1
|
Abtahi M, Paeezi M, Dobaradaran S, Mohagheghian A, Bagheri A, Saeedi R. Assessment of health risk and burden of disease associated with dietary exposure to pesticide residues through foodstuffs in Iran. Food Chem Toxicol 2025; 199:115344. [PMID: 40010662 DOI: 10.1016/j.fct.2025.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
The health risk and burden of disease associated with dietary exposure to pesticide residues in foodstuffs in Iran were assessed. The pesticide residue levels in foodstuffs in the country were determined through systematic review and meta-analysis. The non-carcinogenic risk, carcinogenic risk, and attributable burden of disease were estimated in terms of hazard quotient (HQ), incremental lifetime cancer risk (ILCR), and disability-adjusted life year (DALY), respectively. The meta-analysis showed that 58% of pesticide-food pairs lacked Codex maximum residue levels (MRLs), 34% had pesticide levels below these limits, and 8% exceeded them. Based on the average HQs, two foodstuffs (onion and tangerine) and two pesticides (haloxyfop-R-methyl and cyhalothrin) exhibited unacceptable non-cancer risk (>1.0). The average ILCR value of lindane was assessed to be at the unacceptable level (1.4 × 10-4). The total annual disease burden values attributable to pesticide residues in foodstuffs were assessed to be 242 for death cases, 0.29 for death rate (per 100,000 people), 13,792 for DALYs, and 16.1 for DALY rate. The three food items with the highest DALY rates from pesticide residues were cucumber (5.9), fish (3.9), and date (2.1). The health risk and disease burden of pesticide residues in foodstuffs were considered to be relatively high.
Collapse
Affiliation(s)
- Mehrnoosh Abtahi
- Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Paeezi
- Workplace Health Promotion Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Azita Mohagheghian
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Amin Bagheri
- Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Workplace Health Promotion Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Paeezi M, Gholamnia R, Bagheri A, Fantke P, Dobaradaran S, Soleimani F, Gholizadeh M, Saeedi R. Assessing human toxicity and ecotoxicity impacts of agricultural pesticide use in Iran based on the USEtox model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117785. [PMID: 39889472 DOI: 10.1016/j.ecoenv.2025.117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
The human health and ecotoxicity impacts of agricultural pesticide use in Iran in 2022 were estimated. The impacts of agricultural pesticide use in Iran by pesticide, crop, and province were assessed based on the USEtox model in terms of disability-adjusted life year (DALY) for human health and potentially disappeared fraction of freshwater ecosystem species (PDF) for ecotoxicity. The annual mass of agricultural pesticide use in Iran in 2022 was 17,188 tons, consisting of herbicides (46.2 %), insecticides (30.0 %), and fungicides (23.8 %). The DALYs and DALY rate (per 100,000 people) of agricultural pesticide use in Iran were determined to be 25,140 and 29.4, respectively. The ecotoxicity impact of agricultural pesticide use in Iran was calculated to be 3.35 × 10+12 PDF m3 d. Over 79 % of the human health and ecotoxicity impacts of agricultural pesticide use were attributed to six pesticides (chlorpyrifos, deltamethrin, ethion, phosalone, thiodicarb, and abamectin) and eight crops (pistachio, apple, fig, vegetables, date, orange, wheat and barley, and cotton). While the contributions of the pesticides to the human health and ecotoxicity impact were not the same, chlorpyrifos ranked highest in both human health (28.8 %) and ecotoxicity (49.9 %) impacts. The highest provincial human health and ecotoxicity impacts of agricultural pesticide use were observed in Tehran (4,201 DALYs) and Fars (3.66 ×10+11 PDF m3 d), respectively. The provincial human health and ecotoxicity impacts were mainly driven by population and cropland area, respectively. Given the considerable human health and ecotoxicity impacts, developing national and provincial action plans for more sustainable use of pesticides in Iran is strongly recommended.
Collapse
Affiliation(s)
- Mohammad Paeezi
- Workplace Health Promotion Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Gholamnia
- Workplace Health Promotion Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Bagheri
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peter Fantke
- Substitute ApS, Graaspurvevej 55, 2400 Copenhagen, Denmark; Department for Evolutionary Ecology and Environmental Toxicology, Goethe University; 60438 Frankfurt am Main, Germany
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Farshid Soleimani
- Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdi Gholizadeh
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Nathanael RJ, Adyanis LN, Oginawati K. The last decade epidemiologic concern of drinking water contaminants of emerging concern (CECs) in Asian Countries: A scoping review. Heliyon 2024; 10:e39236. [PMID: 39640600 PMCID: PMC11620247 DOI: 10.1016/j.heliyon.2024.e39236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
With the rapid industrialization and urbanization in Asian countries, the challenge of rising emerging contaminants in the environment, including the water cycle, has become more pronounced. Consequently, the presence of CECs in drinking water systems is inevitable due to their ubiquitous nature in aquatic environments. This scoping review aims to identify epidemiological concerns regarding drinking water CECs in Asian countries over the past decade by describing the types of assessed CECs, their associated health effects, and identifying gaps and future research prospects through a summary of relevant studies. Searches were conducted on PubMed and Scopus up to February 29, 2024. Included were epidemiological studies from the past 10 years (since January 2014) in Asian countries that assessed emerging contaminants in drinking water through direct measurement or analysis as factors. From an initial pool of 3198 results, 15 relevant studies were selected. These studies assessed various types of CECs, including disinfection byproducts (n = 10), endocrine disruptors (n = 2), pesticides (n = 2), and a protozoan pathogen (n = 1). The meticulous assessment of CECs and associated health outcomes in Asian epidemiological studies over the past decade has been deemed inadequate to address the wide range of ubiquitous CECs in drinking water and their potential health effects that have not yet been addressed. While not the sole objective, the primary aim of epidemiological studies is to inform policy decisions and increase awareness among the public and policymakers. Therefore, researchers in Asian countries, particularly in environmental and public health fields, should prioritize the development of research in this area by exploring more CECs type and associated health outcomes.
Collapse
Affiliation(s)
- Rinaldy Jose Nathanael
- Environmental Engineering Program, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Latonia Nur Adyanis
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan, 320314
| | - Katharina Oginawati
- Environmental Management Technology Research Group, Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Bandung, 40132, Indonesia
| |
Collapse
|
4
|
Ghaemi Z, Noshadi M. Evaluation of fluoride exposure using disability-adjusted life years and health risk assessment in south-western Iran: A novel Monte Carlo simulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116705. [PMID: 39003868 DOI: 10.1016/j.ecoenv.2024.116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/08/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Consumption of fluoride-contaminated water is a worldwide concern, especially in developing countries, including Iran. However, there are restricted studies of non-single-value health risk assessment and the disease burden regarding fluoride intake nationwide. Prolonged exposure to excessive fluoride has been linked to adverse health effects such as dental and skeletal fluorosis. This can lead to under-mineralization of hard tissues, causing aesthetic concerns for teeth and changes in bone structure, increasing the risk of fractures. As such, we aimed to implement probability-based frameworks using Monte Carlo methods to explore the potential adverse effects of fluoride via the ingestion route. This platform consists of two sectors: 1) health risk assessment of various age categories coupled with a variance decomposition technique to measure the contributions of predictor variables in the outcome of the health risk model, and 2) implementing Monte Carlo methods in dose-response curves to explore the fluoride-induced burden of diseases of dental fluorosis and skeletal fractures in terms of disability-adjusted life years (DALYs). For this purpose, total water samples of 8053 (N=8053) from 57 sites were analyzed in Fars and Bushehr Provinces. The mean fluoride concentrations were 0.75 mg/L and 1.09 mg/L, with maximum fluoride contents of 6.5 mg/L and 3.22 mg/L for the Fars and Bushehr provinces, respectively. The hazard quotient of the 95th percentile (HQ>1) revealed that all infants and children in the study area were potentially vulnerable to over-receiving fluoride. Sobol' sensitivity analysis indices, including first-order, second-order, and total order, disclosed that fluoride concentration (Cw), ingestion rate (IRw), and their mutual interactions were the most influential factors in the health risk model. DALYs rate of dental fluorosis was as high as 981.45 (uncertainty interval: UI 95 % 353.23-1618.40) in Lamerd, and maximum DALYs of skeletal fractures occurred in Mohr 71.61(49.75-92.71), in Fars Province, indicated severe dental fluorosis but mild hazard regarding fractures. Residents of the Tang-e Eram in Bushehr Province with a DALYs rate of 3609.40 (1296.68-5993.73) for dental fluorosis and a DALYs rate of 284.67 (199.11-367.99) for skeletal fractures were the most potentially endangered population. By evaluating the outputs of the DALYs model, the gap in scenarios of central tendency exposure and reasonable maximum exposure highlights the role of food source intake in over-receiving fluoride. This research insists on implementing defluoridation programs in fluoride-endemic zones to combat the undesirable effects of fluoride. The global measures presented in this research aim to address the root causes of contamination and help policymakers and authorities mitigate fluoride's harmful impacts on the environment and public health.
Collapse
Affiliation(s)
- Zeynab Ghaemi
- Department of Water Engineering, Shiraz University, Shiraz, Iran.
| | - Masoud Noshadi
- Department of Water Engineering, Shiraz University, Shiraz, Iran.
| |
Collapse
|
5
|
Saeedi R, Sadeghi S, Massoudinejad M, Oroskhan M, Mohagheghian A, Mohebbi M, Abtahi M. Assessing drinking water quality based on water quality indices, human health risk, and burden of disease attributable to heavy metals in rural communities of Yazd County, Iran, 2015-2021. Heliyon 2024; 10:e33984. [PMID: 39670233 PMCID: PMC11637201 DOI: 10.1016/j.heliyon.2024.e33984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 12/14/2024] Open
Abstract
The water quality indices, health risk, and burden of disease attributable to heavy metals in rural communities of Yazd County, Iran during 2015-2021 were studied. The drinking water quality index (DWQI) based on 27 parameters (including heavy metals) and heavy metal pollution index (HPI) were used for assessing drinking water quality. The health risk and burden of disease from heavy metals in drinking water were estimated in terms of hazard quotient (HQ), hazard index (HI), incremental lifetime cancer risk (ILCR), and disability-adjusted life year (DALY). Based on the DWQI scores by community, the drinking water quality in rural communities of Yazd County was characterized as good for 61 %, fair for 25 %, marginal for 2 %, and poor for 12 %. The distribution of the rural communities into the HPI categories was as follows: 43 % for excellent, 36 % for good, 14 % for poor, and 7 % for unsuitable. In about 20 % of the rural communities, the average HI level of heavy metals was higher than the boundary limit of one. The highest average HQ level at the county level was related to arsenic (As) to be 0.44. In all the communities, the total ILCR values of the heavy metals were in the category of significant increased cancer risk (10-6 to 10-4). At the county level, As and cadmium (Cd) exhibited the two highest cancer risk levels to be 1.96 × 10-4 and 1.87 × 10-4 for ILCR, respectively. The DALY rate (per 100,000 people) induced by exposure to the heavy metals via drinking water was 13.9, which was considered relatively high as compared to that of other drinking water pollutants obtained in the previous studies. The drinking water quality improvement through decreasing Cd and As levels below the standard values can drastically reduce the attributable burden of disease and promote the public health in the rural communities.
Collapse
Affiliation(s)
- Reza Saeedi
- Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Sadeghi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Massoudinejad
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Oroskhan
- MPH Department, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Mohagheghian
- Department of Environmental Health, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohamadreza Mohebbi
- Department of Civil Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
| | - Mehrnoosh Abtahi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Chen YJ, Messerlian C, Lu Q, Mustieles V, Zhang Y, Sun Y, Wang L, Lu WQ, Liu C, Wang YX. Urinary haloacetic acid concentrations in relation to sex and thyroid hormones among reproductive-aged men. ENVIRONMENT INTERNATIONAL 2024; 189:108785. [PMID: 38823155 PMCID: PMC11265798 DOI: 10.1016/j.envint.2024.108785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Sex and thyroid hormones are critical for male reproductive health. However, the associations between haloacetic acid (HAA) exposure - a known endocrine disruptor - and sex and thyroid hormones in humans remains unclear. We thus recruited 502 male participants seeking fertility evaluation from a reproductive center. We measured concentrations of sex and thyroid hormones in a single blood sample and dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in repeated urine samples. Multivariable linear regression models were constructed to evaluate the associations between HAA concentrations and hormone measurements. After adjusting for potential confounders and urinary creatinine concentrations, urinary concentrations of TCAA were inversely associated with serum levels of sex hormone-binding globulin (SHBG), testosterone (T), T/luteinizing hormone ratio (T/LH), and thyroid stimulating hormone (TSH) (all P for trend < 0.10). Compared with participants in the lowest quartile of TCAA concentrations, those in the highest quartile had reduced serum levels of SHGB by 14.2 % (95% CI: -26.7, -3.0 %), T by 11.1 % (95% CI: -21.7, -1.3 %), T/LH by 21.0 % (95% CI: -36.7, -7.1 %), and TSH by 19.1 % (95% CI: -39.7, -1.5 %). Additionally, we observed inverse associations between continuous measurements of urinary HAAs and serum levels of free T, bioactive T, and estradiol. Our findings suggest that male HAA exposure may be associated with disrupted sex and thyroid function.
Collapse
Affiliation(s)
- Ying-Jun Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Carmen Messerlian
- Departments of Environmental Health and of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Qi Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria Ibs GRANADA, 18012, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, 18010, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Yu Zhang
- Departments of Environmental Health and of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Yang Sun
- Departments of Environmental Health and of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Otolaryngology-Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, United States
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi-Xin Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Shi Y, Xia W, Liu H, Liu J, Cao S, Fang X, Li S, Li Y, Chen C, Xu S. Trihalomethanes in global drinking water: Distributions, risk assessments, and attributable disease burden of bladder cancer. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133760. [PMID: 38522206 DOI: 10.1016/j.jhazmat.2024.133760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/08/2024] [Indexed: 03/26/2024]
Abstract
This study aimed to assess the global spatiotemporal variations of trihalomethanes (THMs) in drinking water, evaluate their cancer and non-cancer risks, and THM-attributable bladder cancer burden. THM concentrations in drinking water around fifty years on a global scale were integrated. Health risks were assessed using Monte Carlo simulations and attributable bladder cancer burden was estimated by comparative risk assessment methodology. The results showed that global mean THM concentrations in drinking water significantly decreased from 78.37 μg/L (1973-1983) to 51.99 μg/L (1984-2004) and to 21.90 μg/L (after 2004). The lifestage-integrative cancer risk and hazard index of THMs through all exposure pathways were acceptable with the average level of 6.45 × 10-5 and 7.63 × 10-2, respectively. The global attributable disability adjusted of life years (DALYs) and the age-standardized DALYs rate (ASDR) dropped by 16% and 56% from 1990-1994 to 2015-2019, respectively. A big decline in the attributable ASDR was observed in the United Kingdom (62%) and the United States (27%), while China experienced a nearly 3-fold increase due to the expanded water supply coverage and increased life expectancy. However, China also benefited from the spread of chlorination, which helped reduce nearly 90% of unsafe-water-caused mortality from 1998 to 2018.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiangtao Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuting Cao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingjie Fang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shulan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; School of Life Sciences, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
8
|
Radfard M, Hashemi H, Baghapour MA, Samaei MR, Yunesian M, Soleimani H, Azhdarpoor A. Prediction of human health risk and disability-adjusted life years induced by heavy metals exposure through drinking water in Fars Province, Iran. Sci Rep 2023; 13:19080. [PMID: 37925586 PMCID: PMC10625539 DOI: 10.1038/s41598-023-46262-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Exposure to heavy metals in contaminated drinking water is strongly correlated with various cancers, highlighting the burden of disease. This study aimed to assess the non-carcinogenic and carcinogenic risks associated with exposure to heavy metals (As, Pb, Cd, and Cr) in drinking water of Fars province and evaluate the attributed burden of disease. Non-carcinogenic risk assessment was performed using the hazard quotient (HQ) method, while the carcinogenic risk assessment utilized the excess lifetime cancer risk approach. The burden of disease was evaluated in terms of years of life lost, years lived with disability, and disability-adjusted life years (DALY) for three specific cancers: skin, lung, and kidney cancer. The average drinking water concentrations of arsenic (As), cadmium (Cd), chromium (Cr) and lead (Pb) were determined to be 0.72, 0.4, 1.10 and 0.72 μg/L, respectively. The total average HQ of heavy metals in drinking water in the study area were 0.127, 0.0047, 0.0009 and 0.0069, respectively. The average ILCRs of heavy metal in the entire country were in the following order: 1.15 × 10-5 for As, 2.22 × 10-7 for Cd and 3.41 × 10-7 for Cr. The results also indicated that among the various counties analyzed, Fasa experiences the greatest burden of disease in terms of DALYs, with a value of 87.56, specifically attributed to cancers caused by exposure to arsenic. Generally, it can be said that the burden of disease is a critical aspect of public health that requires comprehensive understanding and effective intervention.
Collapse
Affiliation(s)
- Majid Radfard
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Hashemi
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Baghapour
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Liu T, Zhang M, Wen D, Fu Y, Yao J, Shao G, Peng Z. Temporal and spatial variations of disinfection by-products in South Taihu's drinking water, Zhejiang Province, China. JOURNAL OF WATER AND HEALTH 2023; 21:1503-1517. [PMID: 37902205 PMCID: wh_2023_149 DOI: 10.2166/wh.2023.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Some disinfection by-products (DBPs) in drinking water present a potential safety concern. This study focuses on the elements influencing DBPs formation. A total of 120 water samples were collected from 10 different drinking water facilities spanning 5 counties within Huzhou, Zhejiang Province, China. Concentrations of trihalomethanes (THMs) and haloacetic acids (HAAs) were observed to be 14.5 and 27.4 μg/L, respectively, constituting 34 and 64% of the total DBPs. Seasonal fluctuations demonstrated that HAAs, THMs, halonitromethanes (HNMs), and haloacetonitriles (HANs) followed a similar pattern with higher levels in summer or autumn compared to spring. Importantly, the concentrations of HAAs and THMs were markedly higher in Taihu-sourced water compared to other sources. Geographically, Nanxun exhibited the highest levels of total DBPs, HAAs, and THMs, while Deqing and Changxing demonstrated significantly lower levels. Correlation studies between water quality parameters and DBPs revealed that factors such as chloride content, temperature, and residual chlorine positively influenced DBPs formation, whereas turbidity negatively affected it. Principal component analysis suggested similar formation processes for HANs, haloketones (HKs), HNMs, and THMs. Factors such as temperature, chemical oxygen demand (COD), and residual chlorine were identified as significant contributors to the prevalence of HAAs.
Collapse
Affiliation(s)
- Tao Liu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang Province 313000, China E-mail:
| | - Min Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province 410005, China
| | - Dong Wen
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang Province 313000, China
| | - Yun Fu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang Province 313000, China
| | - Jianhua Yao
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang Province 313000, China
| | - Guojian Shao
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang Province 313000, China
| | - Zhang Peng
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang Province 313000, China
| |
Collapse
|
10
|
Joghataei A, Gholamnia R, Khaloo SS, Khodakarim S, Saeedi R. Burden of injury due to occupational accidents and its spatiotemporal trend at the national and subnational levels in Iran, 2011-2018. Int Arch Occup Environ Health 2023; 96:1061-1076. [PMID: 37308756 DOI: 10.1007/s00420-023-01990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
PURPOSE The spatiotemporal trend of the burden of injury due to occupational accidents in Iran, 2011-2018 were assessed at the national and subnational levels. METHODS The burden of occupational injury was estimated using three datasets of occupational injury data, the employed population, and duration and disability weight of injuries. RESULTS The disability-adjusted life years (DALYs), deaths, DALY rate, and death rate (per 100,000 workers) of occupational injury in Iran drastically decreased from 169,523, 2,280, 827, and 11 in 2011 to 86,235, 1,151, 362, and 5 in 2018, respectively. The DALY rates of occupational injury were significantly different by gender and age in a manner that the DALY rate of men was much higher than that of women and the DALY rates by age group in 2018 ranged from 98 for 50 y and over to 901 for 15-19 y. The shares of injury outcomes in the total DALYs in 2018 were as follows: 63.6% for fatal injuries, 17.4% for fracture, 7.9% for open wound, 7.3% for amputation, and 3.8% for other injuries. Over 83% of the DALYs was observed in three economic activity groups of construction, manufacturing, and community, social, and personal service activities. The three provinces with the highest DALY rates in 2018 were Markazi, West Azarbaijan, and East Azarbaijan, respectively. CONCLUSION Despite the decreasing temporal trend, the burden of occupational injury in Iran in 2018 was high. The high-risk groups and hot spot provinces should be taken into more consideration for further reduction of the injury burden.
Collapse
Affiliation(s)
- Ahmad Joghataei
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Gholamnia
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokooh Sadat Khaloo
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Khodakarim
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Lee D, Gibson JM, Brown J, Habtewold J, Murphy HM. Burden of disease from contaminated drinking water in countries with high access to safely managed water: A systematic review. WATER RESEARCH 2023; 242:120244. [PMID: 37390656 PMCID: PMC11260345 DOI: 10.1016/j.watres.2023.120244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
The vast majority of residents of high-income countries (≥90%) reportedly have high access to safely managed drinking water. Owing perhaps to the widely held perception of near universal access to high-quality water services in these countries, the burden of waterborne disease in these contexts is understudied. This systematic review aimed to: identify population-scale estimates of waterborne disease in countries with high access to safely managed drinking water, compare methods to quantify disease burden, and identify gaps in available burden estimates. We conducted a systematic review of population-scale disease burden estimates attributed to drinking water in countries where ≥90% of the population has access to safely managed drinking water per official United Nations monitoring. We identified 24 studies reporting estimates for disease burden attributable to microbial contaminants. Across these studies, the median burden of gastrointestinal illness risks attributed to drinking water was ∼2,720 annual cases per 100,000 population. Beyond exposure to infectious agents, we identified 10 studies reporting disease burden-predominantly, cancer risks-associated with chemical contaminants. Across these studies, the median excess cancer cases attributable to drinking water was 1.2 annual cancer cases per 100,000 population. These median estimates slightly exceed WHO-recommended normative targets for disease burden attributable to drinking water and these results highlight that there remains important preventable disease burden in these contexts, particularly among marginalized populations. However, the available literature was scant and limited in geographic scope, disease outcomes, range of microbial and chemical contaminants, and inclusion of subpopulations (rural, low-income communities; Indigenous or Aboriginal peoples; and populations marginalized due to discrimination by race, ethnicity, or socioeconomic status) that could most benefit from water infrastructure investments. Studies quantifying drinking water-associated disease burden in countries with reportedly high access to safe drinking water, focusing on specific subpopulations lacking access to safe water supplies and promoting environmental justice, are needed.
Collapse
Affiliation(s)
- Debbie Lee
- Water, Health and Applied Microbiology (WHAM) Lab, Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jacqueline MacDonald Gibson
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, United States
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jemaneh Habtewold
- Water, Health and Applied Microbiology (WHAM) Lab, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, United States
| | - Heather M Murphy
- Water, Health and Applied Microbiology (WHAM) Lab, Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States; Water, Health and Applied Microbiology (WHAM) Lab, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, United States.
| |
Collapse
|
12
|
Abtahi M, Dobaradaran S, Koolivand A, Jorfi S, Saeedi R. Assessment of cause-specific mortality and disability-adjusted life years (DALYs) induced by exposure to inorganic arsenic through drinking water and foodstuffs in Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159118. [PMID: 36181805 DOI: 10.1016/j.scitotenv.2022.159118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/27/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The health risk and burden of disease induced by exposure to inorganic arsenic (iAs) through drinking water and foodstuffs in Iran were assessed. The iAs levels in drinking water and foodstuffs (15 food groups) in the country were determined through systematic review of three international databases (PubMed, Scopus, and Web of Science) and meta-analysis. Based on the results of the systematic review and meta-analysis, the average iAs levels in drinking water and all the food groups at the national level were lower than the maximum permissible levels. The total average non-carcinogenic risk of dietary exposure to iAs in terms of hazard index (HI) was 3.4. The average incremental lifetime cancer risk (ILCR) values of dietary exposure to iAs were determined to be 1.5 × 10-3 for skin cancer, 1.0 × 10-3 for lung cancer, and 4.0 × 10-4 for bladder cancer. Over two-thirds of the non-carcinogenic and carcinogenic risk of dietary exposure to iAs was attributed to bread and cereals, drinking water, and rice. The total annual cancer incidence, deaths, disability-adjusted life years (DALYs), death rate, and DALY rate (per 100,000 people) were assessed to be 3347 (95 % uncertainty interval: 1791 to 5999), 1302 (697 to 2336), 72,606 (38,833 to 130,228), 1.6 (0.87 to 2.9), and 91 (49 to 160). The contribution of mortality in the attributable burden of disease was 95.1 %. The contributions of the causes in the attributable burden of disease were 72 % for lung cancer, 16 % for bladder cancer, and 12 % for skin cancer. Due to the significant attributable burden of disease, national and subnational action plans consisting of multi-disciplinary approaches for risk management of dietary exposure to iAs, especially for the higher arsenic-affected areas and high-risk population groups in the country are recommended.
Collapse
Affiliation(s)
- Mehrnoosh Abtahi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sahand Jorfi
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Agbley E, Kpodo F, Kortei N, Agbenorhevi J, Kaba G, Nyasordzi J. Consumption pattern, heavy metal content and risk assessment of Akpeteshie-local gin in Ho municipality of Ghana. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
14
|
Xia L, Han Q, Shang L, Wang Y, Li X, Zhang J, Yang T, Liu J, Liu L. Quality assessment and prediction of municipal drinking water using water quality index and artificial neural network: A case study of Wuhan, central China, from 2013 to 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157096. [PMID: 35779730 DOI: 10.1016/j.scitotenv.2022.157096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The sanitary security of drinking water is closely related to human health, but its quality assessment mainly focused on limited types of indicators and relatively restricted time span. The current study was aimed to evaluate the long-term spatial-temporal distribution of municipal drinking water quality and explore the origin of water contamination based on multiple water indicators of 137 finished water samples and 863 tap water samples from Wuhan city, China. Water quality indexes (WQIs) were calculated to integrate the measured indicators. WQIs of the finished water samples ranged from 0.24 to 0.92, with the qualification rate and excellent rate of 100 % and 96.4 %, respectively, while those of the tap water samples ranged from 0.09 to 3.20, with the qualification rate of 99.9 %, and excellent rate of 95.5 %. Artificial neural network model was constructed based on the time series of WQIs from 2013 to 2019 to predict the water quality thereafter. The predicted WQIs of finished and tap water in 2020 and 2021 qualified on the whole, with the excellent rate of 87.5 % and 92.9 %, respectively. Except for three samples exceeding the limits of free chlorine residual, chloroform and fluoride, respectively, the majority of indicators reached the threshold values for drinking. Our study suggested that municipal drinking water quality in Wuhan was generally stable and in line with the national hygiene standards. Moreover, principal component analysis illustrated that the main potential sources of drinking water contamination were inorganic salts and organic matters, followed by pollution from distribution systems, the use of aluminum-containing coagulants and turbidity involved in water treatment, which need more attention.
Collapse
Affiliation(s)
- Lu Xia
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qing Han
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei 430024, PR China
| | - Lv Shang
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei 430024, PR China
| | - Yao Wang
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei 430024, PR China
| | - Xinying Li
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jia Zhang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Tingting Yang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Junling Liu
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
15
|
Pourfadakari S, Dobaradaran S, De-la-Torre GE, Mohammadi A, Saeedi R, Spitz J. Evaluation of occurrence of organic, inorganic, and microbial contaminants in bottled drinking water and comparison with international guidelines: a worldwide review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55400-55414. [PMID: 35668268 DOI: 10.1007/s11356-022-21213-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to evaluate the levels of inorganic and organic substances as well as microbial contaminants in bottled drinking water on a global scale. The findings were compared to WHO guidelines, EPA standards, European Union (EU) directive, and standards drafted by International Bottled Water Association (IBWA). Our review showed that 46% of studies focused on the organic contaminants, 25% on physicochemical parameters, 12% on trace elements, 7% on the microbial quality, and 10% on microplastics (MPs) and radionuclides elements. Overall, from the 54 studies focusing on organic contaminants (OCs) compounds, 11% of studies had higher OCs concentrations than the standard permissible limit. According to the obtained results from this review, several OCs, inorganic contaminants (IOCs), including CHCl3, CHBrCl2, DEHP, benzene, styrene, Ba, As, Hg, pb, Ag, F, NO3, and SO4 in bottled drinking water of some countries were higher than the international guidelines values that may cause risks for human health in a long period of time. Furthermore, some problematic contaminants with known or unknown health effects such as EDCs, DBP, AA, MPs, and some radionuclides (40K and 222Rn) lack maximum permissible values in bottled drinking water as stipulated by international guidelines. The risk index (HI) for OCs and IOCs (CHBrCl2, Ba, As, and Hg) was higher than 1 in adults and children, and the value of HI for CHCl3 in children was more than 1. Thus, further studies are required to have a better understanding of all contaminants levels in bottled drinking water.
Collapse
Affiliation(s)
- Sudabeh Pourfadakari
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini Street, Bushehr, 7514763448, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini Street, Bushehr, 7514763448, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Niutrition, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | | | - Azam Mohammadi
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Saeedi
- Department of Health Sciences, Faculty of Health, Safety and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jorg Spitz
- Akademie für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| |
Collapse
|
16
|
Naddafi K, Mesdaghinia A, Abtahi M, Hassanvand MS, Beiki A, Shaghaghi G, Shamsipour M, Mohammadi F, Saeedi R. Assessment of burden of disease induced by exposure to heavy metals through drinking water at national and subnational levels in Iran, 2019. ENVIRONMENTAL RESEARCH 2022; 204:112057. [PMID: 34529973 DOI: 10.1016/j.envres.2021.112057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The burden of disease attributable to exposure to heavy metals via drinking water in Iran (2019) was assessed at the national and regional levels. The non-carcinogenic risk, carcinogenic risk, and attributable burden of disease of heavy metals in drinking water were estimated in terms of hazard quotient (HQ), incremental lifetime cancer risk (ILCR), and disability-adjusted life year (DALY), respectively. The average drinking water concentrations of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and nickel (Ni) in Iran were determined to be 2.3, 0.4, 12.1, 2.5, 0.7, and 19.7 μg/L, respectively, which were much lower than the standard values. The total average HQs of heavy metals in drinking water in the entire country, rural, and urban communities were 0.48, 0.65 and 0.45, respectively. At the national level, the average ILCRs of heavy metal in the entire country were in the following order: 1.06 × 10-4 for As, 5.89 × 10-5 for Cd, 2.05 × 10-5 for Cr, and 3.76 × 10-7 for Pb. The cancer cases, deaths, death rate (per 100,000 people), DALYs, and DALY rate (per 100,000 people) attributed to exposure to heavy metals in drinking water at the national level were estimated to be 213 (95% uncertainty interval: 180 to 254), 87 (73-104), 0.11 (0.09-0.13), 4642 (3793-5489), and 5.81 (4.75-6.87), respectively. The contributions of exposure to As, Cd, Cr, and Pb in the attributable burden of disease were 14.7%, 65.7%, 19.3%, and 0.2%, respectively. The regional distribution of the total attributable DALY rate for all heavy metals was as follows: Region 5> Region 4> Region 1> Region 3> Region 2. The investigation and improvement of relatively high exceedance of As levels in drinking water from the standard value, especially in Regions 5 and 3 as well as biomonitoring of heavy metals throughout the country were recommended.
Collapse
Affiliation(s)
- Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Abtahi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayoub Beiki
- Center of Environmental and Occupational Health, Ministry of Health and Medical Education, Tehran, Iran
| | - Gholamreza Shaghaghi
- Center of Environmental and Occupational Health, Ministry of Health and Medical Education, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Abtahi M, Dobaradaran S, Koolivand A, Jorfi S, Saeedi R. Burden of disease induced by public overexposure to solar ultraviolet radiation (SUVR) at the national and subnational levels in Iran, 2005-2019. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118411. [PMID: 34718085 DOI: 10.1016/j.envpol.2021.118411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Estimating the burden of diseases induced by overexposure to solar ultraviolet radiation (SUVR) can help to prioritize environmental health interventions. The age-sex specific and cause-specific mortality and disability-adjusted life years (DALYs) attributable to overexposure to SUVR at the national and subnational levels in Iran, 2005-2019 were estimated. The burden of disease induced by overexposure to SUVR was quantified in four steps as follows: (1) estimating exposure to SUVR, (2) estimating total incidences and deaths of target causes, (3) assessing population attributable fractions of the target causes for the SUVR, and (4) calculating the attributable burden of disease. The attributable DALYs, deaths, age-standardized DALY rate, and age-standardized death rate at the national level were determined to be respectively 21896, 252, 42.59, and 0.56 in 2005 and were respectively changed to 28665, 377, 38.76, and 0.53 in 2019. The contributions of causes in the attributable DALYs at the national level were different by year and sex and for both sexes in 2019 were as follows: 46.15% for cataract, 20.36% for malignant skin melanoma, 16.07% for sunburn, 12.41% for squamous-cell carcinoma, and 5.01% for the other five causes. The contributions of population growth, population ageing, risk exposure, and risk-deleted DALY rate in the temporal variations of the attributable burden of disease in the country were +20.73%, +20.68%, +2.01%, and -12.51%. The highest and lowest provincial attributable age-standardized DALY rates in 2019 were observed in Fars (46.8) and Ardebil (32.7), respectively. The burden of disease induced by exposure to SUVR caused relatively low geographical inequality in health status in Iran. Due to increasing trends of the SUVR as well as the attributable burden of disease, the preventive interventions against the SUVR overexposure should be considered in the public health action plan all across the country.
Collapse
Affiliation(s)
- Mehrnoosh Abtahi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sahand Jorfi
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Askari M, Saeedi R, Nabizadeh R, Zarei A, Ghani M, Ehsani M, Alimohammadi M, Abtahi M. Assessing contribution of bottled water in nutrient absorption using the bottled water nutritional quality index (BWNQI) in Iran. Sci Rep 2021; 11:24322. [PMID: 34934124 PMCID: PMC8692346 DOI: 10.1038/s41598-021-03792-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, the contribution of bottled water in the absorption of nutritional minerals in Iran has been investigated. To calculate the nutritional quality index of bottled water (BWNQI) and evaluate the contribution of bottled water in nutrient absorption; the concentration of nutrient minerals, the standard level of these elements in bottled water, the recommended amount of nutrient mineral and the total consumption of drinking water in different age-sex groups were analyzed. The results showed that the average contribution of bottled water in absorbing the recommended amount of the nutrients of fluoride (F), magnesium (Mg), calcium (Ca), sodium (Na), copper (Cu), zinc (Zn) and manganese (Mn) was 12.16, 4.98, 4.85, 2.12, 0.49, 0.33 and 0.02%, respectively. According to the BWNQI index, the bottled water quality was as follows: 53.5% poor, 36.6% marginal, 7% fair, 2.81% good. Although most of the bottled water studied in this research were mineral water, a significant portion of them had poor nutritional quality, so the addition of minerals needed by the body through bottled water should be given more attention by the bottled water manufacturers and suppliers.
Collapse
Affiliation(s)
- Masoomeh Askari
- Master Student of MPH, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Zarei
- Department of Environmental Health Engineering, School of Public Health, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maryam Ghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ehsani
- Dentistry Student, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Water Quality Research (CWQI), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
- Health Equity Research Center (HERC), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrnoosh Abtahi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Sarmadi M, Rahimi S, Rezaiemanesh MR, Yektay S. Association between water and sanitation, air and emission pollution and climate change and neurological disease distribution: A study based on GBD data. CHEMOSPHERE 2021; 285:131522. [PMID: 34273694 DOI: 10.1016/j.chemosphere.2021.131522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Along with the urbanization and industrialization of countries, the prevalence of chronic diseases has increased. There is ample evidence that ambient pollution can play a major role in these diseases. This study aimed to investigate the association between neurological disorders (NDs) and their subtypes with environmental factors. In this country-level study, we used the age-standardized prevalence and incidence rate (per 100,000 populations) of NDs and its subtypes that have been taken from the Global Burden of Disease (GBD) database in 2019. We used correlation and regression analysis to assess the association between variables. Also, multivariable regression analysis was performed to identify the most important variables in NDs distribution. Age-adjusted NDs incidence rate was significantly higher in developed countries compared to developing countries (11345.25 (95% CI: 11634.88-11055.62) and 9956.37 (95% CI: 10138.66-9774.08)). Association results indicated that the impact of water and sanitation could be more effective than air pollution on NDs. The increase in water and sanitation index levels was positively correlated with NDs incidence rate and prevalence (regression coefficient (b) = 38.011 (SE = 6.50) and b = 118.84 (SE = 20.64), p < 0.001, respectively) after adjusting socio-economic and demographic factors. Furthermore, the incidence of NDs was negatively correlated with the increase in air quality (b = -16.30 (SE = 7.25), p = 0.008). Water and sanitation and their related factors are plausible factors in the distribution of NDs, which may be linked to the potential role of air and water pollution, such as heavy metals and particle matters. These results can be used by politicians and municipal service planners for future planning.
Collapse
Affiliation(s)
- Mohammad Sarmadi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Sajjad Rahimi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad Reza Rezaiemanesh
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sama Yektay
- Student Research Committee, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
20
|
Kali S, Khan M, Ghaffar MS, Rasheed S, Waseem A, Iqbal MM, Bilal Khan Niazi M, Zafar MI. Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116950. [PMID: 33819670 DOI: 10.1016/j.envpol.2021.116950] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Disinfection is considered as a vital step to ensure the supply of clean and safe drinking water. Various approaches are adopted for this purpose; however, chlorination is highly preferred all over the world. This method is opted owing to its several advantages. However, it leads to the formation of certain by-products. These chlorination disinfection by-products (DBPs) are genotoxic, carcinogenic and mutagenic. Still chlorination is being practiced worldwide. Present review gives insights into the occurrence, toxicity and factors affecting the formation of regulated (THMs, HAAs) and emerging DBPs (N-DBPs, HKs, HAs and aromatic DBPs) found in drinking water. Furthermore, remediation techniques used to control DBPs have also been summarized here. Key findings are: (i) concentration of regulated DBPs surpassed the permissible limit in most of the regions, (ii) high chlorine dose, high NOM, more reaction time (up to 3 h) and high temperature (up to 30 °C) enhance the formation of THMs and HAAs, (iii) high pH favors the formation of THMs while low pH is suitable of the formation of HAAs, (iv) high NOM, low temperature, low chlorine dose and moderate pH favors the formation of unstable DBPs (N-DBPs, HKs and HAs), (v) DBPs are toxic not only for humans but for aquatic fauna as well, (vi) membrane technologies, enhanced coagulation and AOPs remove NOM, (vii) adsorption, air stripping and other physical and chemical methods are post-formation approaches (viii) step-wise chlorination is assumed to be an efficient method to reduce DBPs formation without any treatment. Toxicity data revealed that N-DBPs are found to be more toxic than C-DBPs and aromatic DBPs than aliphatic DBPs. In majority of the studies, merely THMs and HAAs have been studied and USEPA has regulated just these two groups. Future studies should focus on emerging DBPs and provide information regarding their regulation.
Collapse
Affiliation(s)
- Sundas Kali
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Marina Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Sheraz Ghaffar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sajida Rasheed
- Department of Biotechnology, Faculty of Sciences, University of Kotli, Azad Jamu Kashmir, Pakistan.
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Mazhar Iqbal
- Laboratory of Analytical Chemistry and Applied Eco-chemistry, Department of Applied Analytical and Physical Chemistry, Ghent University, Ghent, Belgium; Soil and Water Testing Laboratory, Department of Agriculture, Chiniot, Government of Punjab, Pakistan.
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
21
|
Badaró JPM, Campos VP, da Rocha FOC, Santos CL. Multivariate analysis of the distribution and formation of trihalomethanes in treated water for human consumption. Food Chem 2021; 365:130469. [PMID: 34243123 DOI: 10.1016/j.foodchem.2021.130469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022]
Abstract
The disinfection of water for human consumption with chlorine or other compounds produces secondary reactions with the organic matter, generating undesirable disinfection by-products (DBPs). Among these are trihalomethanes (THMs), identified as carcinogenic compounds. This work determined the trihalomethanes concentration, both speciated and total, in treated water distributed and stored in tanks of residential condominiums of different social classes. THMs were quantified using static manual Headspace as preconcentration technique, injecting the vapor phase collected in a GC/FID. The results show that the water distributed to the homes already contains THMs, trichloromethane being the major compound. The Principal Components Analysis (PCA) and Hierarchical Cluster Analysis (HCA) with 60 water samples showed that there is no significant distinction among samples of treated water distributed water and water stored in tanks. This study warns to the importance of controlling the formation of trihalomethanes in water throughout treatment and distribution for users.
Collapse
Affiliation(s)
| | - Vânia Palmeira Campos
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, 40170-270 Salvador, Bahia, Brazil
| | | | - Camila Lima Santos
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, 40170-270 Salvador, Bahia, Brazil
| |
Collapse
|
22
|
Li X, Yu Y, Zheng N, Wang S, Sun S, An Q, Li P, Li Y, Hou S, Song X. Exposure of street sweepers to cadmium, lead, and arsenic in dust based on variable exposure duration in zinc smelting district, Northeast China. CHEMOSPHERE 2021; 272:129850. [PMID: 33592512 DOI: 10.1016/j.chemosphere.2021.129850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Street dust is an important contributor to heavy metal exposure in street sweepers. In this work, the levels of cadmium (Cd), lead (Pb), and arsenic (As) in street dust were evaluated, and the corresponding health implications for street sweepers in the smelting district of Huludao city northeast China were assessed. The contributions of dietary sources and dust to total metal exposure in street sweepers were compared. Because street sweepers are exposed to street dust both during work and nonwork hours, the health risks faced by street sweepers are uncertain. Therefore, variable exposure duration was considered using a deterministic model. A probabilistic risk assessment model was developed to explore the health effects of street dust on street sweepers via Monte Carlo simulation. The various exposure parameters that affect risk were analyzed using sensitivity analysis. The average Cd, Pb, and As levels in the hair of street sweepers were 2.04, 20.12, and 0.52 mg·kg-1, respectively. These values were higher than those for residents (i.e., not street sweepers) of Huludao. Strong correlations were found between the logarithms (base 10) of the Cd, Pb, and As contents in dust and hair (rCd = 0.581, p < 0.01; rPb = 0.428, p < 0.01; rAs = 0.378, p < 0.01; n = 62). Based on analysis using deterministic models, the maximum exposures to Cd and Pb via dust through the alimentary canal were nearly three and six times higher than the dietary exposures, respectively. Sensitivity analysis indicated that exposure duration is an important parameter.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Yan Yu
- Department of Dermatology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China; Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Pengyang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Shengnan Hou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Xue Song
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| |
Collapse
|
23
|
Li J, Yin P, Wang H, Zeng X, Zhang X, Wang L, Liu J, Liu Y, You J, Zhao Z, Yu S, Zhou M. The disease burden attributable to 18 occupational risks in China: an analysis for the global burden of disease study 2017. Environ Health 2020; 19:21. [PMID: 32075644 PMCID: PMC7031932 DOI: 10.1186/s12940-020-00577-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND China has more than 18% of the global population and over 770 million workers. However, the burden of disease attributable to occupational risks is unavailable in China. We aimed to estimate the burden of disease attributable to occupational exposures at provincial levels from 1990 to 2017. METHODS We estimated the summary exposure values (SEVs), deaths and disability-adjusted life years (DALYs) attributable to occupational risk factors in China from 1990 to 2017, based on Global Burden of Disease Study (GBD) 2017. There were 18 occupational risks, 22 related causes, and 35 risk-outcome pairs included in this study. Meanwhile, we compared age-standardized death rates attributable to occupational risk factors in provinces of China by socio-demographic index (SDI). RESULTS The SEVs of most occupational risks increased from 1990 to 2017. There were 323,833 (95% UI 283,780 - 369,061) deaths and 14,060,210 (12,022,974 - 16,125,763) DALYs attributable to total occupational risks in China, which were 27.9 and 22.1% of corresponding global levels, respectively. For attributable deaths, major risks came from occupational particulate matter, gases, and fumes (PGFs), and for the attributable DALYs, from occupational injuries. The attributable burden was higher in males than in females. Compared with high SDI provinces, low SDI provinces, especially Western China, had higher death rates attributable to total occupational risks, occupational PGFs, and occupational injuries. CONCLUSION Occupational risks contribute to a huge disease burden in China. The attributable burden is higher in males, and in less developed provinces of Western China, reflecting differences in risk exposure, socioeconomic conditions, and type of jobs. Our study highlights the need for further research and focused policy interventions on the health of workers especially for less developed provinces in China to reduce occupational health losses effectively.
Collapse
Affiliation(s)
- Jie Li
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050 China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050 China
| | - Haidong Wang
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA USA
| | - Xinying Zeng
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao Zhang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050 China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050 China
| | - Jiangmei Liu
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050 China
| | - Yunning Liu
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050 China
| | - Jinling You
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050 China
| | - Zhenping Zhao
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050 China
| | - Shicheng Yu
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050 China
| |
Collapse
|