, and cyanobacteria, resulting in high production of medium chain ω-3 and ω-6 PUFA. Even though the dinoflagellate Peridinium cinctum grew slowly, the content of EPA and DHA per cell was high, resulting in a three- and 40-times higher production rate of EPA and DHA than in cryptophytes or diatoms. However, the production of EPA and DHA was 40 and three times higher in cryptophytes and diatoms than in golden algae (chrysophytes and synyrophytes), respectively. Our results show that phytoplankton taxon explains 56–84% and growth phase explains ~1% of variation in the cell-specific concentration and production of ω-3 and ω-6 PUFA, supporting understanding that certain phytoplankton taxa play major roles in the synthesis of essential fatty acids. Based on the average proportion of PUFA of dry weight during growth, we extrapolated the seasonal availability of PUFA during phytoplankton succession in a clear water lake. This extrapolation demonstrated notable seasonal and interannual variation, the availability of EPA and DHA being prominent in early and late summer, when dinoflagellates or diatoms increased.
Collapse
|
36
|
Shan QIN, Jiansheng CUI, Lina SHEN, Lulu ZHANG, Zejia JU, Yu FU. The influences of eutrophication for the carbon and nitrogen sources for aquatic consumer communities—A case study in Lake Baiyangdian. ACTA ACUST UNITED AC 2020. [DOI: 10.18307/2020.0608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|